Cells in affine Weyl groups, III

Dedicated to Professor Nagayoshi Iwahori on his sixtieth birthday

By George Lusztig*)

Let \underline{H}_{r_0} be the Hecke algebra (over C) attached by Iwahori and Matsumoto [2] to an affine Weyl group W and to a parameter $r_0 = \sqrt{q} \in C^*$.

The simple H_{r_0} -modules have been recently classified (see [4]), when r_0 is not a root of 1, using methods from equivariant K-theory. Another (conjectural) approach to the same question, using cells in W, was given in [6]. In this paper, we shall use the results of [4] to answer some of the questions raised in [6, 9.10] concerning the relation between simple W-modules and simple modules for H_{r_0} . Our main tool is the asymptotic $Hecke\ algebra\ \underline{J}$ defined in [7]; this is a C-algebra J whose structure constants are integers. (See 1.3.)

It turns out that \underline{J} contains all the algebras \underline{H}_{r_0} as subalgebras (see 1.7), in such a way that the simple \underline{J} -modules restricted to any \underline{H}_{r_0} form a basis for the Grothendieck group of \underline{H}_{r_0} -modules of finite length, at least when r_0 is not a root of 1, or when $r_0=1$. (Theorem 3.4.)

One of the applications of our results is that for a large class of modules over the Hecke algebra there is a canonical direct sum decomposition (indexed by left cells) such that the action of the generators of the Hecke algebra is given in terms of this decomposition by a particularly simple formula (Theorem 3.8).

The results of this paper together with [4] imply the validity of several of the conjectures made in [6, 9.10]; more precisely conjecture A follows (without uniqueness of irreducible quotients), and also conjectures C, F and a variant of conjecture E. (Conjecture B in [loc. cit] has been verified in [7]; conjecture D remains open.)

We shall often give references to [6], [7] to results which are proved there for ordinary affine Weyl groups and which we need for extended affine Weyl groups; the results we need for extended affine Weyl groups can be reduced trivially to those for ordinary affine Weyl groups.

^{*)} Supported in part by the National Science Foundation.

We make the convention that, unless otherwise specified, "module" means "left module".

§ 1. The Hecke algebra and the asymptotic Hecke algebra

1.1. Let (W_1, S_1) be an irreducible affine Weyl group regarded as a Coxeter group; S_1 is the set of simple reflections. There is a unique subgroup Q of W_1 which is abelian of finite index and is maximal with these properties.

Let Ω be the group of all automorphisms of W_1 which leave S_1 stable and whose restriction to Q coincides with the restriction of some inner automorphism of W_1 . We form the semidirect product $W = \Omega \cdot W_1$ with W_1 normal. Let $l: W \to N$ be the function extending the usual length function of W_1 and such that $l(\omega w_1) = l(w_1)$, $\omega \in \Omega$, $w_1 \in W_1$.

Let X be the centralizer of Q in W. It is a free abelian normal subgroup of W and $X/Q\cong Q$. We can find a simple reflection $s_0\in S_1$ such that the set $S'=S_1-\{s_0\}$ generates a finite subgroup W' of W which is complementary to X. Thus, W is a semidirect product $W'\cdot X$ with X normal.

Let w_0 be the longest element of W'.

Let $X^{++} = \{x \in X | l(sx) > l(x) \text{ for all } s \in S'\}$. We have

- (a) $l(w_0x) = l(w_0) + l(x)$, $l(x^{-1}w_0) = l(x^{-1}) + l(w_0)$ for all $x \in X^{++}$.
- (b) Any $x \in X$ can be written as $x = x_1 x_2^{-1}$, with $x_1, x_2 \in X^{++}$.
- (c) For any $y \in W$ we can find $s_1, s_2, \dots, s_p \in S_1$ such that $y' = ys_1 \dots s_p$ satisfies l(y') = l(y) + p and l(y's') > l(y') for all $s' \in S'$.
- 1.2. Let r be an indeterminate, and let $\underline{A} = C[r, r^{-1}]$. Let \underline{H} be the Hecke algebra of W over \underline{A} , that is the free \underline{A} -module with basis $\tilde{T}_w(w \in W)$ and multiplication defined by $(\tilde{T}_s + r^{-1})(\tilde{T}_s r) = 0$ if $s \in S_1$ and $\tilde{T}_w \tilde{T}_{w'} = \tilde{T}_{ww'}$ if l(ww') = l(w) + l(w').

Define a polynomial $P_{y,w}$ $(y=\omega y_1, w=\omega'w_1, \omega, \omega' \in \Omega, y_1, w_1 \in W)$ to be P_{y_1,w_1} of [3] if $\omega=\omega'$ and to be 0 if $\omega\neq\omega'$.

