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Introduction

In the past few years, the regularity problem for weakly harmonic
maps between Riemannian manifolds has become an active research area:
J. Eells and J. C. Polking proved in 1982 that a weakly harmonic map

u € Wigd(M*, N™)

on M/A is weakly harmonic on M if A is a polar set of M [1,2]; R.
Schoen and K. Uhlenbeck developed a regularity theory for energy
minimizing harmonic maps [3]; R. Hardt et al. proved partial regularity
for minimizing maps that are similar to harmonic maps from R® into S?
[4].

The regularity problem for weakly harmonic maps is rather challeng-
ing. One intermediate step is to study stationary harmonic maps, which
are defined to be harmonic maps that are also critical with respect to
domain diffeomorphisms: R. Schoen [5] proved that for n=2 a stationary
harmoniec map cannot have interior singularities; J. Sacks and K. Uhlenbeck
proved for n=2 the removability of isolated singularities for weakly
harmonic maps [6]. Based on a result of S. Hildebrandt et al. [7], the
second author proved that weakly harmonic maps with small energy
cannot have isolated singularities for n>3 [8]. For stationary harmonic
maps whose singular set is contained in a smooth submanifold 3¢ with
n—d>2, it was also proved by G. Liao in [9] that the maps are smooth
if the energy is small. In physies harmonic maps correspond to nonlinear
og-models which are field models for systems with low energy. Thus it
is natural to study the regularity problem under the assumption that
the energy is small. Other conditions are also being considered for reg-
ularity problems: S. Takakuwa proved the following theorem [10];

Suppose that w ts a stationary harmonic map satisfying
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S |Vu|"dv <oo
D

for any compact subset D of M. Then w cannot have isolated singular
points.

The purpose of this paper is to extend the result of [9] to weakly
harmonic maps. The stationary assumption is shown to be unnecessary
if the apparent singular set has bigger codimension. We recall that a
weakly harmonic map w is a map in W"*M", N™) which is a weak solu-
tion of the Euler-Lagrange equations of the energy functional

E(u) =L \Vu|'dV,

where M* is taken to be the ball B, in R" equipped with a metric g such
that a7'(0;;) < (9:;) <a(0;;) for some a¢>1, and N™ is a compact submani-
fold isometrically embedded in R* (cf. [8] for notations). Our main results
are

THEOREM 1. Suppose u: M"—N™ is a weakly harmonic map such
that

(i) S \VuPdV<oo, p=2=d)
M n—l—d
and
(ii) u€C>(M\X, N),

where X 1s the graph of a C“* function f with d=dim ¥<n—2. There
exists >0, depending only on m,a and N, such that

weC=(By, N) if quvdvge.

THEOREM 2. Suppose u:M"— N™ 1s a weakly harmonic map such
that weC=(M\Y, N) where X is the graph of a C* function with d=
dim Y <n—3. There exists ¢>0, depending only on n,a, N, such that
uGCw(Bh N) ,Lf

S \VuldV<e.
M

REMARK. In Theorem 2, condition (i) in Theorem 1 is removed. An
additional condition is that d=dim Y is <n—38. A special case is d=1,
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n=>5. Theorem 2 asserts the removability of a singular line in the
interior of a manifold M™ with n>5, provided that the total energy is
small.

In the last section, some monotonicity inequalities for Yang-Mills
Fields are derived. These inequalities might be useful in the study of
regularity problem for Yang-Mills Fields.
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Section 1. The gradient estimate
The following estimate is our basic analytic lemma. We let 1=
dist(x, 2).

LEMMA 1.1. Suppose that u:M— N is a weakly harmonic map with
% € C*(By/ 2% N) where B,y={x € R"| |x| <2R}, n—d>8, and the Rieman-
nian metric g satisfies, for some a>1,

a™(0:5) <(9:5) <al(dy)
10,95 <a|x|

There exists e,>0 depending only on n,a, N such that if

S |[Vu|rdV <o for p:M andj IVu|’d V<e,
M n—1—d M

then u satisfies

|Vu|2(oc)gC,2'”§ \Vul*'dV for o€ By/3, 2A<R.

