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§1. Introduction.
We consider the following semilinear elliptic boundary value problem:

Av+f(v)=0 in Q
1.1) v _ on 02,

oy
where 2 is a bounded domain in R" with smooth boundary 62 and v
denotes the unit outer normal vector on 0R2. A=37_,0%ox? is the
Laplace operator and f is a real valued smooth function on R.

The structure of the solutions of (1.1) and their stability largely
depend upon the geometrical property of the domain 2. Therefore, if
the shape of Q2 is deformed, then the structure of solutions changes
accordingly, and it is usually the case that this change is continuous in
some sense, so far as Q2 is deformed smoothly. On the other hand,
when the domain is perturbed “singularly”, it is in general much more
obscure how the structure of solutions of (1.1) varies, and not much
study has been done on this subject except for a few pioneering works
including the beautiful papers of Hale and Vegas [10] and Vegas [22].
The subject of the present paper is to deal with such a singular
perturbation of 2 in a setting similar to but more general than that
of [10] and [22], and to study in detail the structure of solutions of
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(1.1) at its “singular limit”. Among other things we shall show that,
when a portion of the region 2 becomes thinner and degenerates into
a one-dimensional line segment in the limit process, the limit problem
for (1.1) will be described in part by an ordinary differential equation
on this line segment, which is so to speak an “infinitesimal remnant”
of a portion of the original region. One of the contributions of our
study is to emphasize the role of such an infinitesimal remnant, the
importance of which has hardly been recognized before.

Before describing our result more precisely, let us first specify the
type of domain that we deal with in this paper. Roughly speaking, it
is a domain with parameter {>0 and is decomposed as 2({)=D, U D,U Q({)
where D, and D, are mutually disjoint regions and Q(¢) is a changing
part which approaches a line segment as 0. (See Figure 1.) In
particular, the volume of Q({) decreases to zero as £|O.

2¢
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Figure 1 Figure 2

One of the important questions to arise in this situation is whether
or not the influence of Q({) over (1.1) for 2=0(() vanishes as (|0,
i.e., whether the structure of the solutions of (1.1) for 2=2() (for
small {>0) is equivalent to that of (1.1) for 2=2,=D,U D, (Figure 2)
or not. Closely related to this question is an observation by Vegas [22]
and Hale-Vegas [10], who have considered (1.1) for f(n, #)=)u—u’ on
the same domain as that in Figure 1 and have analyzed the bifurcation
phenomenon for the bifurcation parameter ¢ (when »>0 is a sufficiently
small constant). Their bifurcation diagram in the case where p is an odd
natural number and the domain Q(¢) is symmetric, is as in Figure 3.

In their situation, when { is very small (i.e. 0<{<{, in Figure 3)
there are exactly nine solutions and each of them takes values near
one of the values {0, A", —\Y*Y} in D, (=1, 2). Similarly, (1.1)
for 2=2, has exactly nine solutions, each of which is equal to one of
the values {0, AV*7", —\Y*""} in D, for each i. Moreover each solution of
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(1.1) for 2=R2(¢) converges as {—0 to a corresponding solution for
2=0,, with its stability properties unchanged in the.limit process.
Thus the structure of the solutions for 2({) (0<{<{,) is equivalent to
that for 2=0,, which is a non-connected open set.

E.hcl ¢,

Fifiure 3 (Bifurcation Diagram)

These results may seem to suggest that problem (1.1) for 2=2()
can be regarded as a perturbation of that for 2=0,, With all these
observations, it is, however, our conclusion in this paper that, so far
as the structure of the solution set of (1.1) is concerned, it is more
natural to regard 2({) as a perturbation of the set 2,=D,UD,UL
(exhibited in Figure 4), where L= N, Q((), rather than of 2,=D,U D,.

Figure 4

In other words, the influence of the varying portion Q() over (1.1)
does not vanish as {—0 but in fact is asymptotically equal to that of
the line segment L. The reason why the role of L did not appear in
the results of Hale and Vegas [10] and Vegas [22] is the following:
In their situation, of/ow is small around the solutions of (1.1) because
of the smallness of »>0. In such a case, as one can easily show, if
v is a solution of (1.1) for =0, then its behavior on the whole region
2, is automatically determined by its behavior on D,UD,, therefore
the structure of the solution set of (1.1) for 2=, is equivalent to
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that for 2=2,; In other words, the role of L does not appear explicitly
in the limit problem. This, however, is not always the case if we
consider a more general situation in which df/ou is not necessarily small,
and the segment L may often play an important role as we shall see
in Sections 3 and 4 of this paper.

Solutions of the boundary value problem (1.1) can be regarded as
“equilibrium”— or time-independent — solutions of the parabolic initial
boundary value problem

%:Au—i—f(u) in (0, ©)x2,
(1.2) o _ on (0, =) %32,
oy

(0, x)=uy,(x) in Q.

When we speak of the stability of the solutions of (1.1), we mean the
stability of those solutions as equilibrium solutions of (1.2). More
precisely, we define the stability as follows:

DEFINITION 1. The equilibrium solution % of (1.2) is said to be stable
if given any ¢>0, there exists a >0 such that [|u(f, -)—v(+)| ;=0 <¢
(0<t<oo) for any weCQ) satisfying |v—w| e <8, where u is a
solution of (1.2) with the initial condition (0, x)=w(x). We say that
v 1s unstable if v is not stable.

For details, see, for example, Matano [15].

It has been observed by several authors that the stability and the
structure of the equilibrium solutions of (1.2), together with their
stability properties, is closely related to the geometry of the domain
2. It is known that any non-constant equilibrium solution is unstable
if 2 is a bounded convex domain in R". (See N. Chafee [4] for n=1
and see H. Matano [15] and Casten-Holland [3] for general n.) More
generally, the same result holds in the case where 2 is a Riemannian
manifold with non-negative Ricei curvature and 02 has non-positive
definite second fundamental form with respect to the unit outer normal
vector v on 02 (S. Jimbo [11]). On the other hand, Matano [15] has
constructed a non-constant stable equilibrium solution on the same type
of domain as 2({) in Figure 1. We shall give in Section 2 an improved
version of a result of Matano [15]. For related topics concerning
systems of reaction-diffusion equations, see K. Kishimoto and H.F.



Singular perturbation of domains 31

Weinberger [13], H. Matano and M. Mimura [17].

The contents of this paper are as follows:

In Section 2, we shall establish a theorem on the existence of
stable solutions of (1.1) for domains of the form 2({)= UL, D,UQ(Q)
where D, (i=1, 2, ---, N) are mutually disjoint regions and Q) is a
channel connecting these regions such that the measure of Q({) tends
to zero as {—0. More precisely, given an arbitrary sequence of (not

necessarily distinct) values a,, a,, - -, ay satisfying f(e,)=0 and f'(a;)<0
(t=1,2, --+, N), we shall show for every small {>0 the existence of
a stable solution v, of (1.1) with 2=0({) such that v, takes values very
close to a, on D, for each 1=1, 2, - --, N (Theorem 1). In this theorem we

shall impose only very weak conditions on Q({), thereby allowing 2({)
to be possibly a very wild perturbation of the region UL, D,. Theorem
1 is a much improved version of the results obtained by Matano [15;
Theorem 6.2 and Corollary 6.3].

In Section 3, in order to obtain a more detailed information about
the singular limit of (1.1), we shall consider the case N=2 as in Figure
1 and impose additional conditions on the shape of Q({), so that we
may carry out a more delicate argument. The main result in this
section (Theorem 3) states that if v, is a solution of (1.1) for 2=02(¢)
with {>0 sufficiently small (which means that the channel region Q)
is thin enough) and |[v¢—a||;2p, is sufficiently small for i=1, 2, where
a, a, are constants satisfying f(a,)=0, f'(a;)<0, then vy, is closely
approximated by a solution V of the two point boundary value problem

GV L f(V)=0 in L,
(1.3) dz
V:ai on D,,nfl (?/:]-y 2)y

(see Figure 4), and that the stability property of v, coincides with
that of V (Theorem 3).

In Section 4, we shall somewhat show the converse of Theorem 3:
We start from solutions of (1.3) and then construct solutions of (1.1)
approximate them on Q({). Our study will be confined to a specific
example of f, for which we have a,=a, and (1.3) has three distinct
a,=Vo<VP<V? with V* unstable and V', V® both stable. We
shall then construct, for each small {>0, three distinct solutions a,=
P <v¥ <v® of (1.1) for 2=02(f), such that
1.4) lim sup |[v¥@)—a,|=0 (2=0,1, 2),

(=0 zeD;UDy
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(1'5) lclng S;%g) |’v£”(x1, Loy ** xn)— V(i)(x1)|:0 (?/:01 1; 2)!

and that v is unstable while the rest is stable (Theorem 4). What
is particularly interesting about this result is that, although the be-
haviors of the solutions »{ (=0, 1, 2) on 2({) are almost indistinguishable
except on the extremely thin portion Q({), their stability properties are
quite different from one another. Theorem 4, together with Theorem
3, indicates that much of the information about the structure of the
solution set of (1.1) for 2 =Q({)—with { sufficiently small—is contained
in the ordinary differential equation (1.3).

For technical reasons we assumed that the space dimension » is
larger than or equal to 3 throughout Sections 3 and 4, while we only
assume n=2 in Section 2. All the functions that we consider in this
paper are real valued.
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Professor Hiroshi Matano for valuable advices and comments.

§2. Existence of Stable Solutions.

Let D, D,, ---, Dy be bounded domains in R (n=2) such that each
D; has a smooth boundary oD; and that D,ND;,=@ holds for any ¢
and j with 7>j5. We specify the situation as follows:

(I1-1) {2()}cs, is a family of bounded domains in R™ which satisfies the
following conditions (1) and (2):
(1) Each 2(€) has a smooth boundary and 2(£,)2Q({,)D> UL, D,
holds for any ¢, and {, such that £ >{,>0.