For each $w \in W$, the element

$$C_w = \sum_{y} (-r)^{l(w)-l(y)} P_{y,w}(r^{-2}) \, \widetilde{T}_y \in \underline{H}$$

is well defined, see [3].

If \underline{B} is a commutative \underline{A} -algebra with 1, we shall write $\underline{H}_B = \underline{H} \bigotimes \underline{B}$;

For each $z \in W$, there is a well defined integer $a(z) \ge 0$ such that

$$r^{a(z)}h_{x,y,z} \in C[r]$$
 for all $x, y \in W$
 $r^{a(z)-1}h_{x,y,z} \notin C[r]$ for some $x, y \in W$

see [6, 7.3]. We have $a(z) = a(z^{-1})$ and $a(z) \le l(w_0)$.

1.3. Let $\gamma_{z,y,z}$ be the constant term of $(-r)^{a(z)}h_{z,y,z^{-1}} \in C[r]$; we have $\gamma_{z,y,z} \in N$. Moreover,

(a)
$$\gamma_{x,y,z} \neq 0 \Longrightarrow a(x) = a(y) = a(z)$$
.

Let \underline{J} be the C vector space with basis $(t_w)_{w \in W}$. This is an associative C-algebra with multiplication $t_x t_y = \sum_{z \in W} \gamma_{z,y,z} t_{z^{-1}}$. (This is a finite sum.) It has a unit element $1 = \sum_{d \in \mathcal{D}} t_d$ where \mathcal{D} is a certain finite subset of W_1 consisting of involutions. (See [7, 2.3].) For any C-algebra B with 1 we denote $\underline{J}_B = \underline{J} \otimes B$.

The <u>A</u>-linear map $\phi: \underline{H} \rightarrow \underline{J}_A$ defined by

(b)
$$\phi(C_w) = \sum_{\substack{\substack{d \in \mathcal{D} \\ z \in W \\ a(d) = a(z)}}} h_{w,d,z} t_z$$

is a homomorphism of A-algebras with 1, [7, 2.4].

(c) If a(w) = i, we have

$$\phi((-r)^i C_w) = \sum_{\substack{z \in W \\ a(z) = i}} \pi_{w,z} t_z + \sum_{\substack{z \in W \\ a(z) > i}} \pi'_{w,z} t_z$$

where $\pi'_{w,z} \in \underline{A}$, $\pi_{w,z} \in C[r]$ and the constant term of $\pi_{w,z}$ is 1 for z=w and 0 for $z \neq w$, [7].

Let \underline{J}^i be the C-subspace of \underline{J} spanned by the t_w , (a(w)=i).

(d) \underline{J}^i is a two sided ideal of \underline{J} , see (a), and we have clearly $\underline{J} = \bigoplus_i \underline{J}^i$.

If B is a commutative <u>A</u>-algebra with 1 we shall write $\phi_B : \underline{H}_B \to J \bigotimes_c B$ for the B-algebra homomorphism defined by $\phi : \underline{H}_B \to J \bigotimes_c \underline{A}$.

1.4. For each $r_0 \in C^*$ we denote $\underline{H}_{r_0} = \underline{H} \underset{A}{\otimes} C$ where C is regarded as an A-algebra with r acting as scalar multiplication by r_0 .

Let $\phi_{r_0} \colon \underline{H}_{r_0} \to \underline{J}$ be the *C*-algebra homomorphism induced by $\phi \colon \underline{H} \to \underline{J}_A$.

Let $\underline{H}_{r_0}^{\geq i}$ be the *C*-subspace of \underline{H}_{r_0} spanned by all C_w $(w \in W, a(w) \geq i)$. This is a two-sided ideal of \underline{H}_{r_0} . Let $\underline{H}_{r_0}^i = \underline{H}_{r_0}^{\geq i} / \underline{H}_{r_0}^{\geq i+1}$; this is an \underline{H}_{r_0} -bimodule. It has as *C*-basis the images $[C_w]$ of $C_w \in \underline{H}_{r_0}^{\geq i}$, (a(w) = i). Hence for $f \in \underline{H}_{r_0}^i$, $h, h' \in \underline{H}_{r_0}$, we have (hf)h' = h(fh').