Baalz)

We first prove a monotonicity formula, namely

PrROPOSITION 1.2. Suppose that w satisfies conditions (i) and (ii) in
Theorem 1. In particular, n—d>2 and

S |Vu|dV<oco for pzm.
M n—1—d

Then for 0<p, <0, <1 we have
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Vur<pen| vl

By, (xg)

Pﬁ_"e”’o/‘g

where %,€ 3N B,z(0) and 4, c¢>0.

Bpy(zg)

ProOOF OF PROPOSITION 1.2. Take 0=z, Denote, for z¢€ B,(x,),r=
|z|, A=dist(z, 2). Let X(x)=&,(2)7.(r)d.(x)r and define for small t€[0,1]
a map u,, by

Ue,o(X) =u(x+1t exp X(x)).

The cut-off functions 7, and &, are defined in the following way.
Let ¢ € C=(R*, R) be so that, for 0,>0, ¢(2)=1 for 0<i<1,0<¢(2)<1
for 1<i<1+0,, ¢(A)=0 for A>1+0, and ¢'(2)=0. Define 5, € C*(R*, R)

by nr(r)=¢al<i>, for z-e<0, %) Define ¢,€ C=(R*, R) so that &,(2)=0 if
T
0<i<o, 0<E,(A)<L1 for 0<A<20, &,(A)=1 if 2>20 and |£)]<207', where

“7> means az

r
We denote x=x(r, 0) and let ¢, (=1, ---,n—1), 9, be an orthonormal
frame on M=B,. Also, for «,8=1, ---,n—1, we set
0
€as () = (KV2ep 0, €5)) ()
r

and let 4>0 be such that
leas()| < A4 for all x € B,.

Then we have

(V. X, 09 =18V o0, 0 3y =7EDp 1 | aalr”, O)d”
and, therefore,

div X= zl (VX ey = (ntr) + "21<vgu X, e

>p&+p€r+y'ér+(n—1)n&—(n—1)péAr
and

23 (du(V..X), dule)y=2du(V, X), dup+2'% (dulV., X), du)

n—1 n—1 n—1
<2(pér)|0,u|*+2 Z;lm(V,aE)(a,u, 0, u)+2 gln$l61u|2+2 §17;5Ar|Vu|2.
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Hence, using the first variation formula
0:0% E()]ieo = —SM[IVquiv X—2 3 (du(V. X), dule))1dV.
we obtain
OZSBlnE”rIVulde-i- Lln’E'rIVulzd V+nSEl77§|Vu|2dV

—(n—l)LlnE/IHVulZdV——ZSBI(7757)’|8,u|2dV
_2(n—1)le|dg||Vu|2dV—2 po) SBleIGauIZdV
—Z(n—l)ASBlnEﬂVulde.

Now, we observe that

[, 1astvurav<co|  (vurav—s-o
By 20

as ¢ —0, in view of Holder’s inequality
S qulZd Vgca(n—d)(l—?,/p)<5 IVu]PdV)m
Cao Cay

and the choice of p=2(n—d)/(n —1—d). Therefore, the terms involving
&', |d&| in the previous inequality tend to zero as ¢ —0 and we obtain

ozg | Vul'dV+ (’n—2)g n]Vulde—3(n—1)AS | VuldV
B1 Bl B,
—2S PrlouldV.
By
Recalling the definition of the cut-off function » and noticing that
0

)

Ui T P U
we rewrite the above inequality as

oz—ris 77[Vu|2+(n—2)5 17|Vu|2—3(n—1)r(1+01)/1§ 7|Vau?
ot Jp, By By

—2S STt
By

2—ri5 7]|Vu|2+(n—2)§ 7]|Vu|2—3(n—1)v:(1+01)AS |Vl
ot JB, By By
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Finally, multiplying the last inequality by z'~"e** (where c¢=3(n—1)),
integrating over t€[p,, p,] and letting ¢,— 0, we obtain the monotonicity
formula of Proposition 1.2. Q.E.D.

Now, Lemma 1.1 follows from Proposition 1.2 and from Theorem 2.2
in [5]. We observe that the gradient estimate of Lemma 1.1 enables us
to bound 2*|Vu(x)|®? (where A=dist(x, X)) by the energy E(u). Namely,
we have the following

COROLLARY 1.3. Assume that a weakly harmonic map u:M-—>N
satisfies

2(n—d)

SM|Vul”dV<OO, b= n—1—d

Then, there is >0 such that if g [VultdV<e, we have
M
ZZIVu(x)lngSMWulZdV, A=dist(z, 5),
for ©¢ 23, where C depends only on n,a, N and the Ricci curvature of
(M, g).

