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The classification of involutions of simple algebraic groups

To Nagayoshi Iwahori

By T. A. SPRINGER

Introduction.

The present note deals with the problem of classifying the involutions,
i.e. automorphisms 6 of order two, of a simple algebraic group G over an
algebraically closed field & of characteristic not two. For k=C the prob-
lem is equivalent to that of classifying the real forms of simple complex
Lie algebras, which was first solved by E. Cartan in 1914. Subsequently,
S. Araki [1] introduced diagrams describing this classification. It was
shown by A.G. Helminck [6], adapting Sugiura’s simplification of Araki’s
work [9, appendix], that Araki’s classification carries over to arbitrary k.

Here we shall discuss an approach which gives the classification in a
fairly easy manner. In this approach no information about structure con-
stants is required. We only need standard information about root systems,
as contained in [4].

If G and 6 are as above, we consider two kinds of #-stable maximal
tori of G, viz. the ones where the fixpoint set of § has smallest resp. largest
possible dimension. The description of # by an Araki diagram is obtained
using the root system of G with respect to a torus of the first kind. On
the other hand, if @ is inner, it comes from an element of order two of a
torus of the second kind. Such elements can be described in a well-known
manner (see for example Iwahori’s contribution in [2]), which leads to
another description of inner involutions. Exploiting the interplay between
the two descriptions we obtain the classification results for inner involu-
tions. The other ones are then easy to handle. In the second description
affine Weyl groups enter the picture. These are also used in the method
of V. Kac to classify involutive automorphisms of simple Lie algebras,
discussed in [5, Ch. X, §5].

1. Reductive groups with involution, recollections.

k denotes an algebraically closed field of characteristic not two. Let
G be a connected reductive linear algebraic group over k, provided with an
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involution 8 (an automorphism of algebraic groups of order 2). We denote
by K the fixed point group of 6, which is known to be reductive, too.
We recall a number of known results, which can be found in [8] and [12].
The notations pertaining to the theory of algebraic groups will be those
of [11].

1.1. (i) There exists mm G a maximal torus T and a Borel subgroup
B contatning T such that 6T=T, 6B=B;

(ii) Two maximal tort with the property of (i) are conjugate by an
element of the identity component K° of K.

For (i) see [13, §7]. The conjugacy statement (ii) follows from the
observation that K°N\T is a maximal torus of K°, whose centralizer is T
[8, §5], using the conjugacy of maximal tori of K°. (A similar conjugacy
statement for pairs (T, B) with the properties of (i) is not true.)

We call T a fundamental torus in G (relative to #) and (7,B) a
Sundamental pair. It follows from 1.1(ii) that any fundamental torus is
part of a fundamental pair.

A‘subtorus S of G is split (relative to 6) if dx==«"" for all xeS. A
parabolic subgroup P of G is split if P and 6P are opposite, i.e. if their
intersection is a Levi subgroup of both groups.

1.2. (i) If G is not a torus then non-central split tori exist;

(ii) Two maximal split tori are conjugate by an element of K°;

(iii) Let S be a maximal split torus. There exists a mintmal split
parabolic subgroup P such that PNOP=Z4(S), the centralizer of S;

(iv) Two minimal split parabolic subgroups are conjugate by an
element of K°.

These results are due to Vust [14, §1]. Notice that by (i) we have
P+#@G, unless G is a torus.

Let S be a maximal split torus, 7, a maximal torus containing S. It
follows from 1.2(i) that Z;(S)cSK®°, from which one infers, using 1.2 (ii),
that any two tori like T are conjugate by an element of K°.

We fix a fundamental pair (T, B). Denote by X the character group
of T, by R the root system of (G, T), by D the basis of R defined by B
and by W=N;T/T the Weyl group. Then 6 operates on R and stabilizes
D. 1If Iis a subset of D let R; be the root system with basis [ and P,
the corresponding parabolic subgroup containing B, i.e. its Levi subgroup
L; containing 7 has root system R,;. The Weyl group of (L;, T), a sub-
group of W, is denoted by W,. The longest element of W, (relative to I)
is denoted by w,. In particular, w, is the longest element of W=W,.
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1.8. There exist veG and ICD such that the following holds:

(i) n=wvv)™" lies in N;T and represents the element w,wp of W:

(i) for all asl we have w,wpla=a;

(iii) P=v"'P;v 1s a minimal split parabolic subgroup ;

(iv) BvK° 1s open in G.

