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§1. Introduction.

Given an irreducible oriented closed 3-manifold M, Thurston [3] has
defined for ae Hy(M: R), an invariant |a| known as Thurston’s norm as
follows. For a closed surface S=I1S; embedded in M, S; a connected com-

ponent, define
1-(8)=X max {—x(S), 0},

where y denotes the Euler number. For ac Hy(M: Z), let
l]al|=mgn {x-(S)},

where S ranges over all the embedded surfaces in M which represent a.
It then turns out that [ -| extends homogeneously and continuously to a
pseudonorm on Hy(M: R), also denoted by |-]|.

Throughout this paper, unless otherwise specified, we shall work under
the following hypothesis.

HYPOTHESIS (1.1). M s an atoroidal, trreducible, oriented, closed 3-
manifold which fibers over S

Then, since M is atoroidal, the pseudonorm becomes a norm, of which
the unit sphere S is known to be a convex polyhedral sphere in Hy(M: R).
Identify Hy(M: R) with H'(M: R) via the Poincaré duality. Let J! be the
subset of those classes which are representable by nonsingular closed 1-
forms. J1 is nonempty because M fibers over S'. In [T], the structure of
J1 has been investigated as follows. See also Fried, exposé 14 of [FLP].

THEOREM (1.2). There is a collection of open top cells e, ---,e. of S
such that J1=T11C(e;), where C(e;) is an open come over e;.
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Let e be one of the above e;s and let C=C(e). Denote by C, the set
of all the integral points of C. Each point a of C, corresponds to a fibra-
tion of M over S! and, viewed as a point in Hy(M: R), a is represented by
its fiber S. S is connected if and only if a is a prime integral class. In
any case, the monodromy [¢] of the fibration is a well defined isotopy class
of homeomorphisms of S. Since M is atoroidal, [¢] is irreducible in the
sense of Nielsen, that is, has, as its representative, a pseudo Anosov dif-
feomorphism ¢. Then its topological entropy A(¢), or the logarithm of the
dilatation of ¢, depends solely upon the class a€(C,. So denote it by h(a).
For a positive integer n, we have h(na)=n"'h(a). Thus A™!is a function on
C, which is homogeneous of degree one. Therefore it is extended by a
standard fashion to C,, the set of rational points of C.

The following fact is established by Fried [F].

THEOREM (1.8). There is an extension of h™! to a concave function

of C.

The purpose of the present paper is to show the following stronger
result.

THEOREM (1.4). h™! is strictly concave on C.

Fried [F] has also shown that if {a,JCC tends toward a point in
oC\{0}, then h(a,) tends toward the infinity. Therefore Theorem (1.4) has
the following immediate corollary. Note that the function [allk(a) is
homogeneous of degree zero.

COROLLARY (1.5). llalh(a) takes its minimum at a unique ray in C.

The proof of Theorem (1.4) is an elaboration of the argument of Long-
Oertel [LO], where a new proof of Theorem (1.3) is given. However their
proof of Theorem 4.1 in [LO] is rather intuitive, simply indicating the idea.
In order to obtain a refined result, it is absolutely necessary to provide a
fundamental facts upon which the argument is based. By this reason and
for the convenience of the reader, we aim to give the proof in full details.
However some familiarity is assumed about train tracks and pseudo Anosov
diffeomorphisms. Fundamental facts concerning them are found in [C],
[FLP], [HP] or [P].

The contents are as follows. In §2, fundamental properties of train
tracks and pseudo Anosov diffeomorphisms are prepared, which enable one
to construct a branched surface L in M. In §3, graded measures on L are
constructed. §4 and §5 are devoted to the proof of Theorem (1.4).
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With pleasure the author expresses his gratitude to S. Kojima for many
stimulating conversations.

§2. Train tracks and branched surfaces.

Let F Dbe an oriented closed surface of genus=2. Consider a train
track z on F. Let N be an adapted neighbourhood of . N has a trans-
verse foliation 9, a foliation by intervals which is transverse to r. Let ¢’
be another train track.