ProOF OF COROLLARY 1.3. Take p,=22, p,=1 in Proposition 1.2 to get

zHS [VulZdVgCo(ZZ)z‘"S |vu|2dVgch|Vu|2dV,
B ()

Baalzg)
where z, is the orthogonal projection of x onto 3. By Lemma 1.1 there
exists ¢ >0 such that if SM]Vuldegeo then IVu(oc)lngZ‘ZL]Vu]ZdV.

QE.D.

Section 2. Proof of Theorem 1

First, we prepare two analysis lemmas which will be used in the
proof of our main theorems.

LEMMA 2.1. Let QCR" be a bounded smooth domain. Given a sub-
domain 2,C2 with

2,cR,cR,

there exists a constant C=C(2,, 2) such that
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sup [v|<C
9
SJor every ve C(2) solution of Av=0 in Q with _( 1):0,S | Vo< 1.
Q Q

PRrOOF. Suppose, by contradiction, that there exists v,€C(Q), i€ N,
with

Av,':O in Qv S viZO, S |V'U,legl
2 Q
and

sup |v;| =p; —> co.
Q

Then, defining w;=v,/p;, we have

) aw=0in 2, | w=0, | [vwr<Lt s,
2 Q H

and
sup |w;|=1.
2

Now, let

d,=dist(2,,02), r=d,/2,
and let x;, €082, be such that
lw; (@) | =Supy, |w;| =1.

By the mean value theorem we have

1
() =—— :(x)d,
w; () vol B.(@) Sﬂr(mw(x) x
hence (with ¢,=(vol B))"?

1={w;(@:)| <—1——<§ uﬂdm)llz(vol B.(x;))?
i il = VOl Br(xi) Er(xi) i r\Vi

1 12 1 e
=G Loy, 110) <y (i) "

Since S w;=0 we can use Poincare’s inequality to obtain
Q
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Q2 1/2
1<_1_(§ Vo, de> :
<o), 7

But this contradicts the fact that S [Vw;|?—>0 (cf. (1)) Q.E.D.
Q

LEMMA 2.2. Let 2, 2 be as in Lemma 2.1 with 08, piecewise smooth.
Suppose that

v, € C=(2) N W)
18 such that
@) —Avi=h,—0 in LNQ),
Lv,:o, SQW’MZ:L Vo <C, in 2,

hence v, —> v, weakly in W»*Q2) [by passing, if mecessary, to a subse-
quence]. Then

®) [, wop— ], 9o
9 9

Proor. By passing to a subsequence, if necessary, we may assume
that '

(4) V; — Vo, in L*9)
vV, —> VU, a8, in 9.

In fact, by compactness of the inclusions W'3(2)c W*%R2), 0<s<1, we
have that

v, —> v in W), 0<s<1.
Therefore, fixing 1/2<s<1 and using the fact that the trace map
T WHQ) — W (022))
is continuous, we obtain, in particular, that
(5) v, —> v, in L*00,),

hence

(6) S vib——>S vb for all beC=(3R,).
a0, 20,
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Next, we claim that

(7 S %x —>S %x for all y e C=(0R,).
a0, ON 0, On

Indeed, given y € C=(092,) and letting
1€Cr(Q)

denote any extension of X, we obtain from (2), (5), (6) and Green’s second
identity that

§ °”"x=§ o v.»+§ (Au)fc—j (AR,
90, 0N 2, 0N 2 2,

A ( a /. A

— | apa= D=y @0z
99, 0N 9 9y 0N 2

Therefore, (7) holds since v, is a weak solution (hence, by Weyl’s lemma,

a (= classical solution) of Av=0 in @ by (2). Now, in view of (2), (4)

and Green’s identity, we have

®) [ woi={ Bev=] (~avp=| ho—o,
Q2 09, an Q9 9

where the convergence to zero follows from the fact that the v, are

uniformly bounded in £, since v;—w, a.e. and |Vv;|<¢, by (2), (4). On

the other hand, since (5), (7) and (again) Green’s identity imply

(9) [ 2w | Doy = (Mvaat| (v
a2, 0N 30, OM 2, 2,

and since v, is a solution of Av=0 in {2, we finally obtain (3) from (8)
and (9). Q.E.D.

