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Introduction

Let G be a connected reductive algebraic group defined over a finite
field F, of characteristic p, and F: G—G be the corresponding Frobenius
map. For a positive integer m, let us denote by G¥"/~, the set of F-
twisted conjugacy classes in GF". If m=1, it is just the set of conjugacy
classes of G" and we denote it simply by GF/~. We have a canonical
bijection called norm map, Npm,z:GF/~—GF" |~ by attaching to the class
of x=F™a)a™* the class of Z=a"'F(a), where z=GF, £€G"" and acG.
Let C(GF"|~) (resp. C(GT /~)) be the space of @,-valued functions on the
set G|~y (resp. GF/~) and consider the induced map N¥m,.:C(GF" [~5)
—C(G"[/~), which is an isomorphism of vector spaces. Following Digne-
Michel [8], we shall call this map “Shintani descent” from G¥" to GT.
However, notice that our definition of Shintani descent is slightly different
from the original one given in [8], where the norm map is defined as the
composition of the map z—x™ (z=G™™) and our norm map Nymp, and
Shintani descent is defined as the transpose of this modified norm map.

We are now interested in describing the Shintani descent. In the case
where m=1, N¥, (or rather its inverse map) coincides with the twisting
operator in the sense of Asai [5], and the behaviour of N¥ has been
studied extensively by him in a series of papers (see, e.g., [3], [4], [5]).

In contrast to the above situation, our main concern here lies in another
extreme case, i.e.,, m is sufficiently divisible (we say that m is sufficiently
divisible if m is a multiple of some sufficiently large fixed m, depending
only on GF). In [16], the author has described N¥=,, in connection with
almost characters of G¥ in the case of classical groups with connected
center (cf. see the last paragraph of Introduction and §4). In this paper,
we shall show that the similar result holds also for exceptional groups of
adjoint type under a mild restriction on p. In order to state our result
more precisely, we shall prepare some notations. Let G7 ™ be the semidirect
product of G with the cyclic group of order m with generator o, Wl}efne
o acts on GF" by ogo'=F(g) (9G""). For each representation 5 of G*,
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we denote by [g] the restriction of the character of 5 to G" "o (CGF™).
If m=1, [p]=[p] simply means the character of p. We may regard [4] as
an element of C(GF™/~ ) under the natural bijection GF"[~p=GF g/~ (~
in the last expression means the conjugation under G¥ ™). Now, for each
F-stable irreducible representation p of G* ™ there exists an extension o of
o to G™™. Then [¢] is unique up to an m-th root of unity multiple for
various extensions of p, and the set of all 5] for F-stable irreducible rep-
resentations p of G* ™ gives rise to a basis of C(GF"/~s).

According to Deligne-Lusztig [7], the set &(GF) of isomorphism classes
of irreducible representations of GF over @, is partitioned into a disjoint
union of subsets &(GF, {s}), where {s} runs over all the F-stable semisimple
classes in the dual group G* of G. Let {s} be an F-stable class. We denote
by C®(GF|/~) the subspace of C(G"/~) generated by all [p] corresponding
to p=&(G*,{s}). We also consider the set &(G* ™ {s}) for each F™stable
class {s} in G. If {s} is F-stable, F' acts naturally on &(G*",{s}) and we
denote by &(GF", {s})* its F-fixed point subset. For each F-stable class {s},
we denote by C“(G¥"[~y) the subspace of C(G""/~y) generated by all [4]
corresponding to pe&(GF", {s))F.

Now our main result is Theorem 3.2, which asserts the following.
Let G be an exceptional group of adjoint type. We assume ¢#—1 (mod 3)
if G is of type E;. Then for a sufficiently divisible m, the following hold :
For each F-stable class {s} in G*, there exists a natural surjection from
X(W,,7) (see 3.1 for definition) onto &(GF", {s})" and we can attach to each
pEE(GT", {s)¥ an almost character Rzp of G up to a root of unity
multiple through this map, (x,€ X(W,,7) and p—=x, is a cross section of
this map). Then N¥m,, maps CO(GF"/~y) onto C(GF/~) and
(0.1) Ninp(lpsp)=R.

o

for each peé’(GFm, {s})¥, where 5 is an extension of p to GF™ and 45 is a
root of unity depending on the choice of s and m. Here R;p is a modified
almost character obtained from R,p (see 3.1 for definition). (See Theorem
3.2 for precise statement, which involves some ambiguity and is not exactly
the same as (0.1).) We notice that the similar class function as R;p already
appears in Asai [4], where he describes the twisting operators on the space
of unipotent class functions in the case of exceptional groups, and our
situation is parallel to him.

As in the case of classical groups [16], our theorem implies the decom-
position of twisted induction Rf¢cp(z) (cf. Cor. 3.27).

Our basic tool for the proof is, as in the case of classical groups, a
kind of identity, called “Shintani descent identity”, which connects via
Shintani descent Njm,, the trace evaluation with Frobenius action of the
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twisted induction on GF and the twisted trace of the usual Harish-Chandra
induction on G*".

However, the information from this kind of identities is not enough
to determine N%¥m,, in the case of exceptional groups (in particular the
case G=E; s=1) and we need some additional information. For this, we
introduce an operator on the space C(G¥ "/~) which is described by an easy
formula and turns out to be compatible with the twisting operator on the
space C(GF/~) via the norm map if m is large enough. Hence this operator
plays the same role as twisting operators on G¥ and is regarded as the
“lift” of it to C(G*™|~), which we call the “twisting operator on G*"”.

In determining the twisting operators in the case of exceptional groups,
Asai [4] uses the fact that the twisting operator stabilizes all uniform
functions (which is easy to see for a good prime p and was proved in [5] in
general) as an additional information. By making use of our operator
together with the lifting theory by Kawanaka [12], we can prove a formula
which is a counterpart to our situation of the above fact. Then many
parts of his argument in [4] are applicable formally to our case. One more
advantage of this operator is that it enables us to involve his result itself,
not only his method, into our scheme. In fact, his result is essentially
used in treating the most complicated family in Ei.

The paper is organized as follows: In §1, we review some of known
results and formulate Shintani descent identities in a more general form
than [16]. §2 is concerned with the property of twisting operators on
C(GF"|~p). §8 is devoted to the proof of our main theorem. In §4, we
take up again the case of classical groups. In fact, the argument used to
the proof of Theorem 2.2 in [16] contains some gap. In particular, Lemma
2.17 in [16] is not enough to treat all the possible classes {s}. In this sec-
tion, we generalize Lemma 2.17 so as to be valid for a general case. Thus
we get Theorem 4.2, which is a revised form of Theorem 2.2 in [16].
The statement is the same for the case of type B, or C, and slightly
weaker for the case of type D,. In particular, if G=CO0%° the same
statement holds (cf. Remark 4.12).

The above mentioned gap in [16] was pointed out to the author by G.
Lusztig and B. Srinivasan. The idea of improvement in §4, in particular
the use of cuspidal representations of Levi subgroups instead of maximal
torus, was inspired from the discussions with F. Digne, J. Michel and B.
Srinivasan. I am very grateful to them.

Part of this work was done during my stay in Fachbereich Math-
ematik, Universitdt Essen, and Department of Mathematics, University
of Illinois at Chicago. I would like to thank them for their hospitality.

The main result of this paper was announced in [17].
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§1. Shintani descent identities

1.1. Let G be a connected reductive algebraic group defined over a
finite field F, as in Introduction. Throughout the paper, we assume that
G has a connected center. We may, and shall, assume that G has a split
F,-structure with Frobenius map F, such that FF,=F,F and that a power
of F} coincides with a power of F. Let us fix an Fi-stable Borel subgroup
B of G and an F,-stable maximal torus T contained in B. We further
assume that B and 7' are F-stable. Let G* be the dual group of G defined
over F,, and T* be a dual torus of 7 contained in G*. Let W=Ngx(T)/T
be the Weyl group of G with respect to 7 and W*=N;(T*)/T* be the
Weyl group of G* with respect to 7*. W and W* may be identified as in
[14, 8.4] so that the action of F' on W corresponds to the action of F! on
W*. For an F-stable class {s} in G*, we shall choose a representative s
of {s} in T*. Since the center of G is connected, W,={we W*|lw(s)=s} is
the Weyl group of Z;.(s) with respect to T*. Put

Zy={we W*|F(s)=w(s)}.

Then there exists a unique w,€Z; such that y=y,=wi'F: W,— W, leaves
invariant the set of simple roots of Z;.(s) determined naturally from the
simple root system of G with respect to 7' and B. Since G has the con-
nected center, we have Z,=w,W,. Let W,=W,{y> be the semidirect prod-
uct of W, with the cyclic group (> with generator y. We denote by
(Wi)ex the set of (isomorphism classes of) irreducible representations of W,
which is extendable to a representation of W,.

We recall here the definition of Deligne-Lusztig’s virtual representations
of GF. For each we W, put

X,={9gBeG|B| g 'F(g9) BwB}.

According to Lusztig [14], there exists 6, (T%F)" for each weZ, (ie., 0,
is nothing but 2, in (2.1.2) in [14]), and one can associate to it a locally
constant @Q,-sheat F o, of rank 1 on X,, where w is a representative of
w in Ng(T)Po. Let X, be the Zariski closure of X, in G/B. Then we
have an l-adic cohomology group H:(X,,,.,,) and a hypercohomology
group H'(X,,F,,,) associated with the intersection cohomology complex
on X, obtained from &,,,. Both cohomologies have natural structures of
GF-modules. According to Lusztig [14, (3.7.1)], we shall define for each
Ec(W,)& and its extension E to W,

(1.1.1) Rz=|W| "yz‘_ﬁ,s(— 1)!Tr(ry, E‘)Hﬁ(Xwoy, Frirgi 0y ,) s

120

wo¥
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which is an element of the Grothendieck group R(GF)®Q tensored by Q.

1.2. We fix s€T*. Let d be the smallest integer such that Fi(s)=s.
Then for each weZ, X,, is Fi-stable and & 4, has a natural Fs-structure,
which depends on the choice of a representative w of w. Hence the
cohomologies Hi(X,, Fye6, and H'(X,, F,e,) have structures of (G7, F'f)-
modules.

We now consider the Frobenius map F™ for a positive integer m. In
the following, in order to distinguish the F™-situation, we shall denote by
X Z@ ... objects corresponding to X, Z;, -+, defined using F™ instead
of F. Let 7, be the smallest integer such that F™ is a power of F§ and
let b=b" be the smallest integer such that F°7 is a power of F™ Let
G*™(¢$> be the semidirect product of GF ™ with the cyclic group of order b
with generator ¢, where ¢ acts on G™™ by ¢gp'=F"(g). Then, by [14,
Prop. 2.20], the following results are known. Each representation p in
&(GF™, {s}) is Fro-stable, and to each o, one can associate an extension § to
G™(¢> and a root of unity A;=@Q¥ satisfying the following properties.
Eigenvalues of (F'*)’™ on H{(X$”, F37,) have absolute values 2,¢*°7°?, where
2,=(A5)" is independent of the choice of the extension 5 of p. Moreover
p-isotypic subspace of H{(X ¢, F¢,) is Fro-stable and has a (G*", F"9)-
stable filtration each of whose successive quotients is isomorphic to 5 as
G™"(¢>-modules (With ¢ acting as 2,q'"**(F*)").

1.3. We defined in Introduction the norm map Ngm,,. For later use, we
consider here norm maps in a more general setting. Let F’ and F” be
two Frobenius maps of G such that F'F’=F"F’. We shall define a
norm map

Npyp : GF' [~ -t —> G¥'[~p,

by associating to the F” -twisted class of 2 in G¥ the F’-twisted class
of £ in G, where x=G", £=G" are related by x=F"(a)a !, 2=a ' F’(a)
for a=@G. (Recall that x and y are F’-twisted conjugate if there exists z
such that y=2z"'2F’(z). Note G/~ means the set of F’-twisted classes
in G¥, and similarly for G¥'/~ p.-1.)

Let 7, be as in 1.2 and put a=kr, for a positive integer k. Then
s (T*)* and we can find §=6<T" corresponding to s via [7, 5.2]. Let
Ws be the stabilizer of # in W. Then W, is isomorphic to W, under
W= W?*. We denote by (Wj)ox the set corresponding to (W)’ with respect
to W™ =Wy,

Let us consider the induced representation IndShe(d). It is decomposed
as a GF*X H(g*)-module,
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IndgFa(0)= & @),
EeWy
where H(q*) is the Hecke algebra of W, and E(q%) is the irreducible rep-
resentation of H(q®) corresponding to F, and p% is an irreducible constituent
corresponding to E. Then as in [14, 3.6], for each E< (W), p% can be
extended canonically to a G"*¢<F™y-module, which we denote by . Here
GF*(F™y is the semidirect product of G¥* with the cyclic group <™ with
generator ™.
The following result is a direct consequence of Lusztig [14, Th. 3.8].

1.4. PROPOSITION. Let m and a=kr, be as before. Assume x=G™ and
yeG™" are corresponding each other via the norm map Nempa:GF|~p-m .
—GF"|~pa. Then for each E<(Wy)l,

§<p, RG> pm(25)* Tr ((yp") 7, p)=Tr (7' F™, 55°) ,
where p runs over all the elements in E(GT™, {s)).

PROOF. By [14, Prop. 2.20], for each w=wz<sZ™,
(1.4.1) S(=1)'Tr (yF*)*, H(X$?, F33,)

=3(=-1)" X Lo, M, rm(45) ¢ Tr ((yg*) 7, p),
v peEWGF T (s)

where M} is the (G*", F*)-module H}(X{™, F,). Using the arguments in

the proof of Theorem 3.8, in particular (3.8.1)~(3.8.3), of [14], we see that

the left hand side of (1.4.1) is equal to

(142) 3 qtwooskonrp (g0) ¥ Tr(z'F™, 5%) Tr (T, E(g%),
VEWs Ee(w g)éx

where T, (y=7"",ve W,) is a canonical basis in the extended Hecke algebra
H(g®) associated with the extended Coxeter group W, and E(¢%) is an
extension of E(g%) to H(g%)-module. P,, are the Kazhdan-Lusztig polynomials
with respect to W,, and I(w) (resp. l(z)) is the length function of W (resp.
Ws). .

On the other hand, using (3.8.16) in [14], the right hand side of (1.4.1)
turns out to be

(1.45) . = q(z(woz)-i(z:v)a/z » <P; R%'L)>GF"‘

0€EGF™ (s)) EE(W g)éx

XA Tr (35 Pyl(%) T, B (@)
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Now the proposition follows from the orthogonality relations of Tr (T},
E(g") and of P,.(¢%.

Several results can be obtained from this proposition. However, before
doing it, we note an easy lemma.

1.5. LEMMA. Let F' and F” be two Frobenius maps of G as before.
Let ¢:G¥|~p—GF'|~p 1 be a bijection defined by z—zx™' (x€G™) and
similarly for G¥'|~p. Then the following diagram is commutative.

