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Hausdorff convergence of Einstein 4-manifolds

By Hiraku NAKAJIMA

§1. Introduction

Let &(D, V, R) denotes the class of compact 4-dimensional smooth
manifolds X with Einstein metrics g (we normalized the Einstein con-
stant £ to be +1, or 0) which satisfy

diam(X, g)<D, vol(X,¢)>V, and SX|R, fdV,<R

(|R,| denotes the norm of the curvature tensor of g). By the result of
Gromov [8], if we consider £(D, V, R) as a class of compact metric spaces,
it is precompact with respect to the Hausdorff distance (see §2 for the
precise definition and some properties of Hausdorff distance). In this
paper we study the boundary a€(D, V, R) of £(D, V, R) in the set of all
compact metric spaces. We show that an element in a8(D, V, R) is a
metric space (X, d) which has a structure of a smooth manifold outside
a finite set S, and there is an Einstein metric ¢ on X\S which is com-
patible with the distance d.

Before we state our main theorem let us first consider a few exam-
ples.

(1.1) Example (Kobayashi-Todorov [13]). Let X, be a Z,-quotient
of T* where Z, acts on T* as

T(21, 22) =(—21, —2,) for (2, 2,) € T*=C*/(Z+1iZ)*

where 7 is a generator of Z,, We induce the quotient metric g, on X
where C? has the standard metric. Then X_ is nof a Riemannian mani-
fold. It is an orbifold. It has sixteen singular points z,, ---, 2, Let
X be the minimal resolution of X, It is known to be a K3 surface.
Let 7=: X——X., be the projection. Kobayashi-Todorov showed the exist-
ence of the following sequence of Ricei flat Kihler metrics {g.}.> on X.
1) wvol(X, g,)=1
2) vol(z(x.), g;)=1/1 for a=1, - - -, 16.
They proved that the sequence of the metric spaces (X, g;) converges to
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(X, 9.) in the Hausdorff distance, and moreover g, converges to 7*g,
in the C=-topology on X—z"{x,, - - -, %}. For any p,€x(x,) (a=1, ---,16)
there exists 7,>0 such that

3) limr,=c

4) ((X,74.), p.) converges to the Eguchi-Hanson space in the pointed
Hausdorff distance.

The Eguchi-Hanson space is the holomorphic cotangent bundle of the
Riemann sphere T*CP' with complete Ricei flat Kdhler metrie. ([14])

(1.2) Example (Tsuji [21]). Let z:X——D be a smooth family of
compact complex surfaces of general type over the unit disk D={z€C:
|z|<1}. Let X,==n"*(s) for s€ D. Assume that ¢,(X,) is negative if s=0,
and X, be a minimal surface of general type with non-empty E where
E denotes the union of all (—2)-curves on X,. It is known that X, can
be blown down to the canonical model X, contracting all (—2)-curves to
rational double points. So X, is a singular variety. By the result of
Aubin and Yau, there exists an Einstein-K#hler metric g, on X, for each
s#0. Moreover Kobayashi [12] proved that X, has an Einstein-K#hler
orbifold metric g, on X,.

Tsuji has shown that (X, g. converges to (X, g,) in the Hausdorff
distance, and ¢, converges to 7*g, in the C=-topology on X,\E. Let
%€ X, be a singular point. Then a neighborhood of % looks like U/I’
where U is a open ball in C? centered at 0, and I” is a finite subgroup
of SU(2). There exist z,€ X, and r,>0 such that

1) limr,=c

3—0
2) x,—2xcn(X)
3) ((X., 7.49.),2) converges in the pointed Hausdorff distance to a
complete, non-compact Ricci flat Kdhler surface M whose end is diffeo-
morphic to RX (S*/TI).

Inspired by the above examples, we obtain the following result.

(1.3) THEOREM. Let (X;, g:;) be a sequence in £(D,V,R) with some
positive constants D, V,R. Then there exist a subsequence {j}C{i}, a
compact metric space (X.. d), and a finite set S={x,, - - -, .} X,, (possi-
bly empty) such that

1) (X;, g;) converges to (X, d.) in the Hausdorff distance,

2) X,\S has a structure of C=-manifold and an Einstein metric g.
which is compatible with the distance d., on X,\S,
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3) For every compact subset KCX.\S, there ewists an into diffeo-
morphism F;: K—X; for each j such that F¥g; converges to g. in the
C=-topology on K,

4) For every z,€8S (a=1,---, k) and j, there exist x,,€X; and
positive number r; such that