Proor oF THEOREM 1. By Proposition 1.2 we have the scaling in-
equality, for 0<p<1,

(10) ‘OHSB,, IVuld V< cSM IVul2d V.

Combining this with the gradient estimate, we obtain ¢>0 such that
(11) |Vu(x) |*<CA2E(u) for x¢ %,

if E(u)<e. In view of (10) and (11), the argument in [9] for stationary
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harmonic maps can be carried over. For completeness of this paper, we
include a detailed proof based on the inequalities (10), (11) and Lemmas
2.1 and 2.2.

First we show that, under the assumptions of Theorem 1, there exist
numbers ¢ >0 and o€ (0,1) depending only on the metric g, K=|f|«
and N such that, if E(u)<e, then

(12) 02’"E,(u)<%E(u),

where
B, =L \Vaul'dV

and B, is the geodesic ball of radius o.

We prove this by contradiction. So, assume that there is a sequence
of weakly harmonic maps u; satisfying the assumptions of Theorem 1,
with 3; being the graph of a function f;, ||fi|..<K, such that

Eu)<t
)
but
(13) 0B, ) = E(w).
Define v; by
_ 1 -
YT B ) (=),
where
?'_l’i: 1 S uldV
vol B, Js,
Then E(v;)=1,

S 'UiIO
B

and, by passing to a subsequence, if necessary, we may assume that
v; >V, weakly in W"*M, R¥) and v;—v, strongly in L*(M, R)* for p¢
[1,2n/(n—2)). And dividing (13) by E(u;) yields
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(14) B, (v,) >%.

Now, by the harmonic map equations Aw,=g**A(0,u,d,u) we obtain
(15) Av":hi,

where h;,=FE(u;)"?g** A(0.v, 0,v) >0 in L' since E(u;)—0. Therefore v.,
satisfies

Av,=0

in the weak sense and, by Weyl’s lemma, v, is a classical smooth har-
monic function from M to R*.
Next, we claim that

(16) E,(v,)— E,(v,) as 1 — oo,

To see this, let >0 be an arbitrary number. Since || fi||..<K there is
a subsequence of f; (again denoted by f;) such that f;—f uniformly in
the ¢! norm. Let 3, X denote the graphs of f;, f, respectively. Let 3,
denote the cylinder

2;={x € B;|dist(z, 3) <2}
and choose 2,>0 such that, for 1<a,,

1
7 Voo |* =.
) [, 00, V0aV< Ly

Cover B,N2; by balls centered at z,€%, j=1,2, ---, N(1), with radii
#=c,A. Because the metric g on B is close to the Euclidean metric, we
can arrange so that N(4)<c,A™%. And, by the inequality (10), we have

,uS IV |"dV<CE(u),
B#(zj)
or, in terms of the v,,
g Vo, |:d V< Cpme.
By(zj)
Therefore, we obtain

N(@)
g Vo fdV< 30 g Vo, |"d V< Ca-43m,
B,NZ, i=1

= B#(Zj)
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and, since n—d>2, we can choose 2,>0 so that
(18) S Vo dV<iy i=1,2,3, .-
ByN3y 3
for 1<2,. Fix 2>0 with A< min {4, 4,}. There is an integer I, such

that B,n2,cB,N2%; for 1>I,. By Lemma 2.2 with ,=B\%,, 2=B5B,,
we obtain that

S |Vvi|2dV—>§ Vo |[dV  as i—co.
2 2,
Thus, we can choose I,>1I,, such that

(19)

e 2 1
[, (70— V0odV| <20
for ¢>1,. From (17), (18) and (19) we obtain

12— Voo ? LY YD Jo
], (90l =1VodV | <o tntgn=r

for all 1>1I, and, hence, we have proved our claim (16):
E,(v;)— E,(v) as 1 — oo.

Next, letting 1 —co in (14) gives
(20) 02‘”Eg(vm)2%.

And by Lemma 2.1 with 2,=B,,, there exists a constant ¢>0 such that
(21) sup |v.| <C.

