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Cells in affine Weyl groups, III

Dedicated to Professor Nagayoshi Iwahori on his sixtieth birthday

By George LuszriG®

Let H, be the Hecke algebra (over C) attached by Iwahori and
Matsumoto [2] to an affine Weyl group W and to a parameter »,=
v q ecC*.

The simple H,-modules have been recently classified (see [4]), when
7, is not a root of 1, using methods from equivariant K-theory. Another
(conjectural) approach to the same question, using cells in W, was given
in [6]. In this paper, we shall use the results of [4] to answer some of
the questions raised in [6, 9.10] concerning the relation between simple
W-modules and simple modules for H,. Our main tool is the asymptotic
Hecke algebra J defined in [7]; this is a C-algebra J whose structure
constants are integers. (See 1.3.)

It turns out that J contains all the algebras H, as subalgebras (see
1.7), in such a way that the simple J-modules restricted to any H, form
a basis for the Grothendieck group of H,-modules of finite length, at
least when 7, is not a root of 1, or when r,=1. (Theorem 3.4.)

One of the applications of our results is that for a large class of
modules over the Hecke algebra there is a canonical direct sum decom-
position (indexed by left cells) such that the action of the generators of
the Hecke algebra is given in terms of this decomposition by a particularly
simple formula (Theorem 3.8).

The results of this paper together with [4] imply the validity of
several of the conjectures made in [6, 9.10]; more precisely conjecture
A follows (without uniqueness of irreducible quotients), and also con-
jectures C, F' and a variant of conjecture E. (Conjecture B in [loc. cit]
has been verified in [7]; conjecture D remains open.)

We shall often give references to [6], [7] to results which are proved
there for ordinary affine Weyl groups and which we need for extended
affine Weyl groups; the results we need for extended affine Weyl groups
can be reduced trivially to those for ordinary affine Weyl groups.

*)  Supported in part by the National Science Foundation.
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We make the convention that, unless otherwise specified, “module”
means “left module”.

§1. The Hecke algebra and the asymptotic Hecke algebra

1.1. Let (W, S, be an irreducible affine Weyl group regarded as a
Coxeter group; S; is the set of simple reflections. There is a unique
subgroup @ of W, which is abelian of finite index and is maximal with
these properties.

Let 2 be the group of all automorphisms of W, which leave S, stable
and whose restriction to @ coincides with the restriction of some inner
automorphism of W,. We form the semidirect product W= -W, with
W, normal. Let [:W—N be the function extending the usual length
function of W, and such that l(ow,)=Il(w,), w€ 2, w,€ W,.

Let X be the centralizer of @ in W. It is a free abelian normal
subgroup of W and X/Q=#. We can find a simple reflection s,€ S, such
that the set S’=S,—{s,} generates a finite subgroup W’ of W which is
complementary to X. Thus, W is a semidirect product W’-X with X
normal.

Let w, be the longest element of W~’.

Let X**={x¢ X|l(sx)>l(x) for all s€ S’}. We have

Lwex) =1(wo) +1(x), Uz w,) =l(x™) +1(w,) for all x€ X*™.

Any z€ X can be written as x=a,x;!, with x, z,€ X*.

For any ye W we can find s,s, ---,8,€8, such that y'=ys,;--s,
satisfies I(y’)=I(y)+p and l(y’s’)>I(y’) for all s’€ S’.

——
Lo

Hecke algebra of W over A, that is the free A-module with basis T, (w € W)
and multiplication defined by (7,+»)(T,—7)=0 if s€ S, and T, T, =T,.
if (ww’) =l(w)+1(w’).
Define a polynomial P, , (y=wy, w=o'w, o, o' €2, y;, w,€ W) to be
P, . of [3] if o=’ and to be 0 if w#o'
For each we W, the element
Cw: Z(_'r)l(w)_l(v)Pﬂ,W('r—2) Tv €H

v

1.2. Let r be an indeterminate, and let A=C[r,r']. Let H be the

is well defined, see [3].

If B is a commutative A-algebra with 1, we shall write Hy;=H X B;
A
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we shall denote the images of T,®1,C,®1 in Hj, again by T.,C,.
We write C.C,= > h,,.C.€H, h,,.€ A.

For each z¢€ W, there is a well defined integer a(z)>0 such that

r*9h,,.€C[r] for all z,ye W
re®1h, . .¢ C[r] for some z,yeW

see [6, 7.3]. We have a(z)=a(z™") and a(2) <l (w,).

1.3. Let 7.,. be the constant term of (—r)*?h,,.-1€C[r]; we have
7:4.: € N. Moreover,

(a) 720 F0=—00(2) =a(y) =a(z).

Let J be the C vector space with basis (¢,).ew. This is an associative
C-algebra with multiplication %.t,= Zw 7zwet:~t. (This is a finite sum.)
z€
It has a unit element 1= 3 ¢; where &) is a certain finite subset of W,

de9d
consisting of involutions. (See [7, 2.3].) For any C-algebra B with 1 we
denote JB=J(§) B.

The A-linear map ¢ : H—J, defined by
(b) ¢(Cw) = Z hw,d,:tz

deD
ZEW
a(d)=a(z)

is a homomorphism of A-algebras with 1, [7, 24].
(¢) If a(w)=1, we have

$((=7)Co)= X masbit 2wl

zEW ZEW
a(z)=1 a(z)>1

where 7,,€ A, 7,.€C[r] and the constant term of =,, is 1 for z=w
and 0 for z=+w, [7].
Let J' be the C-subspace of J spanned by the %, (a(w)=1).