(2) lim VO](Q(C)—}Z Di>=0,

{—0
where Vol(S) denotes the Lebesgue measure of a set SCR".

(II-2) Let f be a real valued smooth function on R such that the set
I={¢e R|f(&)=0, f(6)<0} is not empty.

Under the above conditions (II-1) and (II-2), we consider solutions
of (1.1), or, equivalently, equilibrium solutions of the following semilinear
diffusion equation (2.1):
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%:Au+f(u) in (0, )X,
2.1) ou _ on (0, «)x32(5),
oy

u(0, ) =ux)  in Q).

We present the main theorem of this section, which is in some
sense a much improved version of a theorem of Matano [15].

THEOREM 1. For any sequence of (not mecessarily distinct) values
(@}, contained in the set II={¢cR|f(&)=0, f'(&)<0} and for any
sufficiently small {>0, problem (2.1) has at least one stable equilibrium
solution v, which satisfies the following condition:

lim “'Uc—at”Lz(Dp =0 (1=¢=N)
=0

(2.2) . . —_— .
limv,=a, in C(D,(®)) for any >0, (1=Zi<N)

-0
where D,(n)={x € D,|dis(z, 2(n)—D,)>n} for p>0.

REMARK. It is Matano [15; Theorem 6.2 and Corollary 6.3] who
has first obtained a result on the existence of nonconstant stable
equilibrium solutions of (2.1), though he has not considered the singular
limit as {—0. Hale and Vegas [10] have studied this singular limit
and have obtained a result similar to our Theorem 1 by using the
implicit function theorem. Their results require additional conditions
on the shape of Q() and also have to assume that of/ou is small, in
order to ensure the uniqueness of the solution v, satisfying (2.2). Our
theorem, on the other hand, does not impose any conditions on the
bound of 9f/ou, nor on the shape of Q({). Note that the method in
[10] or [22], which is based on the implicit function theorem, does not
apply in such a situation; in fact, as we shall see in Section 4, one
cannot in general expect the uniqueness of a solution v, that satisfies
(2.2). We therefore take a different approach, in which a result of
Matano [15; Theorem 4.2] plays an essential role. We write down his
theorem in a slightly modified form (Proposition 1 below).

DEFINITION 2. A closed set YCCY2)NC*R) is said to be positively
invariant under the semiflow defined by (1.2) (or simply “under (1.2)”
if, given any w e Y, the solution (¢, x) of (1.2) with initial data u,=w
is defined globally on [0, )X 2 and satisfies u(¢, -) € Y for all £¢=0.
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PROPOSITION 1 (Matano [15]). Let 2 be a bounded domain in R"
with smooth boundary and let f be a smooth function. Let Y,Y, Y,
Y, -+ be a family of non-empty sets in C'(2)NC*R) such that

@ YDOYDOYD--: and N, Y,.=Y;

(b) each Y, is closed in CY(2)NC*RQ) and bounded in L (2); more-
over, for each m, Y,.,, s contained in the interior of Y, with respect
to the topology of C*(2)NC*RQ);

(e) each Y, 1is positively invariant under the semiflow defined by
1.2).

Then Y contains at least one stable equilibrium solution of (1.2).

For the proof of this proposition, see [15]. The following well-
known identity will be useful later in this section:

PROPOSITION 2. Let D be a bounded domain in R™ with smooth
boundary 0D. Let A\ <A<N;<:-- be the eigenvalues of —A on D under
the Neumann boundary conditions and v, ¥, ¥y, +++ be the correspond-
ing eigenfunctions that are orthonormalized with respect to the L*(D)
inner product. Then

Splgrad “/'lzdﬂU:g Nk(SD"P‘dey:g 7\,,‘(81)4#'31/‘,,(190)2
for any + € H'(D).

We omit the proof. (Note that a,=0.) We denote by {\,}e, and
{¥; JJov., respectively, the sequence of eigenvalues arranged in increasing
order and the system of corresponding orthonormalized eigenfunctions
associated with the operator —A on D, with the Neumann boundary
conditions. We need some notations. Set

AO=20-UD,

a*=max a;, a,=mina,,
1SisN 1StsSN

where a,, a,, - -+, ay are the constants that appear in Theorem 1. Let
A(x) be a smooth function on R satisfying

A(x)=a,; for any z€ D, (1=1<N);

2.3 .
(28) (a* SA@)=a* for x € R" and grad A(x) has compact support in R".

We define, for we H(R2())N L(2()), a functional
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(2.4) Tw=| (Sleradwi—|"" fe)ds)de

200

and also we define, for {>0 and >0,

(2.5) E(, O)={weCRQ))NCH2Q) |la,—ds=w@)<a*+d in L),
Jo(w)=J(A)+6%,

(2°6) E'(B, C)E{w € E(& C) I ”w_a’iHLz(Di)éa: @:1, 2, -, N}'

LEmMMA 2.1. Let 6,>0 be such that f'(&)<0 for any & E[a*—ao, a)U
(a*, a*+38,]. Then for any >0 and 5¢€(0, 5,), the set E(5, {) is posi-
tively imvariant under the semiflow defined by (2.1) (see Definition 2).

ProOOF. Given >0 and 6>0, let u(t, x) be a solution of (2.1) with
initial data (0, -) e E(@5, ). Since f(a,—06)>0 and f(a*+6)<0, the
constant function a,—0 is a time-independent subsolution of (2.1) while
a*+§ is a supersolution. In view of this, and applying the comparison
theorem together with the local existence theorem for (2.1), we easily
find that the solution u(t, x) exists globally on [0, «)x 2({) and satisfies
the inequality a,—d=u(t, x)<a*+6 there. To complete the proof of
the lemma, we have only to show that Jy(u(t, -))<J(4)+6° for all ¢=0.
But this inequality is obvious since J(u(t, +)) is monotone non-increasing
in t=0, which follows from the well-known formula

g (ut -))=—S ‘——a—u(t, x)|2dacSO (t>0)

dt ’ 2@l ot -
and the continuity of J.(u(t, -)) at t=0 (see, for example, [15]). Thus
Lemma 2.1 is proved.

To prove the positive invariance of FE(5, {), however, requires a
more delicate argument as well additional assumptions on § and (.
Once E(5, {) is proved to be positively invariant, we would be in a
stage to apply Proposition 1, from which the conclusion of Theorem 1
will follow. Much of the rest of this section will be devoted to finding
conditions on ¢ and { for E(§, ) to be positively invariant under (2.1).

REMARK. As we are concerned with only those solutions of (2.1)
satisfying a,—d,=u=<a*+0, their behaviors remain unchanged if we
replace f by another function f satisfying f=f on [a,—d, a*+d,] and
having a compact support in R.
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To make the calculation easier, we divide the functional J, as
follows:

Je(w) =Jo(t)(w)+iZ: Jp (w),

where Jy, and J),, are obtained by replacing 2({) in (2.4) by Q) and
D, respectively.

LEMMA 2.2. There exists a positive integer q, such that

@) Lowz| w@—w,@yde+| " fededn
D; D;Jwg,q(2)
for any q=q, 1=1,2, -+, N and we CYD,), where

W) =3 Pes@)| P @@y,

PrOOF. Set

b= | Pa@w@)dy.

By Proposition 2, we have

(2.8) S lgrad wi“dx=§l Ni (Vi n)’

Dy k=2
[ q

gxi,qﬂkgaﬂ (”i,k)2+7\:i,2 kz;az (”1,10)2
= Na,qﬂsp A(w - wi,q)zdx +>\'i,2SD (wi,q - wi,1)2dx'

Next put

¢, =1max L&)

¢, is well-defined since we have assumed (without loss of generality)
that f has compact support. By Taylor’s formula,

o Fdesfw.)w—w,)+ S w—w, )
< f(we, ) w—w, )+l w, g —w, .| [w—w, | +%(w—w¢,q)2-

Integrating this inequality over D, and using the fact that w—w,, is
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orthogonal to f(w,,), which is a constant function (hence parallel to
¥..), wWe see that

w(z)
@9 | " fedds
DyJwi,q(2)
éqS wa,q—wf,lllw—wi,qld%ﬁg (w—w, ) de
Dy 2 Dy

<loa| W —wdsre (o) w—w,)de
2 Dy 2 2a/)n

for any constant a>0. Set a=a;=),./c, and choose g, sufficiently large
so that

1 1 1
2.10) E>w,(,+l—cl<§+?0;)gl
for all g=q, and ¢=1, 2, ---, N. Subtracting (2.9) from (2.8) multiplied

by 1/2, and using (2.10) and the fact that A(x)=a, on D, we easily
find that (2.7) holds. This completes the proof of Lemma 2.2.

We also need the following lemma, which is an easy consequence
of Cauchy-Schwarz’s inequality:

LEMMA 2.3. Let q be a positive integer and put

(2.11) = max [Py llzem,-

1si=N,1sksq

Then for any i=1,2, ---, N and we L*(D,), we have

(2.12) “wi,q - ai”L‘”(Di) §czqm“wi,q_ at”LZ(D,)

=0 |lw—ail 2y,
where w,;, 18 as in Lemma 2.2.
Now let
(2.18) uzlr;}i;; (—f(ay)
and let ¢, be a positive constant with 0<¢, =<4, such that
(2.14) —f'@&=p/2 for any £e€(a;—oy, a;+0,), 1=1,2, -+, N.

By the assumption on a,, we have #>0. We also use the notation
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(2.15) c.=max grad A@)|+ | |F(@de.

LEMMA 2.4. Let q=gq, be as in (2.10) and let the constants c,, Y,
O € be as in (2.11), (2.13), (2.14), (2.15), respectively. Suppose that
0>0 and >0 satisfy the inequalities

(2.16a) 0<o=min{s, 2],
¢
(2.16b) ¢ Vol(Q(0) +53<% min(l, g4},

Then E(0, C) is positively invariant under (2.1).

