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§1. Introduction.

Let G be a connected semisimple linear algebraic group over an alge-
braically closed field K of characteristic p, which may be zero or non-zero.
Let D be either

(T) a torus over K
or

(C) a finite cyclic group whose order is not a multiple of 7.

We assume that D acts morphically on G by algebraic group automorphisms.
Let X(D)=Hom(D, K*) be the character module of D, and g the Lie algebra
of G.

For 2e X(D), we put

(1.1) gA)={Aeg; d-A=i(d)A, de D}.

This gives an X(D)-gradation (see 2.1) of g. Let G(0) be the identity com-
ponent of the group of D-fixed elements of G. Then G(0) is reductive, and
its adjoint action on g preserves g(1) for any A€ X(D). An element N of
g(2) is called nilpotent if it is nilpotent as an element of g, i.e., if it is
contained in the Lie algebra of a unipotent subgroup of G. The purpose
of this paper is to study orbits G(0)-N and stabilizers Z;«,(N) of nilpotent
elements N of g(4). The main results are stated in Section 3.1. These can
be summarized as follows.

Assume that the characteristic p is zero or a good prime [30; I, 4.3]
for G.

(i) For a given A€ X(D), the nilpotent G(0)-orbits in g(2) are naturally
parametrized by a finite set of weighted Dynkin diagrams (see 2.1) ‘inde-

* This work is partly supported by Grant-in-Aid for Scientific Research, 'The Ministry
of Education, Science and Culture.
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pendently’ of p. In particular, the number of nilpotent orbits in g(2) is
finite and ‘independent’ of p.

(ii) Let o be a nilpotent G(0)-orbit in g(2). Then, from the weighted
Dynkin diagram associated with o (and known data on nilpotent G-orbits
in g), one can extract the following information: the structure of a
reductive part of Z;«,(N), the dimension of o, an explicit representative of
o, the weighted Dynkin diagram associated with the nilpotent orbit G-N
in g. In particular, we have the following general fact. If we put

Z(G0)| g(A)={xeG(0); x-A=A, Acg(d)}
and
G(0);=G(0)/Z(G(0)] g(2),

then the component group Zg,(N)/Zsw,(N)® of Zs,(N) is isomorphic to
a direct product IT S,, of symmetric groups S,, of degrees 1<n,<5.

The finiteness part in the second assertion of (i) is a special case of a
result [23] due to Richardson. In view of a recent result of Kostant (unpub-
lished) and Sekiguchi [27], one can say that (i), (ii) (for the case when K=C
and D is generated by a Cartan involution of a real form of G) provides
a parametrization and a set of representatives for the nilpotent orbits in a
real semisimple Lie algebra, and also describes how a complex nilpotent
orbit splits into real ones. If D is a torus and A#0, then the pair
(G(0), g(2)) is a prehomogeneous vector space [25] with a finite number of
orbits. Thus, in that case, (i), (ii) may be considered as complements to
the results of Sato and Kimura [25] and Kimura, Kasai and Yasukura [15].
See also [24], [20]. We should also mention works [33]-[35] of Vinberg
which are closely related to ours.

Now we explain briefly how (i) and (ii) may be obtained. If the
D-action on G is trivial, i.e., if G=G(0), then (i) and (ii) are known facts.
For example, it is well-known (Dynkin [6]) that, in characteristic zero, the
nilpotent orbits in g=g(0) are parametrized by a set of weighted Dynkin
diagrams, and, although less-well-known, a completely analogous result
holds in good positive characteristics also (see Section 2.1 for the detail).
We shall get (i), (ii) by reducing the problems to this special and already
solved case. :

If we restricted our attention to the case of characteristic zero, then
our task would become much easier. But, even if one is interested only
in that case, it is often helpful to know that the orbital structure of the
set of nilpotent elements of g(2) does not depend on the characteristic. See
the example given in 3.4. Moreover, one of the applications we have in
mind is related to our study [12]-[14] on generalized Gelfand-Graev rep-
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resentations of a reductive group over a finite field. This will be discussed
elsewhere.

The paper is organized as follows. In Section 2, we collect more or
less known materials which are needed in formulating or proving the main
results: in 2.1, we review results on nilpotent orbits in g, in 2.2, we
examine the X(D)-gradations (1.1) coming from various D-actions on G. In
Section 3, after formulating the main results in 3.1, we first prove them,
in 8.2, assuming that p=0 or p>»0, and explain, in 3.3, why the same
results remain true in good positive characteristics. In 3.4, we give an
example of actual calculations.

The author would like to express his heartfelt thanks to D. Vogan,
who pointed out an overlooking in the author’s talk on the content of this
paper given at the 1987 Luminy conference “ Unipotent orbits,-:-”.

§2. Preliminaries.
2.1. Weighted Dynkin diagrams and nilpotent orbits.

Tet X be an abstract reduced root system [3], and I/ a fixed simple
root system (or base) of 2. We consider the set H(X)=H(ZX, II) of Z-valued
functions on /7 extended, by linearity, to Z-valued functions on 2. An
element h of H(X) is called a weighted Dynkin diagram (associated with
(X, II)), because it can be considered as the Dynkin diagram of (2, I7) with
weights h(a), acll. The automorphism group Aut(2) of X acts on H(Z)
in an obvious way :

(2.1.1) h —> hoy, he H(Y), yeAut(d).

We denote by H(2),=H(ZX,II), the subset of H(X) which consists of ele-
ments h satisfying h(a)=0 for any a=ll. The following lemma is easy.

(2.1.2) LEMMA. For any he H(Y), there exists a unique element h,s HZ),
such that ho=how for some element w of the Weyl group W(Z) of 2.

Let G be a connected reductive linear algebraic group over an algebra-
ically closed field K, and g=Lie G the Lie algebra of G. Let now X be
the root system of G with respect to a maximal torus 7. For an element
h of H(X), we put, for 1€Z,

D ga if i#0;
2.1.3) i)y =1 M=
Lie T@( ® ga> it 3=0,

aE
h(a)=0
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where g, is the root subspace of g corresponding to a= X ; and we under-
stand that ¢(i),={0} if 1#0 and the set {a€lX; h(a)=1} is empty. Then
(2.1.3) gives a Z-gradation of g. (In general, a set {g(m); m M} of sub-
spaces of a Lie algebra ¢ indexed by an abelian group M is called an
M-gradation of g, if g can be decomposed as a direct sum

9= @D g(m)

meEM

and {g(m)} satisfies
la(), gm)]Cg(l+m), l,meM)

If G is semisimple and the characteristic p of K is either zero or large,
then the converse is also true: any Z-gradation of g can be obtained as in
(2.1.3) by choosing a suitable maximal torus 7. Thus, using (2.1.2), we get
the following :

(2.1.4) LEMMA. Assume that G is semisimple and p=char(K) is zero or
large. Let Il be a base of the root system 2 of G with respect to a fixed
maximal torus T. Then the correspondence h—{g(),; 1€Z} defined by
(2.1.3) ts a bijection between H(X,II), and the set of G-conjugacy classes
of Z-gradations of g.