DEFINITION (2.1). ¢’ is said to be carried by r w.r.t. (N, ), if r/CIz/',
v’ hJ and there exists a continuous projection r’—r along leaves of J.

See Figure 1. Note that this definition differs slightly from the usual
one; here one is not allowed to move ¢’ by isotopy. Let m(J) be the
maximal length of the leaves of J.

PROPOSITION (2.2). Let ¢: F'—F be a pseudo Anosov diffeomorphism.
Then there exists a sequence of train tracks v, (n=1) with adapted neigh-
bourhoods N, and transverse foliations J, such that

(1) @(za) ts carried by v, w.r. t. (No, I,)
2) m(r,)—0 as n—co.

PROOF. At each singular point p of &*, the unstable foliation of ¢,
consider neighbourhoods 4, and 4, of p which are of the form depicted in

Figure 2, such that 4,Cd, 4,N4,#@ if p#q and ¢(d,) D4, if ¢(p)=q.
On N=F\Ud,, the stable foliation &F* of ¢ is a foliation by intervals.
p

The quotient space of N by $F* is a compact branched 1-manifold 7, Further
one can find a smooth cross section %:7,—N of the natural projection.

Then 7,=i(r,) is a train track which satisfies (1), with N,=F\\U 4, and
¥4

A
gV
P A |
2 —':‘H_-‘T—
-HH=
7/ is carried by ¢ 7’/ is not carried by =

Figure 1
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Figure 2

J1=%F"|y,. For n>1, define r,=¢"(r)), N,=¢"(N,) and J,=F"|y,.
q.e.d.

Let T4 be the mapping torus of ¢. That is,
Ty=Fx[0, 1]/(z, 1)~ (¢(x), 0) .

Let us define a smoothly embedded branched surface in T associated to z,.
First of all, construct a smooth homotopy z"=(x%) : FX[0,1]— F such that

(1) z%x)=w= if t<1/3 or if z& N,

(2) ===t if t=2/3

(8) =% is a diffeomorphism of F' if £<2/3

(4) If xeN,, 7i(x)e N, and nj(x) and x lie on the same leaf of 9,
(6) 7HPTa) Crn.

The image L, of ¢z,X[0,1] by =" is a branched surface in Ts. See Figure
3. Its branching locus consists of two parts. One is “horizontal”, i.e. the
part which lies in Fx{2/3} and the other is “vertical”, corresponding to
(switches of 7,)x[0,1]. The intersection of the two is called rectangular
points.

The vector field 9/dt on F'x[0,1] gives rise to a vector field X on T.
Likewise n%(9/0t) defines a vector field Y, on L,.

By virtue of the condition (2) of Proposition (2.2), one has;

PROPOSITION (2.3). The maximal angle between X and Y, on L, tends
towards zero, as m tends towards the infinity.

At this point, let us return to our initial situation. We are given a
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manifold M which satisfies (1.1). C is the open cone over a top cell e of S.
It is a component of TI.

In the rest, fix once and for all an irreducible integral class £ in C,
as the reference point. & determines the structure of a fibration over S,
with fiber F, a connected surface and monodromy ¢ : F'— F), a pseudo Anosov
diffeomorphism. Now M is homeomorphic to the mapping torus 7. Fix
once and for all such a homeomorphism, herewith identifying M with T.
Thus the branched surface L,, the flow X and the semiflow Y, are con-
sidered to lie in M. Our starting point is the following interesting fact
due to Fried [F].

THEOREM (2.4). FEach element [w] of C can be represented by a mnon-
singular closed 1-form o such that o(X)>0 on the entire manifold M.
Furthermore suppose [w]€Cq Let S be a compact leaf of the foliation
by w. Then the first return map of the flow X is a pseudo Anosov diffeo-
morphism of S.

A subset K of C is called projectively compact if K is the cone over
a compact subset in e.

