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The theta functions of sublattices of the Leech lattice 11

Dedicated to Professor Nagayoshi Iwahori on his 60th birthday

By Takeshi KONDO and Takashi TASAKA

Introduction.

Let .L be the Leech lattice. The automorphism group of .L is denoted
by -0, as usual. -0 possesses a maximal subgroup which is isomorphic to
a split extension of the Mathieu group M,, by an elementary abelian group
of order 2. This subgroup is sometimes called the monomial subgroup of
-0 and is denoted by 2%M,. For n<-0, let

L.={ve L |ver=v}

O.(z)= EZ)I exp(riz<v, v)) (theta function of _L.)

where ¢,) denotes an inner product of the ambient Euclidean space of L.
The purpose of this note is to express 0.(z) (r=2*M,) in terms of
Jacobi theta functions 6,(z) (2<1<4) explicitly and to study a question

0.(2)

raised by Conway-Norton for functions m (cf. Table 1~4 in §3 and

see §2.3 for the definition of %.(z)). If m=M,, this was done in [6]. But
if 7= is outside M,, the structure of _[. is rather simple compared with
that of L. for n'eM,. So we will describe the structure of .[.
(re22M,,— M,,) explicitly in terms of lattices L, L, A and A, introduced
in §1. Then the expressions of ©.(z) can be obtained immediately from
Lemma 1 in § 1. We note that, for r=-0—2%M,, the calculations of @.(z)
and a question of Conway-Norton have been dealt with by M. L. Lang [7].

The present paper contains many interesting facts which were first
pointed out by Koike [3] and [4]. Some of his results in [4], however,
depend on those of the present paper (and also of Lang [7]). So we will
prove some of these facts in [4] from somewhat different point of view
from [4].

The authors would like to express their sincere thanks to Prof. Koike
for his many invaluable suggestions.
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Notations :

g=exp(2riz)

n(z)=q"* fiIl(l—q") the Dedekind »-function
= . 1\ -
Oo(z)= > exp{mz<n+ E) }=2q”81'[ (1—g™(1+q")
n= oo n=1

Oz)= 3 expleizn®)= TT (1—¢")(1+q" )

oo

0:z)= > (—1)"exp(mizn?d)= fi[l (1—q™)(1—qm-9D)2

§1. Theta functions of some integral lattices.

1.1. Let e, e, -, e, be independent vectors of an Euclidean space over
the real number field. Suppose

e, ej>:li5ij (l;eZ)

where <,> is an inner product in the FEuclidean space and d;; is the
Kronecker symbol. Now we define some integral lattices:

L=L{, L, -, )= 21 Ze,

Li=Loly,1)={ $ vecL

22 ;=0 mod 2}
1
A=AQ, -+, L) =LU(5 S e+ L)

1
A= AL, -+, L) =L (5 S e+ L)

For 4, we assume that n is even. Then if [;=0; mod2 and ¥ [;=0 mod 4,
A, is an integral lattice. If 3 /;=0 mod2 (resp. [;=0 mod2), v/ 24 (resp.
A) is an integral lattice. We will use the notations such as L(17:1272...),
For example, L(1°3) means L(1,1,1,1,1, 3).

LEMMA 1. The theta functions of these lattices are expressed as
follows 1n terms of Jacobi theta-functions 04(2), 0s(2), 64(2):
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3

(2

(i) 6.(z)= I16s(l:z)

—

(1) 6.,6)=o] Mo+ T 2]

2 1

(i) 6 ,2)= H1 0u(l2)+ 11 04(1e2)

) 1 n n n

(w)@hmz—{n@m@+nmma+nmmwy
2 li=1 i=1 i=1

PROOF. (i) and (ili) are immediate. Let e(v)=Zk) x, for vzg 2 1€
Then we have

1 :
0.,(2)= X exp(riz<v, v)) =75 T (1+(= 1)“"’)exp{7W<§ lwc%)} )
vEL, TRE

1

which yields (ii). For (iv), setting L1=—2—Zk‘, e,+ Ly,

5 explrizcy, 00) =5 T, (1+(~1)expriz( 3 lk(’“”%)z)}

veL, 2 z,€

& gele{zid))

= 2
because }_,: (—1)"exp[mlz<'n+%> }:0. Thus we get (iv).

Example 1. Let n=8 and l,=l,=---=Il;=1. Then A,(1%) is isomorphic
to the E,-lattice (the lattice of root system of type Ey). In fact, if we let
, . 1 8
a;=(—1)}""e;—en) (1£1=6), ar= —(es+e), ag= —E > e,
i=1

then a,, -+, @ are a basis of 4, and form a fundamental root system of
type E, Thus the theta function of the Eg-lattice is, by Lemma 1,

0z, B =5 e+ 02" +0,2).

Furthermore L,(1") is isomorphic to the lattice of the root system of type
D, and the theta-function of Ly(1") is

0z, D) =5 (6,2)" +0.2)"}.
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LEMMA 2. (1) 44(1°5) is isomorphic to the lattice of root system of
type A, and we have

_ (@) _n(52)°
(1.1) O(z, Ay)= 7(52) +25 ()

(ii) Ay(1.5% s isomorphic to the lattice corresponding to the matriz 5A;!
and we have

1.2 -1y — 7(z)° 5. 7(52)°

(1.2) 6(z, 5A7") 7}(5Z)+O @)

(iii) 44(1°.3) is isomorphic to the Eglattice and we have
_ @)’ 7(32)°

(1.3) 0, B = e +81-

(iv) 4,(1.3°) is isomorphic to the lattice corresponding to the matriz 3E;!
and we have

7(32)°

(1.4) 0(z, 3E:Y) =12 g, 1B2)"
7(2)

7(32)