4.1) B(w,; 06) converges to B(z,; ) in the Hausdorff distance for
all 6>0,
4.2) limr;=c0
Pay

4.8) ((X;, 7i9;), .;) converges to ((M,, h.),%..) ©n the pointed
Hausdorff distance where (M,, h,) is a complete, non-compact, Ricci-flat,
non-flat 4-manifold with

o<, IR, 1V, <eo,
and the Sobolev constant S(M,, h,) of (M., h,) is positive where

S(M., ho) =inf {[|Vfll 1/ | f 2o : f € CF (ML)},

4.4) For every B(%..;7) (r>0) there exists an into diffeomor-
phism G;: B(%, ., 7)—X; such that G¥(r;g;) converges to h, in the C>-
topology on B(x, .; T),

5) It holds

limS IR,_IZdV,-zs |R,m|2dvm+zj \R. "V, .
j=o JX; J X o JM, @ a

(1.4) REMARK. 1) The same phenomenon as in theorem (1.3) occurs
in many other situations;
(a) a harmonic map [18],
(b) a Yang-Mills connection [22], [20], [5],
(¢) a surface with constant mean curvature [2],
(d) the equation

du=—y"tPIe-2 [1].

The common feature is the conformal invariance of the action. But
in the above cases, we know that the limiting objects ((X., d.) in our
case) can be extended smoothly. These are removable singularities
theorem. But we do not have the corresponding result in our case.
We conjecture that (X, d.) is an orbifold.
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2) A complete, non-compact Ricei flat manifold appeared in theorem
(1.3) 4.3) corresponds to a finite action instanton on R* (this extends to
an instanton on S*) in the Yang-Mills theory. The classifications of such
manifolds must be an important problem. Kronheimer [14] have treated
this problem when manifolds are Kihler and asymptotically locally Euclid-
ean (ALE). We conjecture that the above manifolds are automatically
ALE.

3) Chern-Weil theory says

1

S S |R,|’dV =the Euler number of X
e Jx

for a compact Einstein 4-manifold (X, g).
4) For an ALE Ricci-flat manifold (M, h), we have

Sl?SMthPdV:(the Euler number of M)—1/4I"

when the end of M is diffeomorphic to RX (S*/I") with a finite group I.
The right hand side of the above equality is closely related to the Chern
number inequality of Miyaoka [16] and Kobayashi [12]. They have shown
that for (X, g,) in example (1.2), the first Chern class and the second
Chern class satisfy

3cx(Xy) —e,(X,)? >3 (the Euler number of M,)—1/4I",

where the summation runs the all singular points z in X, and M, and
I', are the non-compact Ricci flat Kahler surface and the finite group
corresponding to .

5) Even if all manifolds X; are diffeomorphic to each other, X, is
not always diffeomorphic to X,. (See example (1.1).)

6) Our proof is restricted to 4-dimensional case, but we conjecture
that the same conclusion holds in the higher dimensions if we replace
“a finite set S” by “a compact subset S with the finite (n—4) dimen-
sional Hausdorff measure H, ,(S)<o” where n is the dimension of
manifolds. (ef. [17]) We can prove the same conclusion as the theorem
under the condition

|, 1B rravi<r

with positive constant R. But this condition may not be natural in



Einstein 4-manifolds 415

higher dimensions.

We would like to thank Prof. T. Ochiai for his constant encourage-
ment, Dr. K. Sugiyama for helpful and stimulating conversations.

Added in Proof: After the completion of this paper, Bando, Kasue,
and the author [23] proved that the limiting space (X..,d.) is an orbi-
fold, and (M, h,) is ALE of order 4. The same results except that
(M,, h,) is ALE of order 4 are independently proved by M. Anderson [24].

§2. Hausdorff convergence

In this section we shall define the Hausdorff distance, and fix nota-
tion.

(2.1) DEFINITION [8]. Let X and Y he compact metric spaces and
f:X—Y a map which is not necessarily continuous. We say f is an
e-Hausdorf approximation if

1) |dx(p.q)—dr(f(D), fl@)|<e  for p,g€X,
2) e-neighborhood of f(X) contains Y.

The Hausdorf distance dyz(X,Y) between X and Y is the infimum
of all numbers ¢ such that there exist e-Hausdorff approximations from
X to Y and from Y to X. dy defines a distance on the space of all
compact metric spaces.