1.6. As in Introduction, for each representation s of G¥ =G (o>, we
denote by [5] the restriction of the character to G"™¢ and regard it asan
element of C(GF" |~ p). However, if there is no fear of confusion, some-
times we omit [ ] and express it as p.

Let us take an integer m large enough so that m is a multiple of 7,
and that all the eigenvalues of F™ on HY(X$’, F3% ) are of the form ¢~
Let 6=0<(T*")" be the character cgrresponding to s T, and let o5
be the irreducible constituent of Ind$im(d) corresponding to E, 5% be its
extension to G*"=G*"<(s) as in 1.3 with a=m. Then

1.7. COROLLARY. Let m be sufficiently large as in 1.6. Then
Nin p(p5°) =R .

PROOF. Let z—2 be in correspondence each other via the norm map
Nemjp: GP|~—GF" [~ (xeGF,3€GF™"). We shall apply Proposition 1.4
with m=1, a=m. Then taking Lemma 1.5 into account, we have

T4, B o#Tr (@, 0) =T (30, 65”) ,

where p runs over all the elements in &(G7,{s}). This implies the corol-
lary.

1.8. REMARK. This corollary, together with [14, Cor. 4.24], was used to
show (2.9.1) in [16] although it was not explicit there. ,

1.9. We now consider the case where F' is a power of F‘é Hénce s T*F
and y™ is trivial for any m. Moreover, all the elements in &(G™™,{s})
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are F-stable for any m. We fix an extension s to G¥" for each o in
E(GT, {s}). According to 1.2, one can attach to each g, a root of unity
A5 such that (25)™=2,. Let us define a linear map

£:COGT |~ p) —> COG™" [~ )
by E[ﬁ]:lp[ﬁ], and by extending linearly to the whole space. Put
(1.9.1) BE'=3p, B emp (ER(GET)RQ),

where p runs over all the elements in &(G*",{s}). Note the construction
in 1.2 shows that (%) '[] is independent of the choice of extensions 5 of p.
Hence % '(B$)eC®(GF ™|~z is independent of the choice of extensions B
for each p. Now we have the following.

1.10. COROLLARY. Assume F' is a power of F§. Let m be an arbitrary
positive integer. Then for each E€W,,

Nimpo# (RE”) =p.

PROOF. Let x—2% be in correspondence each other via the norm map
Ngm/p. Applying Proposition 1.4 (with a=1), we have

340, BE?) gon 2 Tr ((80) %, ) =T (2™ o),

where p runs over all the elements in &(G* ™ {sh).

Let p* be the dual representation of p. Then p belongs to &(GF", {s})
if and only if p* belongs to &(G*",{s }}). If @ is the character of T% cor-
responding to s€ T*¥, 67! corresponds to s}, and IndS5(67Y) is the dual space
to Indgﬁ(ﬁ). Both irreducible constituents are parametrized by W, = W' -1
and pf=pg., where E*= W'-1 is the character corresponding to Ee W,.
Now, using the Poincaré duality pairing,

HI(XS, F,) x B (X0, F ) — Qu—1w),

which is (G*", F)-equivariant, we see that the filtration of HY(X{”, F¢ )
given in [14, Prop. 2.20] is compatible with that of the dual space
H* - {(XG FGm 1) and that 2,,=21,". Hence, if we choose an extension 5*
of p* as the dual representation of g, we have 2%.=(23)7"

Moreover Theorem 3.8 and Lemma 6.11 in [14] combined with the
Poincaré duality as above implies that <o, R§”> pm=<{p*, REY> .pm. Now the
corollary follows easily from these facts.

1.11. We shall review here about the twisted induction. Let X be the
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set of roots of G with respect to 7T, IT be the set of simple roots with
respect to B, and I* be the set of positive roots. For a subset J of 17,
let P,=L,U, be the parabolic subgroup of G of type J containing B,
where L, is the Levi subgroup of P, containing 7" and U, is the unipotent
radical of P,. We denote by W, the Weyl subgroup of W corresponding
to L;, which is generated by simple reflections belonging to J. Put L=L,.
For a we W such that Fw(J)=J, choose a representative w in Ng(T)F°.
Then Faw : g—F(wgw™) may be regarded as a Frobenius map of L with
respect to some F,-structure commuting with F,. Fix we W as above and
consider the variety

(111.1) S={g€Glg F(g)€ Fb UNY(U;NF (@ Uyi™).

Then GFXLF® acts on S naturally and we have an induced action of
GF x L™ on HiS, Q,). Following Lusztig [13], we associate a virtual G¥-
module RZ.,(7) to an irreducible LF¥-module = by

Ray(m) =3 (—1)I(HS, Q) @) "

:izo
Hence, extending linearly, we get a homomorphism
R(L;(w) . Q(pr) —> Q(GF) .

We denote also by RY.,, the corresponding linear map from C(L7?/~) to
C(G*|~). If we take an Fw-stable class {s} in L*, the class {s} in G* is
F-stable and it is known that R$.,, induces a map from C®(LF*/~) to
C(S)(GF/N).

We now consider the twisted version of RY., by a Frobenius map as
in [16, 1.8]. However, for later use in §4, we consider here in a more
general situation. Let F’ and F” be two commuting Frobenius maps as
before and assume that F’ (resp. F'”) stabilizes T and B, respectively.
Assume given we W and JCIT such that F’w(J)=J and that F”(J)=J.
Take a representative we Ng(T)"™ of w. Then F’w may be regarded as a
Frobenius map on L=L, commuting with another Frobenius map F” on
L. Let us consider the variety S as in (1.11.1) with respect to F’ and w.
Now F” acts naturally on S and induces an action (F”)* on HYS)=
HYS,Q,). Let = be an irreducible representation of L% stable by F”.
Let ¢” be the restriction of F” on L*'* and consider an extension # to
LF%¢¢"> of =. Then an endomorphism (F")*=(F")*®¢”™* on H(S)Q#
stabilizes the subspace (Hi(S)®#):"®. Put for each x=G¥,

(1.11.2) RED@ @)= (=1 Tr (F")*(7)*, H(S)@m)™ ™.
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This definition depends only on the restriction of # to L¥%¢”~* and the
value depends only on F” '-twisted class of . So, extending linearly, we
can define a linear map

R 1 C(LT® |~ puos) —> C(GT' [~ pu-1)

which also preserves the spaces corresponding to the class {s} in L* which
is F’w and F'”-stable.

1.12. We now define a linear map a.,, analogous to [16, 1.7]. Let = be
an irreducible representation of L which is F’w-stable. Let ¢’w be the
restriction of F’#w on L*, and # be an extension of = to the semidirect
product L¥'¢c’w)>. We denote by V the representation space of #. We lift
7 to a representation of P¥ in a natural way. Let & be the space of all
functions f:G™—V with G*-module structure by (gf)(x)=f(xg), g, x=G*,
feP. Let L. be the subspace of P defined by

={feP|f(pg)==(p)f(g) for peP™, geG™}.

Thus L. is a G™-submodule of P realizing Ind%r(x). Since F'w(J)=J,
we have w(J)C/II. Thus we can define a linear map 7. ,: P—P by

el N@) = i B S ya).

| wJI yEU{;:’,
Define F’: P—P by F/'(f)(x)=f(F'x)) and #(c’w) : P— L by #(c’w)(f)(x)
=#'w)(f(x)), (f€P, x=G"). Then as in [16, 1.7], it is checked that a
linear map #(o’W)F 7, P— P leaves P, invariant. Now let us define a
map Qg : C(LY|~ py) = C(GT |~ ) by

apw(#) (&) =Tr @70 W F e, Pr)  (REGT)

for each [#]leC(L™|~p,) and extending it linearly to the whole space.
Note @z, does not depend on the choice of a representative w of w. As in
[16, Prop. 1.9], we have the following commutative diagram, which is
called a Shintani descent identity. The proof is similar to [3], [8] and [14].
Note that a scalar multiplication ¢™ in (1.8.1) in [16] is unnecessary.

1.13. PROPOSITION (Shintani descent identity). Let F'w(J)=J and F”(J)=J.
Then the following diagram is commutative. ‘

) Niop ,
C(G"|~p) —> C(GT'|~p~)
(1.13.1) arw]  Npn. | BED

C(LF |~ prgp) —> C(LF"® [~ pu-1)
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Moreover, for a class {s} in L* which is stable by both of F” and F'w,
RED, (resp. apw) maps CO(LT |~ p-1) onto C(GT' [~ 1) (resp. CO(LT" [~ pryy)
onto C®(GF' |~ ), respectively.

1.14. Returning to our previous setting, we consider the case where F’'=F,

”=F™ for a sufficiently large m. Hence Proposition 1.13 is reduced to
Proposition 1.9 in [16]. We review here a more precise description of az.y
in terms of Hecke algebras. Let Ly be the Levi subgroup corresponding
to KcII and assume that there exists an irreducible cuspidal representa-

tion §=6 of LE™. Put
Wy=twe W|wK=K, 5=}

By [14, 8.5], W; turns out to be a Coxeter group with the set of generators
S;C Ws. Let M be the F™-stable subgroup of Ng(Lg) generated by Lx and
weE W, Then 6 can be extended to a representation of M by means of
[10, 6.4], which we denote by 4.

We also define for each yeW;, T,: P;—P;s by

Tv = ESJm)(Qy)mlgquy)mlzg(?'/)Ta, ¥

where y—¢{™=+1 is a linear character of W; and q,=17,¢*®, s runs through
the elements in a reduced expression of y in W; and A:S;—Z* is a func-
tion which takes constant value under Wj-conjugate. T, is independent of
the choice of a representative y of y. Then T, (yW;) gives rise to a
basis of the Hecke algebra H(¢q™) =End GFmIndig'nl(a) over @, with relations

ToTw =Ty it l(ww’)=1(w)+Iw’)
(Ts+ I)(Ts— ™) =0 for seS;

where [ is the length function on W; with respect to S;. We shall define
a set

Zy={we W|Fw(K)=K, "™§=4}.

Then W; acts on Z; from the right and there exists a unique w,= W such
that Z;=w,W; and that y;=Fw,: W;— W; sends the set of positive roots
with respect to S; determined naturally from X*, to 2* ([16, 1.10]).

Fw, can be regarded as a Frobenius map on M. We denote by ow,
the restriction of Fw, on M*¥ ™. Then § can be extended to a representation
of MF"<(sw,>, which we denote also by 4.

More generally, we consider the Levi subgroup L, (JCII) and take
we W such that Fw(J)=J. Let us take m large enough so that (Fw)™=
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F™ Let z=x" be an irreducible representation of LZ" such that FPr=r.
Then there exists a Levi subgroup Lx (KCJCIT) and an irreducible cus-
pidal representation 6 of LE" such that z is isomorphic to g, Where E’ is
an irreducible representation of W;=W;N\W,, and =z is an irreducible
constituent corresponding to E” of the representation obtained by inducing
up 6 from (PxNL,)"™ to LI". Since z is Fi-stable, there exists w’e W,
such that *'§=~5. Hence, ww’Z; and we can express ww’ as ww’ =w,y’
for some y'e W;. If we define Z; similar to Z; by replacing W by W,, F
by Fw, we see that w'eZ;. Hence w'=Wjy”, where y” < Wj; and w; is
the similar element as w, for Z;. (We put yj=Fww]: W;— W; the similar
automorphism as 7y, for W;) Thus w is written as w=w,yw;™' for some
ye W, Note 7y : W;— W, leaves W; invariant and the restriction of 7y
on W; coincides with 7. Let W; (resp. W;) be the semidirect product of
W; with <rs;> (resp. W; with <{r;>). The Hecke algebra H(q™) can be ex-
tended to an algebra H(¢q™ with basis T, (weW;) as in [14, 3.3]. Let
H'(¢g™ be the subalgebra of H(q™) generated by T, (z€ Wj3) and by H’'(q™)
the extended algebra corresponding to W; As E’'e(Wj)" is yj-stable, we
can find an extension E’ to Wj-module. We denote by E’(¢q™) the corre-
sponding H’(¢™)-module.

Let (W;)ex be the set of isomorphism classes of irreducible Ws;-modules
over @ which is extendable to a Ws-module over Q. Take E<(W;)., and
let £ be an extension to a Wjs;module over Q. We denote by E(q™) the
irreducible H(g™)-module corresponding to E. Then corresponding to E,
E(¢g™ can be extended to an H(¢™)-module, which we denote by E(¢™). For
these E(¢g™) and E’(¢g™), put

V(E"'l,)pj =H0mu'(qm)(l*7'(q"‘), E'(qm)) .

We shall define an endomorphism 7™ : VG— Vs by 75(f) =Ty ofo T,
where feV§:, and y=rs; 7' =75

Let o be an irreducible constituent of Indigz(ﬁ) corresponding to
Es (W5 Then by the same argument as in [14, 3.6], one can find an
extension g4 of p%® to GF™, which is determined uniquely by the choice
of an extension § of 6 and by the choice of E of E.

Assume m is large enough so that

(1.14.1) F™ is a power of F, and w, F(w,)F?*(w,) --- F™ '(w,)=1.
Now the following Lemma is just the reformulation of Lemma 1.15 in [16].

1.15. LEMMA. Let m be as in (1.14.1). For each Fw-stable irreducible
representation n$’ of L™, let w=wyw;" and 75 be as in 1.13. Then
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apu (7)) =6 (q,) g 5 Tr (5P, Ve8],
EE(Wa)eX

where y—e™ is a certain character of Wi.

§2. Twisting operators

As in Introduction, we shall define a “lift” of twisting operators to the
space C(GF"|~y) and prove some of their properties. This provides us a
more precise information about the map N%m,r, which seems to be difficult
to obtain directly from Shintani descent identities as in (1.13.1).

2.1. We first recall the definition of the twisting operators due to Kawanaka
[12]. For a positive integer =, a map t,=(t)" : GF/~—>G¥[~ is defined by
attaching to the conjugacy class of # in G* the class of bxb™! in G¥, where
be(@ is given by xz"=b"'F(b). t. is a bijection on the set G*/~ and the
induced map t¥: C(G¥/~)—C(GF|~) is called the twisting operator. (In fact,
this definition agrees with the definition given in Asai [4, 3.2] only in the
case F' is of split type. However, in practice, we use this later in the
split case only, and so, we adopt this definition here.) Let us fix an integer
m>0 and consider GF"/~p We now define, for each integer r>0, a map
=1 G |~ p—GF" [~ as follows: For yeGF", take a=G such that
y=a 'F(a) and put y'=F™(a"")F(a). Then the assignment y—y’ induces a
well-defined map =, on G*" )/~ In fact, ¥’ is independent of the choice
of a, and we can check y'€G*" as follows. Put x=F™(a)a™’. Since y=G*",
£=Npmr(y) €GF and

(x—l)r:x»lFm(x—l) e Fm(r—l)(xwl):aFmr(a—l) .
Thus
(2.1.1) y=F" (¢ )F(a)=a'x "F(a).
Hence
Fm(yl):Fm(a—l)w—rFm+l(a)
=q 'z7'x "2 F(a) (since F™(a)=2a, x=GF)
:y, .
Clearly this correspondence is compatible with F-twisted conjugation.
Let
¥ 1 C(GT" [~ 5) —> C(G""|~p)
be the induced map. We shall call ¥ the twisting operator on C(G* ™|~ ).
We note that 7z, is not necessarily bijective in general. However as the
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next lemma shows, r, turns out to be bijective for a sufficiently large m.