Let G and K be as in (2.1.4). Let N be a nilpotent element of g.
Then, by the Jacobson-Morozov theorem, there exists a Lie algebra homo-

morphism fy:sly(K)—g such that f”<8 (1)>:N. The element H=Hy=
fzv<(1) _(1)> is called a characteristic of N.

(2.1.5) LEMMA (Dynkin [6]). (i) Let N be a nilpotent element of g. Then
two characteristics of N are conjugate under Zgz(N).

(ii) Two nilpotent elements of g are G-conjugate if and only if their
characteristics are.

Let H be a characteristic of a nilpotent element N of g. We put
(2.1.6) g y={Xeg; [H, X]=1X}, 1€7.

Then, by representation theory of sl,(K), this gives a Z-gradation of g.
Hence, by (2.1.4), we get a well-defined map from the set of nilpotent
G-orbits in g to the set H(2),. We denote the image of this map by
H(2),=H(2, II),, which is known to be independent of p=char(K) (provided
that p=0 or »>0). Then (2.1.5) implies that the set H(ZY), parametrizes
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the nilpotent orbits of g.

Let now G be a connected reductive linear algebraic group over an alge-
braically closed field K. Let X be the root system of G with respect to a
fixed maximal torus T, and I7 a fixed base of Y. For heH(2,II), we
define a Z-gradation {g(®),; 1€Z} of g=LieG by (2.1.3). Let P, U, and
G(0), be the connected closed subgroups of G with the Lie algebras
D g(@)a, EgBl g(t), and g(0), respectively. Then P, is a parabolic subgroup of

120

G, and G(0), and U, are a Levi subgroup and the unipotent radical of P,
respectively.

(2.1.7) THEOREM. Let the motations be as above. We assume that p=
char(K) is zero or a good prime [30; I, 4.3] for G. Let h be an element
of H(Z2,II),.

(i) There exists an open, dense G(0),-orbit o, in g(2),. When p=0
or p»0, an element N of ¢(2), (which 1is automatically milpotent) is con-
tained in o, if and only if there exists a characteristic H of N such that
the two gradations (2.1.3) and (2.1.6) of g coincide. In the following, we
denote by N, a representative of o,.

(ii) The correspondence h—0,=G-N, s a bijection between the set
HZX, ), and the set of milpotent G-orbits in g.

(iii) 0,=g(2)aNOn.

(iv) Ph-Nh:<@ g(i)n>ﬂ0h=0h+<[€_% g(i)h>. In particular, Pp-Np is

122
open and dense tn D g(i)s.
122

(V) Ze(NW) = Zsw,(Nw) Zy, (N (semi-direct product) ; Zsw, (N is reduc-
tive and Zy,(N,) s the wunipotent radical of Zs(N,). In particular,
Z(Ny) C P

(vi) dim Zy,(N,)=dim(g(1).Dg(2)s).

If p is zero, this is due to Dynkin [6] and Kostant [16]. The case
p>0 and the case when G is classical and p is a good prime were treated
by Springer and Steinberg [30]. In the case when G is of type E,
(n=6,7,8) and p is good, this is implicitly contained in works [18], [19] of
Mizuno. In its full generality, Theorem (2.1.7) was first formulated in [13].
But, unfortunately, we still have no intrinsic proof for this.

In the rest of this subsection, we review some of known results
related to Theorem (2.1.7).

(2.1.8) The set H(ZY), is explicitly determined in [30; IV] (resp. [7]) in the
case when X is irreducible and of classical (resp. exceptional) type. One
can also consult [4; 13.1].
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(2.1.9) The (global) structure of the reductive group Zsw,(Ny) (he H(2),)
is known ; see [36], [30; IV] (resp. [1],[5],[28],[18],[19]) for the case when
G is a classical (resp. exceptional) simple group. From these we see that
the structure of Zs,,(N,) is independent of p=char(K), except for small
deviation which can occur only when G contains a normal subgroup of type
A, n=1.

(2.1.10) From (2.1.9), one can observe that, when G is adjoint, the compo-
nent group Zs,(Nu)/Zsw,(Ni)°® of Zg,(Ny) is always isomorphic to a direct
product IIS,, of symmetric groups of degrees 1<n;<5.

(2.1.11) For he H(2),, an explicit representative of o, (hence of O,) can be
found in [30; IV] (resp. in [18],[19]) when G is classical (resp. of type E,,
7n=6,7,8). When G is of type F, or G, it is also easy to find an explicit
representative in each o,. See also Hirai [8].

In some references cited above, unipotent classes of G, rather than nilpotent
classes of ¢, are studied. But, in good characteristics, information on
unipotent classes can be translated into that on nilpotent classes (and vice
versa) by [30; III, 3.12]. For nilpotent and unipotent classes in bad
characteristics, we refer the reader to [4; 5.11].

2.2. D-actions and X(D)-gradations.

Let G be a connected linear algebraic group over an algebraically closed
field K, and let D be a diagonalizable group over K acting morphically on
G Dby algebraic group automorphisms. Let G(0) be the connected component
of the group of D-fixed elements of G.

(2.2.1) LEMMA. (i) LieG(0)={Aeg; d-A=A, deD}.

In (ii)-(v), we assume that G is semisimple.

(ii) G(0) @s reductive.

(iii) There exists a D-stable maximal torus of G.

(iv) If D is a torus or a finite cyclic group, then there exists a
D-stable Borel subgroup B and a D-stable maximal torus T such that
TCB.

(v) If D is a torus, any D-stable torus is contained in G(0).

PROOF. (i) is proved in [2; p. 284]. For (ii)-(iv), see the proof of [30;
II, 5.16]. (v) follows from the connectivity of D.
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Now let D be as in Introduction. We are going to examine the
X(D)-gradation (1.1) of g in each case (T) and (C) separately. We first
consider the case (T), i.e. the case when D is a torus.