PROOF. For the proofs of (1.1)~(1.4), firstly observe that both sides
of each of (1.1)~(1.4) are modular forms whose level, weight and character

are exactly the same (for (1.1)~(1.2), we have level 5, weight 2 and
character <%> and for (1.3)~(1.4), level 3, weight 3 and character <%>>
and secondly observe that the first several coefficients of the Fourier
expansions of both modular forms exactly coincide (cf. Hecke [2; p. 811]).
We note that, for the computations of the Fourier coefficients of the left
hand side of (1.1)~(1.4), the formulas obtained from Lemma 1 should be
used : for example,

1

0(z, A) :E {02(2)°0,(52) 4 05(2)°05(52) + 6,(2)°60.(52)} .
Now we will show the first statements of (i)~(iv):
(i) Let e, e, e and e, be independent vectors with l,=l,=1;=1 and [,=5.
Let ay=e,—e,, a,=—(e;—e;), as=—(e,+e,) and oq:—L_Z‘)ei. Then it is

i=1

easily seen that ay, -+, @, are a basis of A4,(1°.5) and form a fundamental
root system of type A,, We note that we have
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2100 4-3 2 -1
A=l 21 0| g ganc|—3 64 2
0121 2 —4 6 —3
001 2 -1 2-3 4

(ii) Let e, e, e; and e, be independent vectors with l,=1, l,=1[,=[,=5.
Then vectors

1
‘%Eei; e+te,, E(—391+92‘es'e4); 2e,
are a basis of 4,(1.5°) and yield the matrix 5A4;". This proves (ii).
(iii) Let e, -+, e; be independent vectors with I[,=--- =l;=1 and [;=38 and let
a;=(—1)""Ye,—e;y) (151=4), a,=—(es+ey), arszL %‘, e,. Then ay, -, as are
i=1

a basis of 4,(1°.3) and form a fundamental root system of type E, Fur-
thermore a,, '+, @ yield matrices

210000 4 —5 6 —3 —4 2
12100 0 -5 10 —12 6 8 —4
E,= 01 2110 . 3E;= 6 —12 18 —9 —12 6
001 200 -3 6 —9 6 6 —3
0010 21 —4 8 —12 6 10 -5
00 0 0 1 2 2 —4 6 —3 —5 4

(iv) It is easy to see that the matrix 3E;! is equivalent to

4 1 1 1 -2 =2
1 4 1 1 1-2
) 1 1 4 1 1 1
1 1 1 4 1 1
-2 1 1 1 4 1
-2 -2 1 1 1 4
Let e, -+, e; be independent vectors with [,=1 and l,=--- =[,=3. Then
vectors
1 s 1
E(ex”‘ez—es‘f'erl'erf‘ee), Ei=1ei’ E(el+ez—ea_e-l+es+eu); 2e,
1 1
—2‘(€1+€2+83-64—e5+es), —2—(e,+e2—e3—e;—ea—eﬁ)
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are a basis of 4,(1.8°) and yield the matrix () given above. This proves (iv).

1.2. Here we note that some isomorphisms between L, L, 4, 4, yield
well known formulas which hold between 6,(2), 6s(2), 64(2).

Let Ay=A(1.7). Then a basis of 4, is - (e,+e), 2¢; (=1, L=7) and
the corresponding matrix w. r. t. this basis is [? }J On the other hand, a
basis of another lattice 4(2.14) is %(el-%ez), e; (,=2, [,=14) and the cor-
responding matrix is l:il %] Thus we see that 4,(1.7) is isomorphic to
A(2.14). This yields, by Lemma 1,

(1.5) %{02(2)02(%) +05(2)05(72) +0,(2)04(T2)} = 0.(22)05(142) + 05(22)05(142) .
(ct. [6; (T15)])

Similarly the following well known formulas can be obtained by showing
the isomorphisms of lattices given in the parenthesis:

(1.6) 0u(2)! +0:(2)' = s(2)' (A1) = L(1Y)
(1.7) 0:(2)0,(32) +0,(2)0,(32) =05(2)05(32) (A,(1.3) = L(1.3))
1.9) Ou(2)=0,(22)+ 0,(22)" (L% = 4(29)
(1.9) O 0 =022 (Lo(19) = L(2Y) .

The followings are obtained from the product formulas of 4.,(2) (:=2.3,4)
and 7(2):

o n(22)?
(1.10) 0:(z) =2 ()

_ 72
(1.11) ﬁﬁ@—;@g@y

_ ()
(1.12) 64(2z)———77(2z) .
From these we see
(1.13) 0,(2)2=20,(22)0:(22)

(1.14) 0,(22)*=05(2)04(2) .
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Finally let

(1.15) 01(2) =0,5(2)0(2)04(2) .
Then we have, by (1.10)~(1.12),

(1.16) 01(2)=27n(2)".

§2. Leech lattice and Frame shapes.

2.1. The Leech lattice .L can be described as follows:
@1  L=U {(le +,C>u<ieg+le +,£’>] (cf. [8: p. 708))
. 12 ) X 0 4 2 X 1 . - P.

where we use the following notations (1)~(4):

(1) Q={c0,0,1,--+,22} is a 24-points set which may be identified with a
projective line over the field Fy of 23 elements and & is the binary Golay

code,
(2) e, e ,ex is a basis of a 24 dimensional Euclidean space with

<e; e;»=20;, (1, 7€ 8)
(3) Iaz{_%mei |z, e Z, _Zga:iEB modZ} for 6=0 or 1,
(4) for XS Q, ex= X e

1EX

The Mathieu group M,, is, by definition, a subgroup of the symmetric
group S(2) on 2 which leaves & invariant. For ce M,, we set

(2.2) eco=e; (tef).

Then we see from (2.1) that M, leaves .[ invariant. Thus M, is a sub-
group of the automorphism group -0 of the Leech lattice L.
Let Ce&. We define a linear transformation ¢, as follows:
—e; 1eC
(2.3) €00 =
e; 1¢C.

Then we have ec=-0 by (2.1). Clearly a subgroup U={: |Ce G} is an
elementary subgroup of order 2% and we have

U<LU.My,C 0.