We may regard $\underline{H}_{r_0}^i$ as a \underline{J} -bimodule with multiplication defined by the rule

$$\left\{ \begin{array}{l} t_z \circ [C_w] = \sum\limits_{w' \atop a(w') = i} \gamma_{x,w,w'^{-1}} [C_{w'}] \\ [C_w] \circ t_x = \sum\limits_{w' \atop a(w') = i} \gamma_{w,x,w'^{-1}} [C_{w'}], \qquad (w,x \in W,\ a(w) = i) \ ; \end{array} \right.$$

this simply expresses the fact that \underline{J}^i is a two-sided ideal of \underline{J} . We have, for all $f \in \underline{H}^i_{r_0}$, $h \in \underline{H}_{r_0}$, $j \in J$:

(b)
$$hf = \phi_{r_0}(h) \circ f, \quad (j \circ f)h = j \circ (fh), \quad (hf) \circ j = h(f \circ j).$$

This follows from [7, 2.4(d)].

- **1.5.** Note that \underline{H}_1 is naturally the group algebra of W over C. (The basis (\widetilde{T}_w) of \underline{H}_1 is the standard basis of the group algebra.) Let Z be the centre of \underline{H}_1 . It is easy to see that
- (a) \underline{H}_1 is finitely generated as a Z-module and Z is a finitely generated C-algebra.
- 1.6. Proposition.
 - (i) J is a finitely generated module over its centre.
 - (ii) The centre of J is a finitely generated C-algebra.
 - (iii) Any simple \underline{J} -module is finite dimensional over C.

PROOF. (i) Let Z be as in 1.5 and let Z' be the centre of \underline{J} . We first show that $\phi_1(Z)$ is contained in Z'. It is enough to show that $\phi_1(z)t_x=t_x\phi_1(z)$ for all $z\in Z$, $x\in W$. Assume that a(x)=i.

Let
$$f_i = \sum\limits_{\substack{d \in \mathcal{G} \\ a(d)=i}} [C_d] \in \underline{H}_1^i$$
. We have

$$t_{x} \circ f_{i} = f_{i} \circ t_{x} = [C_{x}],$$

see 1.4 (a). Since $z \in \mathbb{Z}$, we have

(b)
$$zf = fz$$
, for all $f \in \underline{H}_1^i$.

We have

$$(\phi_1(z)t_x) \circ f_i = \phi_1(z) \circ t_x \circ f_i = \phi_1(z) \circ [C_x] = z[C_x]$$

$$(t_x\phi_1(z)) \circ f_i = t_x \circ (\phi_1(z) \circ f_i) = t_x \circ (zf_i) = t_x \circ (f_iz) = (t_x \circ f_i)z = [C_x]z = z[C_x]$$

see 1.4 (a), (b). Hence

(c)
$$(\phi_1(z)t_x) \circ f_i = (t_x\phi_1(z)) \circ f_i.$$

Writing $\phi_1(z)t_x=\sum\limits_{a(x')=i}\alpha_{x'}t_{x'}, \quad t_x\phi_1(z)=\sum\limits_{a(x')=i}\beta_{x'}t_{x'} \quad (\alpha_{x'},\,\beta_{x'}\in C),$ we see from (a), (c) that $\sum\limits_{a(x')=i}\alpha_{x'}[C_{x'}]=\sum\limits_{a(x')=i}\beta_{x'}[C_{x'}]$ hence $\alpha_{x'}=\beta_{x'}$ for all x', $\alpha(x')=i$. Thus $\phi_1(z)t_x=t_x\phi_1(z)$, as required.

It is now enough to show that \underline{J} is finitely generated as a $\phi_1(Z)$ -module. Clearly, the left \underline{J} -module \underline{J} (left regular representation) is isomorphic to $\bigoplus_i \underline{H}_1^i$, with \underline{J} acting by $j: f \rightarrow j \circ f$. Hence it is enough to show that for each i, \underline{H}_1^i is a finitely generated $\phi_1(Z)$ -module. (We have $\underline{H}_1^i = 0$ for all but finitely many i.)

Since \underline{H}_1^i is a subquotient of \underline{H}_1 , we see from 1.5 (a) that \underline{H}_1^i is finitely generated as a Z-module; let ψ_1, \dots, ψ_N be generators. For any $\psi \in \underline{H}_1^i$, there exist $z_1, \dots, z_N \in Z$ such that $\psi = \sum_{i=1}^N z_i \psi_i$. By 1.4 (b) we have also $\psi = \sum_{i=1}^N \phi_1(z_i) \circ \psi_i$ hence ψ_i are also generators of \underline{H}_1^i as a $\phi_1(Z)$ -module. This proves (i).