2.2. LEMMA. Assume m is large enough so that, for each x in GF, there
exists beGT" such that x=F((b)b™>. Then the following diagram is com-
mutative.

T, n
Gpm/’\-’p 5 GF /NF
NF'm/FT ¢ TNF"L/F

GF|~ «—— GFj~
In particular, . 1s a bijection.

PROOF. In the following, we shall often use a conventional expression
such as Ngpm,p(x), t,.(2), -+, (x=G) to indicate the value at the class con-
taining x under the map Ngymp,t,, -+, by abuse of notation.

For x=GF, choose beGF™ such that F(b)b'=x". We can write also
x=F™(a)a™ for a=qG.

Put
t=a"'F(a)=Npmp(z)€G"" .
Then
t7 (x)=0b 'xb
=F™(ba)(b'a)!  (since beGF").
Hence

Nypmpot: (@)= (b7'a) ' F(b7'a)
=a 2 "F(a)
=F™(a™")F(a) (by (2.1.1))
=7.(%)
=7,oNpm p(x).
This proves the lemma.

The following lemma gives an alternative description of z, and is’used
to apply the lifting theory.

2.3. LEMMA. Assume m s large enough so that m s a multiple of |G”|.
(i) There exists a natural bijection B:GF™ ‘[~ p—aGF™ [~ pn such
that for each F-twisted class C of GF™ ', CNGF=B(C)NGF # Q.
(ii) The following diagram s commutative.
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T,

GFm/NF GFm/NF

NF"‘IF . NFmr—IIFm

GF [~ 1 GF [~ Npmr-1p GFmT—-l/NF Gpmr-'x/NFm.

rm
G /NF—(mr—l)

In particular, . is a bijection.

PROOF. Let ¢ be the restriction of F on GF™™'. Since m is a
multiple of |GF|, the order of ¢’ is prime to |G¥|. Hence by a lemma of
Glauberman [9] (see also Kawanaka [12, II, Lemma 2.1.6]), for each F-
twisted class C in GF™™!, CNGF is non-empty and consists of a single
conjugacy class in GF. Moreover C—CNGF gives a bijection 8,: GF™ [~y
—>GF|~.

On the other hand, we note that the restriction of F™ on GF™ ' is
equal to (¢/)™ and the fixed point subgroup of GF™ ' by (¢’)™ coincides
with G*. Since the order of (¢’)™ is prime to |GF|, again we can apply
[9] and we get a bijection ﬁg:GFmr'l/Npm—*GF/N satisfying the similar
properties. Then the bijection B=p8;'8,:G ™ "'/~ p—GF™ '/~ n satisfies
the assertion of (i).

Next we show (ii). Take x=GF and put x=F™(a)a"* for some a<G.
Put

#=a""F(a)=Nzm (z) =G .

Then by definition, 7z.(Z)=F™(a")F(a). If we put b=F(a), then (%)=
F™Yp1b. Hence

Npmr-1,pmoz (£)=bF™(b™")
=F(a)F™*(a™!)
=F(z™") (since x=F™(a)a™?)
=g! (since x=G”).
Since #'eG”, the F™-twisted class containing z~! in GF™ ' is mapped by

B to the F-twisted class containing x~! in GF™'. Thus B(z)=2"". Now
put z'=c¢ 'F(¢) for c€G. Then

Nowr-1, @) =ca ' Fx™) -« F™ (™)™
=cx ™ *¢! (since x7'eGF)

1

=cxc” (since z™=1)

=cF(c™).
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Hence

tioN pir-1, (@) =F(c)e=w .
This proves (ii).

2.4. REMARK. We assume that m satisfies both assumptions in Lemma
2.2 and Lemma 2.3, and consider the case r=1. Combining Lemma 2.2 and
Lemma 2.3, we have the following commutative diagram.

NF"‘/F

F FHL X3

G|~ ———G" [~ p=—=G" /’VF—(m—z)

NF""'/Fl / Npm-1,pm
Gpm_I/NF _ GFm_]/"’F’"

(Compare this with Lemma 2.1.1 in Asai [5], where the similar formula is
proved under a different assumption on m.)

2.5. Asai used Kawanaka’'s lifting theory [12] to obtain several properties
concerning twisted operators. In our situation, the lifting theory again
provides a powerful tool. However Glauberman’s result [9] is already
enough for our purpose. So we shall recall here his result. Let A be a
finite group with an automorphism ¢: A—A. We assume that the order
of ¢ is prime to |4,], where A, is the fixed point subgroup of A by o,
(cf. Kawanaka [12, II, 3.1]). Let A<s> be the semidirect product of A
with the cyclic group generated by . The following result is a part of
his more general theorem.

2.6. THEOREM (Glauberman [9], see also Isaacs [11, Th. 13.6]).

(i) For each o-twisted class C of A, CNA, consists of a single con-
jugacy class. The map C—CNA, gives a bijection N,: Al~,—A,/~.

(i) The lifting exists with respect to the map N,, i.e., the following
holds: For each o-stable irreducible representation p of A, let § be an ex-
tension to Als>. Then there exists an irreducible representation p, of A,
such that

TI‘ (xa, ﬁ)zacﬁTr (N{](j)l Po)
for each x€ A, where % is the o-twisted class in A contaiming x, e==*1

depends only on p, and {; s an m-th root of unity depending on the ex-
tension 5 of p. The correspondence p—p, gives a bijection (A),(A4,)".

2.7. From now on until 2.11, we only consider the case where F is of
split type and s T*F. Hence 7, in 1.2 is equal to 1 and y acts trivially
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on W,
We assume m is large enough so that

(i) for each z=GF, there exists beGF" such that x=F(®b)b™",
(2.7.1) (ii) m is a multiple of |G|,
(iii) A7=1 for each peG~.

Let Ng:GF™ [~ m—GF[~ be the map defined by Ne=t:oNphnr-1,,087%,
(B as in Lemma 2.3). As was mentioned in the proof of Lemma 2.3, the
fixed point subgroup of GF™ ' by F™ coincides with G¥ and the restriction
of F™ on GF™ ! has order prime to |G¥| by our assumption (2.7.1). Now it
is checked that Ng;=(oN,, where N, is the map in Theorem 2.6 with ¢ the
restriction of F™ to GF™ ' and ¢ is as in Lemma 1.5. Thus, thanks to
Theorem 2.6, the lifting exists in this case with respect to the map Ng.

Let 6,=T* and 6TF™ ', 6: F-stable, be the characters corresponding
to seT* via [7, 5.2], respectively. Then N¥mr-1,.(0)=6, Let Py,=
Indgﬁ(ﬁo) and let @a:Indgﬂ;:i(ﬁ). F' acts naturally on &, and we can
regard P, as an GT™ '((¢’)™>-module Py, (a’:FIGFm:-~1). It is easy to
check that '

(2.7.2) NE(Lo))=[Po],

where N&: C(GF/~)—C(GF™ |~ pn) is the induced map of N;. Since Wi,
=W,=W,, all the irreducible constituents of %, are F™-stable. Let  be
a canonical extension of p in %Py to GF™ ¢ (¢))™> as in [14, 3.6]. Then
(2.7.2) implies that e=1, {;=1 (the corresponding factors in Theorem 2.6
for Ng) for each p in &, and that NF gives a one-one correspondence be-
tween irreducible constituents of P, and P, Let p§" " (resp. o) be the
irreducible constituent of %, (resp. &,;) corresponding to Ee Wi=Ws,
and %" be the canonical extension of e to GF™ "'((¢’)™) as before.
We have the following proposition.

2.8. PROPOSITION. Let m be as in (2.7.1) and we assume that F is of
split type and s€ T*F. Assume that

2.8.1) NH ) = pgr—»
for each E€ W;. Then for each R{ in (1.9.1), we have
troE™ N RYV) =5 (RY”).

PROOF. Take y=G*" and put Yy=Ngmr-1,pm(y). By Lemma 15, y'=
Npmpmr-1(y7"). Now by applying Proposition 1.4 to the map Ngm pmr-1
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(with a=mr—1), we have

(2.8.2) = <o, R e (A5)™ T Tr (yo, p)=Tr (y. '™, 537 7°) .

p€EGF™ (s}

On the other hand, if we apply Proposition 1.4 to the map Ngm,p,
(2.8.3) > <p, RE?> ,pm a3 Tr ((20) 7, p)=Tr (x77, o) ,

p=EGF™ (s}

where xGF and £=Nm,z(z)eGF". Now replacing s by s and passing
to the dual representation as in the proof of Corollary 1.10, we have

(2.8.4) > <p, R§? ,pm(25) 7 Tr (%0, 5) =Tr (2, o) .

pEEGF™ (s}

Put y=r7,.(%). By Lemma 2.3, x=Ng(y,). Then by (2.8.1),

(2.8.5) Tr (z, p¥°) =Tr (y,.F'™, 657 °7) .

Then, by (2.8.2), (2.8.4) and (2.8.5), we have
FURE) (80) =5 H(RG) (. (20) -

This proves the proposition.

The following lemma is due to Asai [2].

2.9. LEMMA (Asai [2]). Put r=1 and let Ng=t,°oN mr-1,, be the map as

before. We assume the same condition as im 2.8. Then for each Ee W,
_ t¥(oP) =4 (RY),

where t:C(GF|~)—>C(GF|~) 15 a linear map defined by [pl—2lp] for each

osGr.

PROOF. Take x=GF and put 2=Npm-1,z(x). We shall apply Proposi-
tion 1.4 to the map Ny rm-t. Then, using Lemma 1.5, we have

3 <o, R¥  p(2,)" ' Tr (x, p) =Tr (F, FEF V).
0= €GF, 151
By our assumption, (1,)™'=2,'. Moreover, since Ng=%,°N n-1,,, we have
Ny (2)=t,(x). Thus condition (2.8.1) implies that
Tr (2F, 65 2)=Tr (¢,(2), p¥) =tF (%) (x) .
So, we have
$TRP =1¥(o%) .

2.10. COROLLARY. Let the assumptions be as in 2.8 (with r=1). Then
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for each E€ W,
N po3m H(BE°) =4 (RP) .
PROOF.
Nikn,pofm (RG)=Nfmport (§'RE®)  (by Prop. 2.8)
=t¥oNkn,,(37'B¢”)  (by Lemma 2.2)
=1¥(o%) (by Cor. 1.10)
=4"7RY. (by Lemma 2.9).

2.11. REMARKS. (i) In the case where G is almost simple and s=1,
Asai [4, Lemma 3.2.4] has showed that (2.8.1) holds for E€ W~ whenever
E is not an exceptional character of type E; or E; In the case of excep-
tional characters, it remains a possibility that N& maps p%) (resp. p%)) to
ﬁ%';"” (resp. p‘g’;"”), respectively, where E, and E; are exceptional characters
in W (of type E, or Ey). However, the above argument shows that, even

in this case, Proposition 2.8 holds in a weaker form, i.e,
HTTUBW)=3REY),  {,5)=1{1,2),

and so accordingly, Lemma 2.9 and Corollary 2.10 hold in a similar form
as above.

(ii) Asai ([4]) uses the property that R’ is t¥-invariant, to determine
the twisting operators t¥ in the case of exceptional groups, under the as-
sumption that p is good. After that, in Theorem 2.4.1 (ii) in [5], he has
proved this property without restriction on p. Then, using Corollary 1.7
and Lemma 2.2, we see that g% is fixed by ¥ if F is of split type.
However, on the contrary, in the case where F is split and se T*F, we can
prove directly that ¥ fixes g&. This, together with Corollary 1.7 and
Lemma 2.2, gives an alternative proof of Asai’s result, which is simpler
in a sense that our proof proceeds only in a framework of principal series
representations.

2.12, Before closing section 2, we consider here a certain compatibility of
norm map Nym,» and the restriction of scalars qun,pq. For later use in
§4, we consider again two Frobenius maps F’ and F” on G as in 1.38.
We assume that G is a product of = copies of G,,

G=G,X -+ X@,
such that
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F,(Gi):Gi+1
F"(G)=G;

Then F'" stabilizes G, and the map

weZirZ).

Xy —> x:(wl) F/(xl); Ty F,(T_D(xl))

gives an isomorphism of two groups, GI'" and G¥'. Since this map is com-
patible with F'”-action, we have a natural bijection

G~ pet 2 G gt

Next, consider the injection G{'<-G™ given by x,—(x,, 1,-+--,1). This map
induces a map

"G [~ e —> G~

In fact, take z, and y, in GY’, which is F'"-twisted conjugate in GI’. So,
there exists z,=G{" such that y,=z7'%,F'"(z). Put z=(z,1,---,1), y=
(y, 1,-++,1) and z2=(z, F'(21), -+, F’"P(2;)). Then 2G*" and we have y=
2 'xF’(z). Hence # and y are F’-twisted conjugate and so f” is well-
defined. Now, we have the following lemma.

2.13. LEMMA. Let the notations be as in 2.12.
(i) The following diagram is commutative. In particular, f” is a
bijection.

4

GF [~ gt ——> GF' [~ g

Neapr | P | Neie.

G~ pr ——> G"[~p

(ii) " Let (f)*: CG"[~p-1)=CGI [~p-1) and (f")*: C(G"|~p)—
C(G¥'|~pr) be the induced maps of f' and f”, respectively. Then for
each F' and F’-stable class {s} in G*, there ewists an F' and F”-stable
class {s)} in G¥ satisfying the followings.

(2.13.1) (f)* 1 COGT |~ p-1) = COP(GT [~ pm1),
(2.13.2) (f")*: COG™ |~ p) =5 COV(GT [~ pr).

Moreover, (s, F'(s)), -, F'"7P(s,) 18 conjugate to s in G*.

PROOF. First consider (i). It is enough to show the commutativity
of the diagram. Take x,€GF” and put x,=F"(a)a;* for a,G,. Then

Npopr(@)=8=a7'F" (a,) .
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Now, if we put a=(a, F'(a), -+, F'" P(a,))€G, we have

a/_lFl(a):(ily 1’ ) 1) :f”(ﬁl) .
Thus

Nehpof"(@)=F"(a)a™ = (@, F'(x,), -+, F'77P(X)) =1"(2) .

This proves (i).