The subgroup U.M,, is sometimes called the monomial subgroup of -0 and
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we write 22.M,, for U.M,,.
For -0, let

L.={ve.L |ver=v},

O.(2) =EZ£) exp(miz<v, v)) .

One of the purposes of this note is to calculate ©.(z) for every z<2® M.
O.(z) for = outside 2'>.M,, have been calculated by M. L. Lang [7].

2.2. For ==-0, a characteristic polynomial of = w.r.t. the action of
7w on . can be written in the form

Dx-ne e,
Then we associate with = a symbol, called a Frame shape of =,
II ¢t
t=1

A list of Frame shapes of all elements (conjugate classes) of -0 is given
in Table I of [5]. For a symbol z=TIIt"t (not necessarily a Frame shape),
t

we set

deg(x)= ; tr,

wt(n)Z% ; e

r(r)=r,.

Furthermore, if z’=II1¢", we define a product z-z’ and =~' naturally as

t

follows :

77."77.',:[[ t1'g+r’t’
t
=11t
t

Following Koike [3], it is convenient to say that

7 is of type F if wt(z)=0
n is of type C if r,=0 for all ¢
r is of type E if wt(z)>0 but 7, <0 for some t.

We note that ©.(2)=1 for = of type F, because 2wt(z)=2X r, is equal to
t
the rank of ... If =€ M,, then the Frame shape of = is of type C and
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O.(z) is calculated in [6]. Besides these = in M,, we have four Frame
shapes of type C

(2.4) 2%6°, 4°8%, 4.20, 2.22

which are all in the monomial subgroup 22M,,. There are 24 Frame shapes
of type E in 2“M, which will be listed up in (2.7)~(2.9) below, while
there are 21 Frame shapes of type E outside 2%M,,.

2.3. For a Frame shape n:IlI t't, we set
7;:(2)=ILI n(tz)"™

where 7(z) is the Dedekind n-function. In Table I of [3], Koike identified
7:(z) for each = of type E with an Eisenstein series. Inspecting the table,
we get a following important theorem: :

THEOREM 1 (Koike [3; Table I]). Suppose m is of type E. Then the
following (i) and (ii) are equivalent :

(i) wt(z)=wt(z?) for some prime divisor p of the order of .
(i1) 79.(2) ts mot eigenfunction for a Hecke operator T(p).
Furthermore, if (1) or (ii) holds, then we have

(2.5) 02(2) = 22(2) — (r(w) — r(7?)) N=0(p2) .
REMARKS. (1) There are twelve Frame shapes satisfying the condi-
tions (i) or (ii): '

1%° 1°3.6* 1'8"  1%5.10° 2.8°12°  123%4%12? 18128
287 2t 2y 22 7 1467 206 ° 2.3.4.6°

1°16*° 1%9.18  1.2.18 1.4.7.28 2.3.5.30
287 237 69 7 214 ° 6.10

We note that, for these Frame shapes =, we have
(2.6) L.=Lp and so O.(2)=0,»(z) (cf. M.L. Lang [7]).

(2) Also G. Mason [10] has pointed out the equivalence of (i) and (ii) in
Theorem 1. :

2.4. For a Frame shape #=1It"t, the level N, of = is defined as the

12

least positive integer N satisfying the following conditions (i) and (ii):
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(i) ¢|N for any t with »,#0
(i1) Zt)TNT,EO mod 24.

For a Hall divisor @ of N., we define a symbol mxWo n, as
_ Q¢ \r
= Wo =175

and set
S(z)={n*xWy.n, for all Hall divisors of N.}.

Also the following interesting fact was observed by Koike :

THEOREM 2 (Koike [4; Th. 4.2]). Let n’=S(x) and deg(x’)=0. Then
m-n'"' is a Frame shape of -0 of type F. If we set I'.=<I\(N;),
Won|mxWo y=1>, C<z]"—((:))> 18 the field of modular functions w.r.t. I-.
In particular, I'. is of genus 0 and 737"((:))

series of some element of Fischer-Griess’s Monster up to constant.

coincides with a Thompson

Now we classify Frame shapes of type E in more details: For n of type
E, we say that

n is of type E, if S(zx)={x}
7 is of type E, if deg(z’)=0 for any =’ €S(z)—{x}
n is of type E; otherwise.

REMARK. In [4], Frame shapes of type E; are called those of non
self-conjugate type.

Frame shapes of each type in the monomial group 2“M,, are as
follows :
(2.7) Type E, (8 elements)

1848 2'gt 1'gt 1%3%4%12*  2016* 1°16° 2.6.8.24 1.4.7.28
28 40 0 2% 2262 7 487 287 412 ° 214 °

(2.8) Type E, (8 elements)

e 48 24t 260 8 248 4120 24
TRt 1 o1t o4 1 267 177
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(2.9) Type E; (8 elements)

12.6° 2°3%  1°2.10° 2’5’10 1.6.10.15  2.3.5.30
R G L 35 ’ 115 ’

1%4.6°12  2°3°4.12
32 ’ 12 *

2.5. If r is of type E, then S(z) consists of three Frame shapes =,
7, m and just one elements m, of degree 0:

S(ﬂ') = {77:0) Ty, oy 1['3} .

THEOREM 3. Let 4, 5, k be any permutation of the letters 1, 2, 3.
Notations being as above, then we have the following (1)~(5):

(1) The symbols m;w;' and mwmi'n;' are Frame shapes of -0.
(2) Let c;=r(mai?) (1=1,2,8). Then we have
To

o To
—+01:__+02:_+03
T T3

T

(z

where the 77 product Ui P ; associated with the symbols ;' are expressed

stmply by -

i
Using similar expressions,

T

3)

7rj - Ty
(4) 'L.nk‘:ﬂ+(Ck—ci)(ck-cj)—ﬂi+2Ck‘ct_c_7'
vy e To
(the formulas of the symmetrisation, cf. Table 3 of [1])
T 5 Cr—Cy _T_L'_,,_+ Cr—Cj _TL'_]

(5) =

Ty Ci—Ciy Ty Ci—Cj 71'0.