- (ii) Z' contains $\phi_1(Z)$, a finitely generated C-algebra. Moreover, Z' is a $\phi_1(Z)$ -submodule of the finitely generated $\phi_1(Z)$ -module \underline{J} , hence Z' is a finitely generated $\phi_1(Z)$ -module. Hence, by 1.5 (a), Z' is a finitely generated C-algebra.
- (iii) Let E be a simple \underline{J} -module. Since \underline{J} has countable dimension over C, a known argument of Dixmier, see [8], shows that $\operatorname{End}_{\underline{J}}(E) = C$. Hence Z' acts on E by scalar multiplications. Using (i), it follows that the image of \underline{J} in $\operatorname{End}_C(E)$ is a finite dimensional C-vector space.

Since E is simple, it follows that $\dim_c E < \infty$.

- (d) REMARK. The previous proposition is also true for \underline{H}_{r_0} instead of \underline{J} . (Bernstein).
- 1.7. PROPOSITION. For any $r_0 \in C^*$, the map $\phi_{r_0} : \underline{H}_{r_0} \to \underline{J}$ is injective.

PROOF. Assume that $h \in \underline{H}_{r_0}$ is a non-zero element in the kernel of ϕ_{r_0} . We express h as a C-linear combination of basis elements \widetilde{T}_w and

let $y \in W$ be an element such that \tilde{T}_y appears in h with $\neq 0$ coefficient, with l(y) maximum possible. Let $y' = ys_1s_2 \cdots s_p$ be as in 1.1 (c). Let $h' = h \, \tilde{T}_{s_1} \tilde{T}_{s_2} \cdots \tilde{T}_{s_p}$. Then h' is an element in the kernel of ϕ_{r_0} in which $\tilde{T}_{y'}$ appears with $\neq 0$ coefficient and $l(y') \geq l(y'')$ whenever $\tilde{T}_{y'}$ appears with $\neq 0$ coefficient in h'. We have $C_{w_0} = \sum_{s \in W'} (-r_0)^{l(w_0)-l(s)} \tilde{T}_s$.

We have $a(w_0) = l(w_0)$ and $a(w) \le l(w_0)$ for all $w \in W$. By 1.4(b), we have h'f = 0 for all $f \in \underline{H}^{a(w_0)}_{r_0}$, hence $h'\underline{H}^{\ge a(w_0)}_{r_0} \subset \underline{H}^{\ge a(w_0)+1}_{r_0} = 0$; in particular, $h'C_{w_0} = 0$. But the coefficient of $\widetilde{T}_{y'w_0}$ in $h'C_{w_0}$ is the same as the coefficient of $\widetilde{T}_{y'}$ in h', hence is non-zero. Thus, we have $h'C_{w_0} \ne 0$, a contradiction. The proposition is proved.

- **1.8.** Any left \underline{J} -module E gives rise, via $\phi_{r_0}: \underline{H}_{r_0} \to \underline{J}$ to a left \underline{H}_{r_0} -module E_{r_0} . We denote by $K(\underline{J})$ (resp. $K(\underline{H}_{r_0})$) the Grothendieck group of left \underline{J} -modules (resp. \underline{H}_{r_0} -modules) of finite length, or equivalently, of finite dimension over C. The correspondence $E \to E_{r_0}$ defines a homomorphism $(\phi_{r_0})_*: K(\underline{J}) \to K(\underline{H}_{r_0})$.
- **1.9.** LEMMA. For any $r_0 \in C^*$, $(\phi_{r_0})_* : K(\underline{J}) \to K(\underline{H}_{r_0})$ is surjective.

PROOF. Let M be a simple \underline{H}_{r_0} -module. We attach to M an integer $a=a_M$ by the following two requirements:

$$C_w M = 0$$
 for all $w \in W$, $a(w) > a$
 $C_w M \neq 0$ for some $w \in W$, $a(w) = a$.

This is well defined since a(w) is bounded on W.

Let $\tilde{M} = \underbrace{H^a_{r_0}} \bigotimes M$ where $\underline{H^a_{r_0}}$ is regarded as a right $\underline{H_{r_0}}$ -module $(h:f \to fh)$ and M as a left $\underline{H_{r_0}}$ -module. Then \tilde{M} is an $\underline{H_{r_0}}$ -module $(h:(f \otimes m) \to (hf) \otimes m)$. We have a natural homomorphism $p:\tilde{M} \to M$ defined by $p(f \otimes m) = \dot{f}m$ where $\dot{f} \in \underline{H^{\geq a}_{r_0}}$ is a representative for $f \in \underline{H^a_{r_0}}$. This map is correctly defined, by the definition of $a = a_M$. It is clearly a homomorphism of left $\underline{H_{r_0}}$ -modules. It is non-zero since, otherwise, $\underline{H^{\geq a}_{r_0}}M = 0$, contradicting the definition of a. Since M is simple, it follows that p is surjective. We now show that

(a)
$$\underline{H}_{r_0} \cdot \operatorname{Ker}(\tilde{M} \xrightarrow{p} M) = 0.$$