(d) J'is a two sided ideal of J, see (a), and we have clearly J= @ J'.

If B is a commutative A-algebra with 1 we shall write ¢z: Hy—JQB
(4
for the B-algebra homomorphism defined by ¢: Hy—J Q A.
C

1.4. For each r,€ C* we denote H, =H @ C where C is regarded as an
4

A-algebra with r acting as scalar multiplication by 7.



226 George LUSZTIG

Let ¢,,: H,—~J be the C-algebra homomorphism induced by ¢: H—
Jy

Let HZ?' be the C-subspace of H, spanned by all C, (we W, a(w)>1).
This is a two-sided ideal of H,. Let Hi=HZ[Hz*'; this is an H,-
bimodule. It has as C-basis the images [C,] of C,€ HZ, (a(w)=i). Hence
for fe H;, h,h' € H,, we have (hf)h/=h(fh').

We may regard H; as a J-bimodule with multiplication defined by
the rule

t:co[Cw]= Z: Tx,w,w’_l [Cw’]
a a(wu’))=£
[Clot.= T Feewt[Cul  (w,z€W, a(w)=1);
a(w’)=1i
this simply expresses the fact that J¢ is a two-sided ideal of J. We
have, for all feH;, h€ H,, j€J:

(b) hf=¢.(R)of, (Gof)h=5(fh), (hf)egj=PR(f>3]).
This follows from [7, 2.4 (d)].

1.5. Note that H, is naturally the group algebra of W over C. (The
basis (T,) of H, is the standard basis of the group algebra.) Let Z be
the centre of H,. It is easy to see that

(a) H, is finitely generated as a Z-module and Z is a finitely generated
C-algebra.

1.6. PROPOSITION.
(i) o ts a finitely generated module over its centre.
(ii) The centre of J is a finitely generated C-algebra.
(iii) Any simple J-module is finite dimensional over C.

Proor. (i) Let Z be as in 1.5 and let Z’ be the centre of J. We
first show that ¢,(Z) is contained in Z’. It is enough to show that
¢.(2)t,=1.0:.(2) for all z€ Z, x€ W. Assume that a(x)=:1.

Let fi= .i:L:’) [C.le Hi. We have

a(d)=1

(a) tzofi =fi°t::[Cx],
see 1.4 (a). Since z€ Z, we have

(b) zf=fz, for all f€ Hi.
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We have

(B1(2)L.) ofs =81 (2) ot, o fi = u(2) o[ C.]=2[C.]
(t.91(2)) ofi=1.0(@i(2) ofi) =t.0 (2fi) =t.0(fiz) = (t.0fi)2=[C.]e =2[C.]
see 1.4 (a), (b). Hence

(e) ($1(2)E:) o fs = (£.61(2)) o
Writing ¢:,(2)t.= X a.t., t.éi(2)= (le)jzv,@x,t,, (a., B €C), we see

a(x’)=1
from (a), (c) that > «a,[C.]= X B.[C.]hencea, =g, forall 2/, a(z’)=1.
a(a’)=1 a(z’)=1
Thus ¢,(z)t,=t.$,(2), as required.
It is now enough to show that J is finitely generated as a ¢,(Z)-
module. Clearly, the left J-module J (left regular representation) is
isomorphic to P Hi, with J acting by j:f—jof. Hence it is enough to

show that for each ¢, Hi is a finitely generated ¢,(Z)-module. (We have
Hi=0 for all but finitely many 1.)

Since H; is a subquotient of H,, we see from 1.5(a) that Hi is
finitely generated as a Z-module; let ¢,, - - -, ¢y be generators. For any

N
¢ € Hj, there exist z,, - - -, 2y € Z such that ¢= le"[’" By 1.4 (b) we have

also ¢= i &,(2;)o¢; hence ¢; are also generators of H; as a ¢,(Z)-module.

This proves (i).

(ii) Z’ contains ¢,(Z), a finitely generated C-algebra. Moreover, Z’
is a ¢;(Z)-submodule of the finitely generated ¢,(Z)-module J, hence Z’
is a finitely generated ¢,(Z)-module. Hence, by 1.5 (a), Z’ is a finitely
generated C-algebra.

(iii) Let E be a simple J-module. Since J has countable dimension
over C, a known argument of Dixmier, see [8], shows that End,(E)=C.
Hence Z’ acts on E by scalar multiplications. Using (i), it follows that
the image of J in End.(E) is a finite dimensional C-vector space.

Since E is simple, it follows that dim E<co.

(d) REMARK. The previous proposition is also true for H, instead of
J. (Bernstein).

1.7. PROPOSITION. For any 7,€ C*, the map ¢, : H,—J is injective.

PROOF. Assume that h € H, is a non-zero element in the kernel of
$,. We express h as a C-linear combination of basis elements T, and
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let y¢ W be an element such that T, appears in k with #0 coeffi-
cient, with I(y) maximum possible. Let y’=yss,---s, be as in 1.1 (e).
Let h'=hT, T, - T‘,p. Then &/ is an element in the kernel of ¢, in which
T, appears with 0 coefficient and I(y’)>[(y”) whenever T, appears
with #0 coefficient in h’. We have C, = ZEZ';V, (— 1) 0t T
We have a(w,) =l(w,) and a(w)<l(w,) for all we W. By 1.4(b), w

have h/f=0 for all f€ H:{*’, hence h'HZ'™’ CH7**0"*=0; in partlcular
h'C,,=0. But the coefficient of T, wy 10 B C ) 18 the same as the coefficient

of T in h’, hence is non-zero. Thus, we have k'C,,#0, a contradiction.
The proposition is proved.