This is established in [12]. It follows from the uniqueness part of
Bruhat’s lemma [11, 10.2.12] that the double coset TwK is uniquely determined.

We draw a number of consequences of the preceding results. First
notice that, with the notations of 1.3,

(1) O(vtv)=v (w wpb)(t)v (teT).

Put T\=v'Tv, B,=v"'Bv. By (1), T, is a #-stable maximal torus. We call
(T, B) a split pair.

1.4. (i) The maximal split torus S contained in T, is the identity
component of the subgroup

v itw|te T, (w,wpf)(t)=t""}.

(ii) Let T be a maximal torus of G containing a maximal split
torus. If B’ is a Borel subgroup containing T’ then (T’,B’) is a split
pair if and only if B’ is contained in a minimal split parabolic subgroup ;

(iii) Two split pairs are conjugate by an element of K°.

Since T, is f-stable, we have T\CPNOP, where P is as in 1.3. Now (i)
follows from 1.3 and 1.2. To prove (ii) use 1.3(iii) and the conjugacy of
minimal split parabolic subgroups. (iii) is proved similarly.

We introduce a realization of R in G [11, 11.24], i.e. a family of one-
parameter subgroups (%.).er such that for all ac R

tr.(E)t ' =w.(a(t)é) (teT, k),
To(Dx_o(— 12, (1)eN,T.

1.5. The realization may be taken such that 6(2,(8))=n"%y,wy0aE)1
for ta€D, éck.

The notations are as in 1.3. First take a€l, so w,wpfa=a (1.3(ii)).
Let a, be the character of T, corresponding to a under the isomorphism
t—v~'tv of T onto 7). It follows from 1.4(i) that @, is trivial on the
maximal split torus S. Hence v *(Ima,)v lies in the centralizer of S, which
we know to be contained in S. K°. We conclude that v-'(Imx,)vC K°, which
implies the statement of 1.5 for a=l. If aeD—T then, using that w;
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sends positive roots (relative to D) outside R; to positive roots, one sees
that w,wpfa is negative, and in particular is different from a. We then
can normalize the realization such that 1.5 also holds for ae D—1 (see [11,
11.2.1]). But then 1.5 holds also for —aeD, as follows from [loc. cit.].

Let G’ be another connected reductive k-group, with an involution 6’
We assume given for (G’,6’) data T',B’,R’,---, similar to the ones in-
troduced for (G, ).

1.6. Assume that there ewxists an 1isomorphism of algebraic tori
f:T=T, which induces a bijection f*: R'— R, with f*D=D’.f*I'=1. Then
S extends to an isomorphism of algebraic groups f:G=G' with fB=B,
such that fof=6@'of. If f is another isomorphism GG’ with the same
properties there is t€ T such that fi(x)=f(txt™") (x€G) and that t@t)™*
lies in the center of G.

Introduce realizations (%4)aer, (Ta)a-ecr for G resp G’, with the properties
of 1.3. Using the isomorphism theorem for reductive groups [11, 11.4.3] it
is not hard to see that we can arrange matters such that

fm)=n’

f(@pea () =2a.(8) (a’€D,E€k).
Since f is determined by its values on T and the groups Imx, (as +D)
[loc. cit., 10.1.11], we conclude from 1.5 that fod=@’of. The uniqueness

statement is a direct consequence of the uniqueness part of the isomorphism
theorem.

We give some additional results, which are fairly direct consequences
of the preceding observations. Denote by i=1, the opposition involution of
D, ie. the permutation of D defined by

Wpa=—1ia (ae D).

Let 6 be the permutation of D induced by . We put ¢=1if. Recall that
the Weyl group W acts on T as a group of automorphisms.