PROPOSITION (2.5). For any projectively compact subset K of C, there
exists a number n such that each element of K is represented by a mnon-
singular closed 1-form w such that o(X)>0 on M and w(Y,)>0 on L,.

The proof follows at once from Proposition (2.3) and the fact that a
nonsingular closed 1-form o can be taken locally continuously w.r.t. its
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class in C.
Now we shall raise some properties of the semiflow Y.

PROPOSITION (2.6). The semiflow Y, has dense forward trajectories.

PROOF. It is enough to show for n=1. As is well known, the pseudo
Anosov diffeomorphism ¢ : F—F has a dense forward orbit. Let ¢,:7,—7,
be the first return map of the semiflow Y,. It is easy to show that ¢, is
in fact connected to ¢ as follows. For each singularity p of &F*, delete an
open neighbourhood C, of p in the (singular) leaf of &F* passing through p.
Let F"=F\UC,. Then ¢(F’')cF’. Choosing C,’s in appropriate size, one
has that ¢,:7,—r7, is the projected image of ¢:F’'—F’, by the canonical
projection of F’ onto F’/S°=r, This shows that ¢, has dense orbits.

q.e.d.

A similar argument shows the local eventual surjectivity of the first
return map ¢,:7,—7, of the semiflow Y.

PROPOSITION (2.7). For each wnterval J in t,, there exists N>0 such
that ¢5(J)=14,.

§3. Graded measures on branched surfaces.

In this section, we introduce, after [LO], graded measures on the
branched surface L,. From now on, for simplicity, let us denote L,, z,,
Y, and ¢, by L, 7, Y and ¢, if there is no fear of confusion.

Suppose w is a nonsingular closed 1-form on M such that w(X)>0 on
M and that o(Y)>0 on L.

DEFINITION (3.1). A positive valued function f on L is called a graded
measure for @ with growth rate 2 (2>1), if

(1) f is smooth on the interior of each sector of L,

(2) branching condition: For each branch point x of L, there exist
a neighbourhood N of x and a submersion = : N—I? such that the
function f: D*>R,, defined by 7 (y):n(gzyf(x) is smooth,

(8) dflf=—log 2-w on the interior of each sector of L.

In (3) above, we denote by w the restriction of w to L.

PROPOSITION (3.2). Suppose w 1s a closed 1-form on M such that

o(X)>0 on M and o(Y)>0 on L. Assume also [w] is an integral class.
Then there exists a graded measure f for o such that df/f=—h(w)-o.



Topological entropy and Thurston’s morm 769

where h(w) is the topological entropy of the corresponding monodromy.
Further f 1s unique up to a multiplicative constant.

Here is an outline of the proof. Let S be a leaf of the foliation by w.
The first return map ¢:S—S of the flow X is a pseudo Anosov diffeomor-
phism, by Theorem (2.4). Thus on ¢=LNS there must exist a weight w
corresponding to the unstable foliation, or the unstable measured lamina-
tion, of ¢. The weight w then yields the required graded measure fon L
by the differential equation df/f=—h(w) -w. ¢«(w)=e"’w implies the con-
tinuity of f.

Although it is easy to show that ¢ is the correct one to carry such a
weight w, we shall directly carry out (perhaps, well known) construction
of w. This will greatly fascilitate the exposition of the next section.

DEFINITION (3.3). A smoothly embedded, boundaryless, compact, branched
1-manifold ¢ in a closed oriented surface S is called a pseudo train track
if no connected component of S—o¢ is a nullgon or a monogon.

Thus the difference from train tracks is that bigons and annuli are
allowed to exist in the complement. Let o be the 1-form of Proposition
(8.2) and again let S be a leaf of the foliation by w. One may suppose
that S does not pass through the rectangular points of L. Also, it is no
loss of generality to suppose that S is transverse to the branching locus
of L. For, if not, isotope L. Let 6=SNL and let ¢:o—0c be the first
return map of the semiflow Y.