Next consider (ii). Choose s’€{s} in (G*)F'. Then via (G*)™ =(G¥HT", s’
is written as s'=(s, F'(s), -+, F'""(s,)) for some s,=(G¥)F". Since {s} is
F”-stable, the class {s;} in G¥ is also F”-stable. Then (2.13.1) is clear.
(2.13.2) follows from the fact that the map G*—G¥ corresponding to the
embedding G,&G given by xz,— (%, 1,--+,1) is just the projection to the first
factor, and that s’ is mapped to s, under the above map G*—G¥.

2.14. We now consider the variant of Lemma 2.13, i.e., the case where
F” also permutes the factors. We only consider the case r=2. So, we
consider two Frobenius maps F’ and F” of G as before. Here we assume
further that F'F” is also a Frobenius map on G. Let G=G,X G, be two
copies of (7, and assume that

F'(G) :Gi+1

e Z2Z) .
F” (Gi) :Gi+1

Then F'F” stabilizes G, and is regarded as a Frobenius map of G,. Now,
as before, GF? is isomorphic to G*' via x,—~x=(x, F'(x), (€, =GF?). Then
it is easily checked that under this isomorphism, (F’'F”) '-twisted conjugacy

classes of GI'® is mapped to the F” '-twisted conjugacy classes of GF'.
Hence we have a natural bijection

2 .
S G  ~ppyt S G [~ pmt

Similarly, using GF*~GF’, we have a natural bijection f” which is defined
as above replacing F’ by F”. Now we have the following lemma.

2.15. LEMMA. Let the notations be as in 2.14.
(i) The following diagram is commutative.

. Np.prpe e S’ P
GY'¥'[~pe Gi" [~y —G [~

|| [N
NF//leIFI/

GIF s —— s G e — > G

4
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(The identity on the left hand side follows from the fact that the restric-
tion of F’* on G¥'F" coincides with the restriction of F”72 on GF'F")

(1) Let (f)*: C(GF |~ pr-1)SC(GF? |~ g prr-1) be the induced map of f’,
and (f")* be the induced map of f” defined similarly as above replacing
F’' by F”. Then for each F’' and F”-stable class {s} in G* there exists
an F’? and F'F”-stable (hence F"*-stable) class {s;} in G¥ such that (s,
F'(s)) and (s, F”(s;)) are both conjugate to s in G* and satisfies the follow-
wng relations.

(2.15.1) (F/)* 1 CO(GF [~ pum1) 225 COP(GE ™~ cpny),

(2.15.2) (f")* : COGF" |~ pi-1) =5 CP(GF [~ pup) .
PROOF. First consider (i). Let us take 2 GF'F" and put

(2.15.3) t=a'F™a)=F"(B)™', a,BEG;.

Then
Yy=Nzlpyp2(2)=F'F"(a)a™'€Gf”,

2=Npapp(8)=B'F'F"(B)eGI”,
and
=, F'(y)ec”

(@)=, F"(2)eG"".

It is enough to show that Ng,r maps the class of f'(y) to the class of
f7(z). Now put c¢=(c, ¢;) G, where

c=aF"B)=F"a)BcG, (by (2.15.8))

e.=F'(a)F"(B)€G,.
Then
F(c)e'=(F"(c)), F" (e)(ci?, ¢3Y)

— (F”F’(Q)F”Z(ﬂ), F”F’Z(CY)F”(‘B))
% (F”z(,B")a'l, F”(‘B—l)F/(a—l))
=y, F'(y)=f'"(y) .

Hence Ngypof’(y) is represented by ¢ 'F’(c). On the other hand, the
similar computation as above using (2.15.3) shows that

cUF(e)=(2, F"(2))=f"(2).

Hence we get the desired result.
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Next consider (ii). Let {s} be an F’ and F”-stable class in G*. We
can find s’<{s} such that s'=G*"'. Since G*F' = (G¥F?, we can find si€
(G¥)F* such that s’=(s), F'(s1). Since {s} is F'”-stable, the class {s;} in G¥
is F'F”-stable. For these representatives, (2.15.1) clearly holds. On the
other hand, since {s;} is also F”%stable, we can find s7€{s}} such that
s/ e (GHF*. Since {s}} is F”F’ '-stable, (s}, F'(s))~ (s}, F7(s))~(s7, F"(s7))
(conjugate in G*). Thus s”=(s{, F"(s{))eG*"" is conjugate to s in G*.
Using these representatives we get (2.15.2). This proves (ii).

§3. The main result

3.1. Let G be as in 1.1 and let {s} be an F-stable class in G*. We shall
choose a representative s in T*. Then W,, y: W,— W, are defined as in 1.1.
Now, according to [14, Chap. 4], two parameter sets X(W,7r), X(W,7)
concerning with &(GF,{s}) and the pairing {,}: X(W,, 7) X X(W.,7)—Q, can
be defined. X(W,7) is a finite set and X(W,,7) is an infinite set with a
free M-action such that the orbit space of X(W,, y) by M has the same
cardinality as X(W,,7), where M is the group of all roots of unity in Qr.
In the fundamental case where y acts trivially on W, these two sets are
described as follows: X(W,,7)=X(W,7y)XM and X(W,,r) is decomposed
into a disjoint union of subsets called families, where each family <& has
the form M, for a certain finite group I". Here the set M, is defined
for each finite group I” as the set of pairs (y,¢) such that yeI', s=Zr(y)”
modulo the conjugation by I" on it. Moreover, in this case, the pairing as
above are essentially given by the pairing {,}: X(W,, r)x X(W,, 7)—>Q,,
which is defined for (x,0)€F, (y,7)=F’ as follows.

(3.1.1) {(z, 0), (¥, 7)}
= 1Zr@I71Zrw| " Tr (g™'2 g, 7) Tr (9yg ™, 0)
zgyg~l=gy¢—1lz
= if F=’
0 if F+4".

We now define an involutive automorphism x—z* in X(W,, 7) as follows.
In the case where y is trivial, x—a* is defined on each .M, by associating
to x=(y,0)e Mr, x*=(y™',0)€ Mr. Along the process of defining X(W,,r)
for the general case as in 4.20~4.21 in [14], this operation a—x* is ex-
tended to the general case in a natural way.

According to the main result in Lusztig [14], the set &(G7,{s}) is
parametrized by X(W,, 7). We shall write as %, an element in X(W,,7)
corresponding to pe&(GF, {s}). We say that p belongs to a family &F if
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T, is in a family & in X(W,,r). Following [14], we shall define, for
each x€ X(W,,r), an almost character R,sC®(GF/~) by the following
formula,

(8.1.2) R,=(— 1)“’"0’; {&,, £} 4(Z,)p],

where p runs over all the elements in &(G¥,{s}). Here w, is as in 1.1, and
4(Z,)=+1 is the modification concerning exceptional characters of Weyl
groups of type E; or Ej and is defined as in [14, 4.21].

Now let us define the modified almost charcter R, for each x< X(W,, 7)
by

(8.1.3) R;=(—=1)"v3(z,, x*}4(z,)[p],
P

where the summation is the same as in (3.1.2). -

Let ¢ be the order of y on W,. Then R, and R, are determined
uniquely by the M-orbit of x up to a c¢-th root of unity multiple. Note
this modified almost character already appears in Asai [4] concerning the
determination of twisting operators in the case of exceptional groups, and
our situation is quite analogous to his.

Assume 7y is trivial. Then there exists a natural embedding W;<
X(W,,7) according to [14, Chap. 4]. For each E€W,, we shall write Z
the corresponding element in X(W,, 7). Assume that the Coxeter diagram
of W, is connected. Then it is known by [14, Prop. 12.6], that Rz=R;,
if E is not an exceptional character. While if W, is of type E; (resp. Ej),
let {E,, E,} be two exceptional characters, (resp. E,=4096,, FE,=4096, or
E,=4096,, E,=4096,, two of four exceptional characters). Then for Fe
{E\, Eb},

REZRiEi 1'6{1;2}'

The situation is similar for the case W, = E, X A,.

We say a family (4-element family) FcX(W,,y) is exceptional if it
contains an exceptional character E€ W, (resp. EQE’'e W, with E excep-
tional) in the case where W, is of type E; or Ej (resp. of type E;X A,).

We recall, as in 1.2, that a root of unity 4, is associated to each
pEE(GF m), provided that m is large enough so that F'™ is a multiple of Fj
and that se T* ",

We can now state our main theorem.

3.2. THEOREM. Let G be an exceptional group of adjoint type. We as-
sume qFE—1 (mod 3) if G s of type Es. Then for any positive integer m
divisible by some fixzed number mo,=m\(G") depending only on GF, the
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Sfollowing hold.
(i) N¥%m,, induces an isomorphism from C(GF" [~ ) onto CO(GF[~).
(ii) There exists a natural bijection between E(GF, {s}))* and X(W, 1)/ M.
(iii) Ewxcept the minor ambiguity below in (a) and (b), N¥m,r 1s described
as follows. For each pE(‘f(GFm,{s})F, let us take an extension  of o to
GF™.  Let 2, be an element in X(W,,y) which 1s mapped to p under the
correspondence in (ii). Then we have

(3.2.1) Nemp((psp) =Ex,,

where p; is a root of unity (depending on an extension § and on the
choice of a representative x, in its M-orbit) such that (p;)™=2;"

(a) Assume W, is a Weyl group of type E, E; or E,X A, (hence y is
trivial). Let F={p,, o, ps, ps} be an exceptional family, where p,, o, are in
the principal series. Then (3.2.1) should be replaced by

(3.2.2) N¥me(lps,0:) =Rz,

where {1, 5} 1s equal to {1,2} or {3, 4}.

(b) Assume (W, 1) is of type E;. Let py, p; be two cuspidal represen-
tations in EGF", {s)=EGF", {(shF. If o {po1, pa}, the same formula as in
(3.2.1) holds. While if ps{p,, 0.}, we have

(3.2.3) Nime(psp) =Ry, i€(1,2),

3.3. REMARKS. (i) In the case where G is of type E; and ¢g=—1 (mod
3), there exists s&T* such that W, is of type Es;x A4, and 7 acts non-
trivially on both factors. This case cannot be covered by our method.

(ii) The lower bound of m, cannot be determined explicitly (see 3.4
below and [14, 2.5]).

3.4. The remainder part of this section is devoted to the proof of Theorem
3.2.

In order to make the induction argument smoothly, we shall prove the
theorem not only for adjoint (almost simple) groups but also for connected
groups with connected center which arises as a Levi subgroup of excep-
tional groups.

Let L=L, be the proper Levi subgroup of a standard parabolic sub-
group of G and F'w be a Frobenius map on L (i.e., Fw(J)=J). We assume
that the same statement as in Theorem 8.2 holds for (L, Fw). Let {s} be
an Fuw-stable class in L* and consider &(LF", {s}) for sufficiently divisible
m>0 (i.e, m is divisible by m,(L®) as in the theorem). We assume that
E(L ™, {s)"* contains a cuspidal representation 8. Let & be an extension
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of 8 to L*™. Then by our assumption, we can attach to § a root of unity
ps such that N¥n p,([ps6])=Rz, is independent of m. Let pz be the ir-
reducible representation in &(GF", {s})* corresponding to E<(W;)., and o
be its extension to GF" as in 1.14. Then by the same argument as in [186,
2.5], but replacing (2.5.1) in [loc. cit.] by the formula

Tr (T,,, E(¢™) € Q[q’"”] ,

which follows from Benson-Curtis [6], we can conclude that Nim,-([p56z))
is independent of m when m runs through some (unknown) infinite set.
Also we see that ™ (y=W;) in 1.15 is independent of m for m as above.

3.5. Let us now define Euclidean spaces U®(G, F) and VG, F) as-
sociated with X(W,,7) and X(W,,r), respectively, as follows. U®(G, F)
is a space over @, with inner product <, generated by f. (x€X(W,, 7))
with relations:

fee=Cfs for LeM

1 if x=y
o fp=
0 if y& My

CY(G, F) is a space over @, with inner product ¢,> and orthonormal
basis e;. (Z€ X(W,, 7). ,

Let L=L,, Fw and {s} be as in 3.4. Thus U (L, Fw) and CV*(L, Fw)
are defined similarly replacing (G, F') by (L, Fw) as above. Now consider
the map @py: COLF" [~ py) = CO(GF" |~ as in 1.12. We denote by C{
the subspace of C®(GF"/~y) generated by the image of az, for various
we W such that Fw(J)=J. Let &, be the subset of &(GF", {s})F consisting
of pz for E=(W;)ex for cuspidal representations § of various LE" (KcJ).
Then [5] (p=&)) form a basis of C{°. Moreover, using the parametrization
via Harish-Chandra induction, we see that there exists an M-stable subset
X, of X(W,,7) and a surjection X,—&,, x—p,, which induces an isomor-
phism UP=C® via f,<[p.] (X)), where U is the subspace of
UG, F) generated by f, (x€X,). We now identify U with C{ via
f=olpspe), where u; and gz are as in 3.4 with respect to a cuspidal repre-
sentation ¢ in L,‘?m, and p,=p; under the above map. Using the para-
metrization in 8.2, we may identify U (L™, Fi) with C(LF"|~py) via
frpH[ﬂpﬁ] (pEé’(LFm, {sh¥®), where p—ux, is a cross section of the above
map. Then, under these identifications, we get a map ap,: U (L, Fw)—
U,

On the other hand, we shall identify CUV“NG, F) (resp. CV®(L, F'w)
with C®(G7/~) (resp. C®(L"|~)) via e;<p; using the parametrization of
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E(GT, {sheX(W,,7) and similarly for L. Hence, under these identifica-
tions, we get a map R, : CV®(L, Fi)»C(G, F). Thus Proposition 1.13
is translated to the following commutative diagram.

N?‘"‘/F
YOG, F) «~— U
3.5.1 m
(3.5.1) Rg(g,)T Ntnpg Tapw

YL, Fw) <—— U (L, Fw)

Now the map N¥m, is independent of m, for infinitely many m by 3.4,
and the same is true for N¥m,z,. We denote by 4=4; (resp. 4;) the map
N#m,p (resp. N¥m,r;) independent of m. We note that as, is a linear map
whose coefficients are (Laurent) polynomials in ¢™? by Lemma 1.15 (notice
that ¢,=&™ is constant for m as above by 3.4). On the other hand, by
[16, Prop. 1.6], R%), is a linear map whose coefficients are polynomials in
g™?. Thus one can specialize this diagram by ¢™?—1. Note, thus obtained
map from CYV(L, Fw) to CP(G, F) coincides with Rf,, in 1.11 under the
above identifications. Summarizing the above arguments, we have

3.6. PROPOSITION (cf. [16, 2.7.2]). Let (L, Fw) be as before and assume
that the theorem holds for (L, Fw). Then for each Fuw-stable class {s} in
L*, the following diagram commutes.

dg
YOG, F) «— UP
R?u’)) T AL T Qy
CYP®(L, Fw) UL, Fi)

The map a, s given for each g =%, (ng. as in 1.13),

(36.1) a/w(f.z:E,) =&y 2 Tr (rw; Vﬁ'.E‘)fxE ’

EE(W;)j‘x
where w=wyw; 18 as i 1.14, and 7, : Vz.z— Vie.g is the map obtained by
specializing q™?—1 from the map y$”: Vi@e—=VE: as in 1.14.