When a sequence {X;} of compact metric spaces converges to a com-
pact metric space X in the Hausdorff distance, we write

limy X,;:Xw.

We denote by S(n, D) the class of compact n-dimensional Rieman-
nian manifolds which satisfy

Rie > —(n—-1), diam <D.

The following theorem is due to Gromov [8].

(2.2) THEOREM. The closure of S(n, D) with respect to the Hausdorff
distance is compact.

In this paper we denote by B(p;r) a ball in a metric space X cen-
tered at p with the radius 7.
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For noncompact spaces we define the pointed Hausdorff distance.

(2.3) DEFINITION [8]. Let X and Y be metric spaces, z and y points
in X and Y respectively, and f: X——Y a map which is not necessarily
continuous. We say f is an e-pointed Hausdorff approximation if

1) fle)=y

2) f(B(p;e™))CBg; e +e)

3) fIB(p;e™): B(p;e)——B(q;e"+¢) is an e-Hausdorff approxima-
tion.

The pointed Hausdorfi distance d, x((X,x), (Y,y)) between pointed
metric spaces (X,z) and (Y, y) is the infimum of all numbers ¢ such that
there exist e-pointed Hausdorff approximations from (X, z) to (Y, y) and
from (Y,y) to (X,2). d,r defines a distance on the space of all pointed
metric spaces whose metric balls are all precompact.

When a sequence {(X;, x;)} of pointed metric spaces converges to
(X T») in the pointed Hausdorff distance, we write

lim,,'H(X,-, x,;) = (Xoo1 xm).

We denote by S(n, o) the class of all complete Riemannian mani-
folds which satisfy

Ric >—(n—1).

The following is also due to Gromov [8].

(2.4) THEOREM. The closure of S(n, o) with respect to d,  is com-
pact.

Recently many peoples study the limiting behaviors of Hausdorff
convergent Riemannian manifolds. But almost all of them restrict their
attention to the class of Riemannian manifolds satisfying the stronger
assumptions than Ric >—(n—1), namely they treat M(n, D) which con-
sists of Riemannian manifolds satisfying

|sectional curvature|<1, diam <D.

But in our situation this condition is too strong. Our interest is in the
case that the sectional curvature becomes concentrated in small region,
and its absolute value goes to infinity. On the other hand we assume
the lower bound of volumes. So ‘“collapsing™ does not happen.
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§ 3. Apriori estimate of curvature

In this section we derive a local estimate of curvature of Einstein
metric. We treat an Einstein metric on an arbitrary dimensional mani-
fold. The method is same as the case of a Yang-Mills connection [17].
But we must be careful since the base metric changes. The following
lemma is obvious in the Yang-Mills case, if we deal with a fixed base
manifold.

(8.1) LEMMA. Let (X, g) be an n-dimensional Riemannian manifold,
B(p; r) a geodesic ball in X (we assume r<diam(X, g)/2 if X s compact)
which satisfies

the Sobolev constant S(B(p;r))>K,

for some positive constant K. Suppose a non-negative function u defined
on B(p;r) satisfies

du+au>0

wn the weak sense with some constant a. Then there exists a constant
C,=Ci(n, ar’, K) such that

12
sup u< Cl{r‘"§ ude} .
B(p;r/2) B(p;r)

ProoF. Since the proof is a straightforward modification of the proof
of the case that B(p;r) is a ball in the Euclidean space, we shall omit
it.

Using (3.1), we can prove a local curvature estimate as in [17]. The
technique is originally due to Schoen (Theorem (2.2) in [19]).

(3.2) THEOREM. Let (X, g) be an n-dimensional Riemannian mani-
fold (n>4), B(p;r) a geodesic ball in (X, g) 2r<diam(X,g) +f X ds
compact) satisfying

Ric g=kg (k==1, or 0),
the Sobolev constant S(B(p;r))>K,

for some positive constant K. Then there exist positive constants e, =
a(n, K) and C;=Cs(n, K) such that if
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S \R|"*dV <e,,
B(p;7r)
we have

2/n
sup ]ngCafr‘z{L(p. )|R]"’de} .

B(p;r/4)

Proor. Sinece the Levi-Civita connection of Einstein metric is a
Yang-Mills connection, we can apply Bochner-Weitzenbock formula, and
have

4|R|>—C,|R|?
for some constant C,=C,(n). We take p, € Closure(B(p; r/2)) such that
(r/2—d(p, p)Y|B(p)]| = sup {r/2—d(p, ¥)F|R()].