Let $\sum_i f_i \otimes m_i \in \ker p$, $(f_i \in \underline{H}^a_{r_0}, m_i \in M)$ and let $\dot{f_i} \in \underline{H}^{\geq a}_{r_0}$ be representatives for f_i . Then $\sum_i \dot{f_i} m_i = 0$ in M. Let $f' \in \underline{H}^a_{r_0}$ and let $\dot{f'} \in \underline{H}^{\geq a}_{r_0}$ be a representative for f'. We have

$$\hat{f}'(\sum_{i} f_{i} \otimes m_{i}) = \sum_{i} (\hat{f}'f_{i}) \otimes m = \sum_{i} (f'\hat{f}_{i}) \otimes m_{i} = \sum_{i} (f' \otimes (\hat{f}_{i}m_{i})) \\
= f' \otimes (\sum_{i} \hat{f}_{i}m_{i}) = 0$$

and (a) follows.

Next we show that \tilde{M} is finite dimensional over C. From 1.6 (d) we see that $H^a_{r_0}$ is finitely generated as a module over the centre of H_{r_0} hence it is generated by, say, N elements as a right H_{r_0} -module. The definition of \tilde{M} shows then that $\dim_C \tilde{M} \leq N \cdot \dim_C M < \infty$.

Let \tilde{M}_J be the \underline{J} -module whose underlying C-vector space is \tilde{M} and \underline{J} acts by $j:(f\otimes m)\to (j\circ f)\otimes m$. (This is well defined by 1.4 (b).) The image of \tilde{M}_J under $(\phi_{r_0})_*$ is the class of the \underline{H}_{r_0} -module with underlying C-vector space \tilde{M} and \underline{H}_{r_0} -action $h:f\otimes m\to (\phi_{r_0}(h)\circ f)\otimes m=(hf)\otimes m$ (see 1.4 (b)), hence it is just the \underline{H}_{r_0} -module \tilde{M} defined earlier. Thus, \tilde{M} is in the image of $(\phi_{r_0})_*$. From (a) we see that in $K(\underline{H}_{r_0})$, \tilde{M} is equal to M plus a sum of simple \underline{H}_{r_0} -modules M' satisfying $a_{M'}< a_{M}$. We may assume by induction that any M' with $a_{M'}< a_{M}$ is in the image of $(\phi_{r_0})_*$. Since \tilde{M} is in the image of $(\phi_{r_0})_*$, it follows that M is in the image of $(\phi_{r_0})_*$. (To begin the induction we note that if $a_{M}=0$, we must have $\tilde{M}=M$.) The lemma is proved.

$\S 2$. Simple J-modules

2.1. We consider a simply connected reductive algebraic group G over C with a fixed maximal torus $T_0 \subset G$ and a fixed Borel subgroup B_0 containing T_0 , such that (W', S') is identified with the Weyl group of G with respect to T_0 with simple reflections determined by B_0 , X is identified with the group of characters of T_0 ; the elements of X^{++} correspond to the inverses of the characters by which T_0 acts on the B_0 -stable lines of the various simple rational G-modules.

The complex varieties G, T_0 , B_0 , \cdots will be generally identified with their sets of C-points.

Let K be an algebraic closure of C(r). Any complex variety Z gives rise to an algebraic variety over K with set of K-points Z_K . We shall identify algebraic varieties over K with their sets of K-points. In particular G_K , $(T_0)_K$, $(B_0)_K$, \cdots are well defined.

2.2. We now consider a unipotent element $u \in G$; let $f: SL_2(C) \to G$ be a homomorphism of C-algebraic groups such that $f\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = u$. Let

$$egin{aligned} M(u) = & \{ (m{\gamma}, lpha) \in G imes C^* | m{\gamma} u m{\gamma}^{-1} = u^lpha \} \ M_f = & \left\{ (m{\gamma}, lpha) \in G imes C^* | m{\gamma} f(A) m{\gamma}^{-1} = f\left(egin{pmatrix} lpha^{1/2} & 0 \ 0 & lpha^{-1/2} \end{pmatrix} A egin{pmatrix} lpha^{-1/2} & 0 \ 0 & lpha^{1/2} \end{pmatrix}
ight) \ & ext{for all } A \in SL_2(C)
ight\}. \end{aligned}$$

Let (s, β) be a semisimple element in M(u). Define

$$M(u, s) = \{ (\gamma, \alpha) \in M(u) | \gamma s = s \gamma \}$$

$$M_s(s) = \{ (\gamma, \alpha) \in M_s | \gamma s = s \gamma \}.$$

It is known [4] that

- (a) M_f is a maximal reductive subgroup of M(u).