PROOF. Let u.(t, ) be a solution of (2.1) satisfying (0, -) € E(, ).
Set

T*=sup{T=0|u.t, )€ E@®, ) for 0=t T}.

Assuming T*< <, we shall derive a contradiction. By Lemma 2.1,
E®, ¢) is positively invariant under (2.1). In view of this and the
fact that |lu(¢, -)—a.ll;2p, is continuous in ¢ and by the definition of
T*, we see that

2.17) lu(T*, )—al2p,<6 for i=1,2, ..., N.
(2.18) HMC(T*, ')”‘a:‘”sz,-):a for some 7, 1<j<N.

Fix such an integer 7 as in (2.18). By (2.12), (2.16a) and (2.17), we
have

[|ug, (T, ')—ai“Lw(Di)écqu/zaéa*
for v=1, 2, .-+, N, where
q
Uit 2)=2, 'sln-,k(x)gp VWUt ¥)dy.
=1 1
It follows from this and (2.14) that
(2.19) [\ F@dednz 2| (ue (1%, 2)-ayda.
DyJug o 4 Jp,

Combining (2.7), (2.19) and the inequality J.(u (T*, :))<J(A)+6°, we
obtain
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N
T +8 200l T*, N+ 2 || (e—utorda+£] @i, —ada}
t=1 LJDy 4 Jo,

N

2JodT*, )+ min{l, £L 51| (T, ) —a)da.

A simple calculation shows that
J(A)— T g (ue(T*, +))=c¢, Vol(Q(L)).
It follows that

¢ Vol(Q(0)) wz%- min {1, f—} Spj<uc< T*, 1) —a;)da,

hence, by (2.16b),
{lue(T*, ) —a;llew, ) <"
But this contradicts (2.18), thus the lemma is proved.
Proor orF THEOREM 1. Put
9, =min{d,, a./(c,g")},

1= min(l, p/4).

By Lemma 2.4, E§(, {) is positively invariant under (2.1) if 0<§<4,
and

(2.20) ¢; Vol(Q(Q)) < p4,0°—6°.

By the assumption on Q(), the left-hand side of (2.20) is monotone
increasing in {>0 and tends to 0 as {—0, while the right-hand side
is strietly monotone increasing in é € (0, d,], where

62=min{51, 33”_}

In view of this, one can easily construct a monotone increasing function
8=06() defined on some interval 0<{<{, such that

0<8(8) <, ¢ Vol(Q(D) < 08 —0(8)° for (e(0, &, 13515)1 o) =0.
It is clear that (2.20) holds for any £ € (0, {,] and any 6 €[6(C), d,].

Now, for each { € (0, ], choose a sequence {3"™}2_, satisfying
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52=5(1) >3(2) >5(s> > _’5(C)y
and set '
Y=E@G©), 0, Y.=E@™,0)

for m=1,2,8,---. Clearly we have ¥,DY,DY,D>---and N3_,Y,=Y. Y
is not empty since it contains the function A. And it isn’t difficult to
check that the assumptions in Proposition 1 are all satisfied. Applying
this proposition, we see that Y=E(5({), {) contains at least one stable
equilibrium solution of (2.1), say .

Next we examine the behavior of v, as {—0. Since v, E(6(), ©),
we have

H'Uc_ai”Lz(Dt) =0(0),

hence
(2.21) limv,=a, in LD,
§—0
for i=1,2, ---, N. (Here and in what follows we simply write v,

instead of writing v¢|,, or v(|p,.,, as there will be no confusion in using
such an abbreviation.) For each 7 (1<i<N), v, satisfies

(2.22) Ave+ f(v)=0 in D,
(2.23) a,—0Q)=v(@)<a*+0() in D,
(2.24) %:0 on 42(5)NaD,.

Fix >0 arbitrarily. In view of (2.22)~(2.24), and using the L?
estimate of Agmon, Douglis and Nirenberg [1] together with Sobolev
imbedding theorem on the domain D,(»/2), we obtain the boundedness
of {vc}es, in C*A(D,((1—(1/2)%)7)) for some Be€ (0, 1) and also the bound-
edness of {f(vo}ls, in C'*(D,((1—(1/2)®7)). Applying the Schauder
estimate to the domain D,((1—(1/2)*)7), we obtain the boundedness of
{vheso in C**A(D,((1—(1/2)*)n)). Repeating this bootstrap argument, we
obtain the boundedness of {vs, in C=(D,()), hence its relative com-
pactness. Combining this and (2.21) yields

limv,=a, in C°(D,(n)) for any 7>0, (1=<i<N).
-0

This completes the proof of Theorem 1.
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§3. Asymptotic Behavior on the Thin Part.

In this section we further investigate the behavior of solutions,
especially their behavior on the perturbation part Q({). As the con-
dition (II-1) on the family of domains {Q({)}>, introduced in Section 2
is very weak, it allows the perturbation Q({) to be extremely wild.
In order to carry out a more delicate argument about the behavior of
solutions, we have to consider a more limited class of perturbations,

as specified below.
We set the domain 2({) in the form

2¢)=D,UD,U Q©),

where the parameter { varies in some interval (0, {,) with 0<{,<1/2,
and D, (1=1, 2) and Q) are domains satisfying the conditions (III-1)
and (III-2) below, in which we use the notation «'=(x,, x,, -+ -, 2,) € R* ™

(I11-1) D, and D, are mutually disjoint bounded domains in R" with
smooth boundaries and satisfy the following conditions for some constant
C*’

D,n{x=(z, ') e R*| 2, <1, |2'| <3}

={1, #) e R"| |2'| <3y}

D,N{z=(x, 2') e R"|2,= —1, |2'|<3L,}
={(—1, ') e R"| |2'| <3},
(II1-2) QO =R,(QURLUI)

R,Q)={(x, ") e R"[1-2{<x, <1, |o'|<{o((x,—1)/0)}
RO ={(x, 2) e R*"| —1=x, < —1+2(, |&'|<{o((—1—2,)/0)}
rQ={(, 2)eR"|—1+2{<x,<1-2{, |2'| <},

where p € C'((—2, 0])NC>((—2, 0)) is a positive valued monotone increas-

ing function such that p(0)=2, p(s)=1 for se(—2, —1) and its inverse
function o7 (1, 2)—(—1, 0) satisfies

kn—1
1330%% holds for any positive integer k.

We also assume that

(I1I-3) E@f(&)<0, lim f(£)>0.
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REMARK. The domain characterized by (III-1) and (III-2) above
clearly satisfies (II-1), therefore it is a special case of that discussed
in Section 2; so there will be no confusion in using the same notation
2(€). Note that the last condition in (III-2) implies that 2() has a
C>-boundary. Such a smoothness condition, as one easily sees, is not
essential in our analysis and can be relaxed considerably.

Under the conditions (II-2), (III-1), (ITI-2) and (III-3), we analyze
the asymptotic behavior of a class of certain solutions (which will be
characterized by (III-4)) of the following semilinear elliptic boundary
value problem:

Av+f(w)=0 in Q©),

(3.1) o _ on 22(0).
oy

(ITI-4) {vc}o<c<e, is a family of functions such that for each {e(0, &,),
v, is a solution of (3.1) and that

Icl_rg lve—ailliep,=0 (=1, 2)

for some constants a, a, with f(a,)=0 and f'(a,)<0 (=1, 2). (See
(I1-2).)

Notation 1. Let p,({) be the first eigenvalue of the following
eigenvalue problem:

Ay + 'y +pp=0 in 2(F),

(8.2) 9 _y on 92(L).
oy

REMARK. It is well-known that if £,({)>0 (resp. £,(£)<0) then v,
is stable (resp. unstable) as an equilibrium solution of (1.2) for 2=2().

REMARK. The two values a, and a, are not necessarily distinet.

We set M,=inf{¢e R|f(¢)=0} and M*=sup{e¢e R|f(&)=0}. It is
easily seen by (II-2) and (III-3) that M, and M * are well defined and that

(3.3) M,sv@)=M* for xzeR().

As mentioned before, the aim of this section is to investigate the
behavior of v, on Q) as {—0. The first theorem in this section
concerns its behavior on the region
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D,UD,UR,(Q)UR)=2&)—TI?):
THEOREM 2. Assume n=3, then we have, for 1=1, 2,

lim sup |v(x)—a,;|=0.
(-0 zeD;UR; ()

Next we discuss the behavior of v, on the region Q). The
following ordinary differential equation plays a key role in describing
the asymptotic behavior of v, on Q) as {—0:

dz*
VQ)=a,, V(—1)=a,.

<ﬂ+f(V)=o in —l<z<1,
(3.4)

Notation 2. Given a solution V of (3.4), let A, and @,, respective-
ly, be the first eigenvalue and the first eigenfunction of the following
eigenvalue problem:

dz*
o1)=0, oO(—1)=0.

<_d2_q)_+f’(V(z))Q)+7\.<D=0 in —l<z<1,
(3.5)

Now we present one of the main results of this paper.

THEOREM 3. Assume n=3. Then for any sequence of positive
values {€,)e-, such that lim,, .. {,=0, there exist a subsequence {£,}m-,C
{Cuto=r and a solution V of (3.4) with the following asymptotic property:

(3.6) lim sup |v,, (o, a')— V(x| =0.

m—oo zeQ(xm

Furthermore, if Ay>0 (resp. )\, <0), then

lim f¢,(k,.)>0 (resp. lim (k) <0)

holds.
Before starting the proof we introduce some more notations:

plz(ly O; ft O)! pz=('“1y 0! Y 0)’
2 ={(x, «") e R*|2,>1, |[x—p,| <7},
2, ={(x, «") e R*|2, < —1, [x—p,|<7}.