LEMMA (3.4). For each n>0, ™ has dense forward orbits.

The proof is analogous to the one for Proposition (2.7). But here one
has to consider an appropriate finite covering of M. The details are left to
the reader.

LEMMA (3.5). ¢ s a pseudo train track of S.

PROOF. Suppose on the contrary that there exists a nullgon or a
monogon, say B, in the complement. Let F'CM be the surface correspond-
ing to the reference point & in C. By walking along the semiflow Y, one
obtains a submersion of 6B into the train track r of F. Since F' is in-
compressible, the image loop 7 is homotopically trivial in F. A standard
argument shows the existence of a nullgon or a monogon in the complement
of . But 7 is a train track. A contradiction. g.e.d.

Let W be the vector space of all the weights of ¢. A weight is a
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function on o, constant on each edge, satisfying the “switch condition”.
¢ defines a linear map ¢y : W—W by
dxw)y)=_3 w(x).
)=y

A standard argument of linear algebra shows that there exists a set of
edges ¢, -+, e, in o such that a set of arbitrary values on each ¢; yields a
unique weight on ¢ and that any weight is so obtained. Define w;e W by
the condition w;(e;)=d,;;. Then w,’s form a linear basis of W. Let A be
the matrix which represents ¢, w.r.t. this basis.

LEMMA (3.6). A is a nmonnegative matrix and A™ 1s a positive matrix
for some n>0.

The proof is an easy exercise. The key fact is Lemma (3.4). Show in
the first place that all the diagonal entries of some power of A are positive.

PROOF OF (3.2). Apply Perron-Frobenius theorem to ¢,: W—W. Let
A be the Perron-Frobenius eigenvalue and let we W be the corresponding
eigenvector. We shall show that w is in fact a positive weight. Consider
first a nonnegative weight w, on ¢. (For any pseudo train track, there
always exists one.) w, is represented by a nonnegative column vector w.r.t.
the above basis. Therefore, by the positivity of the matrix, Lemma (3.6),
diw, tends projectively towards w. This shows that w is nonnegative as
a weight. Now Lemma (3.4) implies w is actually positive.

By using the flow line of the semiflow Y, one can construct, extend-
ing w, the graded measure f such that df/f=—log 1-w. Now as is the case
with train tracks, clearly the positive weight w on the pseudo train track
also gives birth to a measured lamination g on S. It is not difficult to
show that ¢.p=2py, where ¢:S—S is the first return map of the flow X.
This shows 2 is the distortion of the pseudo Anosov diffeomorphism 4.
That is, log A="h(w).

The uniqueness of the graded measure follows at once from the unique-
ness of the Perron-Frobenius eigenvector. q.e.d.

REMARK (3.7). As will be shown in §5, there exists a graded measure
not only for w in C, but also for any w in C, provided o(X)>0 and o(Y)
>0. It seems plausible to expect the uniqueness for such general w. In
fact this would simplify some of our argument in §5. But unfortunately
we cannot prove it at present.
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§4. Local convexity.

The purpose of this section is to show the following proposition.

PROPOSITION (4.1). Let w; be a nonsingular closed 1-form which rep-
resents an element of C, such that 0i{(X)>0 on M and w,(Y)>0 on L
(7=0,1). Suppose [w]#[w,]. Then there exists C>1 such that for any
te[1/3, 2/3], we have

RN (1= t)wo+tw) Z C((1— 1) h (@) + th ™ (w)) -

In §5, Proposition (4.1) is generalized from C, to C by studying the
dependence of C upon w, and w,. The proof of (4.1) occupies this section.

First of all, by Proposition (3.2), let us construct a graded measure f,
for ;. Though Proposition (3.2), as it is, only states the existence of
graded measures for C,, it is a matter of fact that this implies the ex-
istence for C,. Thus df;/f;=—h(w,)w;, By the homogeneity of A7, it
suffices to show

(4.2)  h(n)<C™', where n,=(1—t)h(w)w+ th(w)w, for

(4.3)  hlw)/hlwy) +2h(w,) =t < t<t" =2h(w,)/2h(w,) + I (w,) .