Let T be as in (2.2.1) (iv), and let X be the root system of G with
respect to 7. Since, for any a2, the root subspace g. of g is D-stable,
it must be contained in some g¢g(1), A=X(D). The correspondence a—2
defines a Z-linear map from (the Z-span of) X into X(D). Conversely,
given any linear map f:23—X(D), there exists a D-action on G such that
TcG(0) and that

9.C9(fla)), acl.
Next we consider the case (C), i.e., the case when D is a finite cyclic
group Z, whose order m is not a multiple of p=char(K). Let B and T
be as in (2.2.1) (iv). Let 2 be the root system with respect to T, and II
the simple root system of 2 corresponding to B. We fix a generator ¢ of
D. Then ¢ induces an automorphism of X preserving II. More precisely,

for a2, let X, be the root vector contained in a Chevalley basis of g,
and let

K28 — z,8)=expéX, G

be the corresponding root subgroup of G. Then we can define the J-action
on Y by

(2.2.2) 0(x.(6)) =2s.(c(@)f), acl, €K
or, equivalently, by
(2.2.3) 0X,=c(a)Xs., ac’y

with some c¢(a)e K*. By (2.2.2), it is easy to see that the action of § can
be written as

(2.2.4) og=tr(ght™, geaq,

with some element ¢t T and a graph automorphism y of G characterized by
7@ (6)=25,8), ac=xll, (K.

(See [31; §10] for the detail.)

(2.2.5) LEMMA. Suppose we are in the case (C). Let T,3,5,--- be as
above. We have the following.

(1) TNG0) is a maximal torus of G(0) ; and its Lie algebra is equal
to Lie TNg(0).
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(ii) For acl, let l(a) be the length of the D-orbit (a)={a, da, &a, -},
and let

{(a)—1

Cla)= l;[0 c(da) .

Then C(a) ts a root of unity in K. If n(a) is the order of C(a), then
la)n(a) divides the order m of D.
(ili) For a2, let (a) and l(a) be as in (ii). Then one of the follow-
mg two cases occurs :
(ilia) Ua)=1, or l(a)=2 and any two roots in (a) are orthogonal to
each other
(iiib) Ua)=2, and (a) generates a root system of type As.
(iv) Let 2, be a fized generator of X(D)=Hom(Z,, K*). Using the
notations n (ii), we put, for ac’,
Wa) 1

Jar= ® Oéia

i=0
and take an integer t=t(a) such that

tm

(2.2.6) Cla)= (—W—) zl>(5) .

Then .
g(a>:l(§1{g(a>f\ g((ﬁl(—ca“i‘ %)l,)} .

Moreover, each summand on the right hand side is 1-dimensional and
spanned by an element of the form

lad-1

(2.2.7) Xor= ZZ) 0 Xsia

with some a,€K*, 01 () —1.

PROOF. (i) The first assertion is clear from the proof of [32; 8.2].
The second is a special case of (2.2.1) (i).

(i) This is clear from (2.2.2).

(iii) This follows from the fact that 6 induces an automorphism of
(X, IT) and the classification of root systems.

(iv) Since C(a) is an n(a)-th root of 1 and 2,(6) is a primitive m-th

a)—1

root of 1, there exists a ¢t for which (2.2.6) holds. An element X a;Xi,
i=0

of g, is contained in ¢(ji,) (j=Z) if and only if

aic(0'a;) =a;414:(67), 1€Zlla)Z.
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Solving this, we get (iii).

(2.2.8) REMARK. For a classification of finite order automorphisms of G
up to the conjugacy in the automorphism group of G, see Kac [10; Ch. 8].

Let D, B and T be as in (2.2.1) (iv). Let X be the root system of G
with respect to 7, and /I the simple root system corresponding to B.

’

(2.2.9) LEMMA. Let the notations be as above. We fix A X(D) and
heHOZ,II) (see 2.1), and assume that h is D-invariant. For jeZ, we put

| 92N g(9)n if jl2eZ;
ga=

2.2.10
( ) {0} otherwise,

and
g=®ag(jg).
j€z

(For the definition of g(7), see (2.1.8).)

(i) g is the Lie algebra of a connected reductive subgroup G of G,
and (2.2.10) gives a Z-gradation of §.

(i) Let G(0)=G(0);=G(0)NG(0),. Then this is a connected reductive
subgroup of G with the Lie algebra §(0).

PROOF. (i) To see that § is a Lie algebra with a Z-gradation (2.2.10)
is easy. If char(K)=0, one can prove the existence of a reductive G such
that LieG=g by observing the non-degeneracy of the restriction (-, -)|g
of the Killing form «(-, ) on g. To get a proof which works in positive
characteristics also, we argue as follows. For a2, let («) be the D-orbit
through « and let

2.2.11 —
( ) =, g?wg,s .

(Hence, in the case (T), (a)={a}; in the case (C), (a) and g, were already
defined in (2.2.5).) Let
T=TNG(0)
and
Y=%,={a; ael, g.,NG(j)#{0} for some jeZ},

where @ is the restriction of a=(a) to T. Note that @< X(T) does not
depend on the choice of a representative a of (a), and that an integer j
SHCEI that g..,NG(7) #{0} is uniquely determined by (a). The subset X of
X(T) forms a root system; in fact, the Weyl group W(5Z) can naturally
be identified with the subgroup of W(X) generated by {we.,: @€ X}. Here
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we define we,,€ W(2) as follows. If (a)={ay, a, -+, a,} (m=l(a)) satisfies
(2.2.5) (iiia), then we put Weay=Wa Wa, *** W,,, the product of reflections
Wa, If (a) satisfies (2.2.5) (iii b), then we put Weary=Wa WayWa, =Wa,Wa,Wa,,
where (a)={a,, &;=0da;}. For acsZ, we put

zz:(6)=exp(é X)) (€G), tekK,

where X, is a fixed non-zero element of g.,NG(j) (see (2.2.7)). If (@)
satisfles (2.2.5) (iiia), then there is no problem in doing this. If (@) satisfies
(2.2.5) (iiib), then exp(éX,,,) is equal to

&2
1+$X(a)+?X(2a);

which makes sense since the characteristic p is odd or zero by our assump-
tion (C) and (2.2.5) (ii). Now we define G to be the subgroup of G generated
by T and {;(6); a3, é€K}. It is easy to see that G is a connected
reductive group with a root system ¥ and that § is the Lie algebra of G.