1.7. (i) ¢ stabilizes I and ¢|;=1,, the opposition involution of I;

(i) ¢*=1.

(i) follows from (1). Since wpr=wjp=0wy,0 ' we have (ii).

Next we give characterizations of inner automorphisms of semi-simple
groups.
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1.8. Let G be semi-simple. The following statements are equivalent :
(a) 6 is an inner automorphism, (b) §=1, (c) rank G=rank K.

Let # be an inner automorphism Inta. Then a normalizes both B and
T and hence lies in T (as is well-known). So 4 fixes all elements of T,
which implies that §=1. Conversely, if §=1 then ¢ fixes all elements of
T (here we use the semi-simplicity of G). We can then find a T such
that 0z.(8)=ax,(&)a™* for all ae D, é€k. The same holds then for ac —D,
which implies that §=Inta. We have shown the equivalence of (a) and
(b). The equivalence of (b) and (¢) follows from the observation that
K°NT is a maximal torus in K°.

By 1.2(ii) the dimension of a maximal split torus is an invariant of
(G, 8), the rank of 8. We give several descriptions.

1.9. (i) rankfd=dimP,—dimK ;

(ii) rank@ equals the multiplicity of the eigenvalue 1 of the linear
map 0Q1 in XQR;

(iil) If G is semi-simple, rank@ equals the number of ¢-orbits in
D—1I.

(1) follows from the observation that G=K.P and KNP=L,/S (see
[14, §1]). The assertions (ii) and (iii) follow from 1.4(i).

2. Classification, preliminaries.

2.1. In no.1 we have associated to the involution # of our reductive
group the combinatorial data (D, I, ¢). These are described, after Araki, by
a diagram (see [1]). Let & be the Dynkin diagram associated to D, a
graph whose vertex set is D. We color black the vertices of I, and we
indicate the action of ¢ if it is nontrivial. The Araki diagram 9, of
(G, 6) is the Dynkin diagram 9 provided with the extra data ([, ¢). If G
is semi-simple and adjoint then 9, determines (G, 6) up to an inner isomor-
phism, as follows from 1.6.

One should keep in mind that the Dynkin diagram & is defined using
a maximal torus 7 and a Borel group B2 T. However, the Dynkin diagrams
associated to two such pairs (T, B), (T, B,) can be canonically identified.

In this section we shall only encounter split pairs. We fix one and
denote it by (T,B) (in order to keep notations simple we do not write
(T, B,)) as in no.1). We view 9 as being defined using this split pair.
The root system of (G, T) is -again denoted by R. Recall that 6 operates
on T and hence on R. We denote the induced permutation of R by 6@*.
In terms of (T,B) the data (I, ¢) can now be described as follows. We
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may assume that G is not a torus.

22, If a<I then 0*a=a. If acD—1I then 6*a+ga is a linear com-

bination of roots in I.
This is a direct consequence of (1).

We now forget for the moment the involution 4. Let (7, B) be any
pair in G, and D the associated basis of the root system R of (G, T). Let
Ibe a subset of D and ¢ a permutation of D with ¢*=1. Assume that ¢
stabilizes I and that ¢|,=1; (notations as before). We shall say that (I, ¢)
is admassible (for D) if either (I, ¢) is obtained as above from an involu-
tion 6 for which (7, B) is a split pair — in which case I+ D, as a consequence
of 1.2—or if I=D, ¢=1p. The problem of classification of the involutions
of G leads to the problem of classifying the admissible pairs (I, ¢) (and is
equivalent to it if G is adjoint).

We next mention some criteria for admissibility. These are essentially
well-known, so we shall be brief (see [9, p. 101] or [6]). We assume G to
be adjoint (as we may) and we take a realization (2,)scrz. It follows from
the isomorphism theorem [11, 11.4.3] that there exists a unique automor-
phism 6 of G such that for acD, £k

0(xa(§) =%y ;4al8) .
If a=R is an arbitrary root there is ¢, =k* such that
0(xa($)):m—w1¢zx(ca$) .