Also suppose :

(4.4) 79, =pw, where [w]eC, is an irreducible integral point and 0<p<1.

Of course there are dense values of ¢ which satisfy (4.4). Therefore
by the continuity of h, it suffices for our purpose to show (4.2) for those
values of ¢ which satisfy (4.3) and (4.4). However one has to be careful
so that C does not depend upon each value of t.

Notice that o(X)>0 and o(Y)>0. Let us define a new function f on
L by

F=I

Clearly df/f=—pw. But f is not a graded measure on L, because it does
no longer satisfy the branching condition, (2) of (3.1). Let S be a leaf of
the foliation by w. As before we suppose that S is transverse to the
branching locus of L and that S does not pass through rectangular points.
Let 6=SNL. Then f|,, also denoted by f, is a positive function, constant
on each edge, which however does not satisfy the switch condition. Let
¢ :0—0 be the first return map of the semiflow Y.

(4.5)  The cardinality of $ "(y)— oo, uniformly on y<o, as n— 0.
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This follows at once from the fact that the Perron-Frobenius root of
dx: W—W is >1, where W is the space of the weights on .

Now extending the definition of ¢4, let us consider ¢«(f), a function
on o. $£(f) is no longer constant on each edge. However there are only
a bounded number of points of discontinuity. Let |-| denote the supremum
norm. '

(4.6)  ¢xfllg2f| has a subsequence which converges unifomly to a Perron-
Frobenius eigenvector we W.

For the proof, using (4.5) and the boundedness of the number of points
of discontinuity, show that some subsequence converges to a nonnegative
weight. Next apply the diagonal argument. The details are left to the
reader.

Let 1 be the eigenvalue of w. Then h(w)=logi. So (4.2) reduces to
the following (4.7)

4.7) log2<Cip.

The rest of this section is devoted to the proof of (4.7). Recall that f
satisfies the following.

(4.8) adflf=—pow.
An easy computation shows that (4.8) implies the following.

(4.9) If f should satisfy the branching condition, then we would obtain
</7*f(y)=e”f(y), YEo.

But actually f does not satisfy the branching condition. We shall begin by
investigating how it fails.

Let z be a point in the horizontal branching locus of L. Suppose a
sector D of L approaches z from above and r sectors Dy, -+, D, from below.
See Figure 4. Let a; (resp. B;) be the limit of f, (resp. fi) at z, approx-
imated in D,. « and B are defined by the approximations in D. Since f;
and f; satisfy the branching condition, we have

(4.10) 01:;&1, ,Bz;ﬁi-

Note that the corresponding limits for f¢ ‘ff are, of course, ai ‘fi etc..
We have;

LEMMA (4.11). ?a%"lﬁigal—tﬁt.

The proof is an induction on ». The case r=2 is immediate from the
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D,

Figure 4

concavity of the function T(x,y)=x'"'y* on the first quadrant. Note that
T is homogeneous of total degree one.

This lemma, combined with (4.9), yields;
(4.12) dxfy)=e’fly), y<o.

Suppose, by (4.6), that a sequence Jiif/|d4if| converges to the Perron-
Frobenius eigenvector w. Then (4.12) implies

CPW=Jw=Aw.

Hence log A<p. This is the argument employed in [LO] to show Theorem
(1.3). But we need more. The first task is to refine (4.11).

LEMMA (4.13). For any >0, there exists a>1 such that
a2a1}~t‘85§al—l‘85’
provided e<t<l—e, e<a/f<e™' and L(a;)(B:)>e.
The proof is a routine calculation and is left to the reader.

LEMMA (4.14). There 1s a point z in the horizontal branching locus,
such that (@) s not a constant multiple of (B.) at z.