It can be easily seen by the last part of the proof of Theorem 1 and
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the condition (III-4) that

(8.7) limve=a, in C=(D,—3.7)

=0

for any small positive constant » (i=1, 2).
For ¢>0 and 0<{<{,, we set

K(E, C)E{x € -Dll I’U((x)'—axt|g€},
e, O =int{n>0|2,() D K(e, O)}.
Then it follows from (3.7) that

(3.8) limn(e, £)=0 for any &>0.
{—0

The convergence rate of (3.8) is estimated as follows:

LemMA 3.1. For any ¢>0 we have

im 20 o o
m c <

70

Proor. If we assume the contrary, there exist ¢,>0 and a sequence
of positive values {{,}s-, such that

(3.9) lim¢, =0 and lim Z€u&n)_

~—+00 m—oo
m m

Since 7(e, {) increases as ¢ decreases, this last equality also holds if ¢,
is replaced by a positive constant which is smaller than ¢,. Therefore
we assume without loss of generality that ¢, is sufficiently small so
that f'(6)<0 holds for any &e(a,—¢, a,+¢,). We hereafter denote
7(ey, Cn) by 7, for simplicity.

For the analysis of the behavior of v, on the small part X,({), we
change the scale of the variable 2 around the point p, as follows:

T—D0,=Nm (Y—2,)
3.10
810 ( UnW) = e, (D (U — D) +D2).

The equation (3.1) is then transformed into the following in some
neighborhood of p,:

Ail Um +77'm2f( Um) = 0 in 21(3C*/vm)
(3.11) <

%(1, ¥ )=0 for ¥y’ such that -&<|y'|<—3c—*.

1 7]74 77m
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We put

V= max | Un(¥)—ay

Y121, |y—211=30x/Tpy

max v, (%) —a,l.
z€Dy,|z—py|=30«

I

Then it is easy to see that

(3.12) limv,=0.

m-—co

By the definition of %,=7(, {,) and U,, we have

(3.13) max |U,¥)—al= max |v,(@)—al=¢,
Y121, ly—p1l=1 2€Dy,|z2—p1l=14y

(3.14) | Un(¥)—a,|<e, in X ,(30y/1.)—2,1),

(8.15) M, U, ()SM* in 2,(30,/0n).

Now we define a comparison function G, which will estimate U, for
large y:

3
GnY)=—"—+ V.
Iy—p1|

It can be easily seen by (8.14) and the assumption on ¢, that

S(U.)<0 for any y € (Z.,(8Lx/7.)—2 D) N{y|U.(¥)>a,}
F(U.)>0 for any y e (3,(8L/7.)—21))N{y | U.(¥)<a,}

and that G,, is a harmonie function in ¥,(8¢,/7,)—2.(1) with the boundary
condition (0G,./0¥,)(1,¥")=0 A< |¥'|<3Ls/7,). In view of this, (3.11), (3.13)
and the definition of 7v,, and applying the maximum principle to the
function U, —a, in the domain ¥,(3(./9.)—3,(1), we obtain the follow-
ing estimate (3.16) for sufficiently large m. (Recall lim,, .. ¢,/%,=0.)

(3.16) | Un(@)—a|=Go(y) for ye I3 /7.)—2,1).

Applying a bootstrap argument (similar to that in last part of the
proof of Theorem 1) to the family {U,}3-, satisfying (3.11) and the
uniform bound (3.15), and then using the diagonal argument, we can
choose a convergent subsequence {U, }i=,. By virtue of (3.9), U belongs
to C~({(y,, ¥') e R"|y,=1}—{p,}) and satisfies the following:

(8.17) M. 2Uyp=M* in {(y,¥)|y,=1}—{p}
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(3.18) AU=0 in {(,9)eR"|%>1)
(3.19) g—y[{(l, ¥)=0 for ¥’ ¢ R** such that y'=0
(3.20)  limU,,=U

J—oo

in C”({(yn ¥) |y, =1, vély—pllé%b for any 7>0.

On the other hand, by virtue of the estimate (3.16), the convergence
(3.20) and (3.12), U satisfies

(8.21) Uy)—a,|s—&
|y —p,"
in {(y, ¥) e Ry, 21, ly—p,|=1}
(3.22) M, =sUwy)=M* in {((y,¥)ecR"|y,>1}.

From (3.13), (3.20) and the compactness of the set {(y, ¥') € R*|y,=1,
ly—p,|=1}, it follows that

(3.23) max |Uy)—a,|=¢,.

y12L,|y—p1l=1
Now define a function U e C~(R"—{p,}) by

U(y) for y,21, y#p,

17 T N=
W ) (U(2—y1, y) for y,<1.

By (3.18), (3.19) and (3.22), we have

(A,,Uzo in R"—{p}
M. sUwy)sM* in R"—({p}.

Therefore, applying the removable singularity theorem, we can extend
U on R" as a bounded harmonic function. We denote it also by U.
Thus U must be a constant function by the Harnack Theorem. But
it is impossible by (8.21) and (8.28). This is a contradiction and we
complete the proof of Lemma 8.1.

ProOOF oF THEOREM 2. We change the variable x into y around

P, by the following:
(3 24) <x_p1=C'(y_p1)v

U(y)=v(L(y—p)+ D).
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Then the equation (3.1) is transformed into the following:

(3.25) AUACf(U)=0 in H,,
(3.26) 9Uc_o on aH.NaH.
oy
Here we have put
H=DURUT
— D11y — 3Cxl P NelPly>3-2
Hc—{yeDIIy D)< : }URU{(yl,y)eFlle C}

for 0<<1/2, where
D={(y, v) e R"|y,>1},
R=((y, ¥) e R"| —1<y,=1, [¥'|<p(y,— 1)},
I'={(y, ¥)eR"|y,=—1, [¥'|<1},

and v denotes the unit outer normal vector on dH. Set

(8.27) 7= max |U(y)—a,

y121, [y—p1 =80/

= max |v(x)—a,l.
z€Dy,|z—p1|=3C«

It is easily seen by (8.7) that
(3.28) lim z,=0.

[Sad]

Suppose now that the conclusion of Theorem 2 does not hold, say
for ¢=1. Then there exist a constant ¢,>0 and a sequence of positive
numbers {,>{,>{,>---—0 such that

(3.29) sup )Ivgm(w)—a1|>eo (m=1,2, ---).

ze€DIUR; Ly,
By Lemma 3.1, there exists a constant >0 such that
(3.30) (e, £)<E/B for sufficiently small {>0,
which implies

sup  |v(w) —a, Ze,.
z€Dy—31(C/B)

Combining this and (8.29), we see that
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(3.31) |U,, (@) —a,|Ze, in 2,38C,/C.)—2.(1/8),
(3.32) sup  |U.,(¥)—a,>¢
yeZ (1/pUR

for sufficiently large m. It is also clear that

(3.33) M.<U,)<M* in H,
for m=1,2,8, ---. (8.27), (3.31) and the comparison theorem imply
(3.34) Ue ) — | S——— 22—+,

s gy —p

in 21(3C*/Cm) - 21(1/6) .

See (3.25), (8.26) and (8.33), and using the same argument as in the proof
of Lemma 8.1, we can choose a convergent subsequence of {U }n-i
again denoted by {U }n-, for simplicity, and it is clear from (3.28) and
(8.34) that the limit function U e C=(H) satisfies the following:

(3.35) A,U=0 in H,
(3.36) 99U o on 5H,
oy

(3.37) {};H&Ucmz Uin C>(H, for any %>0,
(3.38) Uy)—a|s—2—

| By —p, "

in {(y, ¥) e Ry, 21, ly—p,|=1/8},

(3.39) M, <Uwy)<M* in H.

On the other hand, from (3.32), (3.837) and the compactness of the set
21(1/5)UI§, we see that
(8.40) sup , |U(y)—a,|=e,.

yeZ (1/HUR

Thus (3.88) and (3.40) imply that U is a non-constant function in H.
But this is impossible by (3.35), (3.36), (3.39) and Lemma 3.2 below.
This completes the proof of Theorem 2.

LEMMA 3.2. Let + be a bounded function which belongs to C=(H)
and satisfy
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(3.41) A=0 in H,

(3.42) 9 _o on H,
oy

(3.43) lim |y(y)—al=0.

Then v=a in H.

Proor orF LEMMA 3.2. We assume the contrary. Without loss of
generality, we may assume

(3.44) sulri) y(Y)=M>a.
ye

We choose a sequence of points {r,}m-,C H such that lim,,_.¥(r,) =a.
Using the strong maximum principle, the Hopf lemma (See [19]) and
the equation (3.41)-(3.42), we can easily see that 4 cannot attain its
maximum on H, because + is a non-constant function. Consequently
{ra}2-, does not have an accumulation point on H. In view of this
and (3.43), we see that
limr, = —c,

where r, , denotes the ¢-th coordinate of the point »,. Without loss
of generality we may assume that r,,<—2 for all m. We define a
family of functions {vy.}m-, as follows:

"t["m(yu y’):“lr(yx"}'/rm&_i_z; y’)-
Each v, satisfies

(3.45) Agn=0 in HN{y<0},
(3.46) %:0 on SHN (y,<0),
(3.47) v (Y)=M in H,

(3.48) lim max )nkm(y)zM.

m—o HO{y;=-2

By a standard compactness argument and the maximum principle, we
get

(3.49) limy,=M in C*(HN{—-3<y,<—1}).

m=—roo
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On the other hand, integrating the equation (8.41) in %’ on {|¥'|<1}
and using the Neumann boundary condition, we have
4 S ¥y, ¥)dy'=0 for y,<0.
dyf ly’'1<1
Since the boundedness of ++ implies the boundedness of
[ vy in —e<uso,
ly’1<1

we see that §| l ¥y, ¥')dy' is independent of y, when y, is negative.
’I<1
We denote this value by K. Then

(3.50) Sw'lq’llr"'(_z’ Yvdy'= Slu’l<1¢‘(rm'1, y)dy'=K.

