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Vanishing theorems for the sheaf of microfunctions

with holomorphic parameters

—Flabbiness of the sheaf of 2-microfunctions—
By Kiyomi KATAOKA and Nobuyuki TOSE

Introduction

This note deals with a global vanishing theorem for the sheaf C(©
of microfunctions with holomorphic parameters and some related results.

Noro-Tose [7] obtained a similar vanishing theorem for the domains
of type {a real open set}X{a Stein domain}. Our approach is not based
on theirs, but on Schapira-Zampieri’s ([11]); a reduction to the flabbiness
of microfunctions. We also prove in §3 the cohomological triviality of
A’ (see §1.3 for its definition), which will be used to prove the flabbiness
of " in §4.

The authors would like to express their gratitude to Prof. P. Schapira
and Prof. G. Zampieri for fruitful discussions and encouragement.

§1. Preliminary

1.1. Sato’s Microlocalization

Let X be a C* manifold and Y be a closed submanifold of X. D*(X)
denotes the derived category of bounded complexes of sheaves of modules
on X. Refer to [2] for the notion of derived categories and derived
functors.

For F €O0b(D*(X)), Sato’s microlocalization of F' along Y is defined by

(1.1) ﬂy(F) ———RPs‘Yx(W.';/le)a

Here 7y, is the projection from ¥ X*=(X—Y)US%X onto X, a:S}X—StX
is the antipodal map of the fibers, and G°=a"'G for any G € Ob(D*(S%X)).
We remark that Y X* is the comonoidal transformation of X with center
Y (see [8]).



314 Kiyomi KATA0KA and Nobuyuki TOSE

1.2. Microfunctions with holomorphic parameters
Let M=R?X R? be with its complexification X=C2XC:. We set
(12) N=Xn{Imw=0} == RxC:, S=8S%X " iS*RXC.

We take a coordinate (¢, z; irdt+ifdx) of SiX with (r,£)#0. Then b
is called a partial complexification of an involutory submanifold

(1.3) X ={(t, x; v, 1€) € SEX; £=0}

in StX. X is endowed with the sheaf C'O' (or =Cj;) of microfunctions
with holomorphic parameters z (see [8], [4]). Explicitly, C’0" is defined as

(1.4) C'O" = pn(Ox)[p].
Here we remark that CO" is concentrated in degree 0.

1.3. 2nd-microlocalizations

We follow the notation above. M. Kashiwara introduced the sheaf
of 2nd-microfunctions C3 long time ago in Nice, which is explicitly
defined as

(15) Cy=rs(Cs)q).

Here this complex is concentrated in degree 0. We also define the
sheaves of 2nd-hyperfunctions and 2nd-real analytic functions respectively
by

(1.6) y=H3(Cs) and Az=Csls.

§2. Vanishing Theorems for CO

2.1. Statement of Theorems

Let L be a p-dimensional oriented real analytic manifold. :l‘hen,
for M=LXR! we can generalize the definitions in 1.2 of X, N, 2 and
Cs(=C"0O") in a natural way; that is,
2.1) $=iS*LxC1 —L— iS*L,

where y is the canonical projection. An open set D in C? is said to be
of product type iff D has the form

D=D;X --- XD,
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with some open subsets D, ---, D, of C.

THEOREM 2.1. Let U,V be open subsets of X satisfying UD V.
Suppose that, for every t* € iS*L,

22), 7'tINU=V)=a= 7"t NU-V)=r"*)NTU
=an open set of product type in CL

Then we have
(2.3), L (U, C'OY=0  for every k=1.

As a corollary of (2.3),, we have in a weak sense the partial flabbiness
of C*©" with respect to microfunction parameters; that is,

THEOREM 2.2. Let U,V be open subsets of 5 satisfying UD V.
Suppose the condition (2.2),, Then the restriction map

(2.4), ruCcoY— rw,co
18 surjective.

REMARK 2.3. i) As the simplest example of (U. V) in these theorems,
we can take U=W XD, X --- XD, V=W,XD,X --- XD, with some open
sets W,, W, in iS*L and with some open sets D,, ---, D,in C. ii) Schapira-
Zampieri proved a theorem equivalent to Theorem 2.1 for ¢=1 (that is,
a vanishing theorem for “Cyx”), and as a corollary they obtained the
flabbiness of “Cgx|rs,x”, Which is a sheaf similar to C” for ¢=1 (see [11]).