PROOF. Recall that the reference point £, yields a pseudo Anosov
diffeomorphism ¢ : F'—F and that a homeomorphism between 7'y and M is
fixed. The horizontal branching locus of L is contained in F'x{2/3}. By
certain abuse, let us denote F'x{2/3} by F and LNFx{2/3} by r.
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Figure 5

Let us embark upon the proof. Suppose the contrary. Consider the
function u, and u, on z, defined by u.(x)=1Ilim fi(y), where y approaches x
Yz

from above. Let v be a switch of r. Suppose that an edge ¢ of z termi-
nates at v and an edge ¢’ initiates at v. See Figure 5. Let D (resp. D’)
be the sector of L above e (resp. ¢’) and let D” be a sector below e and e’.
For xeeuUe’, let ui(x):lyirglfi(y), where y approaches x in D”. Also let

¢;=limu,(x), where x approaches v in e. Define also ¢; by the limit in ¢’

Now our assumption (for contradiction) is that #./w,=%./u,. This clearly
implies c¢y/eo=ci/e;. In summary, we have that at any switch of 7, the
ratio of the limits of u; along two edges are the same for =0 and 1.

Here we have used the presumption that switches are not mapped to
switches by the first return map. Clearly we can assume this in the con-
struction of the train track in §2.

Now f, and f; are the graded measures for w, and w, and [w,] #[w,]. Sup-
pose for a while that [w,—w,] is not a constant multiple of &. Then there

exists yen,(F) such that S wo;&S w,. By the construction of the train
7

7
track in §2, all the components of the complement of r are contractible.
This shows the existence of a loop p in 7, starting and ending at some

switeh, such that g wO;&S w,. Consider the functions u, and u, along p. Let
p e

us study the ratio of the initial and terminal values of u,, We have
already observed that the ratio must be identical for u, and u, Now if
you walk around p, there are two contributions to this ratio, one from
points of discontinuity, i.e., switches, and the other from the continuous
parts, i.e., interiors of edges. The first one is identical for u, and u, while

the latter one is not, since g wo*R w. A contradiction.
Jo

Jo
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Now consider the remaining case where [w;—®,] is a constant multiple
of Z. But this case can easily be ruled out, by considering a closed orbit
of Y. Note that Y always has a closed orbit. The details are left to the
reader. g.e.d.

Let us continue the proof of Proposition (4.1). Given an arcy, S dt is
7

called the vertical length of y, where t is the coordinate of I, in the iden-
tification M=FXxI/~. For any point x<g, let I, be the vertical length of
the trajectory 7, of Y beginning at z, ending at ¢x. We have S w=1.
This yields the following inequality. 'x

oz <1< |lolnia,

where |@|m.x=supw(Y) and |o|mn=Iinf w(Y). Recall (4.2) and (4.4). Clearly
there exists a constant 5>1 such that

bz!y/t‘malentlmian_l-
The constant b depends continuously upon w, and @,., We thus have;
b p<1.<bp.

Let m be the smallest positive integer such that 1<mb'p. (Thus, mb'p
<2.) This yields;

(4.15) 1< ml, < 2b° for any z€<o.

Thus the trajectory of the semiflow Y, starting at x and ending at ¢™x
meets the horizontal train track = at least once and not more than 2b
times.

Now let ze7r be the point which is guaranteed by Lemma (4.14). Let
J’ be a small interval in 7, centered at z and let e>0 be smaller than the
angle formed by the column vectors (a;) and (8;) at any point in J’. We
may assume that J’ does not intersect S. Let JCo be the first reaching
image of J' by the semiflow Y. Then by Lemmas (4.11) and (4.13), we
have ;

(4.16) I3 flx) <e™f(x), Veeo
4.17) Jiflw)=a'e™f(x), Veed,

where a>1 is the constant obtained by (4.13). Here f is understood to be
a function on . We presume that the above ¢ is small enough so that
e<t'<t"<1—e holds for ¢’ and t” in (4.3) and that e<a/B<e™' holds all
over J’. An inspection shows that a is a constant which depends only
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upon o, and f;. The dependence is continuous in the compact open to-
pology.