We remark that the left hand side of (8.50) tends to the value
MS 1dy’ when m tends to . Consequently,

1y’1<1

S V(T 10 y')dy’——-g Mdy' for any m.
ly’I<1 ly’I<1

By virtue of (3.44), the above equality implies y(r, ., ¥ )=M for ¥’
such that |y'|<1. But this contradicts to the fact that 4 cannot
attain its maximum on H. This completes the proof of Lemma 3.2
(hence that of Theorem 2).

ProOF OoF THE FORMER HALF OF THEOREM 3
To analyze the asymptotic behavior of v, in the thin part Q(),
we change the variable x=(x, z') into y=(y,, ¥') as follows:

Y, =%y,
(8.51) Cy'=2o,
Uy) =v(y., Y.

We set

Q=3 sup (@) —a,.

i=1zeR;

By Theorem 2, we have lim.,¢{)=0. We put
o= max |f(&).

MySEsSMe
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By (3.51), the equation (3.1) is transformed into the following equation
in the part corresponding to Q(%).

(3.52) (-a— —g, )U¢+f(Uc) 0 in G,
(3.53) a_a’;{i:o on GN{—1+{<y,<1-0),
where

G={(y, ¥)eR"||Y'|<], — o0 <y, < oo}
GO=GN{—-14+{<y,<1-¢}

and v denotes the unit outer normal vector on 3G. We decompose U,

as Ui=U,(+ U, where U, ; and U, are uniquely determined by equations
(3.54) ~(3.57) below.

(3.54) (37t 7 B 37) V@) =0 in GO,
¢
(3.55) ( U,(y)=U(y) on Gn{y,=1-¢)},

' U, (y)=Udy) on GnN{y,=-1+),
(3.56) "aU‘%y) 0 on AGN{—1+L<y,<1—0),
(3.57) Ug,g: U,:— U!.(.

By the above definition, U, . satisfies the following equation:
(3.58) (32 +L é > az) Upe+f(U)=0 in G(Q),
(3.59) U,1-C y)=U,(—-1+( ¥)=0 (J¥'|<]),
(3.60) ia%:o on aGN{—1+¢<y,<1—C).

)

Hereafter we denote by P, the following differential operator:
aZ 1 n aZ
P —
¢ =

Since U, satisfies (3.54)~(3.56), the maximum principle yields the
following:
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LEMMA 3.3. For any £€(0,C,), we have

_1=C=y,,  1-C+y | <
(3.61) Sup | Uney) -5 25— 5= =uQ)-

We define functions @,, @_ on G({) which will estimate U, roughly:

y,+1-C 1-{—y,
ooz “tTog ™

i%wlﬂ—cxl—c—yl)ic(o.

@i.c(yu y,) =

LEMMA 3.4. For any (0, L,), we have
(3.62) O_(N=UW) =0+ :(y) n GQ).
PrOOF. By an easy calculation, we have
Po.=Fw in G,

00,
oy

and by the definition of ¢({), we also have

a,—Q)=0_.1- ¥)=UQ-{ ¥)=0, . (1-C ¥)=a,+«0), ,
a,—tQ)=0_(—1+L YIS U(—14+EL ¢SO, (=14 ¥)=a,+«(0).

Applying the comparison theorem, we obtain the desired inequalities.
LEMMA 3.5. There exists a positive constant ¢, such that

U, U, .
0Y, oy’

2

dy=c,

a1 3
y ¢ = e

(3.63) SG(E)

Sfor any (0, L,).

We can deduce this inequality by integrating the equation (3.58)
over G(¢) after multiplying U, . and using the estimates (3.3) and (3.61).
Next we define a function which bounds U,, in G():

vy, y')=%(1—c—yl><1—c+yl>.

LEMMA 3.6. There exists a positive constant c, such that

(3.64) 0. «)I=T(y) n GO,
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aUgy( 1__ ’ |<c

(3.65) l'—"‘—ayl ( C: y) =v2
(¥'1=1).

(3.66) ‘%(—HC, y’){ <e,

0Y,

ProoOF. ¥, satisfies the following:
(3.67) P¥.+w=0 in G(Q),
(3.68) é’}i:o on aGN(-1+(<y,<1-C),
)

(3.69) T(—14¢ ¥)=0.1-( y¥)=0 <1

Applying the comparison theorem to (3.58)-(3.60) and (3.67)-(3.69), we
see that

(3.70) VW= U,=sP(y) in GQ.

Then taking into account the boundary conditions (3.59) and (3.69), we
have

e g, y)| 5| Lea—g v)| =00 -Ds0.
Y, oY,

By the same argument, we have (38U, /oy,)(—1+¢, ¥')|Sw. Thus Lemma
3.6 is proved.

LEMMA 3.7. For any 6€(0, 1), there exists a constant ¢;,>0 such
that

(3.71) %"—(y) <c, in GG) (0<C=H/2)
oU, .

(3.72) Ls)| sy in G6) 0<CsoR)
1 -

ProOOF. We shall first prove (3.71). For each y,€[0,1—4], we
define a function W, as follows:

Wy, ¥)=Uy)— UY—y, ¥)/2 In GN{2Y,—1+{=y, SV}
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W, satisfies the following equations:

(3.74) Wy v)=2Y(y,, ) for Iyi<1,
0y, oY,
(3.75) PW 4~ (F(U) ~ £y, ') =0
in GN{2Y,—1+C<y, <V},
(3.76) "_azi:o on 36N (2. —1+i<y,<v,),
3.77) W, ¥)=0 for [y|<1.

Next we define a comparison function @, as follows:

CAUM y')=—“i(y*—yl)(y1—2y*+1—C)+L(y*—yl),

2 1—?/**C

where M=max(|M,|, |M*|). 6, satisfies

(8.78) PO, +w=0 in GN{2Y,—1+L<y, <V},

(3.79) %@L:o on 8GN {2y, —14+L<y,<v.),
)Y

(3.80) 0,2y, —1+,, y)=M for |y'|<1,

(3.81) 6.y« ¥)=0 for |y'|<1.

Applying the comparison theorem to (3.74)-(3.76) and (3.78)-(3.80) (notice
P(6,— W)(y)<0), we obtain

(3.82) —O0,W=W,W)=<6,(y) in GN{2yY,—1+(=Zy,=v.}.

Taking notice of the boundary conditions (3.77) and (3.81), we deduce
from (3.82) and (3.74) that

@8y |2y, y')[ =Wy ) =| L., )|
8y1 0Y, oY,
" i w oIl
=Ly, -+ <o 22U
g 1—Ux—0+ =2t

for any { € (0, 6/2]. The above estimate holds uniformly in y, €[0, 1—§].
Thus (3.71) is proved in the case y, €[0, 1—4§]. The case y, €[—1+34, 0]
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can be treated in quite the same manner. Using a similar reflection
technique, one can easily verify (3.72) and (3.73). This completes the
proof of Lemma 3.7.

LEMMA 3.8. For any 6¢€(0,(,), there exists a positive constant
¢, such that

(3.84) z

[(;:IIJIC ) ’2§C4,6C4 on 9GN {_1+6§y1§1—5}’
J

for any £ €(0, §/2].

PROOF. For the sake of constructing a comparison function, we
take a function h € C>([0, ~)) which satisfies
(i) R(0)=0, R(1)=1
Gy Zh
dg

(0)=0 for any natural number k.

%(5)>0 for any £€(0, 1).

Take an arbitrary hyperplane 7 in R" which contains the y,-axis. By
an appropriate orthogonal transformation of coordinates in (¥, * -, ¥.),
we can assume without loss of generality that = is expressed by the
equation y,=0. Note that the equation (3.52) is invariant under the
above transformation.

Now we define a domain G,.({) and a function W,(y) in G, () as
follows:

3.85)  GLO=GQ)N >0}
(3.86) Wz<y>=—;—<Uc<yl, o s Un)— Ul — Yo Yor =+ » ).

It is easily seen that W, satisfies the following:

38  Wi)=9Uyy on N3G, ©),
0Y, oY,

(3.88) PcW2+%(f( U)—f(UWy =Y Yy, =+ ¥))=0 in G.(D),

(3.89) Wyy)=0 on =wNaG.(),
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(3.90) %"2@):0 on 9G,(2)NIGQ).

We define a comparison function 6,(y) as follows:

Oy 3=y + (L) >1-5)

(8.91)  O,y)=| €@CY.(8—¥,) (—14+6=<y,<1-5)

e(a>c2y2(3—y2>+m("y—l‘1—+§) W< —1+9),

0—C

where
e®)=1+w+22 sup ).
0% eelo,1]

By a simple calculation, we obtain

—2e(5)+—M h"(?’l“l”) ,>1—5)

(00 0—¢
(3.92) PO, (y)=| —20) (—1+3=<y,<1-0)

—26(5) +—1 (L) g <-1+49),

0-0r 0—¢

(3.93) %‘3—2@>>0 on 3G,()NaG,

(3.94) O)=ZM on (3G.(0)N{Y,=1-CHU GG N{y,=—1+L)),

(3.95) 0,¥)=0 on 4G, (9)Nx.

By using 0<{=<4/2 and the definition of e(§), we obtain from (3.88) ~

(3.90) and (3.92)~(3.94) that
(3.96) P(6,—W,)(®)<0 in G.(Q),

0
oy

(3.98) 6,(y)—W,(»)20 on 4G.()Nm,

(3.97) (0,—W,)>0 on 6G.(C)NIG,

3.99) 6,(»)—W,(»)=20 on (BG.()N{y,=1-L) UGG, N{y,

(3.100) O,(y)—W,(y)=0 on oG.(0)NT.

—1+4¢),
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Applying the maximum principle to (3.96)~(3.99), we obtain
0:.(¥)— W20 in G.(Q).

By a similar argument, we have —60,(y)< W,(y) in G.({), hence,

(3.101) : (W )|=6,y) in GO).