TT; 1

COROLLARY. (6) - pyry (mi—7;).
T 5
(1) ——=m+(ci—e))ms.
TT;
T, Cp—Cy C,—C;
(8) Tl mit— L.

Ty C;i—Cq Ci—Cjy
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. T o« 4.
In particular, % are modular forms, where 1, m, n are distinct ele-

n

ments of {0,1,2, 8}.

PROOF OF THEOREM 8. (1) This can be seen from Table I of [5].

(2) By Table 3 of [1], each of the ZLEZ; (t=1, 2, 3) generates the same

function field of genus 0 and Z""Ez; +c¢; has the constant term. 0. (2)

follows from these facts.

@) Ze=ZeZe T(Ro o)t (o—e)E.
Ty T

T o T Ty 0

(4) Mk_:ﬂ<1+<ck—cj) ﬂ)— o 4 (er—c,)
T ; o

Tp
i i Ty T

Tp

:ﬂ+ck—ci+(ck—Cj)<1+(0k—cz)_‘> ’
Ty To

which yields (4).

(5) Let fz—”n_l. Then we have
k
Tolle (f+0k_0i)(f+0k—cj)
Tl f
and so
Ty ChCi 1 Cr—C; 1

T, C;—Ci frei—ci  ¢i—c¢; frei—e;

Then (2) yields (5), q.e.d.

§ 3. @,,(z) and j.(z) for 7€2%M,,.

3.1. In this section, we will calculate ©.(z) for m22M; and will
study a question raised by Conway-Norton [1; p. 315] for a function
ey =2
: N:(2)
of some element of Fischer-Griess’s Monster up to constant. Since this
was done in [6] for m=M,, we will deal with the case n&2®My— M.
Such = are listed up in (2.4) and (2.7)~(2.9). Besides the notations intro-
duced in §2.1 for the Leech lattice, we will use the followings:

They conjectured that j.(z) coincides with a Thompson series
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V.={ve R*|vor=v}, (Lz=VNLs.

Let r€22M,,— M,. Then n can be written z=o0ec where o€ M, and C is
a nontrivial code (an element# @ of the Golay code). A cycle U of a
permutation ¢ is called a =-cycle if |[UNC|=even. If the length of a
cycle U of ¢ is denoted by I(U), the Frame shape of ¢ may be expressed
as %IZ(U ) where U run over all cycles of o.

LEMMA 3. The Frame shape of n=agec; may be written

o) w25

where T1' denotes the product over all m-cycles and T1” denotes the product
over the remaining cycles of o.

A code X is called w-admissible if X is a union of some z-cycles. If
J,f\(%ex—i—,f 0)9& @, then X must be r-admissible, but the converse is not
necessarily true. A vector fzig_ e€; (e;=+1) is called z-admissible if X
is a m-admissible code and then EWe say that f belongs to X.

3.2. Firstly we deal with four Frame shapes of type C in (2.4). The
results are given in the following table:

Table 1
T Lz O.(2)
2°6° Ao(2°6%) 05(22)%05(62)° — 67,.(2) 12+
4%8* A(8%) = L,(4") 6(4z, D)) 8|4+
4.20 L(4.20) 05(42)65(202) 40|12+
2.22 A4,(2.22) 05(22)05(222) —29.(2) 44+

In this table, the second column shows the structure of ., by using the
notations in § 1. The expressions of ©,(z) are different from those obtained
from Lemma 1 for some z. The last column shows discrete subgroups of
SL(2, R) by using the notations in [1] and implies that the function
6, .

77—((:))— is a generator of the field of modular functions w.r.t. the discrete
subgroup. Thus a conjecture of Conway-Norton is true for = of type C.

Now we will begin the proof of the results in Table 1.

(1) The case 7=2%° Let o be an element of M, with a Frame
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shape 1°3° (=cycle decomposition). Then there exists a dodecade D of the
Golay code & on which ¢ induces a permutation 1°3* (cf. [6; Table 1]). Let
m=gep, where ¢, is an element defined in (2.3). Then x is in 22M,, and,
by Lemma 3, of Frame shape 2°6*. Let D'=Q2—D. ¢ induces a permuta-
tion 1°3® on D’ and so, if C,, -+, Cs; are cycles of the permutation which ¢
induces on D’, we have |C;|=1 for three cycles of the C; (1<7<6) and
|C;|=8 for the remaining three cycles. Let fi:kg‘-ek' Then it is easy to

see V1={éxiﬂ | xieR} and (,Eo),,:{‘_f,xifi |2, € Z, élxiEO modZ}gLo(Q"Gﬁ)_

Clearly D’ is the only one z-admissible code and %el,,e,f . Then it fol-
lows from (2.1) that

Lo=L)(gent (L) (en=E1,)
and so [.=4,(2°6°). Therefore we get, by Lemma 1,
O.(2)=5 3 0,22)0.(62)"
The right-hand side is equal to
03(2z)303(6z)3——2—0;(2@8{(6,2) by (1.7) and (1.15)

=04(22)°05(62)° — 67(2) by (1.16).

Now we_Lhave, by (1.11),

. _ @,;(Z) _ . 212612
jz(z)— 7]—(2) ’_775(2)—6 <6'_ 16364612o>

which implies that j.(z) is a generator for 12+ by Table 3 of [1].
(2) The case 7=4%8%. Let ¢ and C be an element of Frame shape 48

of M, and an octad as follows:
o=(,21,0,6)(1,7,2,19)(8, 15, 5, 10)(9, 17, 20, 14)(4, 12, 22, 11)(8, 16, 18, 13)
C={c,0,1,3,6,8 10,13}  (cf. [9; p. 215 and Table IJ.

