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1. Introduction.

A block design with parameters (v, b, r, k, 2) is a pair (X, B) with a »-
set of points and with a family B of k-subsets of X (called blocks) such
that any two points are contained in exactly A blocks, any points are con-
tained in exactly » blocks, and there are b blocks. The order of the block
design is defined to be the integer n:=r—1. These parameters satisfy the
following relations:

(1) vr=>bk, (v—1)A=rk-—1).

The incidence matrixz of the block design (X, B) is the matrix A of
size XX B of which (x, p)-entry is 1 if x=p and 0 otherwise. Then the con-
dition for block designs can be expressed by the incidence equations:
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AJ=rJ, JA=LkJ,
AA'=nI+2J,

(2)

where I is the identity matrix and J is the matrix jall of whose entries
are 1. From this we derive that if 1<, then

(3) det (AAY)=rkn’'+0,
which yields famous Fisher’s inequality :
(4) v=bh.

A block design such that v=b is called a symmetric design.

Next assume that a finite group G acts on a block design (X, B), that
is, G acts on X and this action preserves B. In this case, we can again
apply the above argument and obtain inequalities like as Fisher’s one.
Let R be a commutative ring in which rkn is invertible. Then the com-
position

’

a a
RX — RB —> RX

of the linear maps «, a’ corresponding to the matrices A4, A® is an RG-
isomorphism. Thus

(5) RX|RB, and RX=RB for a symmetric design,

where RX|RB means that RX is isomorphic to a direct summand of RB.
This relation does not occur as frequently as it looks. It is a difficult
problem to decide the condition for finite G-sets X and B to satisfy RX|RB
or RX=RB. Comparing the ranks of G-fixed-point submodules in (5), we
have the following well-known orbit theorem ([De 68], 2.3.1 ; [Ts 82], Theorem
1.5.8):

(6) | X/G|=<|B/G|, and the equality holds for a symmetric design.

(Remember that (RX)®=R[X/G].) In particular, if G is transitive on B,
then it is transitive on X.

We can furthermore derive various inequalities from (5). To show it,
let M:Hec(G, R)—>Modz be an R-additive functor of the category of per-
mutation RG-modules (Hecke category) to the category of RG-modules.
Then (5) yields that M(RX) is isomorphic to a direct summand of M(RB).
Such a functor M is called a Hecke functor, which corresponds with a
cohomological G-functor ([Yo 83b]).

In Section 2, we apply this idea to the Ext-functor and prove Theorem
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A. The following is a part of Theorem A.

THEOREM a. Let (P, B) be a block design with parameters (v,b,r,k, )
and with order m:=r—2 on which a finite group G acts. Let R be a
commutative ring in which rn is invertible and let M be an RG-module.
Then for any monnegative integer m,

II H™G,, M)| II H™Gg, M).
peBIG

reX/G

When the design is symmetric, the above cohomology groups are isomorphic.

For example, when m=1 and M=R, the theorem yields several rela-
tions about the commutator groups which can be considered as weak forms
of transfer theorems for finite groups. See Section 2d. Furthermore, (6)
follows immediately from the case where m=0 and M is a trivial RG-
module. Almost all statements in Theorem A follows directly from
Theorem B, but in order to prove Theorem A, the knowledge of category
theory is unnecessary.

In Section 3, we construct a category which can substitute for the
Hecke category. In fact, it is the Z,,-additive category Me=Mec (G, €%.12,))
which is accompanied by an isomorphism-reflecting functor @ into the
Hecke category, where Q is the Burnside ring functor and e% , is a primitive
idempotent of the Burnside ring of G localized at p. This category is a
kind of the Mackey categories. An object of Mec is a finite G-set and the

hom-set of Y to X is generated by the pairs of G-maps [X«iAﬁ» Y]

Now, let (X, B) be a block design with action of a finite group G, and
put F:={(z, f)e XX Blx =B} (the set of flags), so that there are canonical
G-maps of F' to X and B. Thus we obtain two morphisms in Me, that is,
a:=[X—F—B]and its transpose a’ :=[B«—F—X] which are mapped to the
incidence matrix and its transpose by the functor @. Since @ reflects
isomorphisms, we have that if the prime p does not divide nmr, then aca’
is an isomorphism. Thus we can apply the argument in the case of Hecke
functors to additive functors from Me. An additive functor of Mc to the
module category is called a poly-Hecke functor. Hence we have the follow-
ing theorem which is a part of Theorem B.

THEOREM b. Assume that a finite group G acts on a block design
(X, B) with parameters (v,b,r, k, 2) and order n. Let p be a prime which
does not divide nr and let M be a poly-Hecke fumctor. Then M(X) is
1somorphic to a direct summand of M(B). When the design is symmetric,
M(X) and M(B) are isomorphic.
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Applying this theorem to the poly-Hecke functor given by the Burnside
rings and character rings and counting the ranks, we have the following :

COROLLARY b.1. We use the same motation as in the theorem. Let P
be a mormal p-subgroup or a cyclic and central p-subgroup of G. Assume
that the prime p does not divide n. Then the following hold :

@) If ptr, then |XT|G|<|B7[G|.

(b) If the design is symmetric, then |XT|G|=|B?/G|.

COROLLARY b.2. Assume that p does not divide nr. Then

<
ze?;o CP(GI) —'ﬁe§/a CP(G’S) ’
where c,(H) ts the number of H-conjugate classes of p-elements of the
finite group H. For a symmetric design, the equality holds (even if p|r).

These results are, in the more generalized forms, stated in Section 4.

Notation and Terminology.

For notation and terminology, we will refer the following books and
papers : [De 68], [La 83], [Ts 82] for block designs with group action; [CE 56],
[HS 711, [We 69] for homological algebra and cohomology theory of finite
groups; [Ma 71] for category theory; [Dr 71}, [Di79], [Yo 80] for Mackey
functors and G-functors; [Go 68] for finite group theory.

In particular, (X, B) is a block design with parameters (v,b,7,k, ), G
is a finite group, R is a commutative ring with identity element, and p
is a prime. A set having 7 elements is called an n-set. The notation
H<G means that H is a subgroup of G. We put A7:=¢g'Ag for ASG
and gG. OP(G) denotes the normal subgroup generated by all p’-elements,
and G’ denotes the commutator subgroup of G. For a finite (right) G-set
X, the set of G-orbits is denoted by X/G and the stabilizer of zeX is
denoted by G,. The ring Z, is defined to be the subring of @ consisting
of fraction m/n with n prime to p. For a set X, the free R-module over
X is denoted by RX or R[X]. The hom-set of X to Y in a category C is
denoted by C(X,Y). If f:A—B and g:B—C, we write gof (not fog) for
the composed morphism A—C, and we use 1y (or simply 1) for the identity
morphism of an object X.

2. Fisher’s inequality for cohomology of groups.

In this section we shall prove some results about cohomology groups
of finite groups acting on block designs which are prototypes of Theorem B.
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We first summarize some well-known facts and notation about cohomology
theory of finite groups in order to give a typical example of Hecke functors,
and then we state Theorem A and its corollaries which are regarded as
some sort of Fisher’s inequality.