2.2. Proof of Theorem 2.1

We prove Theorem 2.1 by induction on ¢q. In case ¢=0, (2.8), is
meaningful and true because of the flabbiness of the sheaf of micro-
functions. So we can assume that ¢=1 and that (2.8),_, holds for every
L and U, V satisfying the conditions.

Consider the Riemann sphere P'=CU{co} with its underlying real
manifold as S?=R*U{co}. Put L'=LXxS% 3'=iS*L/XC’" with 2=
(25, -+, 2,), and consider the following imbedding:

(2.5) S =iS*LxC!> (t; irdt; 2, 2) —>
(t, Re z,, Im z;; irdt: 2') € iS*L/ X Ci =13

Hereafter, we identify S with a locally closed subset of 3’. Then we
have an exact sequence
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(2.6) 0—Cs—Cs. L™, 0., —0

on {(t, %, y; ic, i€, in; Z)el; (x,y)#co), where C5=C""0"" and C; is
defined as 0 in 2'—iS*L X S$*XC%'. Let U V be as in the theorem.
Then (2.6) implies a long exact sequence:
0— HYy_y (U, Cs) —> HY (U, Cs.) —> HY_y (U, Cs.) —>
(2.7) B : ;
I H%’—V’(U/v Cz”) S HI{I'—V’(U/v 62«) I H’;l’—V/(U,’ C:) '
where U’ and V' are open sets in 3’ defined as follows:

(28) U'=UU (2"—iS*LXS*XC™), V=V U (2"—=iS*L X §*XC¥).

Remark that U"—V'=U—V, and that the pair (U”, V') satisfies (2.2),.,
for the projection

(2.9) 7't iS*¥L/'XCit — iS*L/.

Hence we know by the induction hypothesis that H%. _,.(U,Cs)=0 for
every k>=1. Thus we conclude (2.3), for every k>2. Further, (2.3), for
k=1 is equivalent to the surjectivity of

9/07z;

(2.10) FU/__V/(U,, er) > FU/_VI(U/, Cz‘"/).
Take any section u(t, z,y,2) of I'y._y.(U”,Cs.), and put
(2.11) gt 2, y,2)=1+x+y2)ult, x, v, 2) €Ly v (U, Cs.).

In order to extend g as a section of Cs to S* with respect to (x,y), we

remark that U'—V’ is written as

212) U—-V'=U-V=r'(y(U-V))NU= (Lfl] ) {t*} X Dy(t*) X - - - X D,(t*).
trey(U-V)

Here D,(t*), ---, D,(t*) are some non-void open sets in C depending on

t*cy(U—V). Since D,(t*)Xx --- X D,(t*) is the section of an open set U,

each D;(t*) depends lower-semicontinuously on #*; that is, for every

t¥€ey(U—V) and every compact KcC D,(t¥), there exists a neighborhood
G of tf in tS*L such that

(2.18) Kc D,(t*) for any t*ecyr(U—-V)NG.
Therefore, considering y(U—V)=r(U)—7r(V) (see (2.2),), we know that
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the following sets U”, V” are open in X

(214) U= z*eTEJu_V) [t*¥} X SEX Dy(t*) X - -+ XD,(t*) Uy(V)XS*XCi™
U((2"—iS*L X $*XC%Y),

(2.15) V" =7(V) X 8*XC U (2 —iS*L X §* X C4Y).

Hence we have an exact sequence:

(216)  Iy_y(U",Cs) —> Tony(U, Cs)) —> Hye_wryvn(U”, Cs).

Since U"—(U'U V") = . U ({t*IX (82— D,(t*))) X Dy(t*) X - - - X D,(t*), the
trey

(U-v)

pair (U”, U’ U V") satisfies condition (2.2),_, for y’. Thus by the induction
hypothesis we have HYy._y.yv(U”, Cs)=0. As a result, the element
glt. 2, y,2) of T'y._y (U, Cs) =Ty~ (U, Cs) has an extension §(t, =, y,2) €
Ty_v(U",Cs). By using §, we define h(t,z, y,2’) as

(2.17) h:ij ( Y(7—y) n Y(y—7) >
T JRUe \ 41y — (B+1F) —90 T +iy— (Z+1F) +0

dzdy

X~t) ~' ~Y I__Y
git.z. 9.2 A+2+77)

where Y(x) is the Heaviside function. In fact, the integrand is well-
defined at (z,y)=co, and so k is well-defined as a section of I"y,_y.(U", Cs.).