(i) As is shown in [32; 8.1], G(0) is the group generated by a maximal
torus T and the root subgroups

{exst(a); fEK}, O.'EZ, g(a)f\g(O)i{O},

where X, is a non-zero element of g¢w.,Ng(0). Hence, by comparing the
Bruhat decomposition of G, G(0) and G(0), with respect to their Borel
subgroups B, BNG(0) and BNG(0),, we see that G(0)NG(0), is the group
generated by T and

{expéX.,; E€ K}, acl, gwrNg(0)+1{0}.

Hence G(0)N\G(0), is connected, reductive and its Lie algebra is §(0).
Let the notations be as in (the proof of) Lemma (2.2.9). Let X* be
the positive root system of 2 corresponding to /7. We put

St={ael; acX*}.

Then 3* is a positive root system of 5. Let /7=1I, be the corresponding
simple root system of . We define a weighted Dynkin diagram he H(Z,, I1,)
(see 2.1) by

(2.2.12) d:Cgh@), aell.

Evidently, the Z-gradation of § associated with % is just the one given by
(2.2.10) ; hence we can write

§()=3s, JEZ.
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(2.2.13) DEFINITION. In the situation of (2.2.9), we say that heHZ, ) is
slim (with respect to 2) if the one parameter subgroup S,={s.(§); é€ K"}
of TNG(0) giving rise to the gradation (2.1.3), i.e., the one characterized by

Sh(&)'XazfiXa ) aez: h(a):/'/J
is contained in the semisimple part of the reductive group G.

Let Y(T)=Hom(K*, T) be the Z-module of one parameter subgroups of T.
Since Y(T)QR is dual to X(T)®R, it has a natural positive definite inner
A z

product. Put
0
c=( N Kera)cTNGO).
aey

Then C is the maximal central torus of G. The following lemma is obvious.

(2.2.14) LEMMA. Let §—c¢;(6) (7=1,2,--+,1) be elements of Y(T) generating
C. Then the s, Y(T) defined in (2.2.13) is slim, if and only if it is
orthogonal to {c;; 1<j<1).

§3. Main results.
3.1. Statement of main results.

Let K, G, D and ¢ be as in Introduction. We assume that p=char(K)
is zero or a good prime [30; I, 4.3] for G. We fix a D-stable Borel sub-
group B and a D-stable maximal torus 7T of G such that BDT (see (2.2.1)
(iv)). Let X be the root system of G with respect to T, and II the simple
system of 2 corresponding to B. Let W(G(0)) be the Weyl group of G(0)
with respect to TMG(0). This can also be identified with the subgroup of
W(23) generated by {Wey; @€y, gwayNg(0)+{0}} (see the proof of (2.2.9) for
the notations W, gcas)-

(3.1.1) DEFINITION. Let 2 be an element of X(D). We define a subset
HZ, 1, 2), of the set H(X,II) of weighted Dynkin diagrams (see 2.1) as
follows. An element h of H(X,II) is contained in H(Z, I, 2); if and only if

(@) h=kow for some ks H(X,II), (see 2.1) and some we W(2);

(o) h is D-invariant; in the case (C), this means that hod=h (see
(2.2.2)) ; in the case (T), this condition is vacant;

(¢) h is slim (see (2.2.13) and (2.2.14)) with respect to 4;

@ h,€HSZ,, I,), where X,, II, and h are as in (2.2.12), and h, is
defined from % as in (2.1.2).
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Let H(X,1I, ), be a set of representatives of the set of W(G(0))-orbits
in H(X,1I,2);. In the case (T), we can (and shall) take as H(Z,II, 2), the
set of elements of H(ZX,II, A), satisfying

(e) h(a)=0 for any aclII(G(0)),
where
(3.1.2) H(G0)={ac]; g.Ng(0)+{0}}.

(8.1.3) LEMMA. For keH(X,I), let I(0),={acIl; kia)=0}, and let
WI(0),) be the subgroup of W(X) generated by reflections w,, a<Il(0),.
Then, for ke HZY,II), and we W(ZX), we have kow=Fk 1if and only if
we W(II0),).

PROOF. The if-part is easy. For a proof of the only-if-part, it is
enough to show that, for any ke H(Z, II), the group {we W(2); kow=k}
is generated by reflections. But -this follows from [30; II, 4.1] and [2;
(11.12)].

Fix an arbitrary element h of H(X,II,2),. In (2.2.9), we defined the
Z-graded Lie algebra

(3.1.4) g=]_EEBZ§(j)

and the corresponding connected reductive subgroup G of G. Recall that
Y is the root system of G with respect to the maximal torus T=TNG(0),
and that the gradation (3.1.4) is the one corresponding to the weighted
Dynkin diagram ke H(Z, ) (see (2.2.12)). Hence, the condition (3.1.1) (d)
for h and Theorem (2.1.7) (i) imply that there exists an element N; of
G(2)=3(2); such that G(0);N; is dense in §(2). (Here we used the fact that
p is good for G(0) also. This can be checked using (2.2.4) and the classifi-
cation of semisimple algebraic groups.) By (2.1.11), N; can be taken in an
explicit way.
Now we can state the main result of this paper.

(8.1.5) THEOREM. Let the notations be as im Introduction. We assume
that p=char(K) s zero or a good prime for G. We fix A€ X(D). Let
H(X2,II,2), be the set of weighted Dynkin diagrams h (€ H(Z,II)) defined
wn (3.1.1).

(i) For heH(2,II, 3),, we take an element N; < §(2)=g(A)Ng(2), such
that G(0)z-Nj is dense in §(2). Then the correspondence h—o0,=G(0)-N;
18 a bijection between the set H(X,II, 2), and the set of milpotent G(0)-orbits
i g(2). Moreover, 0,CO,, in the notations of (2.1.7) and (2.1.2).
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(ii) ZG(O)(Nﬁ)=Z6(0>ﬁ(Nﬁ) ZG(O)nUn(Nﬁ) (semi-direct product), where U,
is as in (2.1.7); Zgw;(N5) s a reductive group whose global structure is

known by (2.1.9), and Zswnv,(Ns) 18 the unipotent radical of Zgw(N5).
(i) dim Zac, (Nz) =dim g(0) Ng(0),—dim g(A) N g(2), ;

dim Zewnw, (N =2 dim g(O)f\g(j)n—szladim gANg(G)n -
J

(iv) dimo,= X dim g(omg(j)wg dim g(A)Ng(J)n -

(3.1.6) REMARK. (i) A primitive version of (3.1.5) was given in [13;
(2.1.5)].