Throughout this section, we let G be a finite group and R a commuta-
tive ring with identity element (possibly R=0). Furthermore we introduce
the following notation. For an R-module N, an integer a and a rational
prime p, we put

N:={xeN|ax=0}, N/(a) :=N/aN,
Nepy ::Z(p)®ZN‘
Note that if N is a torsion group as abelian group, then N, is the p-

torsion part of N, and that if N is a finite abelian group, then N, is a
Sylow p-subgroup of N. When N is an RG-module, we write

N¢:.={xeN|xg=x for all geG}.

For two modules M and N, the notation M | N means that M is isomorphic
to a direct summand of N.

a. Cohomology theory of finite groups.

Let H™G, M) denote the m-th cohomology group of G with coefficient
RG-module M. Then there are familiar maps of three kinds for H<G and
9€G:

resy: H™G, M) — H™H, M),
r®: H™H, M) — H™G, M),
con’: HMH, M) — H™(H‘ M) (H?:=¢g'Hy) .
Of course there are the corresponding maps for the Tate cohomology groups
A™~H, M), meZ. These maps satisfy the axioms of G-functors (see Sec-

tion 3. D).
For any finite G-set X and any RG-module M, put

HR(C ) =€) € TLH™Go M) | £ry=con’(&.)]

Since
Exthe(RX, M)=Homgzs(RX, M) = HYX:M),

we have that for any m=0,

ExtRe(RX, M)=H™X; M).
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Let X and Y be finite G-sets and let a: RY—RX be an RG-homomor-
phism corresponding to a matrix (a,,), that is,

a:RY — RX;, y+— X a,x.
reX
Then the map a* : Extzs(RX, M)—>Ext3s(RY, M) induced by « yields, through
the above isomorphism, the following map:
a* :H™"X; M) — H™Y; M); (&) —> (p,),

= > a,, corfvores .
771/ zeX7Gy Ty GIL,(Ex)

The functor X—Exth:(RX, M) becomes a Hecke functor corresponding to
the G-functor H—H™(H, M). See Section 3.a and c.

b. Incidence maps of block designs with group action.

We consider a block design (X, B) with parameters (v,b, 7, k, 2) and
with order n on which a finite group G acts. Two RG-homomorphisms
corresponding to the incidence matrix A and its transpose A‘ are given by

a:RB—> RX; p—> f:= Zﬁx,
zE

a«':RX — RB; a —> & := X 8.

f5z

Furthermore we define “(co-)augmentation maps” by
ex . RX— R;, x— 1,
¢eg:RB— R; f+—>1,
¢x:R— RX; 1+— X x,

zEX

eg:R— RB; 1— X B.
BeB

Here xe X and B B. Then the following lemma follows immediately from
the definition of block designs.

LEMMA 2.1. (i) aca’=mn-id+ Aexoex.
(ii) exoa=kep, egoa’=rey.
(iii) acez=1rey, a’ccx=kes.

(iv) exoex=v-idp, epoep="b-idy.
)
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(v) The following diagram is commutative and its vertical lines are
exact.

0 0 0
! ! |

n-id : Ker ey Kereg Kerey
l a’ \L a l’
RX RB RX
EXJ/ r lén k lsx
R > R R
l } |
0 0 0.

(vi) The following diagram is commutative and its vertical lines are
exact.

-0 (i 0
| |
P k R r R
Sf\'l , lEIB lef\'
rRX—2 RB = RX
| | |
n-id : Cok ek Cok ¢’ Cok e

S «—
O «—
O «——

LEMMA 2.2. Assume that the design (X, B) s symmetric, that 1is,
v=>b. If mr is invertible in R, then a and o’ induce an isomorphism
RX=RB. If n s invertible, then a and a' induce RG-isomorphisms
Kerey=Kerez and Cokey=Cok es.

PROOF. Assume that nr is invertible in B. In order to prove that
o' : RX—RB is an RG-isomorphism, we may assume that R=Z[1/nr]. Then
aca’ is an RG-automorphism of RX by the reason as in Introduction, and
so a’ is a split monomorphism. Since R-modules RX and RB have the
same ranks, we conclude that a’ is an isomorphism. Assume next that =n
is invertible. The vertical lines of Lemma 2.1 (v) and (vi) are R-split.
Thus we may assume that R=Z[1/n). Since n-id is an automorphism and
since Kerey, Kerep, Cokey and Cokep are equal in rank, the statement of
the lemma holds.
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¢. Theorem A and its proof.

PROPOSITION 2.8. Assume that n is invertible in R. Let N be an
RG-module and let m be a nommegative integer. Then the Sollowing hold :
(1) The following sequence of R-modules is exact:

&t (aa’)*
0 — #ExtRe(R, N) — Ext3;(RX, N) ——
&
—> ExtR(RX, N) — ExtR:(R, N)/(rk) —> 0,
where & and &F are maps induced by ex and k. In particular, if r-id
18 an 1somorphism on Exths(R, N), then a* induces

ExtR;(RX, N) | Ext%:(RB, N).

(il) a* induces Kered |Kercyt and Cokef|Cok ¥,
(iii) When the design (X, B) is symmetric, that s, v=>b, the above
relations of direct summand give tsomorphisms.

(iv) 7r-Ker(a*:Exths(RX, N) — Ext%:(RB, N))=0,
r-Cok (a'* : Exths(RB, N) — Ext3;(RX, N))=0.
(v) If b-id 1s invertible on Exths(R, N), then
Ker a* = Exth:(R, N)=,Ext%:(R, N).

PROOF. For any RG-module M, we put
E™M) :=Ext};(M, N).

(i) Applying long exact sequence of Ext to the exact sequences of
the both sides of the exact sequence of the diagram of Lemma 2.1 (v) and
(vi), we have the diagrams of R-modules as in Figures 1 and 2 with exact
vertical and horizontal lines. By an easy diagram chase, we conclude that

& nE™R) —> Ker (aa’)*

and
ey : Cok (aa’)* — E™(R)/(rk)

are isomorphisms. This prove the first part of (i). Assume next that r-id
is isomorphism on E™R). Since nr=k(r*—b1), we then have that ,,E™(R)
=E™R)/(rk)=0, and so a’*ca*: E™(RX)—»E™RB)—»E™RX) is an isomor-
phism, as required.



Fisher’s inequality

521

E™Y(Ker ey)- E™'(Kerex)
0 WE™(R) - E™(R) — rlid E™R)
lEo ls,"é (@'} le_*f—
0 —— Ker (aa’)* —— E™(RX) E™RX)

l © meid l

E™(Kerey)

I

Figure 1.

|

E™(Cok &) - E"‘(ka &)
ErRx) — " pmRx) Cok (aa’)* —0
I rk-id le¢ Je |
E™R) > E™(R) E™R)/(rk)—>0
! | !
E(Cok ef) — 20— ok eh)
(aa’)* l

Em+l(RX) - 5 Em+l(RX)

l .l
Figure 2.

(ii) In fact, (a-a’)* induces automorphlsms n-id on Ker ¢
See Figures 3 and 4.

(iii) This follows 1mmed1ately from Lemma 2.2 and lo
quences given by Lemma 2.1 (v), (vi).

and on Cok ¢¥.

ng exact se-

(iv) Consider the commutative diagrams in Figures 3 and 4 induced by
the diagram of Lemma 2.1 (v), (vi). Note that n-id is an isomorphism.

(v) Since klnr and bk=vr, we have that ,E™(R)=,E™R).