1.8. Any left J-module E gives rise, via ¢, : H,—J to a left H,-module
E,. We denote by K(J) (resp. K(H,)) the Grothendieck group of left
J-modules (resp. H,-modules) of finite length, or equivalently, of finite
dimension over C. The correspondence E—E, defines a homomorphism
(6« : K(J)~K(H,,).

1.9. LEMMA. For any r,€ C*, (4, )« : K(J)—>K(H,) is surjective.

Proor. Let M be a simple H,-mecdule. We attach to M an integer
a=a, by the following two requirements:

C,M=0 for all we W, a(w)>a
C,M+0 for some we W, a(w)=a.

This is well defined since a(w) is bounded on W.
Let M=H:, }@M where H: is regarded as a right H,-module (h:

f—fh) and M as a left H, -module. Then M is an H,-module (h: (fQ@m)
—(hf)®@m). We have a natural homomorphism p:M—M defined by
p(f@m)=Fm where f€ Hz" is a representative for f€ H;. This map is
correctly defined, by the definition of a=ay. It is clearly a homomor-
phism of left H,-modules. It is non-zero since, otherwise, Hz'M=0,
contradicting the definition of a. Since M is simple, it follows that p is
surjective. We now show that

(a) H,,- Ker(M—2>M)=

Let 3 fi®@m.€ker p, (fi€ H:, m.€ M) and let f;€ HZ* be representa-
tives for f Then ¥ fim;=0 in M. Let f € H; and let f"eﬂﬁ;‘ be a
representative for f’t We have
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F(E fi@mi) = (S f)@m= ;(f’fi)®ms=2‘_3(f’®(fimi))

=/ ®(E fm) =0

and (a) follows.

Next we show that M is finite dimensional over C. From 1.6 (d) we
see that H is finitely generated as a module over the centre of H,
hence it is generated by, say, N elements as a right H,-module. The
definition of M shows then that dim; M<N-dim; M < oo.

Let M, be the J-module whose underlying C-vector space is M and
J acts by 7:(fQm)—(jof )Q@m. (This is well defined by 1.4 (b).) The
image of M, under (6,,)% is the class of the H,-module with underlying

C-vector space M and H, -action h:fQ@m—(¢, (h)of)Qm=(hf)Qm (see
1.4 (b)), hence it is just the H,-module M defined earlier. Thus, M isin
the image of (¢,),. From (a) we see that in K(H,), M is equal to M
plus a sum of simple H,-modules M’ satisfying ay <ay. We may as-
sume by induction that any M’ with ax.<ay is in the image of (4, ).
Since M is in the image of (@.,)% it follows that M is in the image of
(#.)%. (To begin the induction we note that if ay=0, we must have

M=M.) The lemma is proved.

§2. Simple J-modules

2.1. We consider a simply connected reductive algebraic group G over
C with a fixed maximal torus T,CG and a fixed Borel subgroup B, con-
taining T, such that (W’, S’) is identified with the Weyl group of G with
respect to T, with simple reflections determined by B, X is identified
with the group of characters of T,; the elements of X** correspond to
the inverses of the characters by which 7T, acts on the B,-stable lines
of the various simple rational G-modules.

The complex varieties G, T, B,, - -- will be generally identified with
their sets of C-points.

Let K be an algebraic closure of C(r). Any complex variety Z gives
rise to an algebraic variety over K with set of K-points Z;. We shall
identify algebraic varieties over K with their sets of K-points. In
particular Gg, (Ty)k, (Bo)x, - - - are well defined.

2.2. We now consider a unipotent element u € G; let f:SL,(C)—G be a
homomorphism of C-algebraic groups such that f< (1) %)zu Let
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M) ={(r, a) € G X C¥|yup~ =us}
1/2 0 —1/2 0
AL=%nmercwﬂAw*=f«“ >A(“ »

0 a'? 0 al?

for all Ae SLZ(C)}.

Let (s, ) be a semisimple element in M(u). Define
M(u, s)={
M,(s)={

(1, @) € M(u)|ys=sr}
) ={(r,

(. @) € My|ys=sy}.
It is known [4] that

(a) M, is a maximal reductive subgroup of M(u).
This implies that

(b) M,(s) is a maximal reductive subgroup of M(u, s).
In particular:

(e) M ()| M3(s) =M (u, s) | M*(w, ) =M (u, 5).

Let & be the variety of all Borel subgroup of G with the natural
G X C* action (r,a): B—>yBr™. Let B be the variety of all Borel sub-
groups of G which contain % and s. Then M(u, s) (a subgroup of G XC¥)
leaves & stable and induces an action of M(u, s) on the étale cohomology
of B:. Let o,M(u,s) be the set of isomorphism classes of irreducible
representations of the finite group M(u, s) which appear in the representa-
tion of M(u,s) on the total étale cohomology of B:.

2.3. Now let « be a unipotent element of Gy and let s be a semisimple
element of Gx such that sus™'=wuf for some B€ K*. We define a K-
algebraic group

M®(u, s)={(r, ) € Ge X K*|yuy ™ =u*, ys=sr};
let M®(u, s) be the group of components of M™(u,s).

Let (B): be the variety of Borel subgroups of Gy which contain
and s. As in 2.2, M®(u,s) acts naturally on the étale cohomology of
(B). and in terms of this action we define p,M* (u,s) to be the set of
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isomorphism classes of irreducible representations of the finite group
M®(u,s) which appear in the representation of M*(u,s) on the total
étale cohomology of (Bx):.