2.3. (I, ¢) s admissible if and only if c_y,4a=1 for acD—1L

If this condition is satisfied then 6*x,(&)==z,(§) for all a€D (notice
that w,;pa=—a for a<lI), so that @ is an involution. It is then easy to
check that (7, B) is a split pair for # and that (I, ¢) is the pair defined by
6. We skip the rest of the proof of 2.3.

If J is a ¢-stable subset of D—1I we write D,=1UJ, ¢,=¢|p,.

24. (i) If (I,¢) is admissible for D then (I,¢,) is admissible for
D,;;

(ii) If for each ¢-orbit J in D—I we have that (I, ¢,) is admissible
Jor D; then (I, ¢) 1s admassible for D.

Let J be as above and denote by T, the identity component of the in-
tersection of the kernels of the characters a of 7, for aclUJ. If the
automorphism ¢ introduced above is an involution it induces an involution
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of the centralizer Z;(T,), which has associated admissible pair (I, ¢,) for
D,. This establishes (1i).

To prove (ii) one uses 2.3, which implies that admissibility of (I, ¢) is
characterized by a condition which involves only the ¢-orbits in D—1I

In view of 1.9(ii), the last result shows that the essential part of the
classification of admissible pairs is the classification of those which lead to
involutions # with ranké#=1.

3. Classification, first step.

Let G and 6 be as in no.1 and first assume that rankd=1. We also
assume that G is semi-simple and adjoint. We fix a fundamental pair (7, B)
and use the notations of no.1 for the root system of (G, 7). We assume
given a realization (x,) of R.

3.1. Assume, moreover, that G is simple of rank2. Then G 1is of
type B, 6 is an immer automorphism Inta, with a< T such that a’*=1 and
that a(a)=1 for all long roots a<R.

With the notations of 1.9(i) we have dim P,=dim K+1. There are
three possible cases, where G is of type A,, B,, G., respectively. We shall
only deal with the case of type B,. The proof of the impossibility in the
other cases is left to the reader.

In the case of B,, # must be inner, §=Inta with a= T, a®*=1. Assume
a(a)=—1 for some long root «. We may assume a to be simple, by choos-
ing B appropriately. Then one checks that the number of roots = R with
B(a)=1 equals 2, whence one concludes that dim K=4. Hence dim P,=5,
which is impossible.

We now assume that G is simple and that =Intae is an inner auto-
morphism, with e T, a®*=1. We denote the highest short root of R
(relative to D) by a,. So, if R*={a’|a=R} is the dual root system, a’ is
the highest root of R’. The root a, is also a dominant weight. If all
roots of K have the same length we call them short. If we speak of long
roots, it is understood that different root lengths occur.

3.2. Assume rankf=1.

(i) al@)=1 for all long roots acR;

(ii) I is the set of roots y of D which are orthogonal to a, (i.e. such
that a;,—y s mot a root) ;

(iii) If all roots of R have the same length and D—I1={B} then B
occurs with an odd coefficient in a;.
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(i) follows from 3.1, using that any long root of R is contained in an
irreducible subsystem of rank 2. Now let a be a short root with a(a)=—1.
Choosing B suitably we may assume that a=a,. Let H be the subgroup
of G generated by Imx, and Im%_,. Then H is semi-simple of rank 1
and @ induces an involution of H. By 1.2(i), H contains a one-dimensional
split torus S, which must be a maximal one for G, since rankf#=1. Within
H, the torus S is conjugate with the torus S;=Ima® (where a® denotes
the coroot defined by «, see [11, p. 190]), say S=h"'S,k.

Now S,CK. It follows that h(h) '€ Ny(S,)—S,. To the multiplicative
one-parameter subgroup «” one can associate in a familiar manner (see for
example [11, p. 231]) a parabolic subgroup P,. Its Lie algebra is spanned
by the weight spaces.

V,={XeLie(G)|Ad a"(§) X=£"X]},

with n=0. Notice that P, is #-stable.