C,={c0,0,1,2,6,7,19,21} which is a union of the first two cycles of o is
also an octad. Let mr=oe;. Then r is, by Lemma 3, of Frame shape 4’8
Let

fi—e;+es+e—eyn, fh=et+estextey,

fi=e;+e.texten, fi=e;+estes—es.
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4
Then we easily see Vn:[i) x:f; | xieR} and (Lo)-= {Zlmifi l xiEZ} = L(8").
=1 i=
(Note that f;e.L, (1=<1<4)). There are just two admissible octads to
which f,+f, and f;+f, belong, but we have %(ffi‘fz), %(fﬁ—f‘,)eiof .. Then

we have ,E:C=C0U<%eg_cl+,£0> by (2.1) and so we must have

L=(L(5 B L)

and so L,=/A(8) =Ly4"). Therefore

0:(2) 2(92(82)4"‘63(82)4:%{03(42)4+04(4z)4}:¢9(42; D,).

4
Let f(z):—(?—(y]ﬁ(—f)“)— (0=1%2%) which is, by [6], a generator for 1°2%. Then we
)

have j.(2)=f(4z)"!, which implies that j.(z) is a generator for 8|4+.
(8) The case #=4.20. Let ¢ and C be an element of M, and an octad
as follows:

o=(0, 9)(2, 5)(0, 3, 1, 15, 19, 12, 18, 8, 4, 10)(6, 13, 14, 7, 11, 16, 17, 21, 22, 20),

where elements of C are shown by underlined letters. Let r=gec. = is of
Frame shape 4.20. Let

fi—e.—ey,
f;=e,+e;—e +estestes,testes+e—ep.
Then we have V,={x.fi+x.f | . € R} and (Lo).={x.fi+x.fs | ;€ Z} = L(4.20).
We note that a vector fi+f; is z-admissible but %(fd—fg)eEI . So we must
have L., and so L.=(L,).=L(4.20). Thus
0 (2) =05(42)65(20%)

. 490
J:(z)— 7]6(2) <5_ 2282102402> .
This implies that j.(2) is a generator for 40|12+ by Table 3 of [1].
(4) The case n=2.22. Let o be an element of Frame shape 1%211%
of M,, and D be a dodecade on which ¢ induces a permutation 1.11.
Then m=o0ep is of Frame shape 2.22. Similarly as in the case 7=2%°, we
see

and then, by (1.11),
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(Lo)z= Ly(2.22)
1
,£n=<£o>nu(5eg-p+<£o)x)zm.zz)
and so

3 0,(22)6,(222)

1
@z(z) "_E =

Now we apply the formula

47(2)n(112) =05(2)05(112) — 6,(2)02(112) — 0,(2)0,(112)

(cf. (T24) in Appendix of [6]).
Then

0-(2) = 65(22)05(222) — 27.(2)
and so

o 2190
Jx(2)=175(2) =2 (5— 1242112442>
J=(2) is a generator for 444 by Table 3 of [1].

3.3. It is convenient to study Frame shapes of type E, before dealing
with those of type E,. For O.(z) for = of type E, we have the following
theorem :

THEOREM 4. Let n be a Frame shape of type Ey in 2"My and S(z)=
{r, 7'} where deg(z’)=0. Then we have

(3.1) O(2) =15, (2) +7(z') na(2)

and the structure of L. are as follows:

Table 2
T L. the group for j.(z)
16 J—
?B A0(28) = '\/ 2 E’g 2—
48 —
? L0(24) = \/ 2 D4 4—
6 44
iE A89) 4—
404
% A,(226%) 6+3

=/4(4.12)PA(4.12)
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84

s L&) 8—
Lic LO®AS) 8
4;32 A(8.24) 1243
2;1;"2 A(4.28) 14+7

COROLLARY. A conjecture of Conway-Norton is true for Frame shapes
of type E; in 22M,,.

PROOF. This follows from (3.1) and Theorem 2 in § 2.

REMARK. It was first pointed out by Koike [4; Prop. 4.1] that the
formulas (3.1) hold for all Frame shapes of type E, (not necessarily in
22]1.). We note, however, that, in his proof, the explicit expressions of
©.(z) given in the present paper or M.L. Lang [7] are used.

Now we begin the proof of Theorem 4, i.e. the results of Table 2 and (3.1).

16
(1) The case 7r=-2fg—. Let C be an octad and z=eo... Then x is of
16

Frame shape —le VT={_Z)Cxiei | xieR} and (Io),::[Zcxiei le.eZ, 3 2.=0
mod Z}ELO(ZS). Then we see from (2.1) that

L= (,Co)nu<%ec+ (L) 442).

Thus we have

6.2 =5 2 0.(2)
= ((0:(22)' — 0,(22)+20,(22)6.(22)'+ 6,22
:04(2z)8+22%%z by (1.6) and (1.14)

= ..(2) + 167.(2) <n'=—12i:—) by (1.10) and (1.12).
16

This proves Theorem 4 for 7t=%;.
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8

(2) The case n:%. Let

o=(18, 20)(10, 12)(9, 11)(8, 15)(2, 19, 5, 16)(1, 21, 17, 13)(0, 6, 14, 22)(=, 7, 3, 4)

and C be the set of underlined letters.
Then o M,, and C is an octad. Let z=oe;. Then r is of Frame shape

8
—;-4—. Let

1—=eyte—e;—e, f—eteytestes,

fazeo+ea+ex4+ezg, f4:em+e7_ea_’e4

which yield a basis of V, over R. Since any two of 4-cycles of ¢ yield
an octad, f;+f; (1=1, j<4) are n-admissible. Then we see from (2.1) that

L35 (F+F) (10, j<4) and these generate L. So, setting f =5t
we get

Inz{gxiﬁ!xéez’ é}lxizo mod 2t = Ly(2) .
Thus

0:(2) =5 6(22)'+6,(22)')

:%02(2z)"+04(2z)" by (1.6)

= 7.(2) +87,(2) <7z:’=—27> by (1.10) and (1.12).