(ii) The second assertion of (ii) in Introduction follows from (3.1.5)
(ii) and (2.1.10).

(iii) When D is of order 2, the nilpotent orbits in g(1) have been
studied by Kostant-Rallis [17], Sekiguchi [26], [27], Ohta [21] and others.
See also Richardson [22]. We have already mentioned, in Introduction,
about a connection between (3.1.5) and a result in [27].

(iv) The classification of non-nilpotent orbits in g(2) can, in principle,
be reduced to .those of semisimple and nilpotent orbits by the Jordan
decomposition. See [33]. The same can also be said about the determination
of the structure of the stabilizer Z;((A4) of a non-nilpotent element A of
g(2). A detailed study of semisimple orbits in g(4) is given in Vinberg [35].
Vinberg [34] also considered the classification of nilpotent orbits in g(2).

(v) It is not difficult to generalize (3.1.5) to. the case when D is a
general diagonalizable group acting morphically on G, but it seems that
(8.1.5) is already sufficient for interesting applications. See also 3.3.

(vi) Let O be a nilpotent G-orbit in g, and let 2 X(D). If D-O+0,
then clearly ONg(l) is empty. If D-O=0, the number of G(0)-orbits
contained in ONg(4) is bounded by the number of elements of

(WPNWUT(0))\W?/W(G(0)),

where W? is the group of D-fixed elements of W=W(2), ke HZ,II), is
the weighted Dynkin diagram associated with O, and W(G(0)) is the Weyl
group of G(0) with respect to T=TNG(0). This follows from (3.1.5) and
(3.1.3).

(vi) The dimension formula in (3.1.5) (iv) does not seem to be very
illuminating. When D is of order 2 and 2+ 0, then it is known [17; Prop. 5]
that ‘

(3.1.7) dim G0)- A=dimG-A4)/2,  Aecg(d).
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When D is a 1-dimensional torus, there also exists a formula comparable
to (3.1.7). Let A, be a generator of X(D)=Z, and let P be the parabolic
subgroup of G with the Lie algebra 69 9(@2;). Then we have

(3.1.8) dim P-A=(dim G- 4)/2, Asg(d).

Let B be a Borel subgroup contained in P. Then the right hand side of
(3.1.8) is equal to the dimension of the (equi-dimensional) variety
V(A)=(G-A)NLie B (see Spaltenstein [29]). Hence, by (3.1.8), the closure
of P-A (A=g(4)) in V(A) is always an irreducible component of V(A).
For simplicity, we here prove (3.1.7) and (3.1.8) assuming that p=0 or
p>0. Then the Killing form «(-,:) on g is non-degenerate. Hence, as is
well-known, we have

(3.1.9) Z,(A)={Xeg; x(X,[g, AD=0}.
Let M be an abelian group, and let
g= @ g(m), meM

meM
be an M-gradation of g. By (8.1.9), it is easy to see that, if A=g(m), then
(8.1.10) dim[g(l), Al=dim[g(—1—m), A], le M.

The formula (3.1.7) follows from this by putting M=X(D)=2, m+0 and
[=0. To prove (3.1.8), we put M=X(D)=Z and m=4,=1, and sum up
(8.1.10) for 1=0,1,2,---. Then, the resulting formula is:

dim([Lie P, A]:dim[i@ 00, A} .

Hence, using the decomposition g=1Lie P€B< &) g(i)), we get
is—1

dim[g, A]=2dim[Lie P, A],

which implies (3.1.8).

(viii) Let F, be a finite field of ¢ elements contained in K. Assume
that G and D are given F,-rational structures such that the D-action on
G is also defined over F, and that B and T in (2.2.1) (iv) can be taken to
be defined over F,. We denote by o the corresponding Frobenius map. Let
A€ X(D) be a weight defined over F,. A nilpotent orbit o, (h€H(2, I, 2),)
of g(2) is defined over F, if and only if hog=h. (In particular, any nilpotent
orbits are defined over F,, if G is F,-split.) Moreover, in this case, the
orbital decomposition of o0,(F,) under G(0)(F,) and the structures of
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Z,;(O)(Fq,(N) for Neo,(F,) can be read off from the s-action on Zsw(N) | Zwoy(N)".
See [30; I, 2]. In particular, we see that there exists a polynomial
N,(t) €@Q[t] with coefficients independent of p such that N(q) is equal to
the number of nilpotent elements of g(2)(F,). When D is a torus, we have
trivially

Nai(q) = qdim o |

When D is a finite cyclic group, no general result seems to be known about
the polynomials N,(q), except for the case when 2 is the 0-weight, in which
case we have

No(q) — qdim G(0)-rank G(0)

by Steinberg [32; 15.1]. See the final remark in 3.4.

3.2. Proof of Theorem (3.1.5), I (the case when p=0 or p>0).

Let G be a connected semisimple group over K, and D a diagonalizable
group over K acting morphically on G. We assume that p=char(K) is
zero or large. For a nilpotent element N in ¢g(1) (A X(D)), let fy be as
in 2.1. We put H=fN<(1) _(1)> and N’=fN<(1) 8) If we write H= > H,

uexmy

and N'= X N, with H,, N,€g(u), we see that the linear map f% : slo(K)—g
]

ceX(D)
defined by f;<8 (1)>=N, f;<(1) _(1)>:H0, f;,((l) 8>=N'_1 is again a Lie algebra

homomorphism. Hence H, (€g(0)) is a characteristic of N (see 2.1). Such
an H, will be called a normalized characteristic of N. Just as (2.1.5) was
of fundamental importance for Dynkin’s classification of nilpotent orbits in

g, the following lemma plays an important role in the proof of Theorem
(3.1.5).

(3.2.1) LEMMA (Vinberg [33]). (i) Let N be a nilpotent element of g(A).
Then two normalized characteristics of N are conjugate under Zsqo(N).

(i) Two milpotent elements of g(2) are G(0)-conjugate if and only if
their normalized characteristics are.