Combining (3.101) and (3.100) yields

oW,

W)|s22+@) on 3G.G)N=.
Y. P

In view of this and (8.87), we see that

= li@l(y)lae+(a)nx
0Y.

li@wmwm” —36(5)C",
0Y,
hence

=3e(9)C".

’&(yﬂacuwmmaa
0Y,

Since w={y € R"*|y,=0}, this last inequality can be written as

(3.102) {%U_C(y)\g&(a)c? on zNAGN{—1+6<y,<1-0),

n
where 9/on denotes the normal derivative on 7. It is clear that (3.102)
holds for any hyperplane z containing the y,-axis. It follows that
(8.103) B grad Uy(y)| =3e(6)?

for any y€oGN{—14+6=<y,<1—6} and any unit vector p that is or-
thogonal to the y,-axis and parallel to the tangent hyperplane of oG
at y. As is easily seen, (3.103) and the Neumann boundary condition
(3.53) imply

n
pY
=2

%@’/J_c@)lzgge@)% on 8GN{—1+s<y,<1-3).

We complete the proof of Lemma 3.8 by putting ¢, ;=9¢(5)".

Now we proceed with the proof of the former half of Theorem 3.
Len {¢,}3-, be an arbitrary sequence of positive numbers satisfying
0<¢, <y and lim,_...{,=0. For each §€(0, 1/2), {U,¢,}m-, is bounded



58 Shuichi JiMBo

in the Sobolev space H'(G(3)) by virtue of Lemma 3.5, hence relatively
compact in H*(G(5)). In view of this, and using the diagonal argument,
we see that there exists a subsequence {x,}3_,c{{,}3., and a function
V, on G0)=GN{—1<y,<1} such that

(3.104a) limU, . =V, in HYG(®))

m—oo

for any 6€(0,1/2). It follows from (3.103) and the trace theorem
(Taylor [21; Chap. I]) that

(3.104b) 3‘]}2 Ug’,mlag(a)nagz V2|ag(5)ﬂag in Lz(aG(B) ﬂ aG)

for any 6€(0, 1/2). Next, by Lemma 3.8 and lim,_. ¢(,)=0, we have

8.105)  limU,, (y)= lgy‘al+ I;y‘az uniformly on G(o)

for any 6 €(0, 1/2). Combining (3.103)~(3.105) and letting

V)= Vi) + 1Y, + 1Y

2 2
we obtain
(3.106) limU,, =V in LXG(3)),
(8.107) lim Urm|30(d)n36= V|36(d)ﬂ30 in L2(3G(5) ﬂaG),

for any 6€(0,1/2). By the estimate (3.63), V, is independent of the
variables ¥,, + -+, ¥, hence so is the function V. We can therefore write
V=V(y,). Hereafter we shall show that V satisfies (3.4) and that the
convergence in (3.106) occurs in the topology of L7(G(0)).

By virtue of Theorem 2, Lemma 3.4 and lim,..¢%,)=0, there
exist, for any ¢>0, a constant 6=4(¢)>0 and a positive integer =
m(e) such that
(3.108) sup U@ —asl+ _ sup  |U,, () —a|=<¢

—1sy;s-1+3,1v'Is1 1-Fsyist, 1y’ st
for any m=m(e). By (3.3), we have
(3.109) M, sU,p=M* in GO)=Gn{-1=y,<1}
for m=1,2,8, ---. (3.109) implies that M, < V(y)<M* for —1<y,<1.
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Moreover it follows from (3.108) that V(y,) is continuous at y,=+1,
and that

(3.110) Vl)=a, V(—-1)=a,.

In order to see that V satisfies the ordinary differential equation in
(8.4), we take an arbitrary ¢€C7((—1, 1)) and integrate the equation
a2 1 n 62 >
_+ =32 \U. U, )=0
<8yf +’Cm2 fzﬂaya‘z w+ (Ve
over G(k,) after multiplying it by ¢(y, ¥')=¢(%,). Then we have for
sufficiently large m so that suppsc(—1+«,, 1—k,),

Sw )U,m(y)me¢dy+§ _ 6f(U.)dy=0.

G(

(Notice that P, ¢(y)=(0°¢/0¥,")(¥,).) Letting m —co and using (3.106) and
(3.109), we get

S Iy'lsldy’gl_l( V(yl)a_?/i—z¢(yl) + ¢(y1)f( V(%)))dyl =0.

By the arbitrariness of ¢, we have

L Va)+f(Vu)=0 in (~1,1.
Y,

This together with (8.10), implies that V satisfies (3.4), as claimed.

LEMMA 3.9.
lim sup |U,, (., ¥)— V(y)|=0.

m—o0 Y €G (Ky,)

PrOOF. First we show that U liwswnss converges to V uniformly
on 0G(0)NaG=0GN{—1=y,<1}. By Lemma 3.7, Lemma 3.8, (3.109) and
Ascoli-Arzera theorem, {U,, liunael is relatively compact in C°(6G(6) N 0G)
for any 6¢€(0, 1/2). In view of this and (3.107), we see that

}g& Ut lac@nac= Vliswnae in  C°9G(5) N0G),
for any 6¢€(0, 1/2). Combining this and (3.108), we easily find that
(3.111) li_rgUxmba(o)r\aG: Vlssonac 1n C°(0G(0) N oG).

Now we define a comparison function 6, ,, 6_, by
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0:.m¥)= V(@)= —2—(1—|y'P)x,?
n—1

* sup |U., (¥, ¥)—V(y)l.

¥ €3G (ryy)

6, O_, satisfy the following:
P, (0:n—U.,)=—f(V)F20+f(U,)=0 in G(x,),
0. n(¥)— U, ®ZE0 on G(k,).
Applying the maximum principle, we have
O+ nW)— U, E0 in G(k,),

or, equivalently, 6_,®)<U, (¥)<6,,) in G(k,). By the definition
of 0., and by (8.111) we conclude that

lim sup |U, (¥)—V(y,)|=0

m—oo YeG(r,y,)

and complete the proof of Lemma 3.9.

Expressing the equality in Lemma 8.9 in the original variable z,
we complete the proof of the former assertion of Theorem 3.

PROOF OF THE LATTER HALF OF THEOREM 3
(1) The case 1, <0.

We shall show that
(8.112) lim 24,(k,) Sy

The following well-known variational characterization of g, will be
useful:

|, (V9= F 0 e

(3.113) (k)= inf
e HUQ(x,,))

|, lde
(k)

Since the first eigenfunction @, in (3.5) does not change sign by the
Krein-Rutman theory, we may assume without loss of generality that
0,(2)>0 for —1<2z<1. Let

Yn=max{@,(1—2k,), ®,(—1+2«,)},

anp=min{z= —142«, | @y(2)="7.},

Bn=max{z=1-2k,|0,(2)="7,}.
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Clearly —1+2k,<an<Bn=1—2, (m=1,2, ---) and, as is easily seen
from the boundary condition @,(—1)=9,(1)=0, we have

(3.114) lim v, =0,

m—oo

(3.115) lima,=—1, limg,=1.

Now we define a function +,(x) on Q2(x,) by

D,(x)—Vm, €K, N{n=2,=Bn}

Fal®y ©)= (0, 2 € D,U D,U Ry(f) U Ry(en) U (I (10) O {8, <t OF 2> B},

It is clear that ., € H'(2(x,)). In order to estimate the right-hand
side of (3.113), we substitute r=qp,:

(3.116) SW )(|V«/fm|2—f’(vxm)w>dx

)5
Iz | Sk ap\ | 0%,

—SS{ d(;f; +f ’(v‘mX@V(xl)_7m)}((l)r(xl)—7m)dx’dxl

(At £ V@)~ S 0o N0 o,

aAm

0,0, =7l )da,

M0+ @F @)= PV N0 = e Yt .

By the former assertion of Theorem 3 (namely (3.6)) already proved
above, we have
(3.117) lim sup. | (V@)= f' (v, (2, «))|=0.

m—oo x € (Kpy

Letting m— oo in (3.116), using (3.114), (3.115) and (3.17), we see that

@ug  lm| (v reavodsl|] o ddy =,

—00

On the other hand, it is clear from (8.114) and (3.115) that

SS 0, () d,dar’
lim £Lt%m! =1.

m—oco

|, ¥n@rds
Q(km)
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Combining this, (3.118) and (3.118), we obtain (3.112). In particular
we have )\, <0, as claimed.

(2) The case \y>0.

From now on we shall prove that p(x,) is bounded from below by
a positive constant for sufficiently large m. To prove this, we assume
that there exists a subsequence {m(j)}7, such that

( * ) llm m(]): o, lim #1("m(i))§0

J—r00

and shall derive a contradiction. Let +; be the eigenfunction of (3.2)
corresponding to the eigenvalue p(k, ;) such that

(3.119) IWJ'||L2(9<:,,,(,-,>)=1 (=1).

LEMMA 3.10. Under the condition (x),

lim4;=0 in C*((D,—2.(M)U(D,—Z(n)) for any 75>0.

j—oo

For the proof of this lemma, we need the following simple lemma,
the proof of which is omitted:

LeEmMMA 3.11. Let A be a self-adjoint operator in a Hilbert space
X with norm |||, and let o(A) denote the spectrum of A. Suppose
there exists a constant 0<0=<1 and an element @ € X such that ||Ap||<
0llell. Then

o A)NL+#2, |El)p—o|=6"|el,

where I,=[—06"% 6" ]CR and E(-) is the spectral measure associated
with the operator A.