Bz
Therefore, combining (20), (21) with the ‘“interior gradient estimates”
for harmonic functions yields

—;— <0 E,(v,) <Ca?"¢"™ sup |v.,|*<Cd?,

B2

which is clearly a contradiction for ¢ small. Thus, we have showed our
initial claim that (12) holds true if E(u) is small.
Finally, by a simple iteration argument as that in [9] we get that

P E, (u) <CrE(u)
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for any r € (0,0) and some S€(0,1). Hence, by a theorem of C. B. Morrey
[12], % is regular on a small ball centered at 0€ X. Applying the above
argument to every point of 3 we obtain the desired result that u is
regular in the interior of M if its total energy is small. Q.E.D.

REMARK. Theorem 1 is primarily interesting for d>1. If d=0 the
theorem asserts the removability of isolated singularities under the as-
sumptions that Vu € L?(B,, N) for p=2n/(n—1) and the total energy

E(u) :LZ IVl

is small. Note that for »=3, one has p=3=mn and, in this case, the
smallness assumption on the energy is implied by the fact that

[

Indeed, one can rescale u to get u,: B,— N defined by u,(x)=u(dx), 6>0.
Then, using the secaling invariance of

IVl

and choosing 6>0 small we get that

o=, wure(] wur) (] o)

is also small and, hence, we can apply Theorem 1 to u, to get u,€
C>(B, N), that is, the isolated singularity x=0 is removable. In partic-
ular, the main theorem of Takakuwa [10] is recovered in this case. On
the other hand, note that p=2n/(n—1) decreases toward 2 as n increases.

Section 3. Inequalities of monotonicity type

One of the properties that make stationary harmonic maps easier to
work with is that they satisfy a monotonicity inequality. Proposition 1.2
is a typical monotonicity inequality. In this section, a similar inequality
is obtained. Then Theorem 2 is proved by making use of this inequality.
We let f denote the function

{lnp it n=d+4

Sflo)= o (d+4—n)  if nEd+4,
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and C,, D, denote the cylinders

Co={=| dist(z, 2)<p} N B;(0),
Dp:Cp n BS/Z(O)'

PRrOPOSITION 3.1. Suppose that a weakly harmonic map u € W43 M, N)
satisfies condition (ii) in Theorem 1 with d<<n—2. Then, there exist
constants ¢, K, A>0 such that, for 0<p,<p,<1, we have

entoter(  (Vupavestop| (vuray
Dp, Coy
+K(flo)—f0))(], 1vurav)
2

ProOOF. For simplicity, we now assume that the metric is Euclidean
and that Y lies on a straight line, which is taken as the p-coordinate
axis. We denote as before 1=dist(x, ) and now choose the orthonormal
frame of TM

9,0, To (@=1, -+, n—2).

T,
X 0
e -~
’
/ a/ll
1 ]
1 [
e--—-fp-——-———————e - - - - —J e q- - - -~ -
T 0 \
A}
z \ \

We define cut-off functions 7,,&,, and ¢ as follows. As before, let
¢ € C=(R*, R) be such that, for ¢,>0, ¢(2)=1 for 0<2<1, 0<¢(2)<1 for
1<1<1+40, ¢(2)=0 for 2>1+0, and ¢’(2)<0. This time, we define

7. € C*(R", R) by
7:(4) =so<i),

T

for z €[py, p], and introduce £ € C>([—2,2], R) so that {(I)=1 if |I|<3/2,
0<c()<1 if 3/2<|1|<7/4 and ¢(I)=0 if |I|>T/4. The cut-off function
g,€C=(R*,R), 0¢>0, is chosen as before, that is, £,(2)=0 if 0<i<o,
0<E,(A<1 if 0<1<20, &,(A)=1 if 2>20 and |£,|<207', where now “’”
means
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0
We will let ““ - ” mean
0
al -
As a variation vector field we now take X(x)=17.(2)&,(2)(l)20;(x) and,
for small ¢>0, let u,(x)=u(x+texp X(x)). Then we compute

VaAXZ (7752),&31,
Vo, X=1£2£0;,
VTax=VlTa(77$Cal):77€CTa (CY:]-, . -,n—2),

divX= 3 (V.. X, 6= (néd) -+ (n—2) &0 = (8) LA+ (n—1)9EX,
E (Vu(V,.X), Vaule) > =<Vul (92)'50;], Vu(0:)> +<Vu(9Ealo,), Vu(d,))
+5 (VulEC ), ValT)

(762)/€10,1*+ 7EAEOs, Dy + 3, 7ELIo,ul”
(08)'Ca10xul*+ 9EC| Vul* —nEL 0,u|*+ nEAL(Oau, D).