3.7. The following special case would be worth mentioning. Assume 7 is
trivial and L is F-stable. Thus we can consider the case w=1. We as-
sume that LF" contains a cuspidal representatig'p d. Then a,([5]) is nothing
but the usual Harish-Chandra induction Indf,gm(é). On the other hand,

also R, coincides with the Harish-Chandra induction when w is equal to 1.
Thus, we see that

(3.7.1) IndggoAL(S) :Aaoxndggli(a .
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3.8. Let Z(G*) be the center of G*. Then for each z=Z(G*), there cor-
responds an [F-stable linear character ¢ of GF™. Now, for each oE
EGF™ (), pReeE(GT™, {s2))" and p—pR¢ gives a bijection between
E(GF™ {s)F and EGF™, {sz))F. If 6 is an extension of p to Gr™, Q¢ is an
extension of p®¢, and we can associate a root of unity 25, A%es to 5, R4,
respectively. Then, by Lemma 1.1.3 in Asai [5], we have

Now, thanks to Lemma 2.13 (applied with F’/=F, F”=F™) together
with (3.8.1), Asai’s argument ([1, §2], see also [14, 8.8]) can be applied to
our case, and we see that the verification of the theorem (or rather its
extended form in 3.4) is reduced to the case where G has connected center,
G is simple modulo center and the derived group of G is simply connected,
(except for the case of Ej; in which case, we assume G itself has trivial
center). In [16], we have already verified the case of classical groups, and
so we may assume that G is an exceptional simple group with connected
center not of type Ez or G is a simple group of type E; and that the
theorem is verified for proper Levi subgroups.

3.9. We will prove the theorem separately for each &(GF",{s}). We now
show that the proof of the theorem is reduced to the special case where
Zg+(s)* has the same semisimple rank as G. Suppose the semisimple rank
of Zs(s)* is less than that of G. Then there exists some Levi subgroup
(#G) containing Z;.(s)*. Now, as in [14, 6.21], taking the conjugate of s
in G if necessary, one can find a Levi subgroup L=L;#G with Frobenius
map Fw (Fw(J)=J) such that Z;.(s) is contained in L* and that the class
{s} in L* is Fw-stable. Note in this case W, is contained in W, and
X(W,, 1), X(W,7) for L coincide with those for G. Hence there is a
natural identification CUV(L, Fw)=C®(G, F) and a natural embedding
UL, Fi)=UPSUS(G, F). Using these identifications, it is checked
that a, is identity and that Rf,, is a scalar multiplication (—1)**>. Thus,
as in [16,2.8], by making use of Proposition 3.6, we can determine the map
ds on the subspace U®. In particular, 4z' is an isomorphism from
UG, F) to U®. It remains to show that UP=U(G, F). This is done
in a final step of the proof of the theorem using the dimension argument
as follows. Suppose we could show the theorem for each F-stable class {s}
in G* such that Z;.(s) is not contained in a proper Levi subgroup. Then,
for such s, we see that (N¥m,z)"' induces an isomorphism from C*“(G*/~)
onto C(GF"|~ ;) (or “into” is sufficient), and for other s, we have an
isomorphism from C®(GF/~) into C®(GF"|~z). Since (N*m,;)! is an iso-
morphism from C(GF/~) onto C(GF"|~j), we see that the above restric-
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tion on the subspaces are all surjective. This gives the desired result.

3.10. We will discuss here some parametrization of &(GF) briefly. The
parametrization of &(G7,{s})) via X(W,,y) is characterized by the multiplic-
ity of characters in various RY’ (E<(W,)e), and the identification of this
parametrization and the usual parametrization via Harish-Chandra induc-
tion has been done in the case of classical groups (for s as in 3.9) in [15,
Prop. 6.6 and Prop. 5.3] and in the case of exceptional groups with s in
the center of G* in [14, 10.2]. We now consider the following case: W,
W.ox W, where W, is a Weyl subgroup of W corresponding to a proper
standard parabolic subgroup P=LU, of G and W, is a Weyl group of type
A, (r=1). We assume that y acts trivially on W,. By [14, Th. 8.6], we
know already the structure of endomorphism algebras of induced represen-
tations from various cuspidal representations. Using this, we see easily
that, for each ne&(L”,{s})), irreducible constituent of IndSr(r) is para-
metrized by the irreducible representation E of W,, which we denote by
o=z All the irreducible representaions p in &(G*, {s}) are written uniquely
as p=p. ¢ for some z&(L", {s}) and E=W,. Moreover since s€Z(L*),
there exists a linear character ¢EEF corresponding to s such that 7—¢Qx
gives a bijection &E(LF, {1})=&(LF, {s}).

On the other hand, X(W,,7) is decomposed as X (W, r)=X(W,,r.)X
X(W,,1), where 7, is a restriction of y on W, andX(W,, r.) = (L%, {1}),
X(W,,1)=W,. Then the parametrization of p via X(W,,7) is compatible
with the previous parametrization, ie., if p;=p,z wWith z=(x, z) x,€
X(W.,r1), v.€X(W,, 1), then we have pz,=n and %, is the element cor-
responding to E. This is shown by a similar method as in [15]. We omit
the details.

Next consider the similar situation W= W, X W,, but assume that 7
is not necessarily trivial on W,. We consider the set &(GF",{s)) for a
sufficiently large m. Since y*™ is trivial on W™, we have a parametriza-
tion of this set by the previous way. In particular, o{"} is F-stable if and
only if z=2™e&(L"", {s}) is F-stable. Since all the characters of W, are
7-stable, we have a canonical bijection X(W,,7)/M=X(W.,7.)/MxX(W,,1).
We know already by induction assumption that X(W.,y.)/M=&(LF", {s})F.
Hence using the above bijection we have a natural bijection

EG™", (sH" = X(W,, )| M

given by o2 (2., x).

Finally consider the case where G is of type E; (resp. F,) and W, is of
type D; (resp. B,). The method employed in [15] can be also applied to
this case, and we see that the parametrization is compatible with that
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from Harish-Chandra induction.

3.11. We now consider the case where F is of split type and seZ(G*)F.
Thus 7 is trivial and so we shall denote X(W,,7) by X(W). Asin 3.5, let
CY=CP(@G, F) be an Euclidean space with orthonormal basis e, (x< X(W)).
We have the pairing {,}: X(W)x X(W)—@Q, as in (3.1.1). Then the matrix
({x, ¥ z.yexaw, 18 a unitary and hermitian matrix. Hence the defintion of
z* in 3.1 implies that {z*, y}={y*, 2} for z,y= X(W). For each xc X(W),
let us define

R.= 3 {y z}d(ye,,
YEXW)
R;:Rz‘: Z {y; x*}d(y)ey)
YEX(W)

where 4(y)==+1 is the map defined similarly as in 3.2.

Let p=p,=&(G",{s}) be an element corresponding to z=X(W). We
denote by 4, the root of unity 2, associated to o (see 1.2), and we define a
linear map #:C{/—>C{) by e, —1.e, (x=X(W)).

The following lemma is a special case of Asai’s lemma [4].

3.12. LEMMA (Asai [4, Lemma 6.1.2]).

{x, y}2,{y, 2} =2,{x, 2*}4, .

>
YEX (W)

Using this lemma, we can prove some properties of R, and R;.

3.13. LEMMA. (i) R; =R,
(ii) Assume x, xz are not in the exceptional families. Then
@ e.= 3 {o*y}R/
YEX(W)

L1 _ v
(b) # R.ZE— yE?(W){xEJ y}'zyRy .

PROOF. By a direct observation of the table of the matrix ({2, ¥})..yexw>
given in [14, 4.15], we can check that z}=x; for E€ W". Thus R; =FR.;,
=R, and (i) follows. (a) of (ii) follows from the fact that the square
of the matrix is the identity matrix, and that {z*, y}={y* x} for z,ye
X(W). For (b) of (ii),

$R. = 3 {y,xpldle,

YEXW)

= > (X ){y,xE}lf{y*,z})RI (by (a)) .

2EX(W) yeEX(W

However, since 2;'=2,. (cf. [14, Th. 11.2]), and {y, xz} ={y, z¥} ={zs, y*}, We



Shintanti descent for exceptional groups 629

see that
{y: xE}'zil{y*; z}: E {xE; y*}ly‘{y*: Z}
EX(W)

YEX (W) y*

=2z, 2%}, (by Lemma 3.12).

Now 2,,=1 ([loc. cit.]), and {xg, 2*}={2z, 2} since {xg, 2} =Q for any z& X(W)
(by [14, 4.14])). Thus the last expression is equal to {xg,z}4,, which im-
plies (b).

3.14. COROLLARY. Let 4:CV—C)) be the linear map defined by e,—R:
(xeX(W)). Then for each E€W", not of exceptional type, we have

(1) dle.)=R.,
(i) A(R.)=e.,
(i) #J%(R.)=R.,.

PROOF. (i) is clear from Lemma 3.13 (i). Next, by definiticn,

AR, )= % {y iRy .
YEX W)
However, since {y, 2z} Q, {y, vz} ={xs, y}={x%, y}. Thus (ii) follows Lemma
3.13 (ii)-(a). Finally,

YEX (W)

=¢$"'R,_ (by Lemma 3.13 (ii)-(b)).

Hence (iii) follows.

3.15. We preserve the preceding assumption. So, s€Z(G*)F and F is of
split type. Then the set &(GF",{s})) is pointwise fixed by F and para-
metrized by X(W). Let us identify C®(GF"/~z) with the Euclidean space
€7 in 3.11 by associating 25 [p] to €z, (x,= X(W) is the element corresrond-
ing to pe&(GF " {s})). On the other hand, we have already identified
C®(GF|~) with V. We denote by 4=4; : CI/—C{ the linear map obtained
from Nimp:COGF" |~ p)—C(GF/~) under the above identifications. (In
fact, 4 is the map sending ez, to the corresponding element of N¥=,([2;'5])
and is defined only when its image lies in €i/.) Then the following prop-
osition is an immediate consequence of Corollary 1.7, Corollary 1.10 and
Corollary 2.10.

3.16. PROPOSITION. Let the assumptions be as in 3.15. We assume E<
W~ 1s mot of exceptional type. Then im each case below, 4 is well-defined
and satisfies the following relations.
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(i) dle.,)=R.,
(ii) A(R.,)=e.,
(iil) #4%(R.)=R.,.
3.17. We are now ready to verify the theorem in the case where s
Z(G*)F and F is of split type. The method employed by Asai [4] to
determine the twisting operators on the space of unipotent class functions
can be applied, in general, to our case once formulated appropriately, in-
cluding the case where F' is of non-split type. However, in sometimes (in
particular, the case of type E;) we need a different argument mainly be-
cause of the reason that the inverse map of N¥m,r is not so easily described
as in the case of twisting operators.

We shall verify the theorem in the case where s€Z(G*) and F is of
split type. In this case, (ii) of the theorem is already clear. As is done
in [4], we shall verify the statement (i) and (iii) for individual families
F in G, {s)T=E(GT", {s}). If F consists of one element, (iii) is clear
from Corollary 1.7. In the case where & is one of 4-element families (of
non-exceptional type), 8-element families or 21-element family, the similar
argument as in p. 2827-p. 2832 in [4] can be applied. In fact, under the
jdentification given in 38.15, we have only to show that 4(e,)=4J(e,) for
xeSF. Then the argument in [4] is translated to our case one after another.
For example, the conditions (1), (2) and (3) in the case of 8-element family
in [loc. cit.] corresponds to our conditions (i), (ii) and (iii) in Proposition 3.16.
(Formally, $7't*#°" in [4] corresponds to our map 4 by taking r=m=-—1.)
The condition (3) in the case of 21-element family corresponds to our con-
dition (3.7.1).

'We now consider the case where & is an exceptional (4-element) family.
Let F={o{™, p§™, o§™, p{™}, where p{"™ and p{™ are principal series represen-
tations. Then, by making use of Corollary 1.7, Corollary 1.10 and Remarks
2.11 (i) instead of Proposition 3.16, the same argument as in [4] shows
that

R® if 15452
NEm p(2[p™]) =
—R®» je{8,4), if 3414,

where 2;=213, and R{"’ are almost characters corresponding to x,,. Hence
by putting p,=2a;"' (resp. pg;,=—2;"") for i=1,2 (resp. 1=3,4), we get the
required result.

3.18. Let us now consider the case where & is a 39-element family. The
proof in this case will be done in 3.18-3.22. Let G be a simple group of type
Es and s=1. We shall make a numbering {p,, - *, ps»} in 39 irreducible rep-
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resentations in such an order as listed in [14, Appendix]. Hence, p; (1=
4<17) are in principal series. Let us denote by x,=wx,, the corresponding
elements in M, ,CX(W) (where I'=&;) and by e;=e,;, (1=1=39) the cor-
responding vectors in C{. We denote by 1,=2,, a root of unity correspond-
ing to p;. As for the explicit description of M, and the correspondence
F o Mr, we follow the notation in [14, Appendix]. Also, in the following
proof, we use frequently the explicit value of the matrix of the pairing
{,}in My, which we refer to the table in p. 112-p. 113 in [14].

It is enough to verify 4=4 under our identifications in 3.15 to prove
the theorem in this case. In the following proof, we use simultaneously
Corollary 3.14 and Proposition 3.16. We refer to the conditions Corollary
3.14 (i) and Proposition 3.16 (i) as condition (i) and similarly for condi-
tion (ii) or (iii). Moreover, extending the map E—xy (resp. E—~R, o) linearly,
we can define xy (resp. R,,) for a virtual representation E of W, and so we
consider the conditions (i)~ (iii) for this E.

Now, by condition (i), we know already

(3.18.1) 4=4 for e,, 1<4<17.

Let E€ W~ be the one corresponding to (g, 1) M. Applying condition
(ii) to this E, and using (8.18.1), we see that

- 1 1 1
(3182) A:A fOr 71“639_ ‘71“637'_ ?elg .

Applying condition (iii) to £ by taking into account that Ax=21y=1, As=
—1, we have

e 1 1 1
(3183) A:A fOI‘ _4‘939_ Zea7+ ?elg .
Thus
(3.184) 4= A~ fOI‘ €18, €39 €37 .

Next consider E\-(g;, 1), Ey-(gs,¢”), Ey(gs,¢’). Applying the condi-
tion (ii) as above to E,+ E; we have

1

~ 1
(3.18.5) 4=4 for —4—(637—639) AR
Hence by (3.18.4), we see that
(3.18.6) d=4  for ey,.

