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The study of the 27 lines on a nonsingular cubic surface has a long
history. The configuration of these 27 lines has a high degree of sym-
metry. It is well known that their elegant symmetry is controlled by
the Weyl group of type E;. Furthermore the configuration of the
exceptional curves of the first kind on a Del Pezzo surface V* of degree
d (d=1,2,8) can be controlled by the Weyl group of type E,_; (see Du
Val [D1] [D2], Manin [M]).

In this paper we show that there is a similar correspondence between
the Hirzebruch surface X with several points blown up and the Weyl
group of type C and that there is a natural realization of the root
system of type C in the Picard group of X.

§1. Notation and statement of the results.

For each integer e¢c€ N, an e-th Hirzebruch surface, or a rational
ruled surface with invariant e, is a surface H, which is isomorphic to
the subvariety in P*X P’

{(o: 8 :G) X (s :t) € PPX P'| 8T, —1°C, =0},
Let F be a fiber of the projection H,—P' and let S be a section:
F={(&:4:%) X (s:t) € H,|s=0}
S={(G:&: L)X (s:t) € H,|&L=C=0}.

The linear system |eF'+S| is base-point-free (see Hartshorne [H]
Chap. V, 2.17). Therefore the rational map @, r.s : H—P**' turns out
to be a morphism. Let Y be the image of H, by @,.r.5. We see easily
that Y is a projective cone over a nonsingular curve C, which lies in
a hyperplane of P**' and whose degree is exactly e, with vertex P,
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Conversely the morphism obtained by blowing up P, ¢: Y—Y, is isomor-
phic to @,,r,s : H—Y.

Let P, ---, P, be points such that no two of them lie on a fiber
and no one lies on the section S. Let @(P,)=Q,. If m=e-+1, then there
exists a hyperplane H containing @,, - - -, @., not containing the vertex
P,. By Bertini’'s theorem, the set of hyperplanes H such that HNY is
an irreducible nonsingular curve is an open dense subset of the complete
linear system |H|, considered as a projective space. Therefore the set
of the points (P, - - -, P,) which has the following property () is an open
dense subset of the variety H,X --- X H, (n times).

(*) there exists an irreducible nonsingular curve in |eF'+S| passing
through P, ---, P, but not P,,, ---, P, (passing through P, ---, P, if
e+1>n).

We say that P, ---, P, are in general position if (P,, - - -, P,) satisfies
the property (x).

Let P, ---, P, be points of H, in general position. Let 7 :X,(n)—H,
be the morphism obtained by blowing up these » points.

ProposITION 1.1. For each e>2 there exists exactly 2n exceptional
curves of the first kind on X,(n) if and only if e>n. They are (1)
the exceptional curves E,, ---, E, (2) the strict transform F; of the fiber
F; containing P,

We extend the intersection form in Pieard group Pic(X,(n)) to
Pic(X,(n)) @ R. We define a subspace V of Pic(X,(n)) @ R and a set 4
zZ zZ
as follows:

V={vePic(X,(n)) Q R|lv-k=v-f=0}
zZ
4={l,—1;|l, and I, are classes of exceptional curves of
the first kind on X,(n), I,#1,}

where k is the canonical class and f is the linear equivalence class of
total transform of a fiber of the projection H,—P'. Then we have

THEOREM 1.2. For each ¢>2, if e>n then 4 is a root system of
type C, of rankn wn V. The Weyl group W corresponding to 4 can be
characterized as follows: W={o € GL(Pic(X,(n)))| (1) ¢ preserves inter-
section form, (2) o fixes k, (3) o fixes f}.
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§2. Exceptional curves of the first kind on X,(n).

Let f and s be the linear equivalence classes of the total transforms
of the fiber F' and the section S on X,(n) respectively. Let E,, ---, E,
(E;==n"'(P;)) be the exceptional curves and let e, ---,e, € Pic(X,(n)) be
their linear equivalence classes. We know (see e.g. Hartshorne [H] Chap.
V)

PROPOSITION 2.1.
(1) Pic(X.(n))=2Z"*% generated by f,s, e, -+ -, e,.
(2) The intersection pairing on X,(n) ts given by f*=0, sf=—e,
el=—1 (1<i<n), f-s=1, f-,=0, s-¢,=0, e;-e;,=0 (1%7).
(8) The canonical class ts k=—(e+2)f—2s+e;+ -+ +e..