2.1 (i),
a*oet=(exoa)*=ke} : E(R) —> E™(RR),

By Lemma
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n-id : E™(Cok &%) E™(Cok e3) ——> E™(Cok &%)

P

E™RX) E™(RB) E™RX)
le“* r-id leg* k-id ls;"*
E™R) E™(R) -~ E™(R)
Figure 3.
k-id -id
E™R) — 2 gnr)— " . E™R)

lez*é . le§ " lv:f'é
E™RX) E™RX) —%— > E™RX)
l | |

n-id : E™(Ker ey) ——> E™(Ker e5) ——— E™(Ker ¢x)

Figure 4.

and so

e LE™R))SKer a*SKer (aca’)* .
Now the conclusion follows from (ii) and the injectivity of ¢% on ,.E™(R).

Now, the R-module H™X ; N) (=zExt™(RX, N)) defined in Section 2.a
is isomorphic to Il excH™G., N), where x runs over a complete set of ,
representatives of G-orbits. In this view point, the maps defined in Section
2.b induce the following.
corg: II H™G,, N)(p) — H™G, N)(p) ;

zE€EX/|G

(&'z)zeX/G [ 2 COI'gx(gz)’
TEX/IG

resy : H™G, N)¢p —> xe];[/a H™G,, N)w ;

i > (resg,(ﬂ))zexm ’
a* : H Hm(G_t, N)(p) e H Hm(GﬂJ N)(p) )
z€X/C BEBIG
(Ez) —_ (Cﬂ) ’
Lpi= 3 3 cor’Poress,,, socon’(£,) .
ZEX/G ge:ggéaﬂ/aﬁ

Similarly, we can define corf and res%. The maps corf and res§ correspond
to &5 and ¥, respectively.
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THEOREM A. Let (X, B) be a block design with parameters (v,b, 1, k, )
and with order m on which a finite group G acts. Let m be an integer,
p a prime mot dividing n and N an RG-module.

(i) Ker cor%|Ker cor§,

Cok res% | Cok res§.
(ii) Assume further that p does mot divide r. Then
H Hm(Gz; N)(p) lSEIBI/G Hm(Gﬁ: N)(IJ) .

TE€EX /|G
(iii) Assume that (X, B) is symmetric, that is, v=>b, then the above
direct summands give isomorphisms.
The maps nduced by a* gives the injections for direct summands and
the isomorphism. Furthermore, these relations hold also for the Tate
cohomology groups.

PROOF. We put R :=Z,,®;R and N :=R’'®rN. Then 7 is invertible
in the ring R’, and for any subgroup H, there are natural isomorphisms

H™H, N')=R'QrH™H, N)=H™(H, N) -

Thus we may assume from the beginning that R=R’. Then the theorem
follows immediately from Proposition 2.2. Next we consider about the
Tate cohomology groups. Let I be the augmentation ideal of RG and H
a subgroup of G. Then by the dimension shifters, Shapiro’s lemma and
Frobenius reciprocity, we have that A™(H, N) = H™'(H, IQ zN). (See [We 69],
4.1.6 and 3.7.14). This isomorphism is commutative with corestrictions,
restrictions and conjugations. Since the Tate cohomology groups of positive
degree coincide the ordinary ones, the results in this case follow from the
case of ordinary cohomology groups. The theorem is proved.

d. Corollaries for Theorem A.

COROLLARY A.l1. Under the same motation as in the theorem, assume
that G acts block-transitively on (X, B).
(i) If p does mot divide r, then H™(G., N) is isomorphic to the direct
summand of H™Gz, N) together with the injection
a*:§—> 3> corferesg,, zocon’(§).
0EG 2\G/G
cxgeP 8
(ii) The above a* gives

Ker (corg,) | Ker (cor§ ﬁ) s
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Cok(resé,) | Cok(resg,) .
(iii) If the design is symmetric, then (i) and (ii) give 180Morphisms

of H™G,, N) and H™Gs, N), ete.

First and second (co-) homology groups of finite groups are familiar
objects in group theory. For example, we have that for any finite group H,

Ab(H)=H"*H, Z) (=HJH’, the abelianized group),
M(H)=H*H, C*) (the Schur multiplier).
(Here we denote by H’ the commutator group of H.) So Theorem A gives

the following results for these cases.

COROLLARY A.2. Let p be a prime which does not divide n.
(i) Assume that p does not divide r or that the order of Ab(G) 1is

prime to p. Then
Ie];/GAb(Gx)(p) I ﬂel;-[/GAb(Gﬁ)(p) .
(i) Assume that G acts block-transitively on (X, B). Let x€X and
BeB. Let P, (resp. Pg) be a Sylow p-subgroup of G, (resp. Gg). Then

P.NG' | PsNG’
P.NG: | PaNGy °

(iii) Assume that (X, B) is symmetric. Under the same assumption
as in (ii), there is an isomorphism

P.NG _ PsNG
P.AG, = PG

Of course; we can write the generalizations of (ii) and (iii) to the non-
block-transitive case. Furthermore, there is the similar result about Schur
multipliers as this corollary. ‘

3. Brief outline of transfer theory of finite groups.

Throughout this section, G is a finite group, Set? is the category of
finite G-sets and G-maps, and R is a commutative ring.

a. Mackey functors and G-functors.

In this subsection, we will define Mackey functors and G-functors, and
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state some properties of them. The details are found in [Gr71], [Dr72]
and [Yo 80].

DEFINITION. Let E be a category with finite limits and finite coprod-
ucts. Let B be a category. A Mackey functor M:E—B is a functor
which to each morphism f: X—Y assigns two morphisms f *: M(Y)—M(X)
and fy: M(X)—>M(Y) and satisfies the following properties:

(M.1) The contravariant part of this functor sends finite coproducts to
products. (In particular, M(0)=1 and M(X+ Y)=M(X)X M(Y).)

(M.2) For any pull-back diagram

h
A— B

el )
c— D,

the diagram

M(C) — M(D)

is commutative.

The property (M.2) is called the pull-back property. A morphism Dbe-
tween Mackey functors is naturally defined. So we have the category
Mc[E, B] of Mackey functors.

DEFINITION. Let L, M, N be Mackey functors of the category E to the
module category Mod for a commutative ring R. A pairing p: LXM—-N
is a family of R-bilinear maps

px: LLX)XM(X) —> N(X); (a, ) —> a-§ (X< E)

which satisfies for each morphism f: X—Y in E the following properties:

(P.1) SHa ) fHB)=f*a'-B), a’eL(Y), peMY).
(P.2) fela f*BN=fu(a)-f', acL(X), g e M(Y).
(P.3) Fi(F¥ () B)=a’-fu(f), a'€L(Y), fe M(X).

The properties (P.2) and (P.8) are Frobenius reciprocity.
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DEFINITION. A Mackey functor A : E—~Mod;, is called a Mackey ring if
there is a pairing AX A—A which makes A(X) into an R-algebra with an
algebra homomorphism f* : A(Y)— A(X) preserving the identity element for
each f:X—Y. Similarly we can define a (right) Mackey module over a
Mackey ring. Morphisms of these objects are naturally defined.

LEMMA 3.1. Let A be a Mackey ring and M a Mackey A-module from
E to Mod;,. Then M(X) is an A(1)-module for each object X of E by
pra:=X*(p)-a, where the unique morphism X—1 is denoted by X itself.
Furthermore, the R-linear maps f*: M(Y)->M(X) and fy: M(X)->M(Y)
wnduced by any f: X—Y are A(l)-homomorphism.

PROOF. Easy.