Hence, by the first variation formula for u, we obtain

0=, L8 2+ (n—1)9eC0IVuldV

—ZSM[(né)’Cllazu|2+nECIVuIZ— 7EC|0,u|* +nEALLdu, 2,up1dV,
so that
—ZL 7'§C2|0,u|*d V=2 SM &' CA10,u|*d V + (3—n)SM P& VudV
—(, mecivupav—{ recavupav
~2 neciowpdv e neatom, amdv

~

=2 necaoalav-+@—m| reeivurav+e L] pecivuray
M M ot Ju
~ [, ecavurav—2| recourav-e( neitom omav,

where we used the fact that
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0
7 ot 7
in the last equality.

Now, replacing ¢ by {* and using the inequality 2|A||B|<|A|*+|B|?
with

| Al = (2n8) L[,
|B| = (208)"2|¢ 0.,

in the last term of the previous equality, we obtain the inequality

ngh P& AT 0,2 d V + (3—n)s,+rais,+R
T

where
s.=(, mecvulay
and
R:Z'(MnSZZlC'lzlaxulde.
Since we have that

HMWE’ZCQIquPdV’ gCS CU‘E'UIVulde—»O

Coqgl

as ¢—0, and R can be estimated by

RgCS ZVuldV,

Cr(1+v1)

we obtain the inequality

03(3—n)S+r—a——S+20§ 2VuldV,
ot Cr(14ay)

hence

0£(3—’n)s+fais+20‘t'2(1+0'1)2§c \Vul*dV+R,
T I

for all t<p, where R,—0 as ¢,—0. Finally, multiplying the last in-
equality by z*7", integrating over t €[p,, p.] and letting ¢,— 0, we obtain



Removability of a singular submanifold 337

0< sz—a—(z'a‘"S)dr +ZC<S

0 aT

|Vul*d V)szr““"df,
2 o1

2

which implies the monotonicity formula of Proposition 3.1. Q.E.D.

PROOF OF THEOREM 2. Suppose n—d>4. Recall that, for the cut-off
function £=¢&, in Proposition 1.2, we have

SBI |d&||Vul'd VgC(za)—IS% \Vultd V.
And Proposition 3.1 with p,=2¢ <1=p, implies
o[ (vurav<cu+isea)|, 1vurav,
where

F120) {ln(2o) it n=d+4

2o)¢** " /(d+4—mn) if n>d+4.
Therefore, if n>d+4 we obtain

(20) S , |VuldV<Coma +ad+4—n)SM \Vul'dV —>0
as ¢—0. Similarly, if n=d+4, we also have
(20)-1&% |Vaul’d V< Cotg"4~? ln(a"l)SM |Vul?dV—>0
as ¢ —0. Thus
lim j \de[|Vul*d V=0
if n—d>4, and vs}e can follow the argument in Proposition 1.2 to prove

all the results in Sections 1 and 2 without the assumption (i) of Theorem
1. In particular, Theorem 2 holds true. Q.E.D.

Section 4. Inequalities of monotonicity type for Yang-Mills fields

In this section, we derive analogous formulas (Proposition 1.2 and
Proposition 3.1) for Yang-Mills fields.
Let P=P(M, G) be a principal bundle with ecompact structure group
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G over a Riemannian manifold M. Suppose that an Ad; invariant inner
product has been put on the Lie algebra ® of the group G. Let AdP=
PX p3¢®. The inner product on @ induces a fibre metric on AdP, making
all tensor product bundles A*T*M®AdP into Riemannian vector bundles
over M.

The Sobolev spaces of connections on P are defined by

Wh(P)={w,+B| B€ W"(T*MQAdP)},

where w, is a fixed smooth connection on P. The space of smooth con-
nections on P is an affine space. As a consequence, the definition of
Sobolev space W*¢(P) is independent of the choice of w, For a smooth
connection w on P, its curvature 2 € A?T*MKQAAP is given by

Q=0(w)=DoV,

where V is the full covariant differential on A*T*MQAdP induced by
w. The exterior covariant derivative D is the projection by exterior
product of V, D and V agree on 0-forms. Let w=w+B¢e€ W"“*(P)N W**(P),
then

Q(w)

Q(w)+DB+[B, B]
and
Qw) € WA T*MKQAIP).