Consider the first return map ¢:z—7 of Y. By Proposition (2.7), there
exists N>0 such that ¢"(J')=z. For §:o—0, this says ¢"™(J)=0. On the
other hand, the trajectory of Y starting at ye=o¢ crosses r at most 2b
times before it reaches ¢™(y). Hence the cardinality of ¢ "™(y) is at most
d=c""", where c=sup{¢ (z)|z€c}. At this point, note that N depends
upon J’, which, in turn, depends upon the difference of f, and f;. Therefore
d depends only upon w; and f;; the dependence is continuous.

Now we have

5@ ¥™y)NJ)=1 and #(@"™y)<sd, Vyeo.
This yields
(4.18) k=Nm = #( () N)/#G ) =zd"  (Yyeco).
Therefore,

(</7§5”"f)(y)=15 2 (@nH+ E (@)

k(ry= 5k (z)=
2&r7Y g

<a’le™ ¥ flw)+e™ X flx)

P Vg
<s7e™(gxf)y),
where s>1 is the following constant.

R a'd g+ (1—d Y)r
T odlg+(1—dH)r

where q:mUinf and rzmgxf. The first inequality follows from (4.16) and

(4.17) and the latter from (4.18). Taking a subsequence {k;} and passing to
the limit, this gives:

Mw=JRw<s"'e"w,
Wherevw is the Perron-Frobenius eigenvector. Therefore,
logAi<p—m'logs.
Now by the inequality just before (4.15), we have m™'=p/2b. This yields
log 2 p(1—(2b) ! log s) .

Letting C'=(1—(2b) 'logs), we have obtained (4.7). Thus the proof of
Proposition (4.1) is now complete. Note that the comstant C depends con-
tinuously upon o; and fi.
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§5. End of the proof of Theorem (1.4).

The purpose of this section is to prove the following proposition, which
clearly implies Theorem (1.4).

PROPOSITION (5.1). Let a, and a, be distinct classes in C. Then there
exists C>1 such that for any t<([1/3, 2/3], we have

R ((1=t)ae+ta) 2 C*(1— )R (@) +th ™ (@) -

By Proposition (2.5), there exists a closed 1-form ®; representing a;
such that ;(X)>0 on M and w;(Y,)>0 on L,, for some n (:=0,1). Again
denote L, and Y, by L and Y. As is well known, there is a sequence
o® of closed 1-forms such that o{’—w; and [0{®]eC,. We may assume
that o®(X)>0 on M and «{*(Y)>0 on L. By Proposition (4.1), we have:

b (A=) + twf®) = Co(1—t) B (@) + th ™ (i)

for some C,>1. The constant C, above depends not only upon «{® but also
upon [, the graded measure for «{®. The dependence however is con-
tinuous. Since f{¥ can be altered by constant multiples, one may assume
that ||f®]l.=1. Also we have;

df P = — ) fPo® and k()P — k(w;)o;.

This shows that {f{®}, is equicontinuous. Passing to a subsequence, if
necessary, one may suppose that f{¥ converges to some f;, in the compact
open topology. Clearly f; satisfies all the conditions for a graded measure
for w;, except that it may not be strictly positive. But, since f; satisfies
the differential equation df;=—h(w:)fiw;, if f; should vanish at some point
xe L, f; would be identically zero on the sector D containing x. Then by
the branching condition, f; also vanishes on the sectors which are adjoined
to D from below. By Proposition (2.7), one would finally have f;=0 on L.
This contradiction shows that f; is strictly positive.

Now notice that Lemma (4.14) also works for f; of this section, although
f; is a graded measure for a 1-form, not necessarily representing a rational
class. Thus by carrying out various estimates of the last section, one can
define a constant C>1, associated to the present w; and f;. Then clearly
one has C,>C'? for k large. By the continuity of A7, this completes the
proof of Proposition (5.1).
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