DEFINITION. Let G be a finite group. A G-functor a consists of a
family of R-modules a(H), HG, and families of R-linear maps of three
kinds as follows :

cor¥:a(H) — a(K); a—> a* (HSK=ZG),
resy:a(K) — a(H); p—— By (H=K=QG),
con’:a(H) — a(H%; a—a* (H=G,g9<0).

Furthermore they must satisfy the following axioms for any D, H, K, L=<
G, 9,9'€G, aca(H) and fca(K):

(G.1) ai=a, (®)r=a* if HSK<L;
(G.2) Bx=B, (Bu)p=po if D<H=K;
(G.3) a"=a, (a9=a" if heH;
(G.4) (@)'=(a)%", Bu)’=()ue if H=ZK;
(G.5) (a")x= 3 a%on" if H K<L,

where g runs over a complete set of representatives of H\L/K.
Morphisms between G-functors, pairings, “rings”, “modules” and so on
are defined by the similar way as Mackey functors.

DEFINITION. If the G-functor @ furthermore satisfies the following
property, it is called to be cohomological :

©) y=|K:H|p if HsK=G, pcalK).
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LEMMA 3.2 (Dress). Let G be a finite group. The category Mc[Set$,
Mod;:] of Mackey functors of finite G-sets to R-modules is equivalent to the

category of G-functors.

PROOF (Outline). Let M be a Mackey functor. We set a(H) :=M(H\G).
For any HEK<G and g=G, there are canonical G-maps H\G—K\G and
H\G—H’\G. Thus applying the contravariant part and the covariant part
to them, we have maps cor, res, con. Conversely, let @ be a G-functor.
For each finite G-set X, we set

M(X):={(&.) s Il a(G,)|é,,:=con’(§,) for geG}.

Furthermore for a G-map f: X—Y, we define R-linear maps
[ M(Y) — M(X); () —> (§2), E&.:=rese (7)),
f* : M(X) - M(Y) ) (Ex) > (Wy) » Ny :— 2 COI‘GV(E';) ’

zef-Yyw/Gy
where x runs over a complete set of representatives of G,-orbits in f!(y).
Then we obtain a Mackey functor X—M(X).

Example. Let M be an RG-module. Each G-map f:X—Y between
finite G-sets induces an RG-homomorphism RX—RY and its transposition
RY—-RX. Thus for each nonnegative integer m, we have maps

*
Exthe(RX, M) = Ext3:(RY, M),
S
which makes the assignment X—Ext%;(RX, M) into a Mackey functor. The
corresponding G-functor is given by H(ZG)—H™H, M) together with
corestrictions, restrictions and conjugations and this G-functor is cohomol-
ogical. If LXM—N is a G-pairing of RG-modules, then we have a pairing

Extre(RX, L) X Exths(RX, M) —> Extz"(RX, N)

by combining the cup products for Ext with the diagonal map RXXRX
—-RX.

b. Burnside rings.

For a category E and its object X, the comma category E/X is the
category of all morphisms into X. Refer to [Ma71], p.46. We identify
E/1 and E, and so we sometimes write X—1 as simply X.

We consider the case where E=Setf. Then the comma category E/X



528 Tomoyuki YOSHIDA

has finite coproducts and finite products:
(A— X)+B — X)=(A+B —X),
(A — X)X (B — X)=(AXyxB — X),

where AXyB is the fiber product. Isomorphism classes of Set/X make a
semi-ring. by coproducts and products.

DEFINITION. Let Q(X) denote the Grothendieck ring of Set$/X. Then
the assignment X—Q(X) becomes a Mackey ring called the Burnside ring
Sfunctor as follows. Each G-map f: X— Y defines a pair of adjoint functors :

2
(Set?)/X% (Setf)/Y,

where X, is defined by the composition With S and the pullback functor
f* is defined by '

f¥1(A—Y)— (AXyX —X).

(See [Jo77].) Since X, preserves coproducts and f* preserves both of
coproducts and products, they make the assignment 2:X—Q2(X) into a
Mackey ring. Furthermore for any commutative ring R, we have a Mackey
ring R®L which sends X to R®,2(X). In particular, we put Qg :=
Z(p)@ZQ-

DEFINITION. The Burnside ring o(G) of a finite group G is the
Grothendieck ring of Set? with respect to disjoint unions and cartesian
products. See:[Di79]. For HZK<G and geG, we have the following
mappings :

resy:w(K) — o(H); [X] — [X4].
. con?: w(H) — w(HY) ; [X] — [X].
ind*: w(H) — w(K); [H/D] — [K|D].

The assignment o: H(ZG)—w(H) together with ind, res, con makes a G-
functor corresponding to the Burnside ring functor £2. Furthermore, we
have a G-functor wq,: H—2Z,,®; o(H) which corresponds to 2.

LEMMA 3.3 ([Di79], 6.2.3). Ewery Mackey functor M can be regarded
as an £2-module by

MX) X 2(X) —> M(X); (m,[A —> X]) —> aya*(m).
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Furthermore, if (a, cor, res, con) is a G-functor corresponding to M, then
the action of w(G) on a(G) is given by a-[H\G] :=cor®-resy(a).

LEMMA 3.4 (Di79], 1.2.2). Let C(G) be the set of conjugate classes of
subgroups of G. For each subgroup H of G, we define a linear map ¢g
of w(G) to Z by ¢u([X])) :=|X"|. Then the map

¢:=(pn):0(G) — 11 Z

(HHECG)

is am injective ring homomorphism with finite cokernel.

A finite group G is called p-perfect provided G has no normal sub-
groups of index p. We denote by O?(G) the subgroup of G generated by
all p’-elements of G.

LEMMA 3.5 ([Yo83a]). Let p be a prime. There are primitive idem-
potents eb o of Zp®z0(G) corresponding to the classes (Q) of p-perfect
subgroups Q of G such that

1 if O*(H) s G-conjugate to Q
5011(65.0): .
0 otherwise,

where we extended linearly the definition of ¢y to wy,(G). Furthermore,
eb.q ts a linear combination of elements of the form [H\G] where OP(H)=Q.

DEFINITION. Let M be a Mackey functor of Set? to Modz, where
R=Z,, (or more generally R is a commutative ring such that J(R) con-
tains pR). By Lemmas 3.1 and 3.3, we have a Mackey subfunctor

ef, oM : X — X*(ed o) M(X).

A Mackey functor M such that e ,M=M (that is, M is a Mackey module
over e% 2., is called a poly-Hecke functor. A G-functor corresponding to
a poly-Hecke functor is called to be poly-cohomological with respect to p.
For example, a cohomological G-functor over R is poly-cohomological.

LEMMA 3.6. Let a be a G-functor over a ring R such that pRSJ(R).
The following statements are equivalent :

(a) a is poly-cohomological.

(b) res:a(H)—a(H,) is injective for any subgroup H with o Sylow
p-subgroup H,.

(¢) cor:a(H,)—a(H) is surjective for any subgroup H with a Sylow
p-subgroup H,.
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PROOF. Put e:=e?, Let H be any subgroup of G with a Sylow p-
subgroup P. Then by Lemma 3.5, we have that er (=resp(e)) =1 and ey
=f¥ (=ind*(f)) for some fEwy(P). Thus the lemma follows easily from
these equalities and Frobenius reciprocity.