We conclude that P=h"'P,h is a split parabolic subgroup of G contain-
ing Z(S). If I is the set of y&D orthogonal to a=a, then P, is a para-
bolic subgroup of type I. Hence P is of type I. This proves (ii).

Assume that all roots have the same length. Let a€R, ala)=-—1.
Again, we may assume that a=a;,. If yD is orthogonal to «, then a;
and 7 span a subsystem of type A;XA, If we had y(a)=—1 we could
construct a two-dimensional split torus, in the manner described above,
which would violate the assumption rankéd=1. So y(@)=1 for all yeD
orthogonal to ;. Now write as:ngrr. Then

—1=a,(a)=1Ir(a)"r=B(@)"s .
Hence mg must be odd, which establishes (iii).

3.3. Using the preceding results one obtains quickly a list of possible
diagrams 9, (see no.2), for the case that G is simple, § is inner and
rankd=1. The a, are readily found from the data in the tables of [4].
The cases D,, Ey, E,, E; are ruled out by using 3.2(iii) and the case G, by
38.1. We shall see that all diagrams of the list can be realized, i.e. that
all corresponding (I, ¢) are admissible. The list is as follows:

Type Diagram

A, o
=
A, o—e---e—0
B, O—0----0=30
C, e—0—e-—0=%0

F, —e3=0—0
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There is a similar list for the case that 6 is outer. Here it suffices already
to use the conditions on (I, ¢) given in 1.7.

Type Diagram

A3 —O0—6@ s
[} o] ®

D, o———o<.§ ov—\o<*. o—o<o

Dy (123)  o—e-e])

Dy yy (122) o_,____.<.

3.4. We now drop the assumption rankd=1. Using 2.4 we can set up a
list of possible diagrams 9, for the case that G is simple, as is done in
[1]. The diagrams are given in the second columns of tables 1 and 2, for
the inner resp. outer involutions.

If I is empty we say that 6 is quasi-split. In that case a minimal
split parabolic subgroup of G is a Borel group. If, moreover, rank §=rank G
then 6 is split. It follows immediately that for given G there is a 4
such that # is split. Moreover this # is unique up to conjugacy by an
inner automorphism. In the tables we have indicated the split and quasi-
split cases.

We shall next establish that all diagrams listed in tables 1 and 2 cor-
respond to admissible pairs (I, ¢). For this we need well-known results
about the classification of elements of order two in a simple group G, to
be recalled in the next section.

4. Elements of order two in adjoint groups.

4.1. We assume G to be semi-simple and adjoint. The description of
conjugacy classes of elements of order 2 in G is well-known. It is con-
tained, for example, in Iwahori’s paper in [2, p. 267-295], ;where the more
complicated problem is discussed of describing the conjugacy classes of
involutions in finite groups of Lie type (over a field of characteristic not
two).

We fix a maximal torus T of G. The corresponding Weyl group N;1/T
is denoted by W and the root system of (G,T) by R. If ,T denotes the
group of elements of order<2 of T there is a bijection of the set of con-
jugacy classes of involutions of G onto the set of W-orbits in ,7—{e}.
Denote by X the character group of 7 and by X° its dual, which we
identify with the group of one parameter subgroups of 7. There is an
isomorphism X?/2X'23,T, induced by the homomorphism A—i(—1) of X°
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Table 1. Inner involutions.
type diagrams matching
A, <1J split 1
A, (>1) oo o—*o quasi-split [ﬂ_—l-] [-l—ﬂ]
1 2 0-11 2 2
—
O* o —e---e—20- 0 1_S_])<ll », I+1—p
P I+1—p 2
. 1+1
B O—O---0==0 split —_—
‘ 1 2 -1 | [ 2 ]
1 P l P l
O om0 @ O=3=0 1£p<i—-1 E+(_1)p([§]—5)
C, (1>2) O—0----0=¢=0 split l
1 2 1-11
2p 1
00— O @--0==0 1§pg§l P, l—p
D. o o<§l_1 split l
* 12 '
2l
1 2p
Orre - O—@-em- 1<p<i-1 P
1 l
*— O @ 2l——j2-(1+(—1))
1
*——0—e-- 2l—§(1—(—1)’)
D . o<§z quasi-split | 1, 141
20+1 1 2l—1
204+1
1 2p
Orrr O ) 1<psl-1 | p
*—O— @ } 2, 2141
e T
I, uasi-split 2,35
¢ 1 245 5 6 4 :
A/_/_\
o———o—z—o—o 1,6
s split 2
E: 1 3 4 5 6 7 P
2
o—o—r—o—o——o 1,6
o——Q—I—‘v—O—O 7
E, split 1
1 3 4 5 6 7 8
2
o—o——I——o—o—o——o 8
F, O0—0==0—0 split 1
1 2 3 4
*—0=x=0—0 4
LG2 0=¢=0 split 2
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Table 2. Outer involutions.