When D=Z, this is proved in Kostant-Rallis [17; I.2]. The proof
given there can easily be modified so that it works in the present more
general situation. '

(3.2.2) LEMMA. Let D be as in 3.1. Let N be a fixed nilpotent element
of 9(3) (A€ X(D)), and H a mormalized characteristic of N. Let
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(3.2.3) 9= D 9(x
1€Z

be the Z-gradation of g defined by (2.1.6). For jeZ, we put

i .):{ g((G12YDNG(J)u if JI2€Z;
9 {0} otherwise.

Then
g=@3()
JEZ

is the Lie algebra of a conmected reductive subgroup G of G. Moreover,
the gradation {j(j)},cz of § coincides with the one defined using the
characteristic He g(0) of Ne§(2). In particular, H is contained in the
semisimple part of the reductive Lie algebra §.

PROOF. The first assertion is a special case of (2.2.9) (i). The second
and third assertions are obvious from our construction.

Proof of Theorem (3.1.5) in the case p=0 or p>0. (i) Let o be a
nilpotent G(0)-orbit in g¢(2), and N=N, an arbitrary element of 0. Let

fv:sl,—g be as in 2.1. We can assume that H=fN<(1) _(1)> is normalized.

By replacing N and H with g-N and g¢-H for a suitable g=G(0), if neces-
sary, we can further assume that HeLie(TNG(0))=Lie TNg(0) by (2.2.5)
(i). Then, by (3.2.1), H is uniquely determined from o exactly up to the
transformations under the Weyl group W(G(0)) of G(0) with respect to
the maximal torus T"NG(0). We denote by & the weighted Dynkin diagram
corresponding to the gradation (3.2.3). By our construction, we can write

(3.2.4) h=kow’

for some w’'e W(X). Here k=k,=H(2,II), corresponds to the orbit G-N,
((2.1.7) (i1)). Hence h satisfies (3.1.1) (a). That A satisfies (3.1.1) (b) follows
from the fact Heg(0). The second and third assertions of (3.2.2) imply
that h also satisfies (3.1.1) (d) and (3.1.1) (c) respectively. By (3.1.2) (i) and
what we have said concerning the uniqueness of H (€Lie TNg(0)), we see
that the orbit o determines the double coset W(I7(0),)w’ W(G(0)) uniquely,
and distinet orbits correspond to distinct double cosets. This means that o
determines an element of H(X,II, 1), uniquely. In the case (T), one can
choose B'so that W(G(0)) is generated by {w,; a=lI(G(0))}. Hence, by [3;
IV, 1, Ex. 3], the double coset W(IT(0),)w’W(G(0)) contains a unique
(I1(0),, I1(G(0)))-reduced element w. If we put h==Fkow, this satisfies (3.1.1)
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(a)-(e). Conversely, given an element h of H(Z,II, A),, we write h=kow.
Since ke H(2,II), and hod=h, there exists a characteristic He Lie TNg(0)
=Lie TNg(0); of a nilpotent element of ¢ such that g@)y=g@), 12
Since h satisfies (3.1.1) (d), we can take a nilpotent element Nj;< §(2);Cg(4)
such that G(0),-N; is dense in g(2);. Then, by the second statement of
(2.1.7) (i), there exists a characteristic H'€§(0) of Nj; such that the
Z-gradation of § associated (see (2.1.6)) with H’ and the one associated
with & (or, equivalently, with H) are identical. This and (3.1.1) (¢) imply
that H=H’. Hence the G-orbit of Nj; is equal to O, in the notation of
(2.1.7). Hence 0,C0,=0;,. Now it is clear that the orbit G(0)-N; corre-
sponds to the element A of H(ZX,Il,2), under the map defined above. This
proves the part (i) of Theorem (3.1.5).

(ii) In (i), we have seen that N;=0,. By this and (2.1.7) (v), we have

Zow(Ni)=Zs(Ns) NG(0) = (Zs,(N5) Zu, (N3)) NG (0)
= ZG(O)(Nﬁ)ZG(O)nUh(Nﬁ) .

Moreover, by (2.1.7) (v) (applied to G), we see that Zzo(N;) is reductive.
Hence we get (ii).

(i), (iv) By (2.1.7) (v), ZG(O)(Nﬁ):ZG(O)r\Ph(NE)y and by (2.1.7) (iv),
(G(O)NP,)-Nj is dense in Jezazg(l)mg(j)h. Hence ’ '

dim Zs(N5) =J§) dim g(())/\g(j)n—g2 dim g(A)Ng(J)n -

Similarly, since G(0)-N; is dense in g(2)Ng(2),, we have
dim Zg,(N5) =dim g(0)Ng(0), —dim g(l) Ng2)y.

From these we get (iii) and (iv).

3.3. Proof of Theorem (3.1.5), II (the case when p is a good
prime for G). : <

For a proof of (3.1.5) in the positive characteristic case, it is convenient
to consider a situation slightly more general than that of (8.1.5). Let K
and G be as in (3.1.5). Let D be a diagonalizable group over K acting
morphically on G by algebraic group automorphisms. We. assume:

(3.3.1) D stabilizes a pair (B, T) of a Borel subgroup B and a maximal
torus T such that BDT.

For example, if D is a product of a torus and a finite cyclic .group, then
(8.3.1) is always satisfled. (This -is not used in the sequel) Returning to
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the general situation, let B and T be as in (3.8.1), and 1 an element of the
character module X(D) of D. We can prove the statements in (2.2.9) in
this more general situation by essentially the same arguments as in 2.2,
and, using it, can define the set H(2, II, 1), as in 3.1. Then, for he H(Z, I, ).,
there exists an element N; of §(2);=g¢(2),Ng(2) such that G(0);-N; is dense
in g(2)z.

(3.3.2) THEOREM. The statements in (3.1.5) (i)-(iv) are true in the present
more general situation.

If p=char(K) is zero or large, then one can get a proof of (3.3.2) by
modifying slightly that of (8.1.5) in that case. We omit the details. Now
we give a proof of (3.3.2) assuming that p is a good prime for G. We
begin by proving the following lemma.