2.4. Given a semisimple conjugacy class C in Gk, we define a new con-
jugacy class C in Gy as follows. Let s€(C; then Zg,(s) has a unique
open orbit on the variety of unipotent elements u’ € G such that su’s™=
', Choose an element w in this open orbit. We can find a homomorphism

of K-algebraic groups f:SL,(K)—>Gx such that f (% i):u and (s, 7)€
-1
M®. Then s commutes with f (8 7,0.1) We set s;=sf <T0 2) Then

s and u are in Zg,(s,) and we define C to be the G-conjugacy class of
su=us,. One can check that C is independent of the choices made; it
depends only on C.

2.5. Let M be a simple Hg-module. It is necessarily of finite dimension
over K. We attach to M a semisimple class Cy in Gx as follows. We
can find a non-zero vector §€ M and a homomorphism j:X—K* such
that T.6=y(x)& for all x€ X**. (Note that the operators T,:M—M,
(x€ X**), commute with each other.) Then there is a unique element
s€ (Ty)x such that y(x)=xz(s) for all x€ X=Hom(T,, C*)=Hom((T\)x, K*).
Let Ci be the conjugacy class of s in Gx. It is known that C, is an
invariant of M (it is independent of the choice of £&).

(a) Let Y be the set of isomorphism classes of simple Hg-modules M
such that the conjugacy class Cy in Gx contains some C-point of G.

2.6. Let V:K*—R be a homomorphism such that V(r)>0. An element
g of G (or its conjugacy class in Gx) is said to be V-tempered if all
eigenvalues of Ad(g) on Lie(Gg) (or, equivalently, all eigenvalues of g in
all finite dimensional rational Gg-modules) are in the kernel of V.

An Hg-module M of finite dimension over K is said to be V-tempered
(resp. V-antitempered) if all the eigenvalues 2 of T,:M—M satisfy
V(2)<0 (resp. V(2)>0) for all elements x € X**.

One of the main results of [4] is:

(a) A simple Hx-module is V-tempered if and only if ¢ » 18 a V-tem-
pered conjugacy class in Gg.

(See [4, 7.12, 8.2]; these results are applicable since the field K is (non
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canonically) isomorphic to C.)
For any commutative A-algebra B with unit, let A—h* be the unique
B-algebra automorphism of Hj, such that

*To=—T7, (seS), *T.=T, (v X+).

If M is an Hp-module, then composition with * gives a new Hz-module
*M. It is clear that

(b) * interchanges V-tempered and V-antitempered simple Hg-modules.

2.7. Let ~:K—K be any field automorphism inducing identity on C and
satisfying F=7r"1 Foll_owing [8], we extend ~: K—K to a ring homomor-
phism ~: Hy—Hy by T.=T3%, (we W). For any C-variety Z, the map
~: K—K induces a natural bijection ~:Zx—Zy. In particular, it induces
a bijection ~:Gx—Gx which is the identity on the C-points of G.

2.8. LEMMA. Let V,:C(r)*—Z be the homomorphism defined by attaching
to a rational function its order of vanwishing at r=0. Let 1€ K* be an
integral element over C[r,r”'] such that for any wvaluation V :K*—R
extending V, we have V()=V(A)=0, (A as in 2.7). Then A€ C*.

ProorF. We define V (as above) at 0€ K by V(0)=oco. Let 4, -+, 4,
be the conjugates of 2 under the Galois group of K over C(r), and let
e; be the i-th elementary symmetric function in 4, ---,4,. If V is as in
the lemma we have V(1)=---=V(1,)=0 hence V(e;)>0, so that ¢ € C(r)
has no pole at 0. Similarly, we have V(1)=---=V(,)=0 hence V()>0
hence ¢; € C(r) has no pole at co. Since 2 is integral over C[r,r7'], we
see that ¢ is integral over C[r, r7']; this is integrally closed in C(r),
hence &, € C[r,r™*]. As ¢ has no poles at 0 and oo, it is in C. Since

g; € C for all i, we must have ;€ C for all 7 and the lemma is proved.

2.9. PROPOSITION. Let M be a simple Hx-module. Assume that (a), (b),
(e) below hold.
(@) Trg(T,, M)€EC[r,r™*] for all we W.
(b) M is V-tempered for any V as in Lemma 2.8.
(¢) There exists a C-isomorphism ~:M—M such that hm=hm for
all h€ Hg, m€ M.
Then McY. (See 2.5 (a).)

ProoF. From (a), it follows that Trg(T% M)€ C[r, r*] for any n € Z.
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Hence all eigenvalues of T, and T,':M—M are integral over C[r,77']
for any we W. Let £€M be a non-zero vector such that for some
8,€ (To)x, we have T.£=u(s,)€ for all z€ X**. We then have also T;%6=
27 (s,)¢ for all x€ X**. By the argument above, x(s;) and x7'(s,) are
integral over C[r,r '] for all z€ X**. Using 1.1 (b), we deduce that (s
is integral over C[r, r™'] for any z€ X.

By definition, we have s,€ Cy. Starting with an element s€Cy, we
define u, f:SLy(K)—>Gg, s, as in 2.4; then slueé’u. We can find an
element g€ Gx and a homomorphism of C-algebraic groups f’:SL,(C)—G
such that f/(A)=gf(A)g™" for all A€ SL,(C). Hence, replacing s, u,f, s
by their conjugate under g, we can assume that f and « are defined over C.

We want to show that the Gg-conjugacy class of s,u contains some
C-point of G. For this, it is enough to show that for any rational Gg-
module CI/ of finite dimension over K, any eigenvalue 1€ K* of s,: C//—
CY is actually in C*. We shall verify that 2 satisfies the hypothesis of
Lemma 2.8.

