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§0. Introduction.

Let S¢={(x,, 2, -+, Xgs1) € R | 234+ 23+ -+ +23,,=1} be the unit sphere.
A finite nonempty subset X of S¢ is called a spherical t-design (after
Delsarte-Goethals-Seidel [4]) if

1 1
T ) ol @dle) = 37 3 f@)
for all polynomials f(x)=f(xy, s, -+, as:) Of degree <t. The reader is
referred to [4, 5, 6, 1, 2, 3] for the discussion of basic properties and ex-
amples of spherical t-designs.

In the circle S!, it is easy to see that the k+1 vertices of a regular
(k+1)-gon with k=t (embedded in S!) form a t¢-design. In [7] Y. Hong
proved the following results for spherical ¢-designs in S

(i) If |X|<2t+1, then X must be a regular (k+1)-gon with t<k<2t,

(ii) If |X|=2t+2, then X must be a union of two regular (t+41)-gons,

(iii) If |X|=2t+3, then there are infinitely many non-group type
spherical t-designs, where group type means a union of regular (k;41)-gons
with k;=t.

This result of Hong suggested the existence of spherical t-designs in
abundance. The existence of spherical t-designs in S¢ for any ¢ and d was
proved by Seymour-Zaslavsky [9] in a very general context.

Some time ago (cf. [2, 3]) the present author introduced the following
concept of rigid spherical t-designs, and asked whether there are many such
spherical t-designs.

DEFINITION 1.1. We call X={%,, &,, ---, Z,} is a non-rigid (or deformable)
spherical t-design in S¢, if for any given ¢>0 there exists another spherical
t-design X’'={Z{, Z;,---, .} such that |Z,—Z|<e (for 1<7<n) and there
exists no orthogonal transformation O in R*! with 0Z,=%. (1<:¢<n).
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DEFINITION 1.2. We call X rigid (or non-deformable) if it is not non-
rigid.

I was eventually led to conceive the following conjectures.

CONJECTURE 1. For each fixed pair of ¢ and d, if |X| is sufficiently
large (i. e., greater than a certain number f({,d) depending only on ¢ and
d), then X is non-rigid.

CONJECTURE 2. For each fixed pair of ¢ and d, there are only finitely
many rigid spherical ¢-designs up to orthogonal transformations.

REMARKS. (i) Conjecture 2 implies Conjecture 1. (ii) Tight t-designs
are examples of rigid spherical ¢-designs. There are some other known
rigid spherical ¢-designs, but they are very rare (at least as far as I am
aware of at the present time). (iii) It seems that a rigid spherical ¢-design
may represent a stable state (from the viewpoint of moments) of finitely
many particles in S% So, the classification problem (if at all possible) may
be an interesting question from the viewpoint of physics. This question
will be even more interesting if Conjecture 2 is proved to be true.

In the present paper, we restrict ourselves to the case S' (i.e., d=1).
We prove Conjectures 1 and 2 for S' by completing classification of rigid
t-designs in S'. Namely, we prove the following :

THEOREM 1. If X is a rigid spherical t-design in S, then X consists
of k+1 vertices of a regular (k+1)-gon with t<k<2t.

The proof of Theorem 1, which is given in the subsequent sections,
is not very difficult. The implicit function theorem plays a key role. We
remark that our proof of Theorem 1 (for d=1) suggests that our method
should also work for d=2. In fact, I have been able to prove Conjecture
1 for some special cases, including the case of t=1 and arbitrary d. Some of
these results for d=2 will be discussed in a subsequent paper. Also we
remark that our proof of Theorem 1 has some similarity to the proof in
Hong [7]. The present paper may be regarded as giving a re-interpretation
and a clarification of the meaning of Hong [7].

§1. An implicit function theorem.

For the convenience of reader, we state the implicit function theorem
in a form ready to use in our proof. Proof of this theorem can be found
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in any advanced calculus book.