(8.3.3) LEMMA. Let AcX(D). Let k be an element of H(Z,I),, and O,
the corresponding wmilpotent orbit im g (see (2.1.7) (ii)).
(i) Let we W(2) and h=kow (€ H(Z,II)). Then O,N(g(ANg(2)s) 1s
an open, dense G(0)z-orbit in g(A)Ng(2),, if it is non-empty.
(ii) Assume that O,Ng(2) is non-empty. Then the weighted Dynkin
diagram k is D-invariant.
(iii) Let O, be as in (ii). Let o be a G(0)-orbit contained in O,Ng(A).
Then there exists an element w=w, of W(X) such that
(iiia) 0Ng@w#* D ;
(iiib) dow(a)=wod(a) for any 6€D and ac .
Moreover, the double coset W(I1(0),)w, W(G(0)) is uniquely determined from o.
(iv) Let o be a milpotent G(0)-orbit in g(2). Let k=k, be an element
of H(Z,II), such that ocO,, and w=WII0))w,W(G(0)) be as in (iii).
Then the correspondence o— (k,, W(II(0))w, W(G(0))) from the set of nilpotent
G(0)-orbits in g(d) to the set H(Z, IT),x W(II(0),)\ W/ W(G(0)) is injective.

PROOF. (i) We can assume that, for any nilpotent element N of g,
we have Z,(N)=Lie Z;(N). (See [30; I, 5.3, 5.6].) Then, for any N 0,Ng(2),
we have, by (2.1.7) (iii) (v),

Zgw,(N)=Lie Zg,(N) .
This and (2.1.7) (ii) (iii) imply that
[9(0)n, N]=g(2)s.
Hence, for any NeO,Ng(A)Ng(2),, we have
[g(0)Ng(0)s, N]=g(A) Ng(2)n



Orbits and stabilizers 591

Hence G(0);-N is open and dense in g(A)Ng(2),. This implies (i).

(ii) Take an element N of O,Ng(2). Since §(N)=21(6)N for any €D,
and ¢0,=0, for any p=K* by (2.1.7) (i) (iii), we have D(0,)=0,. On the
other hand, by (2.2.4), the definition of H(Z, ), and the existence of the
graph automorphisms [31; § 10] in characteristic 0, we can easily show that
kode H(ZY, II), for any 6 D. Hence, if I is not D-invariant, we must have
D(0,)#0, by (2.1.7). This proves (ii).

(iii) Let N be an element of o. By (2.1.7) (i) (ii), there exists an
element x of G such that

(3.3.4) x"(@ g(i),,) SN.

122

Then, by (2.1.7) (iv) (v), the parabolic subgroup z~'P,x is uniquely determined
from N. On the other hand, by Bruhat’s lemma and the fact P, normalizes

D g(i),, we can assume that
122
T=N,U,

where we W(2)=Ng(T)/T is (I1(0),, §)-reduced, m,, is a representative of w
in Ng(T) and u is an element of

II{exp(£X,); é€ K}, a2 Nw(Z7).

Since such a pair (w,u) is uniquely determined from the condition
u'ng' P, u=x"'Pux, it is uniquely determined from N. Applying 6D
to (3.3.4) and using (ii), we get

122

5(u)*a(nw)-l-(ea g(z')k) S 20N

Hence, from the uniqueness of the pair (w,u) mentioned above, we have,
for 6D,

ou)=u
and
0(1y) =1t5m,

for some t;T. Hence we get

(3.3.5) D g(i)ew>u-N (€0)

for an element w of W(ZX) satisfying (iiib). If w’ is another element of
W(2) such that

oNGg2iow # D,
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then there exist N, N'€0,Ng(2), such that
a-(mzt-N)=nz' N’
for some a=G(0). Hence, by (2.1.7) (iv) (v), we have
Ny N € Py .
Hence Pyn,G(0)=Pn,.G(0), which implies that
WL (0))w W(G(0)) = W(II(0))w’ W(G(0)) .

Hence o determines the double coset W(II(0),)w W(G(0)) uniquely.
(iv) It is enough to prove the injectivity. But this follows from (i).

Proof of Theorem (3.8.2) in the case p is a good prime for G. For an
element k of H(XY,II),, we denote by H(Z, I, A),(k) the set of elements &
of H(X,II, ), of the form h=kow, we W(2). Let O, be the nilpotent
orbit in g corresponding to k. We show

(3.3.6) 0,NgA)= \’_l) G(0)- N; (disjoint), he H(ZX, II, A),(k)
and

(8.3.7) for heH(Z, I, A),(k), the statements (3.1.5) (ii)-(iv) are true in the
situation of (8.3.2)

by induction on the closure inclusion relations among the nilpotent G-orbits
{0,; ke H(g,II),}. If O, is minimal, i.e. 0,={0}, then these are trivially
true. For a general k, let » be an element of H(Y, I, 2).(k). We claim
that

(3.3.8) N;€0,.

In fact, by applying the induction assumption to the DX K*-action on G
giving rise to the X(DX K*) (=X(D)®Z)-gradation

92(2@)9((2,'&'%), (2, D,=(1,1) e X(D)DZ,
9((2, D)) =g(ANg(W)n
of g, we have
(3.3.9) : Ok,m(g(l)f\g(2)h)=\/G(O),;~N,, leH(X,II,(2,2)4).(K")

and



Orbits and stabilizers 593

(3.3.10) dim G(0);-N;= X dim g(0)Mg(0)aNg(s):
js -

+ jgzdim g(ANg2)ng(g).,
leH(Z, I, (,2),).(k")

if 0,20, (the bar denotes the closure of a given set). Let G° be a connected
semisimple algebraic group with the same root system X as G, and
g°=LieG°. We denote by D¢ a diagonalizable group over C such that
X(D)=X(D) as Z-modules. We assume that D¢ acts on G° in the ‘same’
way as D acts on G, i.e., for each acZX, the D-orbit D(a)=(e) and the
Df-orbit D°a) are identical, and, for each 1< X(D)=X(D), dim g, g(2)
and dim ¢g&,Ng®(2) (which are either 0 or 1 by 2.2) are equal. The exist-
ence of such a pair (G° D is clear from the analysis of D-actions given
in 2.2. In this setting, it is evident that

dim g(2) Ng(@).Ng(5).=dim g* (AN g°@)aNg°(4).

for any i€ X(D)=X(D® and any 4,j€Z. Hence, by (3.3.10), we see that
the dimensions of the nilpotent G(0);-orbits corresponding to ! as above are
independent of the characteristic p. Moreover, if p=0, we already know
that (3.3.8) is true. This and the definition of Nj; implies that the dimen-
sions (3.3.10) are strictly smaller than dim ¢°(A)Ng°©2),=dim g(A)Ng(2)s.
Hence, by (3.3.9) and the denseness of G(0);-N; in g()Ng(2),, we get
(3.3.8), or, equivalently, see that the right hand side of (3.3.6) is contained
in the left hand side. The disjointness in (3.8.6) follows from (8.3.3) (iv).
Once (3.3.8) is proved, then (3.3.7) follows from that and (2.1.7). See the
Tproof of (8.1.5) (ii)-(iv) in the case p=0 or p»0. It only remains to show
fthat the right hand side of (3.3.6) contains the left hand side. Let o be a
G(0)-orbit contained in O,Ng(2). Then, by (3.3.3) (iv), there exists an
element w of W(X) satisfying (3.3.3) (iii a)-(iiib). Let f=kow. We must
show

(3.3.11) feHZ, I, 2),(k) mod W(G(0))-action.