The Yang-Mills functional, for we W"*(P)N W"4P), is given by

Flw) :sM 1219V,
Let
YMw)={w/ =w+Be W(P) 1 W*4(P)| B€ Wi*n Wi (T*M)QAdP)).

DEFINITION. W is called a Yang-Mills connection if for all 1-pa-
rameter families w*€ YM(w) such that w’=w and F(w') is differentiable
. d N
in t, Frs tzoF(w)—O.

In [10], it was shown that, for any l-parameter family w'e YM(w)
that is the variation of w generated by a 1-parameter family ¢* of dif-
feomorphisms of M with ¢°==Identity, the first variation formula holds.
We state this result here as a lemma.



Removability of a singular submanifold 339

LEMMA 4.1. Let X=%¢‘l,=o. Let {e} be an orthonormal frame
field for TM. Then

S Fw)l= SM[L (div 2)| 2 —4R(V. X, ¢,), Q(e“e,)>]dV,

where |2|°= Z (e e;), L, e;)>, n=dim M.
Based on this formula, Price obtained a monotonicity inequality for

r-stationary Yang-Mills fields. The r-stationary means that T;/lt_ F(w')|,—,=0

in Lemma 4.1. He also derived a similar formula assuming that, instead
of r-stationarity, the generalized quark current density is bounded in a
suitable sense. .

In this section, we derive inequalities of monotonicity type for Yang-
Mills fields without the assumption of r-stationarity. For the rest of
the section, take M=DB,(0) as before. Let X be the graph of a ¢'*¢
function with d=dim 3. Suppose that

we Wh(P)N W™(P) (for ¢>2)

is a Yang-Mills connection such that its induced connection on P(M\Z, G)
by the inclusion mapping

1. M\Y— M

is smooth.
As a counterpart of Proposition 1.2, we have

PROPOSITION 4.2. If d=dimY<n—8 and q:Lfnl—%, then there
n_ —
exists a constant C, A>0 such that, for 0<0,<p,<1, %, € 3N By(0),

et (0raveimg] jorav.
By, (20)

pa(zo)

PrROOF. Take exactly the same frame field {¢;} and the same 1-pa-
rameter family ¢' of diffeomorphisms of M as in the proof of Proposition
1.2. Recall that for «=1,2,---,n—1 V. . X=96r(V, 0.)+9r(V. £)d,. We
compute
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z (V. X e), Qe e;))

QV. X, ), Qlew ey + T (Vs X, ), Q0.0

T a5
<

a,

§
»-AH

<
> <QUrDE(Y.,0.)+77(V. )0 5), Aen0n))
+ 5 <080, e0), Q0 )

< X K20E(Vre,r), €5), 2(ear €0))

a,f=1

+
+

B
-

1

M§

(& +&n'r +&'77)0,, €c), 2(0r, €a))

3 R
UL
-

<L
. L2 (V,£)0., €4), 2(ea, 5))

(Z Er)(éa,,-l-S aa,,ds>e,,, e,g), e, eﬁ)>

(n€+E&n'r +&'7r) |0, _1Q|*
(pC+Ep'r+Lyr)|o._12|°
+(n—1)pr|V. £||2]*

™

-2

n—

<

a,f=1

+
+

J\t"h”/\

<en % |0lea ea)+(n—Léyr-A4-1QP
2 _ i 2
+7¢l0, 101+ &( o2 9)lo, 18

+1&'[gr(o. _1R1*+ (n—1)7r|V. £||12]"

The integral of the last two terms converges to zero as o (the parameter
in the definition of cut-off function &) goes to zero, since we have
|dé|<C-o7' and by assumption

2(n—d)

SMIQI"dV<oo for = 2n=0).

The fact that w induces a smooth connection on P(M\2, G) implies that
F(w') is differentiable in ¢, where w* is the variation of w generated by
#'. The connection w is Yang-Mills then implies that

d

d—tF(wt) It:o:O-

By Lemma 4.1 we get

O:L(divX)|.Q|2dV—4SM<Q(V%X, e), Qles e)>dV.
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Letting ¢ —0, we get
OzngMlelde—(n—l)SMnAfr]Q]ZdV
+sMn’rl,ledV—zlSMn|Q|2dV—4(n—1)SM77/17'|Q\2dV

—4SMn’r|8,_]Q|2dV.