type diagram matching
Ay 0—0----0—0 split

Ay 0—=0-----0—0 split +1
Asyy *—O0—e--0O—e

D, quasi-split 1,2

quasi-split 2,3
O\.:<z P

quasi-split 2,4

D, (1>2) OC<:I quasi-split -1,1

2p—1
[ S — <:§ 1<p=i—1 p—1, 2l—p if p>1

Dyy4y O--o-- O< split l

1 2p—1 .
0= O—@----- u<: 1<p<i p—=1, 2l—p+1 if p>1

E; o—o—I—o——o split 3,4

onto ,7. The isomorphism is W-equivariant. Hence there is a bijection of
the set of W-orbits in ,7 onto the set of W-orbits in X°/2X®. Let W, be
the semi-direct product of W and X°, relative to the canonical action of
W on X°. Then W, operates on X° by (w, A)(g)=w(pg+22). It is clear
that there is a bijection of the set of W-orbits in X"/2X" onto the set of
W.-orbits in X°.

Since G is adjoint, X° is isomorphic to the weight lattice P of the
dual root system R’°CX’. Let Q be the root lattice of R°. The subgroup
W. generated by W and @ is a Coxeter group, viz. the affine Weyl group
defined by W. It operates in the vector space X°®,R and has a funda-
mental domain in that vector space, described in [4, Ch. VI, §2]. We
recall a number of results established in that reference.

Assume G to be simple. Fix a basis D of R and denote by a= X n.a

a€D

the corresponding highest root. Put D,=D\U{—a}, the vertex set of the
affine Dynkin diagram. Let D, (¢=1,2) be the set of =D with m,=1.
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The group P/Q operates on D, and operates simply transitively on
D,\J{—aj}.

Finally, let (a’).cp be the basis of X° dual to the basis D of X. The
classification of conjugacy classes of elements of order two in the simple
group G is now described in the following result.

4.2. (i) Any element of order 2 m G 1is conjugate to an element
a’'(—1) of T, where acD,\JD,;

(i) If a,BED,UD, then a'(—1) and B'(—1) are conjugate in G if and
only if we have one of the following situations:

(a) a,BED, and there exists y=P|Q such that ra=yr'f=—a,

(d) a, BED, and there exists y€P/Q with B=ra.

It is now an easy matter, using the data given in the tables of [4], to
determine the number of conjugacy classes of elements of order two in the
various simple cases. It turns out that in each case the number of classes
equals the number of diagrams listed in table 1, for that case. It follows
that the diagrams of table 1 do actually occur, so that the table gives the
complete list of diagrams &), for inner involutions 4.

One now checks that the diagrams of possible rank one outer involu-
tions listed in 8.3 occur as diagrams (I, ¢,) for a suitable diagram of table
1 (notation of 2.4). Using 2.4 we conclude that the diagrams listed in
table 2 also occur. So tables 1 and 2 give the complete list of Araki dia-
grams of involutions of simple groups.