8
2t
644

(3) The case n:%——. Let

o=(3,14)(5, 17)(4, 6, 22, 7)(8, 9, 18, 10)(11, 15, 12, 20)(13, 19, 16, 21)

This proves Theorem 4 for z=

where oo, 0, 1 and 2 are fixed points of ¢ and
C={,0,1,2,3,5,14, 17}.

Then o= M, and C is an octad. If we put m=osc, = is of Frame shape
F2644

T and a basis of V. is as follows:

f1:e3_el4, f2:e5'—el7, f3:e4+e.;+egz+€7, f4:es+eg+elg+ew,

fi=e,te;+esten, fi=esteytesten,.
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There are just two m-admissible octads to which f;+f, and f;==f; belong
and just four w-admissible dodecades to one of Which (fi+ £+ (fs+ 1) belong.

Then we see from (2.1) that L. L(itf)+L(h+f), L), Lhxh)
and these five vectors, together Wlth fi, y1e1d a basis of L. Let

’ ’ ’ 1 ’ 1
fx:fl; fz:f2; f3:7(f3+f4), f4:§‘(f3_f4);

’ 1 4 1
f5:_2‘(f5+fs), fe.:'é'_(ff:_fs)

Then %é (f1+fz) (f3+f5) and so, setting L'= Z Zf,
Lo=LU[S B L) =A@
Thus

0.(2) =0,(42)° +05(42)°
= (05(42)° — 02(42)") (05(42)" — 6:(42)")
+0:(42)°05(42)" + 02(42)'65(42)?
=0.(22)°0,(42)" +05(42)°05(42)"0+(22)?

=0,(22)%0,(42)" +——6’2(z) 0,(22)?

=7.(2)+49-(2) <ﬁ':¥>‘

2841
O
4
(4) The case x:%. Let ¢ be an element of Frame shape 1°3° of

This proves Theorem 4 for ==

M, and C be an octad on which ¢ induces 2 permutation 1232 Then
. 104
=oeg-¢ is of Frame shape ?222. Now it is easy to see .[.=/,(2%?% and

so, by (1.7) and (1.11),

0:2)= % 0.(22)0,(62)°

l\,|r—4

=0,(22)%0,(62)*+ % 05(2)%0,(32)*

404
=p.)Hant) (F=12).
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This proves Theorem 4 for nz%g:—.
4

(6) The case n:%—. Let
o=(18, 20)(10, 12)(9, 11)(8, 15)(2, 19, 5, 16)(1, 21, 17, 13)(0,6, 14, 22)(, 7, 3, 4)
EMM}

C={,0,1,3,4,11, 19, 20} .

4
Then z=ge; is of Frame shape % and L.={x(e,+eyn) +ylest+eys) |z, ysZ}.
Thus

14

6.(2) = 05(42) = 0,(22)+ 8,(42)° = 7. (2) + 471 (2) (n':7) .

3 2
(6) The case r= 2;&‘8 . Let

o=(0)(0)(1, 2)(3, 17, 14, 5)(4, 9, 6, 18, 22, 10, 7, 8)(13, 20, 19, 11, 16, 15, 21, 12)
C={,0,1,2,3,5,14,17}.

2°4.8
1

Then n=o0ec is of Frame shape Let

fi=e,—e;,, f,=e;—eyptes—es, fszggjei, fi=2e;
1

(112

where U and V are the 8-cycles of . The set of w-admissible codes con-
sist of two dodecades to which f,+f; and f,+f, belong and a co-octad (a

code of 16-elements) to which f;=+f, belong. Let £’:<f2, %(fs—i—f;), %(fa—f4)>
=~L(8") and .,E”:<%(fz+f3), fz,%(f3+f4)>. Then we see from (2.1) that

L =,C’U<%(f2+f3)+,£’>g/1(8’)

L. =P L = LA)PAES.
Thus
O:(2) =04(42)(0,(82)* + 6:(82)*)

=05(42)04(22) (02(82)* + 05(82)* — 0,(82) 95(82))
= 03(42)03(22){(02(82) —05(82))*+0,(82)05(82)}

=04(42)05(22)0,(22)* + % 04(42)04(22)6,(42)*
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, 12,48
=1(2) +29:(2) <7r :T>‘

2
(7) The case n:é—lzi. Let
2.6
o= (10, 12)(o0, 4, 3, 7)(8, 9, 18, 15, 11, 20)(0, 13, 5, 6, 1, 16, 14, 21, 2, 22, 17, 19)
and C be the set of underlined letters which is an octad. Then z=oec is

4%122 .
of Frame shape 56 and L.=A4(8.24). Thus

1 4
— > 6:(22)6,(62)
3 2 i=s

0-2) =3, 0,(82)9.(242) =
=0,(22)0,(62) + %02(22)02(62)

=7:.(2) +274(2) (fr’= .1236> '

24142
(8) The case T=a

of M, and C be an octad on which ¢ induces a permutation 1.7. Then

2 2
r=c¢ec is of Frame shape 211? and L.=A4(4.28). Thus

Let ¢ be an element of Frame shape 1.2.7.14

1
2i2

M»

6,() = 0i<2z)0i<14z>=04(2z)m<14z>+%02<z>02(7z>

=1:(2) +21:(2) <7" = %)

where we used a variation of (1.5):

0,(2)0:(T2) = 0,(22)0,(142) + 05(22)05(142) — 0,(22)0,(147) .