Since x(s,) is integral over C[r,r™'] for all z€ X, it follows that
the eigenvalues of s,: C—Cl/ are integral over C[r,r7']. Since s is
conjugate to s, in Gy, the eigenvalues of s:Cl/—C{/ are integral over

C[r,r']l. We have s=s,f (g qu)= f <g 7,0_1 s, and the eigenvalues of

f (T 'r“> on CU are clearly of form 7 (j€ Z). Then 2 is equal to r~/

times an eigenvalue of s on C/; hence 2 is integral over C[r, r].

Now fix V: K*—>R as in Lemma 2.8. Since M is V-tempered we see
from 2.6 (a) that s,u is V-tempered, hence s, is V-tempered, hence V(1)
=0.

To check that V(2)=0 it will be enough to check that 2 is an
eigenvalue of s, : C{/—C{/.

For any z€ X**, we have T,szoT;o‘,—lwo—lT,;o‘. (This is equivalent
to T, T.=T.puu;1T.,; both expressions are equal to T, see 1.1 (a).)

If & s, are as in the beginning of the proof, we set $’=T;o‘.§; using
(e), we have

T8 =T.T.=T.T, =T, Tol.-11&

= (wew ™' wi ") (80) 7 T =% (wo(80)) T € = (w0(8,)) &

for all z€ X**. It follows that w,(3,) € (To)x is in Cux. (See 2.5.) Let
0:G—>G be the unique automorphism of C-algebraic groups such that
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0B,=B,, ¢To=T, and ¢(t)=w,(t™*) for all t€ T,, Then o extends to an
automorphism ¢ : Gxk—>Gx which commutes with ~: Gx—Gx. (See 2.7.) We
have ¢(57') € Cy. Since s, s are Ge-conjugate, we have also ¢(57!) € Cy.

We now apply the definition 2.4 of (y starting from o¢(57') instead
of s. Since u is in the open Zg,(s)-orbit on the set of unipotents u’€ G
satisfying su/s'=u'", we see that the element o(#)=c(u) is in the
open Zg,(o(37'))-orbit on the set of unipotents u”€ Gy satisfying
o3 ) u"e(3™) t=u"",

Let °f=oof. Since f is defined over C. f(l 1

0 l):u, and (s, r*) € (My)x,

we see that °f is defined over C, "f<(1) D:a(u) and ¢(§7Y) € (M,,f)x. We
-1 TS AN —1
have o(37%)7f (TO 2>:o<<sf (7‘01 g)) ):0(3;1). Hence the definition 2.4

of Cy starting from o¢(37!) instead of s leads to o(57%)o(u) instead of su.

Since s,u, 0(s7")o(u) are in the same Gg-conjugacy class C u, it follows
that s, ¢(57") are conjugate in Gx. Since any semisimple element t¢€ Gy
is Gg-conjugate to ¢(t™'), it follows that s, 5, are Gg-conjugate. We can
find a C-linear isomorphism ~:C{/—Cl such that gy=gy for all g€ Gk,
y€CY, and Ey=Ey for all £c K, ye Y. It follows that the eigenvalues
of 5,: C1/—C{/ are obtained by applying ~: K—K to the eigenvalues of s, :
Cl/—Cl/. Since 2 is an eigenvalue of s,: Cl/—Cl/, it follows that 1 is an
eigenvalue of § :Cl/—Cl/. Since s,§, are Gg-conjugate, 1 is also an
eigenvalue of s,: C{/—C{/. Since s, is V-tempered we have V(1) =0.

Thus, we have verified that 2 satisfies the hypothesis of Lemma 2.8;
it follows that 1€ C*. Hence the Gx-conjugacy class of s,u contains some
C-point of G. The proposition is proved.

2.10. Let E be a simple J-module and let B be an A-algebra with 1.
Then E;=EQB is naturally a Jz-module and it can be also regarded as
c

an Hz-module, via ¢5: Hy—Js. Hence, for B=K, *E; (see 2.6) is again
an Hy-module.

2.11. PROPOSITION.

(a) If E is a simple J-module, then *Ey is a stmple Hg-module in
Y. (See 2.5 (a).)

(b) If E’ is another simple J-module and E% ts isomorphic to Ex
as an Hye-module then E’ is isomorphic to E as a J-module.

ProOF. (a) From 1.3 (d) and the fact that E is simple it follows that
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there exists i€ N such that ¢t,E#0=—=a(w)=1. By Burnside’s theorem,
the endomorphisms t,: E—E, (a(w)=1), span the C-vector space Endc(E).
Hence we can find wy, - - -, w, € W, r=dim(E)? a(w,) =" - - =a(w,) =1, such
that t,,---,t, : E-E form a C-basis of End¢(E). From 1.3 (c), we see
that ¢x((—7)C, )= Z:L,; T,,qt. as endomorphisms of EQCK)K (1<5<r);

J
a(z)=1

moreover nwj,,ec['r] has constant term 1 if z=w; and 0 if z#w;,

Expressing t,: E—~FE as C-linear combination of ¢, : E—E, we see that

x((—7)'C )= 3 ¢istu, as endomorphisms of Ey (1<j<r); moreover
J 1<k<r

¢; € C[r] has constant term 1 if j=k and 0 if j#k. In particular,
det(¢; ) € C[r] has constant term 1, so it is #0. Thus ¢«((—7)'C,) : Ex—Ex
span Endg(Ex) as a K-vector space. Using again Burnside’s theorem we
see that the Hy-module Ey is simple; hence the Hy-module * Ey is simple.
From 1.3 (¢) we see that ¢x((—r)'C,)= };} T, .t. as endomorphisms
z€
a(z)=1
of EQK, (we W), n,.€ C[r]. Hence ¢.((—7)C,) maps the C[r]-submodule
C ~
ERC[r] of Ex into itself, (we W). The same holds for ¢x((—7)'T.):