Next by applying (ii) to E, and»Eg—El, we have
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(3187) 4 :J for 835+ 635+ €91 — €33,

639+e35+e3s.
Now Ay=—1, 25=6, 2s=—¢, 2x=—1 and Ax=1, respectively, where & is
a square root of —1. Hence by applying condition (iii) to E, and E,—E,,
we have
(3.18.8) 4=4 for Eeyx—Eex—ey+eg,

eptEey—Eey.
Thus, by (3.18.7) and (3.18.8) we have

(3.189) A = A~ fOI‘ €35, €35, C3y and €91 — €33 .
Summing up the above arguments, we see that

(3.18.10) d(e;)=4d(e)=R, for 1<i<17, and
for 1e{18,22, 35, 36, 37, 39} .

3.19. Until now, we did not use the result itself concerning the twisting
operators in Asai [4], although the argument used here is quite analogous
to his. However, at this step, we need to use his result in an essential
way. For each positive integer », let t¥:C(GF/~)—C(GF|~) be the twist-
ing operator as in 2.1. It is known by [4] that ¢¥ stabilizes the subspace
C®(GF|~). Under the identification C*(GF/~)=C{’, we denote also by ¢t*
the corresponding map on €. Then by Asai’s main theorem [4, Th. 6.2.1],
t¥ stabilizes the subspace of C{/ generated by e; (1=<¢<39), and

(3.19.1) tHR) =R/ (1=1<39).

On the other hand, we have a twisting operator =¥ on C(GF"[~y) as in § 2.
By abuse of notation, we denote by z¥ the corresponding map on C{/
whenever it is well-defined. In order to proceed further, we need the
following result.

(3.19.2) 44 R, =J%R,, for pgeTF, r=0.
In fact,
4% R, =4(c¥)'R,,  (by Prop. 2.8)
=t¥4R, = (by Lemma 2.2)
=t}¥IR, (by condition (ii))

=t}Za,R)) where R, =3a.e;, a.€Q,
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=;¢J§Rf (by (3.19.1))
—J¥R.,.

Let us now take E€ W~ corresponding to (g5, 1). R R, is writ-

ten as

.I'E_ IE

= l(e:'7+328'+' 29+ €30) T

R, 5

where « is a linear combination of e; as in (3.8.10). Note that 2x=C, 23
=0 2,=0, 2,=C!, where { is a primitive fifth root of unity. Hence
using (3.19.2), we see that

(3.19.3) Ad=4  for Uenp+Tex+Tew+{ " ey.
By substituting »=0,1,2 and 3, we see that
(3.194) A :J fOI‘ €97, €og, €499, €3 -

3.20. We continue the proof. As in [4, p. 2833 (7)], it is checked, using
(8.7.1), that dod *(es+es) and dod *(en+es) are well-defined and are “virtual
characters” with support in &, i.e., Z-linear combinations of e; (1=<7<39).
In the following, we shall show that

AOJ-I(eax‘!‘eaa):esx‘}‘eaa
(3.20.1) _

dod Hen+ew) =entey.

We consider the case of e+ es, and put f=ey+es, f' =404 *(es+es). Since
d and J are isometries when they are defined, we have <(f’, f'>=2.
Moreover, the condition (i) implies that

(3.20.2) HRO=Xf",RD for 1=4<17.

By inspecting the explicit table of the matrix of the pairing, we can
deduce easily from (3.20.2) that

(3.20.3) f'=e,+te;, 1€{31, 32}, j={33, 34}.

Take E,—(1, 2%, Ey-(g, 1). Applying condition (ii) to E,— E,, together with
the previous results, we see that

(3204) d4=4 for h= #(631+632+933+ e tey—ey+ %638— éezo> .

Thus
(3.20.5) <f, A(h)>=<f", d(h)> .
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A(h) = —“0R31—02R32+0R33+02R31— R19+ Rgl—‘

We want to compute the inner product of A(h) with various e;+e; as in

a primitive cubic root of unity. Hence
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(3.20.3). For this, we need a part of explicit entries of the matrix which
is not included in the table in [14]. Later, we need also a calculation
based on this part of the matrix. Thus, for convenience sake, we gave in
Table 1, the part of the matrix which is needed for our computations.
Now, using Table 1, we can compute <e;+e;, 4(h)> for various e,+e;,
1€{31, 32}, 7={82, 34}. Then we see that these values are mutually different,
and so characterizes f. Hence, by (3.20.2), we see that

f/ :f: 631+ €33 .

The case for ep+es is done similarly. So (3.20.1) is verified.

3.21. From (3.20.1), we see that
(3.211) A:J for J_1(631+633) .
Now, by using Lemma 38.13 (ii)-(a), we have

de)= X {aF, x5}e;
157589

for any e,. Put
J={19, 20, 21, 23, 24, 25, 26, 31, 32, 33, 34, 38} .

Then, by the previous result, d(e;)=4(e;) for i€J. Since z¥ =z, (3.21.1)
implies that

(3.21.2) d=4  for I ({#e, 2} +{ze, z,))e; .

JEJ

By the direct computation using Table 1, (3.21.2) implies

(321.3) A:A fOI‘ _2325+625+2623_624 .
Similarly, using ep-+es in (3.20.1),
(3.214) A:J for 625_2326—‘623+ 2624 .

Take E\<(1,1), E;~(1,v). Applying the conditions (ii) and (iii) to E,—Ej,
we have

(321.5) A:A. for ez3+ 324+ 633+ €3,
0623+ 02624+0€33+02634 .

Take Ey~(1,2%), E,~(g, r). Applying the conditions (ii) and (iii) to E,—E,,
we have

(3.21.6) d=4  for ey+ex+esten,
Oey+ 6%+ eyt Gy, .
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Th.ese 6 vectors in (3.21.8)~(3.21.6) are linearly independent and determine
uniquely ey, ey, -+, 5. Thus, we have

(3.21.7) 4=4 for ey, €31, €35, €35, €33 ANA ey, .

3.22. The remaining vectors are ey, ey, ey, €y, e and e, Take E\«(1,1).
Applying (3.19.2) to RJE1 with r=0,1,2 together with the previous result,
we see that

e 1
(3.22.1) d=4 for ey+entent Eezﬁ‘ %esg'*_ego,

2
— ey — ey — 15— = € '2—933—‘620,

2
) 1 1
05+ Oex+e10+ Eezl"‘ _2‘338+320 .

Here we have used that 1y=—0, Ag=—6% A,=—1, ly=—1, 2x=—1 and
220: —1.

On t’he Other hand, take Eg(—’(g;, 1), EaH(gz, 5), E4H(gs, 1), E5H(l, l)),
E¢(1,2’). Then applying condition (ii) to E),, Ey+E, and E;+E, we have

(322.2) A:J for —621"’" €98
€ptey
entest2ey.

These 6 vectors in (3.22.1) and (3.22.2) are linearly independent and deter-
mine ey, -, € uniquely. Thus, we have

(3.22.3) 4=4 for ey, es, e, €31, €55 and ey .

This completes the proof for the 39-element family <, and thus completes
the proof in the case where s€Z(G*)" and F is of split type.

3.23. Next consider the case where (G, F') is of type D, and s<Z(G*)*.
Using (3.8.1), we may assume s=1. As in [4], we embed G as a Levi sub-
group of a parabolic subgroup of a simple group of type E;. So, we use
a different notation here. Let G be an adjoint group of type E; with split
Frobenius map F' and L be the standard Levi subgroup of type D,. Then
there exists wo,e W such that Fw, is a Frobenius map on L and that Fw,
induces an automorphism 7 of order 3 on the Dynkin diagram of L. X(W,,7)
consists of four 1-element families and one 4-element family. They are
all pointwise fixed by 7 and X(Wy,7)=X(W.,7)XM. Now &E(LF",{1}) con-
tains a unique cuspidal representation, which is necessarily Fw,-stable, and
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others are all principal series representations for which the statement (iii)
of the theorem is verified by Corollary 1.17. Thus, using the argument
as in Lemma 2.17 in [16], (see also Remark 4.12, (ii)), we can conclude that
the image of C®(GF"/~) under N¥m= coincides with C(G"/~). Hence
statements (i) and (ii) of the theorem are verified.

We now consider the 4-element family & in &(LF™, {1}))F»0. Let ¥ =
{o{™, o™, o™, p§™} with p{™ cuspidal. Since p{™ (1<4<3) are in a principal
series, by Corollary 1.7, we see that N¥m,([5{™])=Rg) for 1<7<3, where
E,=(W.).. are representations corresponding to p;. Thus, by the orthog-
onality relations, we have

(3.28.1) Nimp([55])) =cR,

for some c€ Q¥ of absolute value 1, (R,=R,=R; for z=x,). We have to
determine c¢. In the following, we shall denote [p{’] (resp. RY),, [5™]) by
e; (resp. R;, f) (1<1<4), respectively. As in [4], we shall make use of
Proposition 3.6 with w=w, Let us consider e,+e¢, in (L, Fiw,). Since
e,+e,=R,+ R, we have

d7' (e, +ey) =fit+c'fs.
Thus, by Proposition 3.6, we see that
(3.23.2)  dg(ay,(fi+c'f)) is a Z-linear combination of e, YV (G, F).

Let &, be the family in Ej corresponding to 80,, i.e., F,={[30,], [15,], [15,],
D,1]} under the notation in [14, p. 363]. Taking the <F,-part in (3.23.2),
we see that

(3.23.3) eR[30p3+c“X’RD4[1] is a Z-linear combination of e,,

where e==+1 and 2’'=2} is the root of unity corresponding to p=D,[1], hence
(A’)"=—1. From this we see that

% (e+c2)eZ
(3.23.4)

1
g(c_C—IXI)EZ.

Hence we see that ¢ '2’eZ. As ¢™'A’ has an absolute value 1, this implies
that c==+2". Since 2,=—1, (3.23.1) together with pg=c'=+2"""! satisfies
the assertion of the theorem.

3.24. We now consider the case where (G, F') is of type 2E;, and s€ Z(G*)F.
It is clear that except two cuspidal representations p{™ and p§{™, all the
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representations in &(G*",{s}) are F-stable, while F may permute o™ and
5™ in &(GF™, {s}). However the last possibility does not occur and the set
E(GF™, {s}) is fixed pointwisely by F. In fact, we may assume, for each
F-stable class {s} such that s& Z(G*), that dim C(GF/~)=dim C(GF" |~ ).
Moreover, for each s€ Z(G*)", diimC®(G7/~) = dimC®(G*" |~ 5 =|E(G"", {s})7|,
and equality holds if and only if &G, {s)"=E(G"",{s}). Since
dim C(GF|~)=dim C(G""|~ (), we see that the equality holds for each se
Z(G*)F.

Now the determination of N#¥m,. is done by entirely the same way as
in Asai [4] under an appropriate formulation, by applying Proposition 3.6
to the cases D,CE; and E;CFE,. So we omit details of the proof.

3.25. We now consider the case where s is not in the center of G*. If
W, is a product of various Coxeter groups of type A, each family consists
of one element and it is enough to apply Corollary 1.7. In turn, if F' is
of split type and 7 is trivial, then s T*F and at most 8-element family
appears in X(W,, 7). Thus the similar argument as in 8.17 can be applied
as well to this case. Hence the remaining cases are the following three
cases :

(i) G is of type E;, W, is of type D¢X A, and 7 acts non-trivially on
the first factor,

(ii) G is of type Ej W, is of type D;X A; and y acts non-trivially on
both factors,

(iii) G is of type Es, W, is of type D; with non-trivial action of 7.

We only consider, in the following, the cases (ii) and (iii). The case (i) is
done easily in a similar way as the case (ii).

The case (ii).

There exists s T* such that (W,,y) is as above only when ¢=3 (mod 4),
and in this case w, is given by w,=w?w**w?s, where w* is the longest
element of the Weyl subgroup of type X. Let us now consider the standard
Levi subgroup L of type D;. We follow the notation in 3.10. In particular,
W,=W,xX W, where W, is a Coxeter group of type As;. Then for each
we W, Fiww, gives rise to a Frobenius map on L. Under the notation in
3.5, UP=UG,F) and dgs: UG, F)-»PVG, F) is defined. Thus, by
the dimension argument, we can identify C®(GF"|/~y) with U®(G, F) as
in 35. So, to show 3.2 it is enough to determine the map 4;. Since
E(GF™, {s}) consists of one-element families and 4-element families, we have
only to consider the case of 4-element families. &(L” ™ {s}) contains two
4-element families F and &F’. For each Ec W, =(W,)., there exists a 4-
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element family in &(GF", {s}) associated with F (resp. F’) which we denote
by Fr (resp. &Fr).

Let us denote by e; (1<1<4) the vectors in CPV)(L, Fw,) and by f;
(1<4<4) the vectors in U(L, Fiw,) (by taking a representative) correspond-
ing to the family &F. f{e;}, {fi} can be regarded also as vectors in C/®)(L,
Fwaw), U®(L, Fiwaw) for each we W, respectively. We denote by e;x
(resp. fi:.z) the vectors in CV(G, F) (resp. U (G, F)) corresponding to the
family F5, where E is a fixed extension of E. Also, we denote by R, ;
the almost character corresponding to f;z in CV*(G, F). The similar
elements are defined with respect to the family &’, which we denote by
attaching primes, like e, f7,---. Since f; s (resp. fiz) for 1<i<3 are as-
sociated with principal series characters, we know already, by Corollary 1.7,
that

d¢(fig)=Ri g
d¢(fie)=Rig.
Thus, to prove 3.2, it is enough to show that
d(fig)=Ri g
d6(fi)=Riz.

We shall apply Proposition 3.6 to our case with (L, Fw,w) for each we W,.
Then (3.6.1) is written as

(3.25.2) Gupu(f)= 2 TrGw, E)fie

FEW3

(1=i<3)

(3.25.1)

for each we W,. We take a particular extension E of E so that y acts as)
a conjugation by wsA(ws is the longest element in W;). Hence Tr (yw, E)
=Tr (wsw, E). Put f,=4z'(e;), the Fourier transform of f;. Then by (3.25.2),

(3.25.3) Gug(f)= 3 Tr(ww, E)f\z,

Ecwj]
where f;; is the Fourier transform of fig in U®(G, F). By Proposition
3.6, Agoawow(fi):R?,bo,b,(e,-) is a virtual character. Moreover 4; is an iso-
metry. Using these facts together with the explicit information about
the matrix of {,}, we can determine R in(e;) for each e; (1<¢<4) when-
ever w+w; i.e., we have

(3.25.4) dooaup(f)= T Trww, Ee,s  (1<i<4), w#w,.

Ecw3

Now put
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fo= 2 Tr(ww, E)f, z,

Ecw3

(825.5) éu= 3 Tr(wmw, E)R, ;.
Ecswy

Then by (3.25.4), we have

Correspondingly, with respect to the family &F’,
(3.25.7) de(fr) =6 for w=#w,.

Using the orthogonality relations of characters in W, we see that (3.25.1)
is reduced to showing the following two relations.

AG(fws) = éws
AG(f'A,us) :é:us .