5. Matching two descriptions of inner automorphisms.

We keep the notations of no.4. If a is an element of T of order two
it defines one or more roots a=D,\UD,, according to 4.2(i). On the other
hand, the automorphism #=Inta determines a diagram listed in table 1.
In the last column of table 1 we have listed for each diagram the cor-
responding roots a (if there are several they are related according to 4.2
(ii)). The column gives the numbers of the roots, the numbering being as
in the tables of [4]. The numbering is indicated in the second column of
table 1 (split and quasi-split cases).

In almost all cases the roots a can be found by computing in two ways
the dimension of the centralizer K of a. In the first place, by 1.9(i),

dim K=dim P; —ranké,

showing that dim K is known if the diagram is given.
On the other hand we have the following result (going back to Borel-
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de Siebenthal [3]). We use the notations of 4.2. If a=D,UD, denote by
H the connected centralizer of a’(—1). We denote by 9, the affine Dynkin
diagram associated to 9.

5.1. (i) If a€D, than H is isomorphic to the group Lp_ia;

(i) If a€D, than H is a semi-simple group whose Dynkin diagram
is obtained from D, by removing the vertex a and all edges with
endpoint a.

This result permits us to compute dim H in all cases. A comparison
of dim H and dim K then gives all entries in the last column of table 1 in
a straightforward manner, except for the last two diagrams listed under
D,,.

In these two exceptional cases the comparison of dimensions only gives
that a=ay Or ay_,. We can then make an explicit computation in G,=S0,,
taking G=G,/{+1}. Let V=Ek" and denote by (,) the bilinear symmetric
form on V with ((e;) denoting the canonical basis) (e, €;.)=1 for 1<4<21,
(e:;,e;)=0 for all other pairs 4,5. The group of nonsingular linear maps
with respect to this basis of the form axz=diag (2, -, Xa, 27, -+, 22') is a
maximal torus of G,. A basis D of the corresponding root system is given
by the characters a; (1=<1<21) with a;(x) =27 (1=Z1=<21—1), ap (%) = 2oy 1 Xy
Let a=diag (4, --,1, —1%, -+, —1), where *=—1 and let # be the inner auto-
morphism Inta of G;. Then a=ay;(—1). To obtain a maximal split torus
in G, relative to @, one first constructs one in the case =1, e.g. by using
that then G is isogeneous to SL,XSL,. One then obtains a maximal split
torus in the general case by putting together I tori of the previous sort.
It turns out that a maximal split torus is conjugate in G, with the I[-
dimensional diagonal torus of transformations of the form diag (x, 77, -,
%, 7Y 2, 7Y, 00, 2, 27Y). From this we see that I=D—{a,} if | is even
and I=D—{ay_,} if | is odd, which leads to the result of the last column
of table 1.

6. A remark on quasi-split inner automorphisms.

For each semi-simple G there is a unique class of quasi-split inner
automorphisms. The next result gives an easy explicit description of this
class. We assume G to be semi-simple. 7T is a maximal torus of G and
D is a basis of the root system R of (G, T).

6.1. Let ac T be such that ala)=—1 for all ac€D. Then Int(a) s
quasi-split. If the opposition imvolution ip 1s trivial then Int(a) is split.
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Put rank G=I, rank Int (¢)=7. Let r; be the number of roots in R of
height >0, relative to D. From a well-known description of the cen-
tralizer K of a [2, p. 201] we see that

dimK=I[4+2 > »,.

Also, dim B=I+ X r,. It follows that
1zl

(2) dimB—(dimK—}—r):.ZE(—l)i"m—r.

By a result of Kostant [7, Cor. 8.7] we know that »,—7,,; equals the
number of exponents of the Weyl group W which are equal to ¢. Hence
the sum in the right-hand side of (2) equals the number of odd exponents.
This is known to be equal to the number of 7p-orbits in D (see [10, 6.5]).
We then conclude from 1.9(iii) that the right-hand side of (2) is non-
negative. Then 1.9(i) shows that we must have dim K+7=dim B and that
the minimal split parabolic subgroups relative to Int(a) are Borel groups.
This proves that Int(a) is quasi-split. The last assertion of 6.1 follows
from 2.2.

Notice that if all exponents are odd, i.e. if —1 lies in the Weyl group
W, we have that Inta is split.