 This implies that
- (b) $M_f(s)$ is a maximal reductive subgroup of M(u, s).

 In particular:

(c)
$$M_f(s)/M_f^0(s) \cong M(u, s)/M^0(u, s) \stackrel{\text{def}}{=} \overline{M}(u, s).$$

Let \mathcal{B} be the variety of all Borel subgroup of G with the natural $G \times C^*$ action $(\gamma, \alpha) : B \to \gamma B \gamma^{-1}$. Let \mathcal{B}^s_u be the variety of all Borel subgroups of G which contain u and s. Then M(u, s) (a subgroup of $G \times C^*$) leaves \mathcal{B}^s_u stable and induces an action of $\overline{M}(u, s)$ on the étale cohomology of \mathcal{B}^s_u . Let $\rho_0 \overline{M}(u, s)$ be the set of isomorphism classes of irreducible representations of the finite group $\overline{M}(u, s)$ which appear in the representation of $\overline{M}(u, s)$ on the total étale cohomology of \mathcal{B}^s_u .

2.3. Now let u be a unipotent element of G_K and let s be a semisimple element of G_K such that $sus^{-1}=u^{\beta}$ for some $\beta \in K^*$. We define a K-algebraic group

$$M^{(K)}(u,s) = \{(\gamma,\alpha) \in G_K \times K^* | \gamma u \gamma^{-1} = u^{\alpha}, \gamma s = s \gamma \};$$

let $\overline{M}^{(K)}(u,s)$ be the group of components of $M^{(K)}(u,s)$.

Let $(\mathcal{B}_{\kappa})^{s}_{u}$ be the variety of Borel subgroups of G_{κ} which contain u and s. As in 2.2, $\overline{M}^{(\kappa)}(u,s)$ acts naturally on the étale cohomology of $(\mathcal{B}_{\kappa})^{s}_{u}$ and in terms of this action we define $\rho_{0}\overline{M}^{(\kappa)}(u,s)$ to be the set of

isomorphism classes of irreducible representations of the finite group $\overline{M}^{(K)}(u,s)$ which appear in the representation of $\overline{M}^{(K)}(u,s)$ on the total étale cohomology of $(\mathcal{B}_K)_{s}^{s}$.

- **2.4.** Given a semisimple conjugacy class \mathcal{C} in $G_{\mathbb{K}}$, we define a new conjugacy class $\hat{\mathcal{C}}$ in $G_{\mathbb{K}}$ as follows. Let $s \in \mathcal{C}$; then $Z_{G_{\mathbb{K}}}(s)$ has a unique open orbit on the variety of unipotent elements $u' \in G_{\mathbb{K}}$ such that $su's^{-1} = u'^{r^2}$. Choose an element u in this open orbit. We can find a homomorphism of K-algebraic groups $f: SL_2(K) \to G_{\mathbb{K}}$ such that $f\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = u$ and $(s, r^2) \in M_f^{(\mathbb{K})}$. Then s commutes with $f\begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix}$. We set $s_1 = sf\begin{pmatrix} r^{-1} & 0 \\ 0 & r \end{pmatrix}$. Then s and u are in $Z_{G_{\mathbb{K}}}(s_1)$ and we define $\hat{\mathcal{C}}$ to be the $G_{\mathbb{K}}$ -conjugacy class of $s_1u = us_1$. One can check that $\hat{\mathcal{C}}$ is independent of the choices made; it depends only on \mathcal{C} .
- 2.5. Let M be a simple H_{κ} -module. It is necessarily of finite dimension over K. We attach to M a semisimple class \mathcal{C}_{M} in G_{κ} as follows. We can find a non-zero vector $\xi \in M$ and a homomorphism $\chi: X \to K^*$ such that $\tilde{T}_{z}\xi = \chi(x)\xi$ for all $x \in X^{++}$. (Note that the operators $\tilde{T}_{z}: M \to M$, $(x \in X^{++})$, commute with each other.) Then there is a unique element $s \in (T_{0})_{\kappa}$ such that $\chi(x) = x(s)$ for all $x \in X = \operatorname{Hom}(T_{0}, C^{*}) = \operatorname{Hom}((T_{0})_{\kappa}, K^{*})$. Let \mathcal{C}_{M} be the conjugacy class of s in G_{κ} . It is known that \mathcal{C}_{M} is an invariant of M (it is independent of the choice of ξ).
- (a) Let Y be the set of isomorphism classes of simple \underline{H}_{κ} -modules M such that the conjugacy class \hat{C}_{κ} in G_{κ} contains some C-point of G.
- **2.6.** Let $V: K^* \to R$ be a homomorphism such that V(r) > 0. An element g of G_{κ} (or its conjugacy class in G_{κ}) is said to be V-tempered if all eigenvalues of $\mathrm{Ad}(g)$ on $\mathrm{Lie}(G_{\kappa})$ (or, equivalently, all eigenvalues of g in all finite dimensional rational G_{κ} -modules) are in the kernel of V.