Proor. Using the a priori estimates of Agmon, Douglis and
Nirenberg [1], and applying the bootstrap argument, we see that

(8.120)  {¥r;}3=, is compact in C*((D,—2,(n) U (D,—2,(n)) for any 5>0.
Next we take two functions ¢,, ¢,€ C°(R") such that

é(x)=1 in D,, ¢,(x)=0 in D,, ¢,(x)=0 in D,,

#(®)=1 in D,, supp ¢, Nsupp ¢,=D.
We put, for ¢=1,2 and 5=1,2,3, ---,
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0;"” = ”(A+f,(vxm(j)))¢i_'f’(a’t)gsiIILz(D(xm(j)))/||¢i||Lz(ﬂ(xm(j)))'

We can easily check that lim; .09 =0 (i=1, 2) by using Theorem 2
and a simple calculation. By Lemma 3.11, the eigenvalue problem (3.2)
for {=k, has eigenvalues p"(j) and p®(j) for large j such that

(3.121) HOG) €[~ £(@) =08, — f(@) +0{ =1,
(3.122) ”Pf‘.“¢t - 951||Lz(mrmu)))/nﬁﬁtl|L2(mmu’)>) =P*

for 1=1, 2, where P,m is the eigenprojection (associated with the self-
adjoint operator —A- f'(v,,;) onto the subspace of L*2(k,)) cor-
responding to the interval I®. We have p,(£,) ¢ Ui, [—f'(a)—6},
—f(a,)+6%] for large j by (x), hence (v, Pl.g_f)qﬁi)LZ(g(,m(”)) 0 for large
j and 4=1, 2. In view of this and (3.122), we have, for ¢=1, 2,

| (Y3 ¢1)L2(a(:m(,~,>)|/||¢i||1.2(a(xm(j))) éa.fiﬂw

for large j and so we can easily deduce lim,ws Pide=0 (1=1, 2).
Considering this and the fact that +4;(x)>0 in .Q(/c,,,(,,), we have

lim y,(z)=0 in L'D,UD,).

The conclusion of Lemma 3.10 now follows from this and (3.120).
By using Lemma 3.10, we can choose a monotone sequence of
positive values {l;}=, such that
llm lj=0, lj>l€,,,,,(j),
J—o0

lim K(j)=0,

j—oo

(3.123)

where

K(j)= sup l¥;(2)[ >0,

z e (Dy—5121) U(Dy—Ep(2l )
S.@l)={, ) e R*| 1<z, <1+2L,, |x'|<2l;},
5.@l)={(=, ) e R*| —1-2;<x, < —1, |2'| <2L;}.

Here we define two sets:

Si=(Qknz) US,(2L) UL, @2L),
T;={(x, ') € R"| |&'| <K piy, 2| S1+21).

Now we decompose eigenfunction y; as
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V@)=Y @) +¢P@) in S;

where ", 4 are determined uniquely by the following condition:
AyP=0 in S;

(3.124) P@)=4;) on 8S;—02(kn,),
_6;#73"(%):0 on 4S;N0R2(kp ),

(3.125) PP @) =9i@)—¥P@) in S,
Applying the maximum principle to (3.124), we obtain the inequality
(3.126) 0<yP@)<K, in S,

Now we calculate as follows:

B120) plewa)=| (VW F

Km(5)

(V4 f o)+ | [V

S-O("m(j))—sj
S I L S OIS NATORI YR
= B,()+B.(J) + B+ Bj).

We have used V'V Pde=0 in the above. By Theorem 2,

_f'(”rm(j))gﬁ*/z ii{ 2(Kni;)—S; for large j, where B, =min(—f"(a,),
—f'(a,)). Consequently,

(3.128) B\(7)2min(1, Bu/2)([¥sll 22 0kmein—s)*

for large j. By (3.123), (3.126) and the boundedness of APl zees,
(j=1’ 2! 3! ...)!

(3.129) lim B,(5)=0.

Hereafter we estimate B,(j) from below.
BLi) =, (V4= /(0 )P

+ Ss Ly .(|V4/,\;.2)I2 _f,(vxm(j))l"/’?) dz.
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Again by Theorem 2, the second term of Biy(j) is bounded from below
by

min(l, B,/2)(||l¢5 HHl(s,-—T,-))z-

To estimate the first term of B,(j), we change the variable x into ¥
in T; as follows:

x, = (1 + O'j)yl

xI:yl

Ej(yn y,) ="l";'2)(0'jy19 y’) for |y1| §1, ]y’| <Emiy
where g;=1+2l;, Note that
(3.130) Fiy)=0 for y,==x1, [¥|<Enmi-

By this change of variables, we have

|, (VW= f @) 5 )

’ ! 1 E ’ 2 ’ ’ j=d
2| a5 B )| - o v)E oy,
1S Em(g) -1tg?l 0y,

J

1
g J1v'|1Skm(s) -1

ay' || (2 (VD) = @uaiyo 00 ¥ B 0100

0500 U) | (Vi )IE s 3
5 V) [* (v IS, )F v,

1

S|1/'|§Km(j) -1

By Theorems 2 and 3 and the fact that lim;.. 0;=0, the second term
of the right-hand side tends to 0 as j—o. Using the variational
characterization of the eigenvalue », and the boundary condition
(3.130), we easily find that the first term is bounded from below
by

1

1
L1 | wswrdn(= 250 ee,)-
g; Jy'1semg) -1 O

Consequently we have the following inequality for j:
(3.131) B(§) 22l

From the inequalities (3.127), (3.128) and (3.130), follows
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(K i) — By(7) 2 min(l, ,8*/2)(”"/’:']|L2(9(:,,,(,-))—Sj))2
+|_ 1V rda+rmingt, 8200 lassr,)

U lltr-

Let j tend to o and using lim;.. ¢, (k,;)<0 and (3.129), we have
lim;veo [[¥5]l 200 ym =0.  But this contradicts the fact that ||Vl 2, ;) =1
for j=1 (see (3.119)). This contradiction proves lim,, .. #,(,)>0 in the
case Ay >0. Therefore we have completed the proof of Theorem 3.

§4. Construction of Unstable Solution.

In this section, we shall consider the equation (8.1) on the domain
2(C) established in Section 3 where we choose f in (38.1) as specified
below. We shall construct a family of solutions {v}s, in (III-4) where
v, is an unstable solution of (3.1) under the condition a,=a,=b, for
small {>0.

We set the nonlinear term f in the following form:

(4.1) f@=d9@)  @>0),

where g€ C>(R) satisfies conditions (IV-1) and (IV-2) below and the
parameter ¢ will be chosen later.
(IV-1) There exist three points b,<b,<b, such that

90b)=0 (1=1=3), ¢'()<0, g'(b;)<0,

g(é)>0 in (—oo, b1)U(b2’ ba)y
g9(&)<0 in (b by) U (bs, o).

(IV-2) S:sg(s)d§>0.

, By (IV-1)~(IV-2), there exists a unique de(b,b,) such that
|, s@dz=o0.

' With f as above, the corresponding ordinary differential equation
(3.4) can be written in the form

(iz—/+f(V)=0 in —1<z<1
(4.2) dz
V(1)=b,, V(-1)=b.
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PROPOSITION 3. There exists a positive value &, such that for any
824, (4.2) has exactly three solutions

VO@)(=b)< V()< V() (—1<2<1)
with the following stability properties:
Ao >0, Ayo<0, Ay@>0.
(See Notation 2 in Section 3 as for the definition nyo, Myw, Apo.)

~

Ny

Figure 5

Proor. First of all, as one can easily see, any solution V(z) of
(4.2) satisfies b, < V(2)<b, (—1=2<1). Furthermore, if V(z) is a non-
trivial solution of (4.2) (i.e., V(2)#b,), then

<V(z)=V(—z) (—1=21),

4.3) AV >0 (~122<0), LV (0)=o0.
dz dz

Integrating the equation (4.2) after multiplying it by dV/dz and using
(4.3), we see that

dV _ v (0) 1/2 _
(4.4) E—(z)—(zgm)ﬂp)dp) (—1=2<0).

v (0)

In particular we have S ’ f(@)do>0for —1=<2<0. It also follows from
Vi(z)

(4.4) that

(4.5) S:”(zgjw’ f(p)dp)_mda =14z
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Combining the above observations, we obtain the following:

(4.6) d<e<b,,

13 3 —1/2
(4.7) [, (2 #01d0) "do =1,

b\ Jo
where £=7V(0). Conversely, if & satisfies (4.6) and (4.7), then there
exists a solution V(2) of (4.2) such that V(0)=¢. Moreover it is clear
from (4.5) that the value V(0) determines the solution V(z) uniquely.
Therefore the problem of finding nontrivial solution of (4.2) reduces to
that of finding ¢ satisfying (4.6) and (4.7). (See also Maginu [14].)

To examine the left-hand side of (4.7) as a function of ¢, we define

s(¢) on (d, b;) as follows:

s(8)= S;<2Sjg(p)dp>_l/2da.

s(&) is well-defined by (IV-1) and (IV-2) and moreover we have:

LEMMA 4.1. s(¢) is a positive differentiable function on (d, b,) with
the following asymptotic conditions:

lim s(&) =1
€1bg , 1/q’ , 1/2 1
(—=1/¢'())"* log =
lim 5(&) -1
U (1490 log
i—d

1 d = o0 1 _g. = — o0
lelfﬂ d—ES(E) =+ o0, 151351 i s(&) .

ProOOF. First we deal with the case where ¢ is near b, i.e.,

d'<(d'+b,)/25E<b;, where d’ is a point in (b, b,) which will be de-
termined later.

d’ 3 —1/2 I3 I3 —-1/2
(4.8) s©={, (2] 90do) “do+{’ (2] s(0)do0) "do.
It is easily seen that the first term belongs to C=([(d’+b,)/2, b;]). There-

fore the second term is essential to the asymptotic behavior of s(¢) as
&1b,. Expand g(o) around po=b, as follows:



Singular perturbation of domains 69

9(0) =g’ (b)(0 — bs) +7,(0)(0—ba)* = 9.(0) + 9:(0)-

By a simple calculation, we have

(4.9) I (2 a01a0) "do={ (2] 7 0I0—bId0) “do

_ ’1 Jog b= @+ ((d'—b)*~ (€ —b))"
(—g'(bs))" bs—¢

Segz(mdp Sfrl(p><p~bs>2dp
(4.10) . - .