DEFINITION. Let m be a G-functor over R. For any subgroup H of
G, let m'(H) be the R-submodule of m(H) generated by all elements of the
form pp®—|E: D|y”, where DSE<H and pcm(H). Then m’ is a G-sub-
functor of m and m°®:=m/m’ is a cohomological G-functor. When M is
a Mackey functor corresponding to m, we can define M<°® to be the Mackey
functor corresponding to m®°". We call M<°" and m°" the cohomologicaliza-
tions of M and m, respectively. For example, (RQQ2)°" is isomorphic to
the Mackey functor X—Ext%;(RX, R).

LEMMA 3.7. Let R be a commutative ring such that pRSJ(R). Let
A be a Mackey ring over R and let M be a poly-Hecke and simple Mackey
module over A. Assume that each component A(X) is finitely generated
as an R-module. Then pM=0 and the G-functor corrresponding to M is
cohomological. (Remark: A Mackey functor corresponding to a cohomol-
ogical G-functor is called a Hecke functor. See 3.c.)

PROOF. Let a and m be the G-functors corresponding to A and M, so
that m is a poly-cohomological and simple “module” over the “ring” a.
First note that each component m(H) is a finitely generated R-module.
This fact follows, for example, from the representability of Mackey A-
modules (Lemma 3.8). Thus Nakayama’s lemma yields that pm=J(R)m=0.
Next assume that m is not cohomological. Then the subfunctor m’ that
was defined as above is an “a-submodule”’, and so m®*=m/m’=0 by the
simplicity of m. Thus each m(H) is generated by elements of the form
up”—|E:D|p, where DKE<HZG and pem(H). On the other hand, choose
a minimal subgroup H such that m(H)#0. Then by Lemma 3.6, H is a
p-subgroup, and so m(H) is generated by elements py, pem(H). This is
a contradiction.

c¢. Mackey categories and Hecke categories.

DEFINITION. Let A be a Mackey ring of Setf to Modz. Then the
Mackey category Me (G, A) is the category whose objects are finite G-sets
and whose hom-set of Y to X is the abelian group A(XXY). The com-
position is defined by the following bilinear map:
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T Xk
AXK V)X AYXZ) > AXX YXZ)X AXX YXZ)
multi ¥
AXXYXZ) AXxZ),

where =;; denotes the projection from XX YXZ to its (1, 7)-factor. The
Mackey category Me (G, A) is an R-additive category with finite biproducts.
The isomorpohism A(XX Y)=A(YXX) induced by the transpose XX Y=
Yx X gives the self-duality of the Mackey category : Me (G, 4)=Mc (G, A)°".

There exist covariant and contravariant functors (—), and (—)' of
Set? to Mec (G, A) defined by X,=X'=X and

fii={f 1+l e A(YXX),
=y Olan) € AXXY).

The pair of functors (—)' and (—), defines a Mackey functor Setf—Mec (G, A).

Any homomorphism 6: A—B of Mackey rings induces a functor
§ :Me (G, A)—Me (G, B). For example, the canonical homomorphism 4 : 2—A
(the X-component Q(X)—A(X) maps [f:A—=X] to fuf*(14x)) induces &
such that

. A, my»
(A ——> XX Y])=A, m)(1)=2cp' '€ A(XXY).

LEMMA 3.8. The category of Mackey A-modules is equivalent to the
R-additive functor category Addz[Mec (G, A)°?, Mod;].

PROOF (Outline). When M is a Mackey A-module, each ac A(XXY)
induces an R-linear map M(X)—M(Y) by m—mu(x¥(m)-a), where z, and x,
are the projections from XX Y. By the pullback formula (M.2) and the
Frobenius reciprocity, we have a contravariant functor of the Mackey
category. Conversely, let M be an R-additive contravariant functor of
Me (G, A) to Modz. Put M*:=Mo(—), and M, :=Mo(—)', so that for each
G-map f: X—Y,we have R-linear maps

1, 1>
Fe =M () =M(X —— XX Y)(1in) ; M(X) — M(Y),

1
=M =M(X ——> Y X) (1) ; M(Y) — M(X).

Then we obtain a Mackey functor M:f—f,, f*. Furthermore, an A-
module structure of M is given by

o

O can
A(X) — A(Xx X)=End (X) —> Endz(M(X)),
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where End(X) is the endomorphism ring in Me (G, 4) and d: X—»Xx X is
the diagonal G-map.

Example. We consider the Mackey category Mec (G, 2). A morphism
of ¥ to X in this category is a difference of morphisms of the form
[2, o> : A»XXY], where 2: A—»X and p:A—Y. The composition of
[4, > A-»XX Y] and [{, ) : B-YXZ] is [(Aov, kop’> : C> XX Z], where
v’ and p’ are defined by the following pullback square :

c—* sp— % .,

’
Y Y

A

>

X

Any Mackey functor M is a Mackey £2-module. The corresponding con-
travariant functor maps [<2, > : A= XX Y]e2(XXY) to

M(Q2, @) :=pyed* : M(X) — M(A) — M(Y).

DEFINITION. The Hecke category Hee (G, R) is the category in which
objects are finite G-sets and a morphism of Y to X is an R-matrix (a.y)zex.yer
of size XX Y with a,,,=0a., for any ze€X, yeY, g€G. Compositions
are defined by the product of matrices. Clearly, Hec (G, R) is self-dual (by
the transpositions of matrices) and equivalent to the category of permuta-
tion RG-modules by the functor

X+ RX,
((@z): Y — X) — (RY — RX . y —> zga”y) .
A contravariant R-additive functor of Hec (G, R) to Mod; is called a

Hecke functor. There is an R-additive functor

~

can
?:Mc (G, RQQ) — Mc (G, R®2°°") — Hec (G, R)

such that @(X)=X and
h
(D . [A — XX Y] —> (|h_l(x; :U)l)xy

Thus any Hecke functor can be regarded as a Mackey functor. Remember
that all Mackey functor is an R®f2-module (Lemma 3.3).
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LEMMA 3.9 (See [Yo83]). The above functor @ induces an equivalent
between the category of Hecke functors and the category of cohomological
G-functors.

d. Isomorphisms and split morphisms in a Mackey category.

We can now prove a proposition which is essential to prove Theorem B
in the next section. Let @ denote the functor of Mec (G, 2, to Hec (G, Z,))
defined as above. We first note that there is a canonical ring homomorphism
of the Burnside ring o(G) to the center of Mec (G, R®2) (the center of a
category is defined to be the set of endo-natural transformations of the
identity functor of this category). In fact, the action of [E]ew(G) over
RRQ(XXY) is defined by [E)-[h: A>XXY]:=(XXY)*([E]) -h=[EXA—A
—Xx Y]. Furthermore, the functor @ maps [E]-h to |E|®(h). In particular,

D(e?. h)=p\(e2.)@(h)=D(h) for any morphism h.

LEMMA 3.10. Let C and D be skeletally small R-additive categories.
Let @:C—D be an R-additive functor. Assume that for every simple
object S of Addz[C°?, Mod;], there exists an object T of Addz[D°°, Modz]
such that S=To®. Then @ reflects split epimorphisms.