O Wt, , yo, #) =ult, @, yu 2) in Ty (U, Cs).

21

Further it is easy to see that

Thus the map (2.10) is surjective. Hence the proof is completed.

§ 3. Vanishing Theorem for A

Let L be a p-dimensional oriented real analytic manifold. Then,
for M=L X R, we can generalize the definitions in 1.2 of X,N, %, 3, Cs
and A5 in a natural way; that is,

(3.1) 3 ={(t, x; irdt+itdx) € iS*M: £=0}""1S*L X R".
THEOREM 8.1. Let U be an open subset of 2. Then we have
(3.2) HYU, Ay =0  for every k=1.

PrOOF. Put M,=LXR:: with its complexification X,=LxC'
where L is a complexification of L. Further we define N,, 5, X, in the
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same way as N, 3, 3:
(83) Ny=LxCii,  2,=8%X,=iS*LXC:H,
2o={(t, ®, x; irdt+i&dx,+1&dx) € 1S*M,; £,=0, £=0}=iS*L X R

Let P=@*/0xi+ --- +0%/0x? be the Laplace operator, and C u, be the solu-
tion-subsheaf for Pu=0 in C u, Then we have the exact sequence

P

(3.4) 0 > Cf}o |Eo > CMO |zo

by the solvability of partially elliptic operators due to Bony and Schapira
[1] (see also [5]). Moreover they proved the isomorphism

(3.5) C 5, == Ci, 5,
for general partially elliptic operators P. We identify
(8.6) M=DM,N{x,=0}, X=X,N{2=0}, 3=5,n{2=0} and 2 =3,n {z,=0}.

>CM0[20—’0

By the theorem of Cauchy-Kowalevsky type with value in CO due to
Schapira [10] (essentially proved in [1]), we have

(8.7) CE s == (Cs)

After all, we have the following exact sequence on J:

P
(3.8) 0 > (uqé)z > CMO |z > CMO |z > 0.

Since Cy,|5 is flabby, (8.2) reduces to the surjectivity of

(3.9) DU, Cayls) — T(U, Co, ).

In fact we can prove this by using the fundamental solution for P in
R and the flabbiness of C u, (use the partial compactification L X
(R**'U{co}) in the same way as in the proof of Theorem 2.1).

REMARK 3.2. The method above was suggested by Prof. Schapira,
who mentioned to the first author that the cohomological triviality of
the sheaf of germs of real analytic functions on R* due to Malgrange
can be proved in the same way (see [9]).
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§4. Flabbiness of the sheaf of 2nd-microfunctions

By using the vanishing theorem for A~ prepared in §3, we prove
the flabbiness of the sheaf of 2nd-microfunctions. We inherit the nota-
tion L, M=LXRY, --- etc. from §3. First we show

THEOREM 4.1. B/ A is flabby.

PrOOF. B is a flabby sheaf because RI';(C 5)=B3[—q] is purely
g-codimensional and flabby-dimension of Cs;<gq (recall the partial 3-resolu-
tion of C; by microfunctions). Hence by the cohomological triviality of
A% due to Theorem 3.1, we can conclude the flabbiness of B/ As.

TuEorREM 4.2. C% is flabby.

PROOF. At first we remark that B3/ A% is flabby for any 2 =iS*Lx K
associated to an oriented real analytic manifold M=L XK of product-
type because flabbiness is a local property. In particular, we can take
the second factor K as RIX Sy '={(x,&) € R"X R’ &=1}. That is, we set
M, 3, 3" as follows:

(41) M'=LxRIXS¥", 3'=iS*LXR'X SV, 5'=iS*LxCix{{ € C% *=1}.

Then, following the method of proving the flabbiness of microfunctions
([8],[3]), we define sheaf homomorphisms @ and ¥

(4.2) o: C% B | A,
w W

£t ) > [ £t K qranla—v. 1y

2
Cs
w

(4.3) 7. By A5
w

[

0(t.3,8) —> 5 T Ca | glt, 1. O Lislo—v. 61dy-0lg).

k
Here

(4.4) K, (x, &) = (x& +2i(x®— (x€)?) +10) %, L, .(x, &) = (x*— (x€)’)*K;(w, &),

{C;:} are some constants, and (&) is the volume-element on $**. In the
same way as in Chapter 3 of [3], we can choose constants C,’s such
that ¥ -@ =identity: C3—C% Hence the flabbiness of B;/ A% implies the
flabbiness of Cj.
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