We shall show (3.25.8). We note that f,, and f. are orthogonal each other
for any w and w’ and that f, (resp. f.) are mutually orthogonal for dif-
ferent conjugacy classes of wsw. Thus we can write

Lo(fu) =0y, +bél,
Ao(flg)=0bug+dés,

(3.25.8)

(3.25.9)

where a, b, ¢, d=@Q, such that

[ lal’+|b]>=1
(3.25.10) L |elP+1d]P=1
ac+bd=0.

As in the previous case, we shall compute AG(aw0w3( 7). Then by (3.25.9),
we see easily that
do(@upwy(f))= = dimE-e;pta,
EEWS
where

1 1,
=5 (1= a)éu,~ 5 b, .

On the other hand, Proposition 3.6 implies that dg(awuw,(f))=Reswyles) is a
virtual character. Thus « is a virtual character. This implies that 1—a, b
4Z. Hence by (3.25.10) we see that a=1, b=0. Similar argument shows
that ¢=0, d=1. This proves (3.25.8) and so proves 3.2 in the case (ii).
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The case (iii).

This case is done using essentially the same method as in [3], [16].
However, the argument given in the proof of Lemma 2.10 in [16] cannot
be applied directly to our case because of the lack of a Levi subgroup
whose Weyl subgroup coincides with a Weyl subgroup of W, of type D,
X A;_, (r<7). TFor this reason, we need another argument to prove the
lemma corresponding to Lemma 2.10. In fact, we have only to imitate
the proof of Lemma 2.13 in [16] as follows. Under the notation in [3], we
consider the map I%,: Vi—V; (cf. [3, p.577]). The proof of the lemma
corresponding to Lemma 2.10 in [16] is reduced, under a suitable identifica-
tions, to showing that

57 (f)=6"(f) for each f in I3,

with notations in [3, 2.8]. Now it is easily checked that each e; appearing
in the expression of I¢,(eis, ry) belongs to mutually different families. Thus,
if we apply Lemma 2.8.10 in [3] to f=Id)(ex ), we get §7(f)=6"(f) by
(IT) in Lemma 2.8.10, since a,=1 for each <.

Other steps are done similarly, and we get the result. This proves
the case (iii) and so completes the proof of the theorem.

3.26. Once Theorem 3.2 is established, Proposition 3.6 gives a decomposi-
tion of the twisted induction R, in terms of a, and N¥m,,. More pre-
cisely, under the notation in 1.14, for each E€ (W), E'€ (W), let E, E’
be their extensions to W; W3, respectively. Put Vi z=Homy;(E’, E), and
define an automorphism 7, on Vi .z by 7,(f)=(rsy)ofor;* for each fe Vs 5,

’—1

where w=w,yw;™'. Then Proposition 3.6 is restated as follows:

3.27. COROLLARY. Let we W be such that Fw(J)=J. Let L=L, be the
standard Levi subgroup and {s} be an Fw-stable class in L*. Then for
a sufficiently divisible m, (in particular, s€ T*™), the following diagram
18 commutative.

N?’"/F m
C(x)(GF/N) «— C(s)(GF /NF)
G
Rf T Ntn, T Ay

C(x)(LFu‘)/N) -— C(S)(LFm/Nm,)

Here a, ts a linear map defined for each Fiw-stable representation nz <
(LF™)" by

aw([ﬁE'])zey 2 Tr (rw; VE'.E‘)[A&E])

EEW 5lex
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where y—e,=+1 is a certain linear character of Ws, and =g, 6r are as
in 1.14.

§4. The case of classical groups

4.1. The similar result as in Theorem 3.2 for the case of classical groups
with connected center has been treated in [16, Th. 2.2]. However the proof
given in [16] contains some gap. In particular, Lemma 2.17 in [loc. cit.] can
be applied only when s T*". Whereas, the case that se& T*F occurs, in
general, for classical groups with connected center, and this case cannot be
covered by the argument there. In this section, we shall fill the above gap,
i.e.,, we shall prove a proposition which is a generalization of Lemma 2.17
and works also in a case where s& T*F in a slightly weaker form. Once
this is done, we see that Theorem 2.2 in [16] holds with minor change by
the argument there. (I am very grateful to G. Lusztig and B. Srinivasan
for pointing out the above mentioned error in [16]. Also I wish to thank
F. Digne, J. Michel and Srinivasan, from the discussions with whom the
idea of using cuspidal representations of Levi subgroups instead of maximal
torus was inspired.)
We now state the result in the case of classical groups.

4,2, THEOREM (cf.[16, Th. 2.2]). Let G be a connected classical group with
connected center and {s} be an F-stable class in G*. Then for a suffictently
divisible m, the following holds.
(i) N#mp induces an isomorphism from C(GF"|~r) onto C(GF[~).
(i1) There exists a natural bijection between £(GF™, {sh)T and X(W, y)| M.
(iii) For each pEé’(GFm, {s})F, take an extension g of p to GF™. Let
x, be an element in X(W,, 1) which is mapped to p under the correspond-
ence (i1). Then we have

N?"‘/F([#ﬁﬁ])szp ,
where p; 18 a constant of absolute value 1. If G is simple modulo center

and of type B, or C,, ps is a root of unity such that (p;)"=2,"

In view of the argument given in [16], to prove Theorem 4.2, it is
enough to show the following proposition which is an extended form of
Lemma 2.17 in [loc. cit.].

4.3. PROPOSITION (cf. [16," Lemma 2.17])). Let G be a connected classical
group (simple modulo center) with connected center. Let {s} be an F-stable
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class in G* such that Zg.(s)* has the same semisimple rank as G and that
E(GF™, {s)F contains a cuspidal representation p, (which is unique in
E(GF™ ,{s}))). Assume that for each peé’(GFm, {sh¥ except for o, the state-
ment (iii) in Theorem 4.2 holds. Then N¥m,r preserves the spaces corre-
sponding to {s} and (iii) holds also for pe.

The remainder part of this section is devoted to the proof of Proposition
4.3. First we show the following lemma.

4.4. LEMMA. Let G and {s} be as in 4.3. Take s wn T* and let
y=wiy'F: W,—»W, be the graph automorphism as in 1.1. Assume that
w#1. Then there exists an F-stable standard Levi subgroup L=L; such
that

(i) L is of type A;X---X A, (r-times),

(i) w,eL*, i.e., the class {s} in L* is F-stable,

(iii) s 1s regular semisimple in L*.

PROOF. We have the following four possibilities:

(i) G*: type B,, W;: type Bp X Dpn, (m,=1, my=2, n=m;+m,), and
7 acts non-trivially on the second factor.

(ii) G*: type C,, W,: type C,XC, (m=1, n=2m) and y permutes two
factors.

(iii) G*: type D,, W,: type Dy X Dy, (my22, my=2, n=m,+m,), and
7 preserves both factors.

(iv) G*: type D,, W,: type D, XD, (m=2, n=2m) and y permutes two
factors.

In the following, we shall identify the Weyl group W, of type B, (or
C,) with the subgroup of the symmetric group of 2n letters {1,2,:--,m,
n’,-++,2’,1’} consisting of permutations which permute simultaneously 1—j,
' —j’, or t—j7’, ©—j. Then the Weyl group W, of type D, is identified
with the subgroup of W, of index 2 generated by permutations (1,2),-:-,
(m—1,n) and (n—1,n’), (here (i,5) denotes the permutation i 7, v« 7).
Then the simple root system of type B, (resp. D,) is determined naturally
so that the corresponding set of simple reflections are {(1,2),(2,3), -,
(n—1,n), (n,n")} (resp. {(1,2),(2,3),-,(n—1,n),(n—1,n’)}), respectively.

First consider the case (i). Then by replacing s by a suitable conjugate
in W, we may assume that W, is the following group; the first factor
Wa, is the Weyl group of type B, corresponding to m, letters {1,2,--+, m.}
and the second factor W, is the Weyl group of type D,,, corresponding to
my letters {m,+1, m,+2,---,n}. Taking the simple root system in a natural
way, we see that w,=(n, —n) in this case. Now let L*=L¥ be the standard
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Levi subgroup corresponding to the circled dot in the Dynkin diagram
below,

L¥: O—O0—- -—0—0=0 type A,.

Then it is clear that w,=L* and that W,N\W,={1}.

Next consider the case (ii). In this case, we may take W,X W, as W,,
the first factor (resp. the second factor) is the Weyl group of type C,
corresponding to m letters {1,3,5,---,2m—1}, (resp. {2,4,6,:--,2m}). Then,
with respect to a natural simple root system as before, we see that

w,=(1,2)(3,4)-- (2m—1, 2m) .

Now let us take as L*=L¥ the following type:

Ly: O0—0—"%0— —0—0=0 type A, X -+ X4,

m times.

It is clear that w,=L¥ and that W,N\W,={1}.

Next consider the case (iii). We may take as W,=W, X W, the
following one, the first factor is the Weyl group of type D, corresponding
to m, letters {1,2,---, m;—1,n—1} and the second factor is the Weyl group
of type D, corresponding to m, letters {m, m+1,-+,n—2,n}. In this
case, w, must stabilize both factors and act non-trivially on them.
This implies, with respect to a natural simple root system, that
we=(Mm—1,n)(m—1,n’). In this case, we take as LF the following one.

L¥: o—Oo0—- —O—O<§ type A XA,.

Then L¥ is F-stable (F': split or non-split) and w,s Ly, W,N\W,=1.
Finally consider the case (iv). In this case, we take as W= W, X Wy
the following one, the first factor (resp. the second factor) is the Weyl
group of type D, corresponding to m letters {1,3,5,---,2m—1} (resp.
{2,4,6,---,2m}. In this case, w, has order 2, and is given by

wo=(1,2)(3,4) -+ 2m—1,2m).

Let us take L¥ the following type,

L¥: O—o0—O0—- ——@—O<z type A, X -+ X4,
(m+1) times.
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Then L¥ is F-stable, (F': split or non-split) and w,e L¥, W,NW,={1}. Thus
the lemma is proved.

4.5. Let L be an F-stable Levi subgroup of G as given in Lemma 4.4. We
shall consider two Frobenius maps F’, F” on L as follows.

(4.5.1) "=F, and F’ is a Frobenius map with respect to F,=-structure

such that F/F”"=F"F’ and that some power of F'’ coincides with some
power of F'”.

Then we have the following crucial lemma.

4.6. LEMMA. Let L be a Levi subgroup as in Lemma 4.4, and F' and F”
be two Frobenius maps as in 4.5. We assume m is sufficiently divisible.
Then for each class {s} in L* which is both F’ and F”-stable, N¥., p
induces an isomorphism

NEp ¢ COLF [~ p) = COLF [~ pa-1) .

Moreover, in the case where s is regular semisimple, we denote by &
(resp. 6”) the unique irreducible representation of L¥' (resp. L") belonging
to ELF', {s))F" (resp. ELF", {s)'). Then there exists a suitable extension
5" of 6’ (resp. §” of 6”) to L¥'<F"> (resp. L¥'<F’>) such that

Nt e (6" =[5"].

4.7. Assuming Lemma 4.6, we shall prove Proposition 4.3. The proof of
Lemma 4.6 will be given in 4.10 and 4.11 after some preliminary.

If w,=1, then s T*F. So, Lemma 2.17 in [16] can be applied. Hence
we assume that w,#1. Let L=L, be the F-stable Levi subgroup associated
with {s} as in Lemma 4.6. Let §,& L be a unique element in &(LF,{s}).
Put

W=(we W | w(J)=J,“8,= 3} .

For each we9)/, we have the following commutative diagram by Prop-
osition 1.13.
N ?IF"‘ n
C(GF|~pm) ——> C(G" " [~p-1)

ar™y R
NEipmi, m
C(LF[~pmy) —> C(LF"®[~p-1).

Let M be an I-stable subgroup of N;(L) generated by L and we Ny (T), a
representative of we9)/. Then 4, can be extended to a representation of
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MF{(F™y which we denote by §,. Thus §, determines an element [§,] in
C(LF|~pmy) for each we9Y. Now, by Lemma 4.6, there exists
8,€E(LF™ {s)), F-stable, such that N%sm,([5,))=[5,] for some extension
6, 0f §,. Hence the above diagram, together with Lemma 1.5, implies that

(4.7.1) Nimpoc*o REG([5,]) = *oapmy, ([5l) -

Let us see the right hand side of (4.7.1) more precisely. We note that,
since the class {s} in L* is regular semisimple, endomorphism algebra of
Indf,gb‘o is isomorphic to the endomorphism algebra of Indfig%, where J; is

a cuspidal representation of a Levi subgroup Ly (KCJ) such that- the
inducing up of d; to L, coincides with d,, Hence we may assume that §,
is cuspidal. Now by Lusztig [14, Th. 8.6], it is known that the endomor-
phism algebra of Indﬁgéo is isomorphic to H(9, q) the Hecke algebra asso-

ciated with the Coxeter group 9 with some exponents. Thus, by making
use of Lemma 1.15, we see that arm,([5,]) is expressed as
(4.7.2) army([6e)) =Cul(q) X Tr(T,, Eiq)lps,],

E;eW™
where C,(q) is an integral power of ¢ and T, is a standard basis of
H(9Y, q), and E\(q) is the irreducible representation of H(9/, q) corresponding
to E,.

Put Y,=apr",(5]). Then Y,C®(GF|/~). Now, by passing to the dual
representation, (4.7.1) implies that Y, is contained in the image of
C(GF™|~p) under the map Nin,, We denote by V., the subspace of
C®(GF|~) generated by Y, (we9¥). We also define a subspace V of
C®(G¥|~) as the one generated by R,p for each peé’(GFm, {s})F such that
o#*p,. Then V is a codimension one subspace of C*>(GF/~). Thus, to prove
that N¥m=,, preserves the spaces corresponding to {s}, it is enough to show
that V,&V. Suppose V,.SV. Put x=z, €X(W,, 7). Now R, is orthog-
onal to V, hence orthogonal to V,. On the other hand, using the orthog-
onality relations of the characters of Hecke algebra H(9/,q), we see, by
(4.7.2), that V, coincides with the subspace of C“(G*/~) generated by oz,
(E\e9Y"). Thus R,p is orthogonal to each pg. However, if we take the
special representation E of W, stable by 7 associated with the family
containing p,, there exists E\€Y)/" such that pp, coincides with p.. Since
R, is not orthogonal to p.,, this is a contradiction. Thus we have showed
that N¥m,» induces an isomorphism from C®(GF"/~) onto C*(GF[~).

Now we can write as

N;m/F(X,ﬁ_(,l[pO]) :aoRxo s
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by some a,€Q,. Since N¥m is an isometry, we see that a, has absolute
value 1. We want to determine a,, Let 7, be as in 1.2, hence F'o(s)=s
and 7o is a power of F,. In this case 7,=1,2 or 4.