E,:—»EK, (we W) since T,€ H is a finite C[r]-linear combination of ele-
ments C,. It follows that all the eigenvalues in K of ¢g((—7)'T,):
Ey—Ey are integral over C[r]. We apply this to w a power 2" (n>1)
of an element z€ X**. It is known that I(z*)=nl(x) hence T,=T=.
Thus, all the eigenvalues of ¢((—7)'T?): Ex—FEyx are integral over C[r].
Hence if 2 is an eigenvalue of ¢(T,) : Ex—E. then (—7)'2* is integral
over C[r] for n=1,2,8, ---. This implies that 2 is integral over C[r].
Hence if V:K*—>R is as in Lemma 2.8, then V(2)>0. (Note that A+0
since 7T, is invertible in H.) It follows that the H.-module Ey is V-
antitempered (see 2.6) and therefore the Hy-module *Ey is V-tempered
(see 2.6 (a)).

The Hg-modules Ey, *Ex come by extension of scalars from 4 to K
from H-modules on the underlying A-modules E,. Hence Trg(T., Ex) and
Tr(T., *Ex) are in A for any we W.

Let ~: E’@K—»E’@K be the map defined by eQRe—eRE, (e€ E, £€ K),

where ~: K—K is as in 2.7. The elements C, are known to be fixed by
~:Hg—Hg. Hence the elements k. ,.€ C[r,r']CK (see 1.2) are fixed by
~: K—K. From 1.8 (b) it now follows that

FC)(e@E)= Y (t.)Qhwak

ZEW
a(d)=a(z)
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= T (te)Qhuq.L=0(C.) (eRE) =9(C.) (eRE),

deg
ZEW
a(d)=a(z)

(we W,e€ E, € K), hence hm=hm for all he He, me E,. We then have
also (*h)m=*(h)m, (h€ Hy, m € Ey), since (¥h)=*(h) for all h € Hy.

Thus we have verified that the Hyx-module *Ey satisfies the hypothe-
sis of 2.9. It follows that *Ex€ Y and (a) is proved.

Now let E’ be another simple J-module such that Ej, Ex are isomor-
phic as Hx-modules.

It follows that E%, E¢, are isomorphic as H.,-modules, hence
E¢ ), Ec(r), are isomorphic as H(.y,-modules.

We must show that E'=FE as J-modules.

As in the beginning of the proof, we can find ¢ ¢ € N such that
t.E+0=—=a(w)=1 and t,E' +0==a(w)=1. We may assume that i/ <i.

Let a: E¢y,—E% (), be an isomorphism of H.,,-modules. Replacing
if necessary a by 7*a, (k€ Z), we may assume that « maps & =E§)C[[r]]

into &’ =E'QC[[r]] but not into rE’.
(o}
Hence, if we identify in the natural way E/r€=E, &'|r&'=E’, we
see that there exists a C-linear map &: E—E’ such that

(c) a(e®¢) =ae®¢ (mod r&’)

for any ec E, £€ C[[r]].
Let w€ W be such that a(w)=1i. Since i'<i, we see from 1.3 (¢) and
the definition of 7, ¢’ that:
bem((—7)C,) maps & into € and &’ into £’. Moreover, it commutes
with a:£—E’. We shall express this commutation using 1.3 (¢):
o £ t00@m0)=( £ 7ot Jale®e)

L,
ZEW
a(z)=1i a(z)=1

for all eec E, £c C[[r]]. Using (¢), this can be written as follows
> at(e)Rr..£= 3 t.(d@(e)Qr..£+element in 7.
ZEW

2EW

a(z)=1 a(z)=i
Here =, .€ C[r] has constant term 1 if w=z and 0 if w=2z; hence the
previous equality implies

@(t,(e)) Q& =t,(@(e))XE+element in rE’
hence
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@(t.(e))=t,(@e)) for all ec E, we W, a(w)=1.

Since t, : E—E, (a(w)=1) span End¢(E), and &+0, we can find e€ E, we W
(a(w)=1) such that @(t,(e))+0. For that e, w we have t,(@(e))+0, hence
t.E'#0 hence 1=1 by the definition of "

From the definition of 7, and the equality 1=1%/, we see that the
equality @(t.(e))=t.(@(e)), (¢€ E), holds also if a(w)#i. Hence it holds
for all we W. Hence & is a J-module homomorphism. Since E, E’ are
simple and @0, we see that @ must be an isomorphism. The proposi-
tion is proved.

§ 3. The main results

3.1. Fix r,e C*. To any simple H,o—module M, we can attach a semi-
simple element s€ G (a C-point of G) well defined up to conjugacy, by
the procedure of 2.5: we can find a non-zero vector £ € M and a homomor-
phism y: X—C* such that T.&=yx(x)& for all z€ X**; then there is a
unique element s€ T, such that x(z)==z(s) for all x€ X=Hom(T, C*).
This is the required semisimple element. We then have a canonical
decomposition
K(H.,)=®K(H,,),

indexed by a set of representatives for the semisimple classes in G, where
K(H,), is spanned by the simple H,-modules M such that the semisimple
class associated above to M is that of s.

Then K(H,), is a free abelian group of finite rank.

If r, is not a root of 1, then

(a) rank K(H,),=% (o.M (u, s))

where % runs over a set of representatives for the Z(s)-orbits on the set
of unipotent elements u’ € G such that su’s™'=u’" and poM(u, 8) is as in
2.2. This follows from [4].