An H_{κ} -module M of finite dimension over K is said to be V-tempered (resp. V-antitempered) if all the eigenvalues λ of $\tilde{T}_x: M \rightarrow M$ satisfy $V(\lambda) \leq 0$ (resp. $V(\lambda) \geq 0$) for all elements $x \in X^{++}$.

One of the main results of [4] is:

(a) A simple H_{κ} -module is V-tempered if and only if $\hat{\mathcal{C}}_{\mathfrak{M}}$ is a V-tempered conjugacy class in G_{κ} .

(See [4, 7.12, 8.2]; these results are applicable since the field K is (non

canonically) isomorphic to C.)

For any commutative <u>A</u>-algebra B with unit, let $h \rightarrow h^*$ be the unique B-algebra automorphism of \underline{H}_B such that

$$*\tilde{T}_s = -\tilde{T}_s^{-1}, (s \in S'), *\tilde{T}_x = \tilde{T}_x^{-1}, (x \in X^{++}).$$

If M is an \underline{H}_B -module, then composition with * gives a new \underline{H}_B -module *M. It is clear that

- (b) * interchanges V-tempered and V-antitempered simple \underline{H}_{κ} -modules.
- 2.7. Let $\bar{r}: K \to K$ be any field automorphism inducing identity on C and satisfying $\bar{r} = r^{-1}$. Following [3], we extend $\bar{r}: K \to K$ to a ring homomorphism $\bar{r}: H_K \to H_K$ by $\bar{T}_w = \bar{T}_w^{-1}$, $(w \in W)$. For any C-variety Z, the map $\bar{r}: K \to K$ induces a natural bijection $\bar{r}: Z_K \to Z_K$. In particular, it induces a bijection $\bar{r}: G_K \to G_K$ which is the identity on the C-points of G.
- **2.8.** Lemma. Let $V_0: C(r)^* \to Z$ be the homomorphism defined by attaching to a rational function its order of vanishing at r=0. Let $\lambda \in K^*$ be an integral element over $C[r, r^{-1}]$ such that for any valuation $V: K^* \to R$ extending V_0 , we have $V(\lambda) = V(\bar{\lambda}) = 0$, $(\bar{\lambda} \text{ as in 2.7})$. Then $\lambda \in C^*$.

PROOF. We define V (as above) at $0 \in K$ by $V(0) = \infty$. Let $\lambda_1, \dots, \lambda_n$ be the conjugates of λ under the Galois group of K over C(r), and let ε_i be the i-th elementary symmetric function in $\lambda_1, \dots, \lambda_n$. If V is as in the lemma we have $V(\lambda_1) = \dots = V(\lambda_n) = 0$ hence $V(\varepsilon_i) \geq 0$, so that $\varepsilon_i \in C(r)$ has no pole at 0. Similarly, we have $V(\bar{\lambda}_1) = \dots = V(\bar{\lambda}_n) = 0$ hence $V(\bar{\epsilon}_i) \geq 0$ hence

- **2.9.** Proposition. Let M be a simple \underline{H}_{κ} -module. Assume that (a), (b), (c) below hold.
 - (a) $\operatorname{Tr}_{\scriptscriptstyle{K}}(\tilde{T}_{\scriptscriptstyle{w}},M) \in C[r,r^{-1}] \ for \ all \ w \in W.$
 - (b) M is V-tempered for any V as in Lemma 2.8.
 - (c) There exists a C-isomorphism $\bar{}$: $M \rightarrow M$ such that $\overline{hm} = \overline{hm}$ for all $h \in \underline{H}_K$, $m \in M$.

Then $M \in Y$. (See 2.5 (a).)

PROOF. From (a), it follows that $\operatorname{Tr}_{\kappa}(\tilde{T}_{w}^{n}, M) \in C[r, r^{-1}]$ for any $n \in \mathbb{Z}$.

Hence all eigenvalues of \tilde{T}_w and $\tilde{T}_w^{-1}: M \to M$ are integral over $C[r, r^{-1}]$ for any $w \in W$. Let $\xi \in M$ be a non-zero vector such that for some $s_0 \in (T_0)_K$, we have $\tilde{T}_z \xi = x(s_0) \xi$ for all $x \in X^{++}$. We then have also $\tilde{T}_z^{-1} \xi = x^{-1}(s_0) \xi$ for all $x \in X^{++}$. By the argument above, $x(s_0)$ and $x^{-1}(s_0)$ are integral over $C[r, r^{-1}]$ for all $x \in X^{++}$. Using 1.1 (b), we deduce that $x(s_0)$ is integral over $C[r, r^{-1}]$ for any $x \in X$.