We now consider the left hand side of (4.7.1). Note Rif,’;,)([Sw’]n) is given
as in (1.11.2) with F”"=F, F'=F™ Put M'=(HLS, Q,)®ﬁ)LF Y. There
exists an embedding M'GH!(X,,, ¥y 0,,) as GF"-modules, for some j, w’.
Asin 1.2, F7o acts on Hi(X,, F. 4,) naturally, and this embedding becomes

Fro-equivariant, in a suitable sense, (see. (6.21.2) in [14]).

For each pe&(G"", {s})¥, consider the p-isotypic subspace M} of M.
The eigenvalues of F™ on this subspace have the form 1,¢’™* for some
integer j<1i. For an eigenvalue up=2,¢°"? let M}, be the generalized
eigenspace of F'™ on M}, which is an G* "_submodule of M* stable by F.
There exists a filtration of M:, by G'"-modules, stable by F, each of
whose successive quotients is isomorphic to p as G* ".modules. If we
define the action of ¢ on each quotient by o=4i%¢"*(F*)™, (see 1.11 for
(F)*), each successive quotient becomes a G¥"-module. If we consider
Fro-action instead of F, this filtration yields GF™<{s"o)-modules. Now by
making use of above embedding together with [14, Prop. 2.20], (see also
Lemma 1.4 in [16]), we see that these GF <¢"o>-modules are mutually
isomorphic.

We now restrict ourselves to the case where 7,<2, (note if G is of
type B, or C,, then 7 <2). We fix an extension g of p to G*™. Since
r,<2, we have at most two possibilities for GF"-modules appearing in
successive quotients, 5 and —g, (which is obtained from g by replacing
o-action by —o¢). Thus, as in the proof of Lemma 2.17 in [16], we can
write

(4.7.3) ‘ RE,([8,) = § ey ol ],

for some ¢, .<R.
Now (4.7.1) implies that, by passing to the dual representation,

474 N#w( 2 00.0457(5)) =Cual@) £ Tr(To, Bi0)lp,)

for each we9)/. On the other hand, since we know already that N¥m,,
maps [5] to R,p up to a scalar multiple for p+#p, it follows from the
argument of the former part that ¢, ., +0 for some we Y.

Now the right hand side of (4.7.4) is a Q-linear combination of R,
(xe X(W,,7)/M). Hence we see that a,=R. Since a, has absolute value
1, we get aq==+1. Hence, by replacing 2’,—,0 by —23, if necessary, we get
the desired result. Thus Proposition 4.3 was proved (assuming Lemma 4.6).
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4.8. Before starting the proof of Lemma 4.6, we need a general lemma.
Let G be a connected reductive group with connected center endowed with
two Frobenius maps F’ and F” as in (4.5.1) (replacing L by G). Let T be
a maximal torus of G stable by both '’ and F'”. Let N¥,r be the induced
map of the norm map Ngyp : TF'|~p-1—TF|~p. Then

4,9. LEMMA. Let the notations be as in 4.8. Then for each F’-stable
character 8" of T¥', we have

N, ([67])=[0],
where 8’ is an F’”-stable character of T, ([6’] is the corresponding ele-
ment in C(TT' |~ p.-1) and similarly for 8”). Moreover (T*',0’) and (T, 0”)

are geometrically conjugate in G, i.e., 8 and 6” correspond to the same
class {s} in G*.

PROOF. Since T is abelian, Nz, may be regarded as a homomorphism
from T%' onto the quotient of T by a subgroup consisting of ¢t 'F”(f)
(te T*"). Thus, for each F'’-stable 6"’ T*", N¥,» determines a character
6’ of TF' which is necessarily F”-stable. Hence the first statement follows.

Next consider the second statement. By (4.5.1) there exists a positive
integer r such that F"™=F’'", We denote by F'* this common power of
F’ and F” (i.e., F*=F'"), and consider two norm maps,

n'=Np p+ : TF+/NF"1 — T |~,

N =Npup+ : TF+/NF”‘1 — T¥|~.
Then »’ can be regarded as the usual norm map, and so lifts to a homo-
morphism TF'—TF, and similarly for »”. Put §'=n'*@")sTr* and

67 =n"*(9")=TF*. It is enough to show that §’=§". Take {=T*" and
choose b,ce T such that

t=b'F'(b)=F"(c)c™*.
Put t=n'(f) TF'. Then, since n’ is a homomorphism commuting with F”,
t=n'(F"(c)c)=F"(n"(c)n'(c)".
Thus,
Npnp(t)=n"(c) ' F'(n’(c)

=(cF’(c) - F'" D)) 'F'(cF"(c) -+« F'" P(c)

=¢ ' F'"(c)=n"(}).
Hence
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~ ~

6" (8)=6"(n"(£))=6'(t)=0"(n"(£))=0"(%) .
This proves the lemma.

4.10. We shall prove Lemma 4.6. The proof is given in 4.10 and 4.11. In
this section, we consider the case where F is of split type. By making
use of the argument due to Asai ([1, §2)], see also [14, 8.8]), combined with
Lemma 1.17 and (3.8.1), the proof is reduced to the case where L=GL,.
Now by changing the notation, put G=GL,., We may write F'=jF™,

"=F, where F' is a Frobenius map of G with respect to an F,-structure,
j is an automorphism of G of order 1 or 2, and m is a sufficiently divisible
integer. TFor later use, we consider simultaneously the case where F' is of
non-split type. In particular, F' is of split type or non-split type and F™
is of split type. Now, the case where j is identity is well known. So we
may assume j is not identity.

We now see precisely the irreducible representations of G¥. Let us
denote by TC B a pair of maximal torus and a Borel subgroup of G, both
stable by I" and jF. Let W={1,w} be the Weyl group of G with respect
to T. Then all the irreducible representations of G¥ are given as follows;

60, VRSP, RRNO), —RLE),

where ¢ runs over all the linear characters of G¥, St§’ is the Steinberg
representation of G¥. 4T (resp. 9’T™F) runs over all the regular
characters up to W-conjugate. Among them, jF™-stable representations
are those corresponding to jF™-stable ¢, and those corresponding to 4, 6’
whose W-orbit is jF™-stable. We also denote by ¢“™,---, the similar rep-
resentations of G#*™.

In view of Lemma 1.5, it is enough to determine N¥m,,. Now we
see easily that under Njim, a linear character ¢™ of G*", stable by
F, corresponds to a linear character ¢ of G, stable by jF™, and that
¢ and ¢ belong to the same class {s} in G*. The same is true
also for ¢’®St and ¢™RStE™, (St is the Steinberg representation of
G*™). Hence N¥m,, induces an isomorphism between C®(G*F™|~)) and
C®(GF |~ pmy-1) for such {s}.

Next consider the class {s} corresponding to R%)@#). Thus W-orbit of
6 is jF™-stable and so, 6 is w’'jF™-stable for some w'eW. Applying
Proposition 1.13, we have the following commutative diagram, (note
w jF™=jF™w’).
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%
N FIjF™ n

C(GT [~ jpm) ———> C(G'*" |~ p-1)

r
QF™y « RS
NF/w'ij

C(TF |~y jpm) ——> C(T " [~ p-)

Suppose T corresponding to s T*. Then 6! corresponds to s™!. Now
[67'] is an element of C(T*/~, ;zm) and so, by Lemma 4.9, N¥,, ,»([61])
=[67"] for some f= T**", stable by F, and 6, # belong to the same class
{s}. From the above diagram, we see that N¥mn~,, induces an isomorphism
between C®(GF"|~) and C®(G"|~rmy-1). Hence we see that Nim,,
sends R{.(6) to R$)0) up to a scalar multiple a, where E)6) (resp.
#0.(6)) is an extension of R$)(#) (resp. RF..() to a G"<j> module (resp.
GF™(Fy-module), respectively. Using the same argument as in 4.7, we
see that a==+1 and so by taking another extension, if necessary, we
conclude that N¥m, sends R%).(4) to R$)6). Thus, for the class {s}
corresponding to R$)(4), the assertion of the lemma is verified.

Next consider the class {s} corresponding to —R$)(6’). Thus, 6’ =TF
corresponds to s and W-orbit of 6’ is jF™-stable. First suppose 6’ is
jF™stable. Then, by applying Proposition 1.13, we have the following
commutative diagram, (note wF'=Fw).

Nfemip m
C(GF/’V(]'F"‘)—I <« C(G"""|~p)

ipm
R%"(II)) ) A rw

Nfemir 1
C(T™" [~ pmy-1) < C(T"" [~ up)

Now 6’ determines an element [§'] in C(T*"/~Fm,-1). Hence by Lemma
4.9, N¥m,p([6')=[0"] for some 6'T/F", stable by wF, and ¢’, 6’ belong
to the same class {s} in G*. So, using the above diagram we see that
N¥%m,» induces an isomorphism between C(GF" [~ ) and C(GF [~ pmy-1),
and by the same argument as before, we see that N¥m, sends R¥P(4’) to
—R$(0') under suitable extensions.

Next suppose 8’7" is wjF™stable. We shall realize TCB and j as
follows. 7' is the group of diagonal matrices, B is the group of upper
triangular matrices, and 7 is the automorphism of order 2 given by
(x;;)—>wt(x,;) 'w™'. Since 0’ is wjF™-stable, we may assume 6’ is wj-stable
by taking m large enough. Thus 6'(¢)=6'(t"") for tT*" and we have
(6’)*=1. Now suppose F' is of split type. Then 7%~ EF’;Z and there exists
no regular character ’eT*F such that (6’)’=1. Next suppose that F is
of non-split type. Then T*F is a product of two cyclic groups of order g+1.
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No such a regular character exists if p=2. While, up to W-conjugate,
there exists exactly one regular character ¢’eT*F such that (4)*=1 if
p#2. In this case, since we know already Njm;r preserves the spaces
corresponding to the class {s’} for each s’ not conjugate to s, we see that
the spaces corresponding to {s} is also preserved by N3m . It remains to
show the second statement of the lemma. Let 6,&T“" be a regular
character stable by wjF™ (so we assume p+2). By Lemma 4.9, there
exists 6, T*F™ such that N¥zm,,r([:]) =[6], so 85 is regular and wF-stable.
Now, to prove the lemma, it is enough to show that

(4.10.1) N¥em,p(RF2(05)) = RS2 (65)

for suitable extensions. Let 6,=TF be such that the restriction of 6, to Z7
coincides with the restriction of 6; to Z¥, where ZC T is the center of G.
From the previous argument, (N¥m) '(B%X@0) is a virtual character in
C(G*™|~p) and the same is true for St$’. Thus the image of R‘T‘f(ﬁo)@S’c&”
by (N¥m,)"' is also a virtual character in C(GF™"|~z). However, it is
easily checked that RY)(6,)®St{’ contains —R%)(6;) with multiplicity one.
Since the character correspondence is already established for all other
characters except — R%) (), we see that the image of — R$2(60) by (Nfemp)™!
is also a virtual character in C“(G*"[~;) and so (4.6.1) follows. Thus
the lemma was proved in the case where F' is of split type.

4.11. We continue the proof of Lemma 4.6 and now consider the case
where F' (Frobenius on L) is of non-split type. Hence G is of type D,.
Since the Dynkin diagram of L is of type A,X---X A, this case is also
reduced to GL, by Asai’s argument. However, since the action of F on
the Dynkin diagram of L is non-trivial, we need an extra care for the
process of reduction to GL,. More precisely, using Asai’s argument, the
proof is reduced to the case L=L,X L, where L, (resp. L,) is a product of
some copies of GL, (resp. two copies of GL,) stabilized by both of F’ and
F”, respectively. Moreover, F'” stabilizes each factor of L, and permutes
two factors of L,. To prove the lemma, we may consider L, and L,
separately. In the case of L, by making use of Lemma 2.13, the proof is
reduced to the case of GL, as in 4.10. However, note in this case, Frobenius
map with respect to an F,-structure of GL, (F' in the notation of 4.10) may
be of non-split type. Anyway this case is done by the same method as in
4.10. In the case of L, if F’ stabilizes each factor of L, again Lemma
2.13 can be applied and the previous argument works as well to this case.
Thus we have only to consider the case where both of F’ and F'” permutes
two factors of L,. Hence we can apply Lemma 2.15 to this case. In
particular, the proof is reduced to showing the following.
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(4.11.1) Let G=GL, and F be a Frobenius map on G (split or non-split),
J be an automorphism of order 1 or 2 commuting with F. Consider the
maps

(i) Ni¥m+ypem : C(GFmH/Nszm) — C(GJ'FZ"‘/NF—(mu))

(i) NEypmst 1 C(GF~pme1) —> C(GF™ "~ ps) .

Then for each class {s} in G* which is stable by F™*' and jF*" (resp. by
F? and F™') in the case (i) (resp. (ii)), the same statement holds as in

Lemma 4.6.

We shall show (4.11.1). First we note that the class {s} which is F™*!
and jF*™-stable (resp. F? and F™*'-stable) is in fact F-stable if we take m
large enough. Now, among the arguments used in 4.10, the part concern-
ing with the application of Proposition 1.18 works as well to this case. So
we have only to consider the remaining case, i.e., under the notation in
4.10, the case concerning with R7.*(0’) (resp. R¥)(6')) where 6’ is a regular
character of T*F™*' (resp. T***) which is wjF*™-stable (resp. wF™*-stable)
in the case (i) (resp. (ii)), respectively. First consider the case (i). Since the
class {s} is F-stable, §’ is F®stable. Thus 6’ is wj-stable. If j is identity,
this means that 4’ is not regular and so is excluded. If j is non-identity,
the situation is the same as in 4.10, and we see that 4’ has order two.
Thus by the similar argument as in 4.10, we get the result. Next consider
the case (ii). As in the case (i), ¢’ is F*stable. Since 6’ is wF™-stable,
6’ is w-stable and so 6’ is not regular. Thus this case does not occur.
Thus (4.11.1) was proved and so the case where F is of non-split type.
This completes the proof of Lemma 4.6.

4.12. REMARKS. (i) If 7,<2, the argument employed in the proof in
Proposition 4.3 works as well, even in the case of type D,, as in the case
of type B, or C,. In fact, if G=CO%°, 7r,<2 is shown as follows.
In this case, there exists a natural homomorphism =:G*—SO;7, whose
kernel is a one dimensional central torus. If seT* is given as in Prop-
osition 4.3 and is not stable by F, n(s) is F-stable and has order 2. Then
F(s)=sz, where z is the unique element of order 2 in Ker n, and so F'-stable.
Hence s is F'%stable and we see that r,=2. Thus the same statement as
in the case of type B, or C, holds for G in Theorem 4.2.

(ii) The argument in 4.7 can be applied also to the case where G is
not necessarily of classical type. For example, consider the case (G, F') is
5D, and s=1. In this case, &(GF",{s})’ contains only one cuspidal rep-
resentations. Then using the argument in 4.7 (or rather, the argument in
Lemma 2.17 in [16]) we can show, for a cuspidal representation p, of G* "
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that N¥mp([po)) =a.R,, for some a,=@Q, of absolute value 1. Since r,=3,
we cannot determine further this value a,.
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