The equality (a) remains true for 7r,=1, by the Springer corre-
spondence [9] for the irreducible representations of the Weyl group of
Z(s).

3.2. We now attach to each simple Hyx-module M€Y (see 25 (a)) a
semisimple element s€ G (defined up to conjugacy). The definition of s
is given in terms of a fixed r,€ C*. Let s, be a semisimple element of
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G, u a unipotent element of Z(s,) (both defined over C) such that su¢

Cx. Choose a homomorphism of C-algebraic groups f: SL,(C)—Z(s,) such
that f ((1) i):u and define s=s,f (7(;" ,’9_1) The conjugacy class of s in
0

G depends only on M. The fibres of the map M—s will be denoted Y..
Thus, we have a partition Y= [ Y, indexed by a set of representatives

for the semisimple conjugacy classes in G.
From the results of [4] applied to H; we see that

(a) #v)= Lot (7(5 1) (" 5,)

where f runs over a set of representatives for the Z(s)-conjugacy classes
of homomorphisms of C-algebraic groups f: SL,(C)—G such that (s, r,) € M,
and fx:SL,(K)—Gy is the natural extension of f. (See 2.2, 2.3.)

For any such f, we denote

u=f<(1) %) slz.'sf("(")_1 12), then M”“(u, slfx(g ,,91»

:{<7' @) € Ge X K*|ruy ™' =u, ysi =8y, rfx<g ﬂl):fxl'i 7~91>7}

:{(r»a)6GxxK*Irur“=u“,r8=sr,rfx<g 1,91>=ng frq‘>7}:Mf(s)"

(see 2.2). Hence M"“(u, 8, f,((g rq‘ >> may be identified with the group

of components of M,(s), hence with M(u, s), (see 2.2 (c)). Moreover the
variety (By). is obtained by extension of scalars from B;; hence these
two varieties (one over K, one over C) have the same étale cohomology ;

it follows that pOM“’“<u, 81.fx (6 qu >>zp01l_l(u, s). Hence

_ o7 11
W)= oM (f(p 1)¢)
where f is as in (a). It follows that
(b) #(Y,) =right hand side of 3.1 (a).

3.3. Let Y’ be the set of isomorphism classes of H.,-modules M’ with
the properties (a), (b) below.

(a) M’ ® K is a simple Hy-module in Y (see 2.5 (a)).

C(r)
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(b) There exists an H-submodule M{ of M such that M{ is of finite
A-rank equal to dim¢.,M’.

Let Y” be the set of isomorphism classes of simple J-modules.
We have natural maps

B

v -5y -y
defined as follows. If E is a simple J-module, then E'c(,.)zE'(CX)C(fr) may

be regarded as an Hg.,,-module, via ¢¢, : Hery—der; by 2.11, we have
*Ec., €Y' and we define aE=*E.,,. If M’ is an H¢,-module in Y7,
then M’ ® K is in Y and we define B(M')=M" & K.

C(r)

C(r
Let Z)[Y”], Z[Y'], Z[Y] be the free abelian groups with bases Y”,
Y’, Y respectively. For fixed r,€ C*, we define homomorphisms

Z[Y"] aﬁZ[Y’] p >Z[Y]
€ )
K(H,)

=0

as follows: @, 8 are induced by «, 5. If E is a simple J-module we can
regard E as an H,-module E, via ¢, : H,—J and we define ¢(E)=*E, .
If M'eY’, we choose M/ as in (b), and we let 6(M’) be the class of the
H, -module Mi @ C where C is regarded as an A-module with r acting

A
as multiplication by 7,. (A standard argument shows that o(M’) is well
defined, i.e., independent of the choice of M{.) It is clear that e=doa.

3.4, THEOREM. Assume that r, is not a root of 1, or that r,=1. Then
the maps a, B, @&, B,¢,0 (in 3.3) are isomorphisms.

ProOF. From 1.9 we see that ¢ is surjective. Since e=doa, it follows
that ¢ is surjective.

The map B is clearly injective. Let Y/=8Y, NY’ (s semisimple
class in G), where Y, is as in 3.2. Then we have a direct sum decom-
position Z[Y’]= & Z[Y!]. From the definitions it follows easily that é

(resp. B) defines .by restriction a homomorphism 4, : Z [YI-K(H,). (see

8.1) resp. B,: Z[Y/]-Z[Y.]. Moreover, each 0, is surjective, since ¢ is
surjective. Also B, is clearly injective. In the diagram
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Z[Y,]
4

Z[Y!]
x

K(H,).

£27,

with B, injective, d, surjective, the free abelian groups Z[Y.], K(H, ),
have the same rank. (See 3.1 (a), 8.2 (b).) It follows that 4, is an iso-
morphism and B, has image of finite index. Since A, is induced by an
imbedding Y/—Y,, it follows that Y/—Y, is bijective. Hence B: Y’ —Y
is bijective. Since 0, is an isomorphism for all s, we see that 6 is an
isomorphism.

From 2.11 (b) it follows that Boa is injective, hence « is injective,
hence & is injective. Since e=doa with ¢ surjective, & injective and ¢
bijective, it follows that ¢ and & are both bijective. It also follows that

a is bijective. The theorem is proved.

3.5. Let r, be asin 3.4. For any simple J-module E we define a=az€ N
by the requirement that J°E+0 (see 1.3 (d)). For any simple H,-module
M we define a=ay as in the proof of 1.9; we define a J-module M, and
an H,o-module M, both with underlying C-vector space H: @M as in

Hyg
the proof of 1.9.