[o0do | | +60)(@—br—E=b))

27 . 4r
s _(2h—0—8S—2—(b—d)
—3g'(by) 2 —3g <b3>( ’

where 7,=maX; <oz, |7:(0)], d'<(d'+b,)/2=£<b;. By the power series
expansion, we have

a+ Y)““:_Zj ¢;Y? for |Y|<1 (=radius of convergence)
where ¢;=(—1/2)(—1/2—1)(=1/2—2)---(—1/2—(j —1))/4!. Using the

above expansion and the estimate (4.10), we have the following ex-
pansion:

(4.11) (2 atra0) "= (2 9(0rd0)

X

iMs

Segz(p)dp !
¢j| 52— for d'<(d +b;)[2=£<Db;.
| ox(0)de

For any ¢>0, take d’ close to b, and fix it, so that the following
estimate is derived from (4.10):

¢ i
o g9,(0)d
(4.12) 1—2_:, cj(w) e
=\ aode

for ce[(d'+by)/2, b;) and g e[d, £]. Integrating (4.7) with ¢ from d’ to
&, we have
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(4.13) 1-e< [ (2] s00) s

- Se (285,01(.0)!19)_” do

a’

<l-+e

for £€[(d'+b,)/2, b;). Using (4.8), (4.9) and (4.13), we have the following:

4.14) 1—¢<lim 8(&) -
§1 bg ’ _
. b3 1/2 l
(=9'(6:)™"" log -
<m (0 <l+e

T (=g b)) log

3

for any ¢>0. Consequently we have

lim s(&) T =1.
ETh
8 __ 'b3 —1/21 -
(—g'(b;)™"" log -

Hereafter we take d’ near b, and fix it so that B(g 0)=1/2 for
ge[(d +b)/2, b;) and o e[d, £]. We put

3 —1/2

B a)=<1+ Sﬂzw)dp)
’ 5 ’
‘a(0dp

& 1/2
F&, 0)=(2] a0)do) "
Then the second term of the right-hand side of (4.8) can be written as

| =B ado=|  ——L B c-niy=10.

v F(¢, o) Fg -
In what follows we shall estimate dI/dg:

d 1 ’ = 5 1
415) Lro=—"_Be d)+\ L — L1 _.BE e—nd
@15)  JIO= g B )| S s Bl ey

| 2B ey
o F(g -7 o8
1 1{<% o 1

v

1
11 Ve 1 g
2 TG d) 2% o8 FEe—n) "
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§—d’ 1
) FG e—7) as Bl ¢—mdy.

Here we have used the fact that (3/0¢)(1/F(& £—%))=0. On the other
hand, one can easily check that

¢
i (Se_”gz(mdp)
“\[. oo
§-1
is bounded in (d'+b,)/2<&<b, and 0<n=<£—d’, hence so is (6/08)B(&, £— 7).

Therefore there exists a constant M such that [(3/08)B(¢, £é—71)|=M for
ge[(d' +by)/2, b;) and 0<n=£—d'. Consequently we have

1 o 1 £-d’ 1

P S SRV L S
2 aes Fee—n " . FG e—7)
_1ao(f_ 1 g a1
"2 % S e d) Msa' e )
1, v 1 (b—8)-(d = by — (b,— &)
ARG Gy e o e )

LM oy g em o (@ b = (b= £
2 (— g/ log — )-

(4.16) ——I &= d7

I

Combining this and (4.8), we obtain

d = o0,
lmes@=

We can deal with the case £¢—d in quite the same manner as above
except that we use the following decomposition instead of (4.8):

5(6)= S:(zﬁj‘gw)dp +2{ g(0)do) " do
+S:(zﬁi‘mp)dp+2§ig<p)dp)_”2do+SZ(zgjg(p)dp)" "do.

The details are omitted. Thus we have completed the proof of Lemma
4.1.
By Lemma 4.1, the equation (4.7), which is rewritten as
s(&) =3,

has exactly two solutions & <¢, in the interval (d, b,), if the parameter
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#>0 is adequately large. Moreover we have
4.17) $'(6)<0, s'(&)>0.

Consequently, for any sufficiently large #>0, problem (4.2) for f(&)=
99(&) has exactly two nontrivial solutions V* and V®, which correspond
to & and &, respectively, one can easily check that

b<VP(2)<V¥()<b, in —1<z<1.

By the aid of the almost same method as in K. Maginu [14], we can
use (4.17) to investigate the signature of the linearized first eigenvalues
A, Apw and Ay@ (see (38.5) for the definition) and we conclude that
A@ >0, Apw<0 and A,@>0, where V?(2)=b,. Thus we complete the
proof of Proposition 3.

In what follows we shall first construct a family of solutions of
(3.1), {vP}oct<r. such that v® behaves like V® in Q({) and takes values
near b, in D,UD, and that p,(v®)>0 holds for small {>0. Here we
denoted by g, (v®) the first eigenvalue of the eigenvalue problem (3.5)
for the family {v®}ict<c.. We set the function ¥,(x,)=0,w»(x,)+ 04,
where 0,>0 is a small constant such that n,@®,@(@,)— 0, (V?(x,))>0
for any z,€[—1,1]. (Recall that V¥(—1)=V®1)=b, and f'(b)<0.)
Now we define a function W (z) on 2(C) as follows:

(2 =)

2

Woay )= b—zic( AV (1 —20)—5.,(0) ‘w* (1-20)) @~ 1+20)- (@~ 1)
for xeRl(C)ﬂ{1—2C§x1<l—C}

Vm)(xx)—é*(C)w*(xx) fOI’ xer({:)

W(—2, x') for xeR,Q)N{—1+{<a,=—1+2(},

where we have put 6,()=(V?1—-20)—b)/¥,1—-2(). It is easily seen
that §,(&)>0 and that lim.,,d,()=0.

LEMMA 4.2. For each small £>0, W, belongs to C*(2(0)) and satisfies
AW+ f(W)>0
in 20)—{x,=1—2L or 1— or —1+2{ or —14C},
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W0 on 820

oy

Proor. One can check W, e C'(Q2()) by a simple calculation. In
D,UD,U R, N{x,>1-LHU R N{w, < —1+L}), we have AW,=0 and
W(x)<b, for small >0 by virture of (dV®/dx,)(1)<0 and lim,.,6,()=0.
Then by (IV-1), we obtain the desired inequality. In R,(Q)U{1—-2¢<
€, <1-}, AW =(—1/20(dV?/dx,)(1—20)—6*(O)(d¥ /dw,)(1—2())>0 and
W (x)<b, for small {>0. Therefore we can obtain the desired inequality

in the same way as above. The same is true for the region R,({)U
{(—1+¢<x,<—1+2C}. In I'€), we calculate as follows:

AWC"‘f(Wc)_ (V‘”(%l) =0T ()
+f(V(2))—5*(CW*f (V) 46,75,
(Where Ec(xl):Sl(l—r)f”(V‘”(xl)—TB*(C)W*(xl))dr)

2,

=0:O{(v @@y (@) —0xf’ (V‘”(w;)))+3*(C)W* Ee(x)}>

holds in I'({) for sufficiently small {>0 since lim;.,0,({)=0. Thus we
have completed the proof of Lemma 4.2.

By Lemma 4.2, W, is a “weak lower solution” in the sense of
D. H. Sattinger [20] for small {>0. It follows that if w.(¢, x) is a
solution of (2.1) with initial data w,= W, then wu,(¢, x) is monotone
increasing in t. Moreover, by the comparison theorem, u.(¢, x)<b, for
all t=0. Arguing as in [20] and also in the proof of Theorem 1, we
have

hmuc(t r)=v®x) in Q@Q),

(4.18)
hm v — bx”zﬁ(uluvz) =0,

where v is some solution of (3.1),
<v@@)=b; in L2(0).

Here we put v®=b,. Then »f, v® are both solutions of (3.1) and
satisfies v <v® in 2(). Moreover, by virtue of (4.18), v is stable
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from below, while v{® is clearly a stable solution. Applying Theorem
4.4 of Matano [15], we see that there exists another solution v of
(3.1) that is unstable and satisfies

(4.19) b, =0 <vP <v® <b,.
Considering the stability properties of these solutions, we find that
(4.20) ()20, p(@P)=0, #(®P)=0

for all small {>0. Let {{,}o., be an arbitrary sequence of positive
numbers converging to 0. By Theorem 3, we can choose a subsequence
{Entm=1C{ln}2-, and solutions V@, V® and V@ af (4.2) such that

lim sup [vf(@)— V9@)|=0 (=0, 1, 2).
)

M= 2 €Q (K,

It is clear that VO < VW< V@ and that {7, V@, Fojc(ve, vo, yoy,
Since we have

im f2,(v) <0
m-—oo
v‘Z—’ - y@
—_
v(gl VUJ)

D, i Q9 : D p, i L i D

Figure 6
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by virtue of (4.20), the latter half of Theorem 3 implies that yo=yw,
(Recall that Ay@>0, Ayw<0 and Ay@®>0.) A similar argument shows
that

Vo — Ve, vo=-ye,

Since {¢,}2-, was chosen arbitrary, we see that v{|y., converges to V*
as £—0 for 1=0, 1, 2. Thus we have obtained the following theorem:

THEOREM 4. There exists a constant #,>0 such that for any =9,
and for any sufficiently small £>0 the problem (3.1) has precisely three
solutions v <v® <v¥. Moreover three solutions satisfy

lim sup |v¥(x)—b,|=0 (2=0,1,2)

{—0 z€D;UD,

lim sup [v¢(x, 2")— VP (x)|=0 (i=0,1,2)

{—0 zeQ()

lim 4,(v")>0, Tim p(v®)<0, lim 4,(v®)>0
0 {0 =0

where p(v{) denotes the first eigenvalue of the eigenvalue problem (8.5)
Sor the family {v¥}ccce. (#=0, 1, 2).
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