PROOF. Let f: X—Y be a morphism in C such that @(f) is a split
epimorphism. Suppose f is not a split epimorphism. We denote the con-
travariant hom-functor for each object Z by H;: A—C(A,Z). Then H,: Hy
— Hy is not an epimorphism in the functor category Add;[C°®, Mod;]. The
image Im (H,) of H, is a subfunctor of Hy such that Im (H)(Z)=f°C(Z, X)
€C(Z,Y). There exists a maximal subfunctor M of Hy containing Im (H,).
Put S:=Hy/M, so that S is a simple functor. By the assumption, there
exists TeAddg[D°? Mod;] such that S=To®. Now, since @(f) is a split
epimorphism, there is a morphism d: @(Y)—®(X) such that O(f)od=1pw.
Thus T(d)oS(f)=T(d)eT(@(f))=1sw) and so S(f):S(Y)—S(X) is injective.
Since S(f) maps 1y mod M(Y) to f mod M(X)=0, we have that 1, M(Y). For
any ¢g:Z—Y in C, we have that M(g) : M(Y)—>M(Z) : 1y,—g, and so M(Z)=
C(Z, Y)=Hy(Z) for any Z. This contradicts the fact that M is a maximal
subfunctor.

REMARK. If we apply the theory of radicals of additive categories
([Ke 64], [Mi 70], [Ba 75]), this lemma is trivial. In fact, the radical of C is
the inverse image of the radical of D by @. This fact is applied to deter-
mine the central idempotents of the Mackey categories ([Yo 85]).
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DEFINITION. For any R-additive category C, we define a category C*
as follows. An object of C* is a pair (X, e) of an object X of C and e=¢?
€End (X), and a morphism of (X,e) to (Y,f) is a morphism 1€ C(X, Y)
such that fAe=2. An embedding of C into C* is given by X—(X, 1), f—f,
and so we identify C as a subcategory of C*. For any idempotent e=e?
€ End¢(X), we have a biproduct diagram

e S
(X,e) (X, 1) S (X, ),
e S
where f:=1—e. Any R-additive contravariant functor of C to an idempo-
tent splitting category can be uniquely extended to C*. In particular. we
have an equivalence

Add:[C°?, Modz]=Add:[C*°", Mod,].

In fact, a unique extension of such a functor F' is given by F*: (X, e)—
F(e) F(X). Furthermore any R-additive functor @ : C— D induces ¢* : C*— D*.
For example, Hec (G, R)* is equivalent to the category of trivial source
modules (see [La83]) and any Hecke functor is extended to a functor from
this category.

PROPOSITION 3.11. The canonical functors @,: Me (G, A)—Mec (G, A°°?)
and @} : Mec (G, A)*—Me (G, A°°™)* reflect isomorphisms, split epimorphisms
and split monomorphisms.

PROOF. Since Mackey categories are self-dual, this is clear from
Lemmas 3.7, 3.8, and 3.10.

COROLLARY 3.12. Let R be a commutative ring with pREJ(R). Put
Q' =el (RQO) and we consider morphisms in the Mackey category
Mc (G, 2).

(1) An endomorphism v (€ 2/ (XxX)) of X is an isomorphism pro-
vided det (D(v))F0 (mod p), where @ is the functor to Hee (G, R) defined in
Section 3.c.

(i) The morphism X'=eb [, X>: X—>Xx1] of 1 to X is a split
monomorphism provided |X| is prime to p.

(iili) The morphism X, =e3 [KX,1>:X—1XX] of X to 1 is a split
epimorphism provided |X| is prime to p.

PROOF. The functor @ is the composition of the canonical functor
@, : Mc (G, 2')—Mec (G, 2°°") and the equivalent Me (G, 2'°°") =Hec (G, R).
Thus (i) is clear. The image of the morphism of (ii) under @ is the matrix
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of size Xx1 all of which components are 1. When |X| is prime to p, this
matrix has clearly a G-invariant left inverse. Thus (ii) holds. Taking its
transpose, (iii) follows.

DEFINITION. A Mackey ring A is called X-projective if the map
X, A(X)— A(1) is surjective.

Let A be a Mackey ring and X a finite G-set. We denote by =zi:X"
—X™! the projection which omits the i-th factor, 0=<i<n. Then we have
chain complexes in Me (G, A)

d’ d! d?
Am(X, A):0—1— X — X* —> -+

dl dz dg
AmX, A)°P: 0 «<—1<«— X «— X2 «— -

defined by d*':=3(—1)x? and d,:=3;(—1)x}.

LEMMA 3.13. Let A be an X-projective Mackey ring. Then the above
complexes Am(X, A) and Am(X, A)°® have contracting homotopy.

PROOF. For any M<[Mec (G, A)°°, Mod;], the complex M(Am(X, A)) is
exact. See [Dr 73], Sectiom 3, Corollary 1 or [Di79), Proposition 6.1.6.
Applying this fact to representable functors, the existence of a contracting
homotopy follows. Explicitly, the homotopy A": X"—X"*' is inductively
constructed as follows. Take ae A(X) such that X,(a)=1. Define A" to
be the image of a by

AX) — AXX X"

AXxX"x X",
where 4: X" X"x X" is the diagonal map. Then we have that
h**tod™4+d"* Toh"=1.

The statement for Am(X, A)°® follows from taking the dual.

4. Fisher’s inequality for poly-Hecke functors.

Throughout this section, (X, B) denotes a block design with parameters
(v, b, 7, k, 2) and with order m:=r—2 on which a finite group G acts. Let
F be the set of flags:

F:={(x, f)e XxB|vep)SXxB.

Then F is a G-subset of XX B with projections 2: F’— X and u¢: F—B. Thus
we can regard the pair of morphisms a:=<4, > : F'= XX B as a morphism
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in the Mackey category Mc (G, ©2), of which image by the functor @ is the
incidence matrix of (X, B). Using this morphism « instead of the incidence
matrix, we obtain some generalizations of Fisher’s inequality.

a. Theorem B and its proof.

Before we state the theorem, we write some trivial relations between
parameters of the block design.

LEMMA 4.1. (i) wvr=bk, vi=rk—mn.

(ii) rm="r*—bA)k.

(iii) Let p be a prime which does not divide n. Then plr implies
pYv. Furthermore, p)r implies p ) k.

THEOREM B. Let p be a prime which does not divide n and let R be
a commutative ring with pREJ(R). Let A:Set§—Mody be a Mackey ring
and let M be a Mackey module over A such that M 1is poly-Hecke functor
as a Mackey fumnctor.

(1) The following relations of direct summands induced by the A(1)-
homomorphism

peod* s M(X) —> M(F) —> M(B)

hold. The notation “M|N” means that M is isomorphic to a direct sum-
mand of N as A()-modules.

(a) M(X)| M(B) if p does not divide 7.

(o) If A 1s X-projective (e.g., p does not divide v), then

Ker (X4 : M(X) — M(1))| M(B),
Cok (X*: M(1) — M(X))| M(B).

() If A is B-projective (e.g., p does not divide b), then Ker X, | Ker B,
and Cok X*|Cok B*.

(2) Assume that the design (X, B) 1s symmetric, that is, v=>b. Then
wx0d* 1 M(X)—>M(B) induces the following isomorphisms. The mnotation
“x=” stands for an isomorphism of A(1)-modules.

(a) M(X)=MB) if p does not divide 7.

(b) Ker X,=Ker B, and Cok X*=Cok B* if A is X-projective.