We next prove Proposition 1.1. Let C be an exceptional curve of
the first kind on X,(n) and not one of E,, F,. Since C=P' and C*=—
C-K=—1 by the adjunction formula, where K is the canonical divisor
on X,(n). On the other hand, C is not one of E;, F, and H, has no
exceptional curve of the first kind, because ¢>2, thus we have

2.1) C-(z*F)>0, C-S>0, C-E;>0 (1<i<n),

where 7*F is the total transform of F. Let c=zf+ys+ Xﬂj be; be the

linear equivalence class of C. It follows from C*=K-C ——1 and (2.1)
that

(1) i)b,:(e—Z)y—Zx-{—l
2.2) 2) i b =2xy —ey’+1
3) y>0, r>ey, <0 (1<i<n).
First of all we shall show that no integers satisfy (2.2) when e>n.
We write e=n+r (r>0). By Schwarz’s inequality,
(Zp)<n o
=1 1=1
Thus it follows from (2.2) (1) (2) that
{(e—2)y —2x+1}<n(2zy —ey*+1).
Then we have

(2.3) 42 —2{2(e —2)y +ny +2}x +{(e—2)* +ne}y*+2(e —2)y +1 —n<0.
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Let us denote by f(x,y) the left hand side of (2.3). Let a,f8 be the
solutions of the quadratic equation f(x,y)=0 of variable z. Then
we have a,f<ey. Indeed assume that ey<a,B. Then 2ey<a+pB=
{2(e—2)y +ny+2}/2. Substituting e=n+r (r>0) from this inequality,
we obtain ny+2ry+4y—2<0. This contradicts n>1, y>1. Also assume
that a<ey<pB. Then we have fley, ¥)<0. On the other hand we have

fley, y)=(—ne+de+4)y*—2(e+2)y+1—n
=(r+nr+4n+4r+4)y*—2(n+r+2)y+1—n>0, (y=>1).

This contradicts f(ey, y)<0. Hence we have «, 8<ey.

Since z>ey, we have a, f<x. Therefore we must have f(x,y)>0.
This contradicts (2.3). This implies that there exists no integers satisfy-
ing (2.2).

It remains to show that there exists an exceptional curve of the
first kind which is not one of E, F, if e<n. It is easy to check that
integers x=¢, y=1, b= --- =b,,;,=—1, b= --- =b,=0 satisfy (2.2).
The points P, --., P, are in general position, thus we can find an
irreducible nonsingular curve C on H, in the linear system |eF'+S|such
that C passes through P, ---,P.,, but not P, ---,P,. Let C be the
strict transform of C on X,(n). Then the linear equivalence class of C
is ef+s—e;— --- —e, ;.. Let g be the genus of C. It follows from the
adjunction formula 2g—2=C-(C+K) and Proposition 2.1 that g=0. Thus
C=P. Since C*=—1, C is an exceptional curve of the first kind on
X.(n) which is not one of E;, F,. Q.E.D.

§3. Weyl group of type C, and Pic(X,(n)).

Notation is as in § 1. We shall prove Theorem 1.2. It follows from
Proposition 1.1 that

A={*(e;—e;) [1<t<j<nIU{£(f—ei—e,) | 1<i#<n}
U{=(f—2e)|1<i<n}.
We next observe that 4 generates V. Let v=xf+ys+ i‘;bieie V.
Since v-k=0 and v-f=0, we have y=0 and 2x+b,+ --- +b,=0. Hence
b,=—2x— :gbi and v=x(f—2e,)+ j‘;bi(ei—eﬂ). Thus 4 generates V.

Also we can check that 2a-Bja-ac€ Z for any a,f€ 4. For acd, let
S.(v)=v—2(v-a/a-a)a. We shall show that S,(8) € 4 for B 4. If a=e;—e,,
then S.(f)=f, S.lex)=e. (k+1,7), e; (k=3), e; (k=1). If a=f—e.—e;
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then S.(f)=f, S.le.)=e. (k+1,7), f—e; (k=1), f—e: (k=J). If a=f—2e,
then S.(f)=/f, S.(e;)=e; (t+3), f—e; (t=j). Hence S.(8) € 4. Finally if
a, ca¢€d (c€R), then c=+1. Thus 4 is a reduced root system. Let
[I={e;—e, ---,e,.,—e,, —f+2e,}. II is a base of 4, i.e. Il is a linearly
independent subset of 4 such that every element of 4 is a linear com-
bination of elements of I/ with all positive or all negative coefficients.
Indeed, e;—e;=(e;—e;,)+ -+ +(e;_1—e;), —f+2e,=(—f+2e,)+2(e;—e,),
—f+ete;=(—f+2e;)+(e;i—e).
Dynkin diagram of II is as follows:

0—0—0— + + - O——O=0 a,=e;—e; 1<i<n—1)
a, A Ay O a,=—f+2e,

Thus 4 is a root system of type C..
Let G={c € GL(Pie(X.(n)))| (1) o preserves the intersection form, (2)

o fixes k, (8) o fixes f}. Let S, be the reflection with respect to a;.
Let W=<(S,, ---,S,). W is the Weyl group of type C,. We can easily

check that S;€G. Thus WcG. For ¢ € G, we write ¢(e) =xf+ys+ i‘, b.e..
=1

Then 0=f-e;=f-p(e.)=y. Since —l=el=gp(e;)’=— ib?, there exists [
=1

such that b,=+1, b;=0 (j#!). Furthermore since —1l=e;-k=0¢(e;) -k=
—2x—b,, we have x=1 if b,=—1, x=0 if b,=1. Hence

ple;)=e, or f—e,.

Therefore the order of G is 2"n!. On the other hand the order of W is
also 2"'n!. Hence we must have G=W. Q.E.D.
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