Let G ¢° and D° be as in the proof of (3.3.8). Then we see, from (3.3.3)
(iv), that g®(A)Ng°(2), is decomposed into finitely many G(0);-orbits, and
hence, there exists an open, dense orbit «®. Since (3.3.2) is true in
characteristic 0, (3.3.11) is equivalent to

atc 0§,

where Of is the nilpotent orbit in g€ corresponding to k. Hence, if (3.3.11)
is not true, we must have
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aC=C_?C(O),--NlC

for some l€H(2,11,(4,2),),(k’) with k’#k and an element N; of
0. Ng*(ANg°2),Ng°?2),. But, since we already have (3.3.7), we can show
(see (3.3.10))

dlmG(O)f'Nl:dlmGC(O)lec.

Since the right hand side is equal to dim g®(2)Ng°(2),=dim g(A)Ng(2),, we
see that G(0) 7+N; is dense in g(A)Ng(2);,. But, by our assumption on o and
(3.3.3) (i), oNg(A)Ng(2); (which is contained in O,) is also open and dense
in g(A)Ng(2);. This is absurd, since N;€0, and k’#k. Hence (3.3.11) must
be true, i.e., any G(0)-orbit contained in O,Ng(4) is contained in the right
hand side of (3.3.6). Hence we get (3.3.6). This completes the proof of
(3.8.2) and hence that of (3.1.5). :

3.4. An example.

Here we consider the orbital decomposition of the 40-dimensional
irreducible reduced prehomogeneous vector space, which is classified as type
(11) in the table of Sato-Kimura [25; pp. 144-147]. See also [13; 3.3, 3.4].
In our notations in 2.1, this prehomogeneous vector space can be realized
as the pair (G(0),, g(2),), where G is a simple algebraic group of type Ej
and & is the weighted Dynkin diagram

0002000
0

(see Rubenthaler [24]). By Theorem (3.1.5) (for the case when D is a
1-dimensional torus), we know that the orbital decomposition of (G(0),, g(2).)
is ‘independent’ of the characteristic p of the algebraically closed field K
over which G is defined, provided that p+2,3,5. Below we assume that
p is positive and not equal to 2, 3 or 5. This enables us to consider the
number of points over a finite field for a given orbit. As the reader will
see, knowing such numbers is very helpful in actual calculations.

Let F, be a finite subfield of ¢ elements contained in K. Since the
weighted Dynkin diagram & is contained in H(X), (3 =the root system of
type E;), the G(0),-orbit of maximal dimension 40 can be written as o, in
the notation of (3.1.5). By Mizuno [19; Lem. 70], Zsw,(Ny)=S; (N,<0,) and
the number of F,-points of o, is given by

0n(F) =G (0)n(F )| =G Ls(Fo)| - ISLy(F)|

=q¢"— _¢¥+ (terms of lower degrees).
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Hence, using that the number of (nilpotent) elements of ¢(2),(F,) is ¢*, we
see that the number of G(0),-orbits of dimension 39 is just 1. Denote this
orbit by o,, with h,eH(Z,1I,2),. Noting that o, is contained in the
closure of o, and taking the closure relations [19; p. 453] among nilpotent
orbits in ¢ into consideration, one can easily find out a candidate for k,,
namely koid.e H(2, II, 2), with

/c:<0°(1)°1°°>eH(2, 1), .

In fact, we have
:IE = <003002> (S H(Z_'k, ﬁk)n .

By [19; Lem. 21], and Theorem (3.1.5), we see that Z;u,(N;)=S;X GL(K).
Hence we have indeed h,=Fk. Using [30; I, § 2], we also have

lon (F)|=|GLs(F))|-|SL(Fp)|(g—1) *.
Hence
l0a(F) |+ |on,(F) | =" —2¢%+ (lower degrees).

This implies that there are exactly 2 G(0),-orbits of dimension 38. Using
(3.1.5) and the closure relations mentioned above, one can show that they
are 0,,, and o,,, with
1001010 101-1110
O G
and

h22:<01(1)0010>_

(For the numbering of simple reots, we follow [3; Table 7].) In fact, we
have

}221 = (20(2)02>®(2) € H(Shzv ﬁhgl)"
and
522: <202030> € H(Ehzzy ]7’122)” .

Hence, by (3.1.5) and (2.1.9), we see that Z;u(N;, )=(S:XGL,(K))U(1)

21
(U(1)=the unipotent radical of dimension 1), and Zsq,(Nj,,) = S;* (GL,(K))%
Now we can see that

lon(FQ) | 408, (F )|+ |0g,, (Fo) | + [0n,, (F)|

=q""—2¢¥+ (lower degrees).
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Hence, there are exactly 2 orbits of dimension 37. In this way, we go
down one by one until we reach at the 0-dimensional (i.e., trivial) orbit.
See [18; (2.1.8)] for further data concerning this example. In general, if
we are given G, D and A< X(D), then, after fixing a pair (B, T), we
consider the set H(Z, IT), X W(2)/W(G(0)), which is finite. For each element
(k, w) of this set, we check if kow is contained in H(X, I, 2), or not. Thus,
after perhaps a lengthy but mechanical calculation, we can determine the
set H(X,II, 2),, or equivalently, can decompose the set of nilpotent elements
of ¢g(2) into G(0)-orbits. Moreover, by (3.1.5), we can get further informa-
tion on each such nilpotent orbit. Of course, in actual calculations, one
can appeal to various devices to shorten the above general procedure. For
example, as we have seen in the above example, the knowledge of the
polynomial N;(q) (see (3.1.6) (viii)), if available beforehand, is very helpful.
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