3.4. For Frame shapes of type E, listed in (2.7), the results are given
in the following table:

Table 3
T o=n* L the group for j7.(2)
1848 216
—28— '1—8 AO(ZB) 44
4Q4 8
1'8 4 Lo(2) 8+

2242 ot
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1%324%12* 2'6*

T 57 A,(2°6%) 12+
—1;% {i; L4 16+
LR 2?;12 A(4.28) 28+
Zf — L4y 8|2+
% — L(4.8) 16)2+
%ﬁ — L(4.12) 24|12+

For the first five Frame shapes in Table 3, we have the following
theorem :

THEOREM 5. Let = be one of the first five Frame shapes in Table 3.
Then we have wt(r)=wt(z?) and =* is of type E,. Let 6=n* and S(0)=
{0, 0’} where deg(0’)=0. Then we have

(3.2) 75(22) 05 (2) = 12(2)°

o na(2) 7:(2)
8-3) @)= 1@ 00 (2)

+7(0"), cx=r()(r(x)—r())
and j:(2) is a gemerator of the function field for N,+.

PROOF. We will prove (8.3) and the last statement, because the other
statements are immediate. We have, by (2.6) and (3.1) in Th. 4,

o 602 7mal(2) ~ 75(2)
5:(2)= 7:(2)  7a(2) +r(d) 1:(2)
and, by (2.5) and (3.2),
ns(2) _ ns(22) _ _ 74(2)
PP =1+ (r(z) —7(d)) @) =1+ (r(x) —r(3)) -

from which (3.3) follows immediately. Then the last statement follows
from the formulas of symmetrisation in Table 3 of [1].

For each of the last three Frame shapes in Table 3, we will give an
element ¢ of M, and an octad C which are needed to construct the Frame
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shape. (Elements of C are shown by underlined letters in the expressions
of o) :

4Q4
—2478 o=(8, 15)(9, 11)(10, 12)(18, 20)(c0, 7, 8, 4)(0, 6, 14, 22)(1, 21, 17, 13)
(2,19, 5,16)

2 2
2 o=())(1, 26,17, 14,5)(13,20, 19,11, 16, 15,21, 12
' (4,9,6,18,22,10,7,8)

2.6.8.24

= 20
15 o=10,12)(e2, 4,3,71)(8,9,18,15,11,20)

(0,13,5,6,1,16,14,21,2,22,17,19) .

Now [, and ©.(z) can be calculated quite similarly as in the previous
cases of type C or E,. We leave the details of the proof to the readers.

3.5. In this paragraph, we deal with Frame shapes of type E, but
it is much better to mention not only Frame shapes in 2%2M, but also
those outside 2M,,. If r is of type E; then S(z) consists of three Frame
shapes of type FE; and just one element of degree 0.

THEOREM 6. (1) Let n be a Frame shape of type E;. Then the
structure of L, is given in Table 4 below. In this table, * shows that =
18 a Frame shape outside 2°M,,.

(2) Let S(x)=/{mo, m1, 7z, w3} (deg(zy)=0) and let 1, j, k be a permutation of
the letters 1, 2, 3. Then the followings hold :

(3.4) O, (2) = 1zy(2) + 7z, (2) + (c;— €a) (9, (2) — 72, (2))
C L 5,(2) Nx,(2) N, (2)
(8.5) J=y(2) = 7@ +e(n;)- @) + () ._7.7:0(_z)_+ 1

where the ¢; (1=1,2,3) are the constants defined in (2) of Theorem 3 in
8§25 and c(r))=(ci—c,)(c;—c)). For each m of type E; c(x) is given in
Table 4 below.

Table 4

z L c(m) T L. ()
25346 32

. 4,(2.6) 72 2?210 42109 20
149,67 29.10°

Z 4,26 -8 125'210 4@10) 4
1°3.6¢ 5,102

S e A0 9 2 e 408 5
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22313.12 441 12 2219_58 + 4,12.36) 6
“1-23-122*L0(1.33) —3 1'2.'182 * A(412) -2
PLEIZ ) s P18, a6 3
% 4,(2.30) 2
%53_0 4,(6.10) 2
_2%%3_0 x A(1.15)  —1

REMARKS. (1) It is easy to see from the expressions of j.(z) in (3.5)
that j.(2) coincide with no Thompson series of Monster’s elements. Thus,
for Frame shapes of type E; a conjecture of Conway-Norton is not true.
More precisely, M.L. Lang has shown that the fixing group of j.(z) is
I'(N;) (N;=the level of 7). (2) We see from (4) of Theorem 3 that ¢(x) is a
constant which is associated with a Frame shape z-z;* in the formula of
the symmetrisation of Table 3 of [1]. (38) A generator of the function
field for N.+ is expressed as follows:

ﬂzO(Z)

3 7=,(2)
—*——77:(2) + igl C(R‘i) ' ——ﬂﬁo(z) .

The proof of Theorem 6. For m=2“M,, the proof that the structure
of L, is as in Table 4 is left to the readers, while, for =&22M,, the
structure of ., can be seen from Lang [7] (also see §4). Now we will

5Q4
prove (3.4) for 7r=—2—134—6—. We have

1.23° 1'2.6° _1°3.6!
S(n):{ﬂo=—64—, =M, = "5 T~ 5 .
=5, C=—3, c=—4.

Since L.=4,2.6°), we have, by Lemma 2 in §1,

(2 7(62)°
T 9(62)° 7(22)* °

O.(z)
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9

B 2 — —1 69
ut we have o ST, or
expressions of x-products similar to those in Theorem 3,

=mmsmy,! and ¢;—c;=9. Thus, by using the

(3.6) O (2) =TT 4 (¢, 0
3 0
=+ (Ca— Ca)myt+ 7 — 7 by corollary of Theorem 3
=no+m+ (Ca— ¢s) (m— 75) (Note ¢,—c;=1).

This yields (3.4) for =, Similarly it follows from the structure of .. and
Lemma 2 that

B.7) 0..(2) =2 4 (g,—cp)? T

2 3 o

=mo+ (ca— ¢s) o+ (e;—¢3) (1, —ms)  (Corollary of Theorem 3)

=yt et (6i—cs) (i —73) (ca—cs=1)
(3.8) 6. () =L (g, —cp) - T
T Ty

=my+ (c2—C)me— (Ca— )7+ (ca— Ca)rs
(Corollary of Theorem 3)

=mytmat (C—¢) (my—m) (ca—cs=1).