PROOF. We may assume that A is a poly-Hecke functor because 4 is
the direct sum of % ,4’s, where @ is a p-perfect subgroup of G, and
e% oA annihilate M if Q#1. We consider the commutative diagram of R-
additive functors as follows:
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~

@ : Mc(2)* P2, Me(@'eom* Hec(G, R)*
(1) 7\ & |ine
MC(A)+ MC(ACOh)+ MOd}zG

A

Here, we put Q' :=e3 ,(RQR2), Mc(4) :=Mc (G, A), etc., and J and K are the
functors induced by the canonical homomorphisms 2'—A and Q7eeh Acor,
By Proposition 3.12 and Corollary 3.13, @ and @, reflect isomorphisms.
We regard the Mackey A-module M as a contravariant functor from Me (4)*.
Furthermore, we use same symbols for a morphism of Mec(2’) and its
image by the functor J. Define the “incidence morphisms” by

A,

2) a:=e% [FF— XX Ble Q(XXB),
py A

2)’ a' :=el [F——> BxX]eQ'(BxX).

Since M is a poly-Hecke functor, M(a)= pyoi* : M(X)— M(B).

Assume first that » does not divide ». Let A be the incidence matrix
of (X, B). Then the functor ® maps @ to A and a’ to A’. By the as-
sumption, det (AAY)=rkn’! is a unit of R. Thus it follows directly from
Corollary 3.12 that aca’ is an automorphism of X in the Mackey category
Me (2), whence M(a’)oM(a) : M(X)— M(B)— M(X) is an isomorphism. Since
M(a) and M(a') are A(1)-homomorphisms by Lemma 3.1, we have that M(X)
is isomorphic to the direct summand of M(B), proving (l.a). Assume
further that (X, B) is symmetric. Then the incidence matrix A is a
nonsingular square matrix, and so a’: X— B is an isomorphism in Mec (4),
whence M(a): M(X)— M(B) is also an isomorphism. This proves (2.a).

We next prove (1.b). So we assume that A is X-projective. We
identify Mec(A4), etc. with a subcategory of Me(4)*, etc. by the canonical
embedding Y—(Y,1y). Let Am(X, 2)°°*={X",d,} be the chain complex
defined in Section 3.d. Then by the definition, d;=X, and d,=n, —r,, Where
mi: X*—>X,1=1,2, are the projections in the category of finite G-sets. Let
{hn: X" X"*'} be a contracting homotopy (Lemma 3.13), so that

(3) diohy=1,, hood,+dyoh;=1y.
Put e:=d,oh,;: X—X. Then e is an idempotent and there is a biproduct
diagram in Mc(4)*:
1 ho
(4) (X,e) 2 X1,
q d,
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where i:=¢: (X, e)>X=(X, 1) and q:=e¢: X=(X,1)=(X,e). Thus M(e)M(X)
=M(X, e) =Cok M(d,)=Cok X*. Furthermore, d,: X>>X has a (split) epi-
mono factorization '

qed, 7
5) d: X* — (X, ¢) — X,

where god, is a split epimorphism with the right inverse hice: (X, e)
— X% We must show that the endomorphism of (X, e) in Me(4)*

,L‘ 7

a a q
(6) (X,e) — X —>B—> X — (X, ¢

is an isomorphism, where we identify a (resp. a’) with J(a) (resp. J(a)).
The statement of (1.b) about cokernels follows directly from this fact.

We put y:=aca’ and C:=®(y). Then in the category Hec (G, R), we
have that

() 10 (d) =P (r)oP(d,) .

Note that if we embed Hec (G, R) into Modzs, then @(d,) corresponds to the
linear map RX*—RX; (x,y)—x—y, and so (7) follows from the definition
of block designs. See also Lemma 2.1. Next, applying the functor ¥ :=
@,:Mc(A)*—>Me (A°°")* to the morphisms in (5) and (6) we have a diagram

X? X2
qdzl . lqdz
(8) d; (X, 0) — 5 (X, e)
i) . li
> X X.

The square is commutative. Apply the functor ¥, so that we obtain a
diagram in Me (A°°")*

X2 n-id x?
Vqdy)| : |#ad.
v
9) v, (X, ) ——" (X )
vi| ¥ —KC |
X X.

By (7), the outside rectangle is commutative. Using the fact that god, is
a split epimorphism, ¢ is a split monomorphism, and the down square is
commutative, we have that ¥qri=n-id, and so Zqys is an automorphism of
(X, e) in Mc(A°°™*. Since ¥ reflects isomorphisms, we conclude that gri in
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(6) is an isomorphism in Me (4)*, as required. Hence Cok X* is isomorphic
to a direct summand of M(B) with injection

M(q) M(a)
Cok X*= M(e)M(X) —> M(X) —> M(B).

The self-duality of the Mackey functors yields the statement about the
kernel. The proof of (1.b) is complete.

We will prove (l.c). So assume that A is B-projective. Then by
Lemma 3.13, the complex Am(B, 2')°*={d,: B>~B""'} has a contracting
homotopy {k.: B"—B"*!}. We claim first that A is X-projective. By Lemma
2.1 (ii), we have that kB,=X,o¥ (a) in Me (4°°"), and so k-id,=X,o¥ (a)o¥ (k).
Suppose k-id, is not an isomorphism in Me (4°°"). Then p|k, and so p does
not divide v=|X| by Lemma 4.1, whence Corollary 3.12 implies that A is
X-projective. Suppose next that k-id, is an isomorphism in Me(4°°"). In
this case, X, has a right inverse in Me (4°°"), and so X, has also a right
inverse in Me (A) by Proposition 3.11. Thus it follows from the definition
of the composition in Me (4) that X, : A(X)—A() is surjective. In either
case A is X-projective, as required. Now, as before, let {h,: X"—X""!} be
a contracting homotopy for the complex Am(X, A)={X",d,} and put e:=
dsoh,: X—X. Furthermore, we put f:=dyok,: B—»B. Then ¢ and f are
idempotents in Mc (4). We consider the composition of morphisms in Me (4)*
as follows:

’ ’ il a

% a q q
(10) (X,e) — X —> B — (B,f) — B — X — (X,¢),

where 1,1’ are canonical injections and ¢, ¢’ are canonical projections. We
will prove that the morphism gat’q’a’i is an isomorphism in Mc(4)*. In
fact, we can show that ¥(qai’q’a’t)=mn-id in Me (A°°?) by considering the
commutative diagram in Mec (A°°") in Figure 5. Thus by Proposition 3.11,
we have that qai’q’a’s is an isomorphism, as required. By the similar way
as in the proof of (1.b), we have that

X2 n-id x?
wqodzl wqodz
(Xle) (Bf lf ) (Xl e)

/2 , o' | W Uq
X Ta B T X
dy) | ldi
1 r-id 1 k-id 1

Figure 5.
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inc M(a)

pr
(11) Cok X*=M(e)M(X) — M(X) M(B) — M(f)M(B)=Cok B*

is a split monomorphism, proving (1.c).