Let p: =1/2{r/2—d(p, p,)}. If p=0, our assertion is true since R=0. So
we assume p>0. Then we have

sup |R|<4|R(p)|.

B(pgy50)

We shall study two cases |R(p,)|<p™? and |R(p,)|>p~* separately.
Now suppose |R(p,)|<p~? then we have

4|R|>—4C,0%|R|  on B(py; ).
By (3.1) we have

(3.3) | R(po) | < Cs vOl(B(py; 0)) ~*| B 28 (ng30)
< Cs vol(B(p,; P))—ZI"HR”L"/Z(B%;M)

for some constant C;=C;(n, K, V). We have used Holder’s inequality in
the second inequality above. Since the Sobolev inequality implies the
isoperimetric inequality, we have

vol(@B(x; p)) > K vol(B(x; p)) "'
for all B(x; p)C B(p;r). Integrating the above inequality we have
(34) vol(B(py; 0)) =Cs'p"

where C, is a constant depending on 7, K. On the other hand from the
definition of p, we have

(3.5) sup |R|<2%r %" R(p,)|.

B(p;r/4)
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Combining (3.8)(3.4)(8.5), we have verified our assertion in this case.
Next suppose |R(p,)|>p % Let r,:=|R(p,)| "®. Then we have r,<p.
So we have got

A|R|>—4Cr, 3| R)| on B(py; 7).
By the same argument as the previous case, we have obtain
70 =|B(0o) | <Cory*|| B| 12 (pim)-
But this contradicts with the assumption
IRl Lareimipirn <ex
if we take ¢, so that Ce,<1. So this case cannot happen.

(8.6) REMARK. In [17], for a Yang-Mills connection A, using the
monotonicity formula

rFﬂB udeVgcﬁkﬂB \RJAV  for r<s
(p;7) 38)

(»

we have shown that there exist constant ¢, and C; such that if

W”S IRV <es
B(p;r)
then
12
sup |R41gcs{r-"jm RV}
P,7)

B(p;r/4)

But we do not know that the constant C, depends only on n, K, V.
This is the only reason why we cannot apply the proof of an apriori
estimate for a Yang-Mills connection to the Einstein metric case. In
the proof of (3.2) we have used the obvious inequality

SB( . )lRAlnldeSS _)|RA|"/2dV for r<s

B(p

instead of the monotonicity formula.

§4. Proof of Theorem

In this section we shall give a proof of Theorem (1.3). We restrict
ourselves to 4-dimensional case.
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By Gromov’s compactness theorem, there exists a subsequence {j}c{¢}
such that

limg (X}, 9;) = (X, de)
for some compact metric space (X.,d.). Taking a subsequence again
(from now we shall often extract subsequences, but we shall use the

same notation {j} for all of them), we may assume that there exists
1/5 Hausdorff approximation

25 (X.‘iv gi)_}(Xom dw)
for all 5. For all pe X, we can find p; € X; such that

deo(D, ¢5(p;)) <1/5.
Define the singular set S by
S:={pe X, :for arbitrary {p;} as above and r>0
liming SW IR, Vel

j—oo

where ¢, is a constant appeared in Theorem (3.2). We remark that the
Sobolev constant is uniformly bounded from below on £(D, V, R) by the
result of Croke [4].

(4.1) CLaM. S s finite.

Proor. Fix a small number r>0. We take a collection of balls
{B(®.;7) : x. € S} such that

1) Sc UB(x,; 2r)

2) B(x;r)nB(x,,; r)=g  for a#b.

Since xz, €S, for some large j, we have

(4.2) IR, "dV,;>e/2

SB(“‘a. j;'rIZ)
where z,; is a point in X, such that d(x., ¢;(x.;)) <1/j. We may assume
{B(x,; r/2)}. are mutually disjoint. So we have

the number of {z.}<2e,~" ES IR,V
a r[2)

B(”a.j;

S251_1 |R0 Izd V,-£2R61_1.
X, ’
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Since 2Rer! is independent of » and » is arbitrary, we have verified the
assertion.