7. Outer involutions.

Finally, we briefly discuss an analogue of the results of no.5 for the
case of outer involutions. We use the notations of no.1. We assume G
to be semi-simple. Fix a fundamental pair (7, B) and a realization (2.).cz-
Assume that 6 is outer. Then the permutation § of the basis D is non-
trivial. Put E={acD|fa=a}. There is a unique involution 4, of G such
that (7T, B) is a fundamental pair relative to 6, and that

Oo(x4(8))=25.(&)  (a€D,E€k).

It is readily seen that we may choose the realization such that §=6,cInta,
where a= T is such that a(a)=1 for acD—FE, a(a)==+1 for acFE.

If H is the semi-simple closed subgroup of G generated by the groups
Imz, for e=+FE then @ induces an inner automorphism « of H of order
<2. If G is simple, an inspection of the possible cases (4,, D,, E;) shows
that H is either trivial or semi-simple of type A. By the previous results
we know the possibilities for x. We check that the number of those is
equal to the number of corresponding diagrams in table 2. Hence these
diagrams are completely determined by the conjugacy class of H in the
group of inner automorphisms of H.
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In the last column of table 2 we have given the numbers of the roots
acs E which define & according to the last column of table 1, if « is an
involution. If & is trivial there is no entry in the last column of table 2.
(The numbering of roots used in that column is the numbering of the
roots of D.)

The matching is again achieved by computing the dimension of K in
two ways. To compute the dimension of the fixed point group of an auto-
morphism f,cInt @ one can make a direct check in the various cases. When
G is of type A, or E;, there are at most two cases and it suffices to deal
with the case that a=1, which is easy. When G is of type D, one can
make a computation in SO,. The other computation of dim K uses 1.9(1),
as before. The identification of K is easily achieved. We omit the details.

As a byproduct we find the following analogue of 6.1 for outer auto-
morphisms.

7.1. Let a= T be such that a{ia)=—1 for acE, ala)=1 for acD—E.
Then 6=0,cInta 1is quasi-split. If 1p 1s mon-trivial then 6 is split.

References

[1] Araki, S.,, On root systems and an infinitesimal classification of irreducible sym
metric spaces, J. Math. Osaka City Univ. 13 (1962), 1-34.

[2] Borel, A. et al.,, Seminar on algebraic groups and related finite groups, Lecture
Notes in Math. vol. 1381, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[3] Borel, A. et J. de Siebenthal, Les sous-groupes fermés de rang maximum des
groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221.

[4] Bourbaki, N., Groupes et Algebres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.

[6] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic
Press, New York, 1975.

[6] Helminck, A.G., Algebraic groups with a commuting pair of involutions and
semisimple symmetric spaces, thesis University of Utrecht, 1985 (to appear in
Adv. in Math.).

[7] Kostant, B., The principal three-dimensional subgroup and the Betti numbers of
a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.

[8] Richardson, R. W., Orbits, invariants and representations associated to involutions
of reductive groups, Invent. Math. 66 (1982), 287-312.

[9] Satake, I., Classification theory of semisimple algebraic groups, Lect. Notes Pure
and Appl. Math., Marcel Dekker, New York, 1971.

[10] Springer, T.A., Regular elements of finite reflection groups, Invent. Math. 25
(1974), 159-198.

[11] Springer, T.A., Linear Algebraic Groups (2nd ed.), Birkhiuser, Boston-Basel-
Stuttgart, 1981.

[12] Springer, T.A., Some results on algebraic groups with involutions, Adv. studies
in Pure Math., vol. 6, Kinokuniya/North-Holland, Tokyo-Amsterdam, 1985, 525-543.



670 T. A. SPRINGER

[18] Steinberg, R., Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc.
80 (1968).

[14] Vust, T., Opération de groupes réductifs dans un type de céne presque homogénes,
Bull. Soc. Math. France 102 (1974), 317-334.

(Received April 27, 1987)

Mathematisch Instituut
Rijksuniversiteit Utrecht
The Netherlands