Note that n’rz—rain. We get
T

02(n—4)sM77|.Q|2dV—5(n—I)SMm'Amlde

0 0
—c 2| wierav+ae 2] yo._sorav.
2 { nierav+ae 2] g, 10|

The conclusion follows from this differential inequality by the same
argument as in the proof of Proposition 1.2. Q.E.D.

Next, we derive an inequality for a Yang-Mills connection w € W"(P)
N W*4(P). This inequality is the counterpart of Proposition 3.1.

PROPOSITION 4.3. Suppose that d=dim ¥ <n—4, q=2. There exist
constants ¢, K, 4>0 such that for 0<po,<p,<1

entptr| |@EaV<enior| |0V K(flo)—flo))|, 10127,
o2

Py P2

where

Ino if n=d+6
Flo)=1 ,rem .

0 [(d+6—n) if n+d+6,
C,={z: dist(z, 2)<p}N B(0),
Dp:CﬂﬂBalz(O)-

PROOF. Again, for simplicity of the computation, we assume that
the metric M is Euclidean and that d—=dim ¥ =1. We also take the same
local frame field {¢;} t=1,2, - - -, n, where e,=T,, 1<a<n—2, e,_,=0;, e,=
0,, and the same variation field X of M as in the proof of Proposition
2.1.

Recall that
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X =& 205(x),
div X= (€)' + (n—1)9EC.

Compute
(V.. X, e;), Qe e;))

1,

<@
QY3 X 6), Q010>+ 3 (VX 0, 20,0
< (n§A)"C0,, €5), (01 €5))
(R (0EaCos €5), (5z €
+ zz (@ELT ), (T e
= (762) C10s IRP 4782 X (201 ), 200 €.))

+250 S IT. 0"

(v
i (2(V:, X, e;), 2T )

+ m: + mms M-

M§

<.
1
-

By adding and subtracting 7£(|3,_|12|°, we get

> <2V X, e;), e, e)><7EC| Q)"

i,5=1

+ (78 AC10, 10478 S <QM0s, Ta), 900, Tu)>—7EC1o, IO

<.

Replacing ¢ by {* throughout, we get

‘;1 (Q.(X, e), Qe e;))<nEC*|Q*+ (n€)'2C%0, _IL2|*
+2982L¢ aZ:,l [£2(0;, Te) 1120, Te)| —05C%0, _12|*
Sn'UCzlaz_IQ|Z+77§CZIQ|2+7)E'2C2|31_|Q|2+77512§2§ [2(0:, Ta) |
By Lemma 3.1,
= gM 122 div Xd V—4SM(.Q(V%,X, ¢,), Qes e)>dV.
It follows that

0=, 12178y ¢+ (n—1ymeeaV
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—4§ P EACHD, JQ|2dV—4j P&AC0, Q1" dV
Snswz[g 8, T4 V.

Noticing that rain:—v',l, we get
T

4r—j PEC (0, _IQ1"dV < (5— n)j PECIQAV
+T—S vECZI.QlZdV+4ZS PEXC 0, T.)|dV

4, 101mle1cava] nie e, Jerav.

The last two terms converge to zero as ¢ —0 (o is the parameter in the
cut-off function &). Letting ¢ —0, we have at the limit

0g47i§ nczlal_JQ|2dVg(5—n)S 7}C2|Q|2dV+riS 20| dV+R,
0T Ju M or Ju

where
:4"§pr2¢2|9(61, T V.
Note that

0<R< 4CL7;22|9|2dVg4C§ 20V,

Ct(l+(71)

where C=constant. Multiply the differential inequality by * ", integrate
from t=p, to p, take the limit ¢,—0 (0, and z are the parameters in
the definition of cut-off function 7). We have

ngg‘"S IledV—pi‘S 1orav+ llmg "Rz,

Coy 0120 J ey

lim er“"Rdrg4C§p2r4‘”q 12|912dv>drg4cq TG_”dt)S 1214V,
2 £y Ce f Co,

a0

=4C(flp) - flo))|, 121av,

where
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