3.6. COROLLARY. In the setup of 3.5, the J-module M, is simple, for
any simple H,-module M; we have ay=az, The H,-module M has M
as a quotient and all its other simple comstituents M’ satisfy au >ay.
The rule M—M, defines a 1-1 correspondence between the set Z of simple
H,-modules (up to isomorphism) and the set Y” of simple J-modules (up
to isomorphism).

Proor. Let Y” (resp. Z, be the set of simple modules E€ Y”
(resp. M€ Z) such that agz=a (resp. ay=a). For any J-module E, we
denote by (¢,)«E the H,-module obtained from E, via ¢, : H,—J.

(a) If Ec Y/, then all simple constituents of (¢, )E are in Ll Z,.

Indeed, we have (¢,)«E=E as C-vector spaces. Assume that C,E+0
(C.€H,,a(w)>a). Then ¥ hyq.l_,t.E#0. It follows that there
2EW

dc9g
a(z)=a(d)=a
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exist y,z€ W, a(2)=a such that h,,.#0. It is known that h,,.#0
implies a(z)>a(w). We get a>a, contradiction. This proves (a).

(b) If M€ Z, then all simple constituents of M, are in Y”.

Indeed, from the definition of M,, it is clear that t,M,#0—a(w)=a,
and (b) follows.

Let ¢,: Z[Y"]—Z[Z] be the homomorphism of group rings defined
by associating to E€ Y” the sum of simple constituents of (¢, )«E, with
multiplicities. From 3.4, it follows that

(e) & is an isomorphism.

Note that e is compatible with the filtrations EB Z[Y!), & Z[Z.] of
a'gu a’ag/a

Z[Y"], Z[Z] (see (a)) hence it induces an isomorphism on the associated

graded groups: Z[Y/]==>Z[Z,] for all a. In particular, it follows that

(d) If Ec Y., then some simple constituent of (¢, )+E is in Z,.

Assume that for some M€ Z,, M, is not simple. From (b) and (d) it then
follows that (¢,O)*]l7.f, has at least two simple constituents in Z,. But, as
shown in the proof of 1.9, (¢,)«M,;=M has exactly one simple constituent
in Z,. Thus, M, is simple for all M€ Z. The second assertion of the
corollary is proved in 1.9. It implies that the map Z—Y” defined by
M—M, is injective. It also implies that the restriction of & to Z[Y7],
(where Y7 is the image of Z—Y”) is an isomorphism Z[Y/]—>Z[Z].
From (c) it now follows that Yy=Y” hence Z—Y” is bijective. This
completes the proof.

3.7. Let M be a simple Hg-module such that *M e Y (see 2.5 (a)). We

define a canonical direct sum decomposition M= P M, into K-linear
de9g

subspaces, such that the action of the elements C,€ Hy, (s€S,), on M is
given in terms of this decomposition by a particularly simple formula.
By 3.4 we can find a simple J-module E such that M=F &Q K where
c
EQ® K is regarded as a Hy-module via ¢x: Hc—Jx. We have a direct
c
sum decomposition E= dEB E, E;=t,E. We define M;,=FE,;® K; then
€9 c
M= @ Md.

L1

For any y,w€ W, let p(y, w) € N be defined by p(y, w)=coefficient
of r'™™W™in P, (), if y<w, ply, w)=pw,y), if w<y, gy, w)=0,
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otherwise. (See [3].) For y, w€ W, we shall write y~w whenever y, w
are in the same left cell of W.
Let ¢/,0¢€ 9 be such that, for some s€ .S, we have s6>d, sd’<d’.
We define a K-linear map f,. ,: M,—M, by
fgr,a(m)z ,;v ﬂ(z, 6)t,m.
z~8
L

P oY)
L

(Note that for z in the sum we have t,m=t, t,m, since 27'+d’, hence
t.m € M, ; by our assumption on ¢’,0 the sum is finite. It is independent
of s.)

3.8. THEOREM. In the setup of 3.7, for any s€S,, the action of C,€ Hg
on M is given by
—(r+r7)m, if mE M, s0<d
Cm=3 s 1, (m), if meM, s5>a.
F)

8'ca
88/ <8’

ProOF. We have for any m € M,,
Cm= 3 h,q,tm.

dc9g

ZEW

z~d
L

For any z in the sum we have t,m=t.t,m; this is zero unless 255, hence
in our sum we can restrict ourselves to those z such that d~z~d; but
it is known that two elements of 4) are in the same left cell only if
they are equal, hence:

If s0<o, we have C,C,=—(r+r7")C, hence h,,‘,,,z{_(rg'rl) g z;g

Cm=—(r+rtym=—(r+r")m. Assume now that s6>d. Then h,,,.=
{F‘(z’ 0) if s2<2 (q0q [3]) Hence

and

0 if sz>z
Cm= Y plz,o)tm.

ZEW

82<z

z~8
\L

For any z in the sum there is a unique ¢’ € 9 such that z7'~»4’; we have
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necessarily so’<d’. Conversely, if for some z, 6/, we have z7'~d’, s0’<d,
then sz<<z. Hence

Cm= > ulz, 0)t.m= S s(m)
3¢9 ZEW '€
88'<d’ z~8 88'<8’
L
27 A~

and the theorem is proved.

3.9. REMARKS. 1. We can interpret 3.8, as saying that the Hz-module
M admits a W-graph in the sense of [3]. An analogous result for (finite)
Weyl groups is proved in [1], using [5].

2. There is a two sided cell ¢ of W (depending on M) such that
M,#0==0d¢€ec.
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