Finally we will prove (2.b). In this case, the dual design (B, X) is also
a symmetric design. Thus by the similar way as the proof of (l.c), we
have that the X-projectivity of A implies the B-projectivity of A. We
use the notation in the proof of (l.c). Then the morphism (qai’)(q’a’s)
defined in (10) is an automorphism of (X,e). On the other hand, applying
the same fact to the dual design (B, X), we have that (¢’a’i)(qai’) is an
automorphism of (B,f). Thus gai’ is an isomorphism in Me(4)*. Hence
in the symmetric case, the R-linear map (11) is an isomorphism, proving
(2.b). The theorem is proved. '

REMARK. (1) Let M and N be Mackey functors from Set$ to Mod;.
Then M is called to be X-projective if the canonical morphism My—M is a
split epimorphism, where M, is a Mackey functor defined by My:Y—
M(XxY). For example, any poly-Hecke functor is G,\G-projective, where
G, is a Sylow p-subgroup of G, and My is X-projective. See [Dr73]. If M
is an X-projective, then we can construct an X-projective Mackey ring
End (M) which acts on M as follows. The composition with the functor

Yy:Setf/X —> Setf; (4 — X) — A

gives a Mackey functor M,y from Set{/X. A G-map f:X—Y induces
morphisms M, y— M,y and M,y,— M,y. We define a Mackey functor Hom (M, N)
by

Hom (M, N) : X — Hom (M,x, N,x) =Hom (My, N) .

We put End (M) :=Hom (M, M). Then the composition of morphisms of
Mackey functors makes the Mackey functor End (M) into a Mackey ring.
If M is X-projective, then End (M) is X-projective as a Mackey ring. So
if we accept this fact, the assumption that A is X-projective in the theorem
can be replaced by the X-projectivity of M.

(2) Theorem B does not imply Theorem A. Because the Mackey
categories do not possess commutative diagrams as in Lemma 2.1, we are
compelled to assume X- or B-projectivities for A.

(3) Theorem B holds also for block designs with repeated blocks.
Furthermore, it is also correct when v=1 and p|n>0, because det(4A")=
rkn® '+0. In this case, Corollary A.l yields the well-known fact that if
H is a subgroup of G of index prime to p, then (H/H’),, is isomorphic to
a direct summand of (G/G')y,. This is a foundation of transfer theorems
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of finite groups. See [Yo 80].

b. Corollaries.

There are many Mackey functors and G-functors. -We are interested
to apply Theorem B to particular Mackey functors. As before, (X, B)
denotes a block design on which a finite group G acts.

COROLLARY B.1. Let p be a prime which does not divide m. Let P
be a p-subgroup of G with the normalizer N:=Ngy(P). Then the follow-
wng hold :

(1) (a) Assume that ptr or ptb. Then |XT/N|<|BF/N|, where
XP|IN 1s the set of N-orbits of XF. In particular, if G is a p-group, then
| X < |B¢|.

(o) If p|r, then | XT/N|—1<|B?/N]|.

(¢) If the design (X, B) is symmetric, then |XF/N|=|BfIN|. In par-
ticular, 1if G 1s a p-group, then |X¢|=|B¢|.

2) (@) |(XXB)?IN|<|(BXB)?INI.

(b) (XXX)PIN|—1<[(XXB)?/N].

() If pyr or ptb, then |(XXX)P/N|<|(XXB)?IN|.

(d) If the design 1is symmetric, then

(XX X)PIN|=|(XXB)?IN|=|(BXB)"|N|.

PROOF. For any p-subgroup @ of G and any finite G-set Y, let 24,(Y)
be the subgroup of 2(Y) generated by the elements of the form [D\G— Y],
where D is a subgroup of Q. Then 2, is a Mackey subfunctor of 2. We
now define a Mackey functor

M::Z(p)®(QP/ 2 QQ)-
Q<P

Then M is a poly-Hecke functor by Lemma 3.6 and the Z,-rank of M(Y)
equals to | Y?/N4(P)|. We take Z,,Q2 as A in Theorem B. Thus if p/r,
then (l.a) follows directly from Theorem B (1.b). If p}b, then A is B-
projective by Corollary 3.12, and so (1.a) holds by Theorem B (1.c). When
plr, we have that pfv, and so A is X-projective, whence (1.b) holds by
Theorem B (1.b). Assume that (X, B) is symmetric. Then p}fr or pfv=b,
and so (1.c) follows from (1.a).

Next, we will prove (2). The Mackey functor Mz: Y~ M(Y X B) is B-
projective. Thus (2.a) follows from Theorem B (l.c). (We choose End (M)
as A in Theorem B. See the remark after Theorem B.) Similarly (2.b)
follows from the X-projectivity of M. Furthermore, in the case where
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Dt 7, (2.c) follows from Theorem B (1.a). In the case where p t b, (2.c) follows
from Theorem B (1.c). Assume that (X, B) is symmetric. Applying Theorem
B (2.a) to My and My, we have that (2.d) holds if pfr. So assume further
that plr. Then v=b is prime to p, and so we can use Theorem B (2.b),
and then (2.d) follows. The proof is complete.

There are similar results for the character rings.

COROLLARY B.2. When P is a cyclic p-subgroup, all of the statements
of Corollary B.1 remains true even if we replace N by Cgz(P).

PROOF (Outline). Let t be a generator of P and let C:=Cs(P). For
any subgroup H of G, let R,(H) be the subgroup of the character ring R(H)
of H consisting of all virtual characters 4 such that 4(h)=0 if h is not
G-conjugate to t. Then R, is a G-subfunctor of the character ring functor
R. Let M be the Mackey functor corresponding to the G-functor Z,QZR,.
Then the rank of M(Y) for a finite G-set Y equals to |Y?/C|. Thus this
corollary is proved by the similar way as Corollary B.1.

COROLLARY B.3. Let p be a prime which does not divide n. Assume
that G acts transitively on B, and so on X. Let P be a p-subgroup (resp.
p-element) of G. We take x€X and f€B. Then the following hold:

(a) Assume that pfr or ptb and that any two subgroups (resp.
elements) P, and P, of G which are G-conjugate to P are Gg-conjugate
to each other. Then any two subgroups (resp. elements) P, and P, of G,
which are G-conjugate to P, if they exist, are G, -conjugate to each other.

(o) Assume that P acts fized point freely on B. Then any two sub-
groups (resp. elements) P, and P, of G, which are G-conjugate to P, if
they exist, are G -conjugate.

PROOF. This follows from Corollaries B.1 and B.2 and the fact that
|BF/N|=1, where N=Ng;(P) (resp. C¢(P)), if and only if any two subgroups
(resp. elements) P, and P, of G; which are G-conjugate to P are Gg-con-
jugate.

REMARK. In general, if Y is a finite G-set and P is a subgroup (resp.
an element) of G with N:=N;(P) (resp. N:=Cz(P)), then |Y?/N| equals to

|[Y?IN|=_% c(Gy, P),
YEY /G

where for any subgroup H of G, ¢(H,P) is the number of G,-conjugate
classes of G-conjugates of P contained in H. (Of course, Y” is the set of
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elements of Y fixed by P.)

COROLLARY B.4. Let p be a prime which does not divide n. Let a be
a poly-cohomological G-functor. Assume that G acts tramsitively on B.
Take x€ X and BeB. Then the following hold :

(a) Assume that ptr. Then a(G,)|a(Gg).

(o) If plv, then

Ker (cor : a(G,;) — a(G@)) |a(Gy) .
Cok (res: a(G) —> a(G,)) | a(Gp) .
(¢) If ptb, then
Ker (cor : a(G,) —> a(G)) | Ker (cor: a(Gs) —> a(@)),
Cok (res : a(G) —> a(G,)) | Cok (res : a(G) —> a(Gp)) .

PROOF. This follows from Theorem B and Lemma 3.2.

REMARK. In the block transitive case, the map a* of a(G,) to a(Gy)
induced by the incidence map « is explicitly given by the following. See
Section 2d.

a*(€):= 3 cor®foress,, socon’(é) .
0E6,36/6 4 '
cxgEP
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