First we observe that X_\S is a C®-manifold, and there exists an
Einstein metric g., on X_\S. Let pc X, \S. Taking a subsequence, there
exist r>0, p; € X; such that

1) do(pi(p;), p)<1/5
2)5 IR, '"dV,<e,  for all j.
Bpjn 7

By (3.1) we have

(4.3) sup R, P<Cir | IR, AV,<Cirte,

B(pjirld)

By (3.4) we have got
(4.4) vol(B(p,; r) =>Cs 't

Plug (4.3)(4.4) into a local injectivity radius estimate (Theorem (4.7) in
[3]), we have got the lower bound of the injectivity radius at p; inde-
pendent of 5. Applying [10], we can take for each 5 a harmonic coordi-
nate system #h;: B(p;; r)—R* if we replace r smaller. Moreover by
Lemma (2,2) in [7],

h;(B(p; r)) 2 B(0; 9)

for some 0>0 independent of j.
Let G;: =(h;7")*g, which is a Riemannian metric on B(0;4). By [10]
we have

IG;llcta<Cs

for some constant C, independent of 5. In a harmonic coordinate system
the Einstein equation turns out to be a quasi-linear elliptic system on
G,. By Schauder estimate [6], we can obtain

1G;llc*<Cio(k)

for some constant C,(k) independent of 5. Extracting a subsequence, we
have got

G,—G. in C* topology
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where G, is an Einstein metric on B(0;9).

Now ¢;oh;' is a 1/ Hausdorff approximation from (B(0;9),G,) to (a
neighborhood U of p,d.), we can show that it converges to a distance
preserving map F=F, from (B(0;0),G,) to (U,d.). In fact, let {p.}2
be a countable dense subset of B(0;0). By the diagonal argument, we
can take a subsequence such that ¢;oh;'(p:) converges for all k. We
define F'(p,) by this limit. Since F preserves distances, and is defined
on a dense subset, we can extend F' uniquely to the whole B(0;d).
Moreover F' is surjective onto some neighborhood of p since 1/j-neighbor-
hood of ¢;(X;) contains X, For two such maps F, F, and metrics
G, G, for p and g respectively, F,'oF, is an distance preserving map
between the distances determined by G, . and G,.. So itis an isometry
between G,. and G,. ([9]). In particular it is differentiable. Thus
{F}ex.ns gives a coordinate system on X.\S.

Since the proof of theorem (1.3) 2) is a straightforward modification
of Green-Wu’s proof of Gromov’s compactness theorem [7], we shall omit
it. (See also Kasue [11].)

Next we shall study the phenomena around the singular set.

Proor OoF THEOREM (1.3) 4). Fix xz,€S. There exists z, ;€ X; such
that do(;(®.,;), ) <1/j. Take >0 so that (B(x;20)\{z})NS=¢. This
can be done since S i3 a finite set. Define a positive number »; by

rji= sup VIR, ].

B(zn'j;z’

Since x,€ 8, r;—> o as j—oco. Moreover we may assume that |R, | take
a local maximum value r; at xz,; Consider a sequence of pointed
Riemannian manifolds (X}, §;), ®.,;) where §;=r;g;. It satisfies

Rie §;,=(k/r;)d;
and
(4.5) . sup '\/IR;,.I:L | B, (2a,5) | =1,

B(xa‘j;rja)

where B(z, ;; r0) is a geodesic ball with respect to the metric §,, By
Theorem (2.4) taking a subsequence we may assume

limP,H((Xj’ gi)! xa,i) = ((May da)’ xu,oo)

for some metric space (M,, d,) and a point x,.€ M,. By the same argu-
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ment as above we can show that M, is a smooth manifold, and there
exists a smooth Riemannian metric h, on M, compatible with d,. More-
over we can construct a diffeomorphism ¥;: B(%,,.; ) —>X; so that ¥¥g;
converges to h, in the C=-topology on B(%..;7r) for all »>0. At last by
(4.5) we have

IRhu (ma.oo) l = 1

So h, is not flat. And the Sobolev constant S(M,, h,) of (M., h,) is posi-
tive, since the Sobolev constants S(Xj, g;) are estimated from below by
a positive constant independent of j.

ProOF OF THEOREM (1.3) 5). It easily follows from the lower semi-
continuity of the curvature integral. We remark that we may assume
that

|, 1Ry,
X

are the same value for all j since these are integers. Take p>0 and
r>0. Let S={x,, ---,2,, ---,2,}. We have

B aVa+ 2| IRV,

B(zg,007)

Sxm—UB(xa;m
a

=lim R, "dV;+X lim

j—oo st(Xm—UB(za;p)) a J_’WSGj(B(za’m;r))
a

Since F;(X.— UB(.; 0)) N{UG;(B(Z.,; 7))} = for sufficiently large j, we

IR, [*d V.

have got the assertion.
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