32 20Q2 2
Also for Frame shapes in S(z) (n: 2°5°10  223?4.12  2°9.18 1.6.10.15 >,

T 1 16 %7 35

it follows from Lemma 2 in §1 or Lemma 4~6 below that exactly the
same formulas as (3.6)~(3.8) hold if the notations =, 7, 73 for elements
of S(z) are chosen as is seen from the arrangement of Frame shapes of
S(z) in Table 4. Note that, when =, =, =; are chosen in such a way, we
always have ¢;—cy=1. Thus (8.4) hold for all Frame shapes of type Ei.

Then (3.5) follows from (8.4) and Corollary of Theorem 3.

_ 2112 ,_ 2% _ 6% ,_ 16
LEMMA 4. Let p= Ta K =413 =13 and v =412 Then we
have
0(z, A(4.12%))=9,.(2) +47,(2)
0(z, A(412))=1,.(2) +42.(2)
0(2, Lo(1.3%) = 9,.(2) +167,(2) .
1215% . 3%
LEMMA 5. Let p= 35 and p =115 Then we have
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oz, /10(1.15))=0<z, [4 !

1 4:D=77,p(z)—77y(z),

)@+ 0,000,

8(z, 4(3.5)) :0<z, E .

3 3
LEMMA 6. Let p:% and /,z’zl?. Then we have

0(z, 4,(2.6)) =t9<z, [2 !

))&+,

6 3
0(z, Ao(6. 18)):0<z, [3 G:DZ Nu(2)+37,(2) .
As in Lemma 2 of §1, the proof of Lemma 4~6 can be done by comparing
the Fourier coefficients of both sides of each equality. But, for that of
Lemma 4, it can be also done by expressing the both sides of the equalities
in terms of Jacobi theta functions.

§4. Concluding remarks.

4.1. In the previous section, we have shown that, for z&2%M,— M,,
the structure of .. can be described in terms of rather elementary lattices
L, L, A4 and 4, introduced in §1. In view of M. L. Lang [7], this is also
true for any =< -0—22%M,. Here we will make some remarks about Lang’s

results.
Let 7 be one of the following Frame shapes which are all in -0—2%M,, :

_ 3 5 36 I'9 1.23.12°
e Ty 12 T3 T £

Then Lang introduced five matrices A, B, C, D and E to describe 6.(z). We
note that

(i) A, B or C is equivalent to the matrices 3E;', 54;' or 3D, respec-

9 5 303

tively and so .L.= 4,(1°3), 4,(1°5) or Ly(3") according as 71'-—_'——51))3—, —51— or ?i62

(ii) Let e, e, e; and e, be independent vectors with [,=1, [,=[;=3 and

l,=9 in the notations in §1.1. Then vectors %(—e1+ez—e3+e4), e, +e,,

e,—e;, %(el+e2+e3+e4) form a basis of 4,(1.3%9) and yield a matrix
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4 1 1 2
1 4 1 2
1 1 4 —
2 2 —1 4
. . 1393
which is exactly the same as the matrix D introduced for == 3 by Lang.

Thus we get

4 3Q3
L.=4,1.829) and @x(z):l 0:(2)0(32)%6:(92) <7T=—121>-
2 i=2 3

1=

(iii) Let e, e, e; and e, be vectors with [,=1 and l,=1;=[,=3. Then
vectors 2e, e;—e,, e,—e; and e,—e, yield a basis of Ly(1.3%) and a matrix

4 2 2 2
2 4 11
21 41
2 1 1 4
2 2
which is equal to the matrix E introduced for n:l’—%z— by Lang. Thus
1 283,122
L2113 and 0.0=5 5006 (s=1Z51E).

4.2. Let n be one of the following Frame shapes which are of type
E; and outside 22M,,:

1°8.6*  1%5.10*  2.3.5.30
2t 28’ 6.10

Then we have wt(r)=wt(z? and =* is of type E, and so
Le=L = A)(1°3), A,(1°5) or Ay(1.15)
by (i) mentioned above for the first two = and a result (i. e. 0.2(2)

=¢9<z, [% ﬂ)) of Lang for the third z. We note that Lemma 2 and Lemma
5 were suggested by these facts and (8.1) of Theorem 3.

References

[1] Conway, J.H. and S.P. Norton, Monstrous moonshines, Bull. London Math. Soc.
11 (1979), 308-339.
[2] Hecke, E., Mathematische Werke, Vandenhoeck & Ruprecht, Gottingen, 1959.



572
£3]
[4]
[5]
[6]
£7]
[8]
[9]
(10]

Takeshi KoNDO and Takashi TASAKA

Koike, M., Moonshines of PSL(2,¢) and the automorphism group of Leech lattice,
Japan. J. Math. 12 (1986), 283-323.

Koike, M., Modular forms and the automorphism group of Leech lattice, to appear
in Nagoya Math. J.

Kondo, T., The automorphism group of Leech lattice and elliptic modular func-
tions, J. Math. Soe. Japan 37 (1985), 337-362.

Kondo, T. and T. Tasaka, The theta functions of sublattices of the Leech lattice,
Nagoya Math. J. 101 (1986), 151-179.

Lang, M.L., On a question Raised by Conway-Norton, to appear in J. Math. Soc.
Japan.

Tasaka, T., On even lattices of 2-square type and self-dual codes, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 28 (1982), 701-714.

Todd, N.J., A representation of the Mathieu group M, as a collineation group,
Ann. Mat. Pura Appl. 71 (1966), 199-238.

Mason, G., Finite Groups and Hecke Operators, Preprint.

(Received March 9, 1987)

Department of Mathematics
College of Arts and Sciences
University of Tokyo
Komaba, Meguro-ku, Tokyo
153 Japan