AN IMPLICIT FUNCTION THEOREM. Let (%)= (u(%), -, un(%)) be a
C'-class function from R™ to R™ (with m<n) with u(6)=6 and defined on
a neighborhood D of 6:(90‘3):(90?, o, x)eR™  Let V be the inverse image
of 0eR™ in D. Suppose that the Ja¢obian

D(uy, Us, -+, Unm)
D(xl; x?.’ Tty xm)

#+0

at the point (%)= (a9, -+, x3). Then there exists a unique set of C'-class
Sunctions &, (@, -+, Ta) (1= p=<m) defined on a neighborhood of (€541, +++, ©5)
such that :

(1) =6, (Xmes, -+, 20) (1S p<m), and

(1) Ei(@mer, = @)y o0, En(@Cmes, =05 Loy ey, o0, o) E V.

§2. Proof of Theorem 1.

Let X be a spherical t-design in S'. If |X|<2t+1, then by Hong [7]
X must be a regular (k+1)-gon (with t<k<2t), and so X must be a rigid
t-design. Therefore, we assume that |X|=2t+2, and we show that X is
not rigid. Theorem 1 is obtained as an immediate consequence of the
following :

LEMMA 2. For any Y={z,2, ",2u4 of distinct 2t+1 points
2, Roy 0, Zausr W S (tdentified with the unit circle in Gauss' complex plane),
there exist another set Y ={zi, 23, -+, 2541} with |z;—zill arbitrary small
and Y+Y’' such that

2t+1 2t+1

El Sflz))= §1 f(z)
for any homogeneous harmonic polynomial f of degree 1,2,---,t.

Note that Y’ may be an image of Y under an orthogonal trans-
formation. . i

Lemma 2=Theorem 1. Suppose |X|=2t+2. Choose any YCX with
|Y|=2t+1. Then move Y slightly to Y’ according to Lemma 2. Then the
set X'=(X—Y)UY’ is close to X but not obtained by an orthogonal trans-
formation of X. Thus X is not rigid.

PROOF OF LEMMA 2. Let us write z=¢e>*V-1¢ (or z;=e?>*V"1%i), A basis
of the space of harmonic polynomials of degree k (k=1) consists of two
functions sin k@ and coskf. Therefore, by the implicit function theorem
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mentioned in the previous section, we only have to prove the following
statement. Let Y={z, 25 -**, Z2t+1). Then Y has a subset Z with [Z]=2¢
such that ’

(1) D(ub Ugy ", uzz)

: *0
D(xly Loy s x2t)

at 6:(93‘1’, xY, -+, 2%, where &, s, +++, %, are those corresponding to the 2¢
indices of the 2t-element subset Z of Y and

<k<t),

2+l 241
U1 (Xg, 5 Baerr) = 21 sink(6;+ ) — g} sinkg; (1

2t+1 2t+1
Ugp (X1, **0 ) Lorsr) = Z}lcosk(ﬁi-l-xi)— Z}lcos k6, (AZEkLt).

The above condition (1) is equivalent to the condition

cosf, cosf, --- COSOy

sind, sinf, --- sin@,

cos 26, cos20, -+ cos 20,

Sin 201 Sin 202 A Sin 262; + 0 .
costld, costh, -+ costly
sintd, sintf, -+ sintby

This, in turn, is equivalent to

21 2 Tt Ryt
zl—l 22—1 zz—tl
2 2 2
21 22 Tt %2t
-2 -2 —2
zl 2 22t
#0,
t t '
21 22 ctt o Rt
it ozt o 2

and is equivalent to
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1 1 e 1
2 k2 o 2y
AL i Th =< i zilzizmzit)d(z;, 2oy, 2) 0,
| 41 41 1=i)s-sSiys2t
zitt oz 2
2t 2t e 2
where 4(zy, 25+, 24)= II (2;—2;). (Note that the above determinant is
18i<js2t

a Schur function, cf. [8].)
Thus the proof of Lemma 2 is complete from the following Lemma 3
which is straightforwardly proved.

LEMMA 3. Let Y={zy, 25, ***, 2aes1} be a set of distinct 2t+1 complex
numbers. Then there exists a subset Z={z1, 25, -+, 25} of Y with |Z|=2t
such that

’ ’ ’
zilziz zit¢0 .
lSil<'"<itSZt

This completes the proof of Lemma 2, hence of Theorem 1.
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