By definition, we have $s_0 \in \mathcal{C}_M$. Starting with an element $s \in \mathcal{C}_M$, we define $u, f: SL_2(K) \to G_K$, s_1 as in 2.4; then $s_1 u \in \hat{\mathcal{C}}_M$. We can find an element $g \in G_K$ and a homomorphism of C-algebraic groups $f': SL_2(C) \to G$ such that $f'(A) = gf(A)g^{-1}$ for all $A \in SL_2(C)$. Hence, replacing s, u, f, s_1 by their conjugate under g, we can assume that f and u are defined over C.

We want to show that the G_{κ} -conjugacy class of s_1u contains some C-point of G. For this, it is enough to show that for any rational G_{κ} -module CV of finite dimension over K, any eigenvalue $\lambda \in K^*$ of $s_1 : CV \to CV$ is actually in C^* . We shall verify that λ satisfies the hypothesis of Lemma 2.8.

Since $x(s_0)$ is integral over $C[r, r^{-1}]$ for all $x \in X$, it follows that the eigenvalues of $s_0: \mathcal{CV} \to \mathcal{CV}$ are integral over $C[r, r^{-1}]$. Since s is conjugate to s_0 in G_K , the eigenvalues of $s: \mathcal{CV} \to \mathcal{CV}$ are integral over $C[r, r^{-1}]$. We have $s = s_1 f \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} = f \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} s_1$ and the eigenvalues of $f \begin{pmatrix} r & 0 \\ r^{-1} \end{pmatrix}$ on \mathcal{CV} are clearly of form r^j $(j \in \mathbb{Z})$. Then λ is equal to r^{-j} times an eigenvalue of s on \mathcal{CV} ; hence λ is integral over $C[r, r^{-1}]$.

Now fix $V: K^* \to R$ as in Lemma 2.8. Since M is V-tempered we see from 2.6 (a) that s_1u is V-tempered, hence s_1 is V-tempered, hence $V(\lambda) = 0$.

To check that $V(\bar{\lambda})=0$ it will be enough to check that $\bar{\lambda}$ is an eigenvalue of $s_1: CV \to CV$.

For any $x \in X^{++}$, we have $\bar{T}_z = \tilde{T}_{w_0} \tilde{T}_{w_0z^{-1}w_0^{-1}} \tilde{T}_{w_0}^{-1}$. (This is equivalent to $\tilde{T}_{w_0} \tilde{T}_z = \tilde{T}_{w_0zw_0^{-1}} \tilde{T}_{w_0}$; both expressions are equal to \tilde{T}_{w_0z} , see 1.1 (a).)

If ξ , s_0 are as in the beginning of the proof, we set $\xi' = \tilde{T}_{w_0}^{-1}\bar{\xi}$; using (c), we have

$$\begin{split} \tilde{T}_z & \xi' = \tilde{T}_z \tilde{T}_{w_0}^{-1} \bar{\xi} = \overline{\tilde{T}}_z \tilde{T}_{w_0} \xi = \overline{\tilde{T}}_{w_0} \tilde{T}_{w_0}^{-1} x_{w_0}^{-1} \xi \\ & = \overline{(w_0 x^{-1} w_0^{-1})(s_0)^{-1} \tilde{T}_{w_0} \xi} = \overline{x(w_0(s_0))} \, \tilde{T}_{w_0}^{-1} \bar{\xi} = x(w_0(\bar{s}_0)) \xi' \end{split}$$

for all $x \in X^{++}$. It follows that $w_0(\bar{s}_0) \in (T_0)_K$ is in \mathcal{C}_M . (See 2.5.) Let $\sigma: G \to G$ be the unique automorphism of C-algebraic groups such that

 $\sigma B_0 = B_0$, $\sigma T_0 = T_0$ and $\sigma(t) = w_0(t^{-1})$ for all $t \in T_0$. Then σ extends to an automorphism $\sigma: G_K \to G_K$ which commutes with $\bar{g}: G_K \to G_K$. (See 2.7.) We have $\sigma(\bar{s}_0^{-1}) \in \mathcal{C}_M$. Since s_0 , s are G_K -conjugate, we have also $\sigma(\bar{s}^{-1}) \in \mathcal{C}_M$.

We now apply the definition 2.4 of $\hat{\mathcal{C}}_{\mathtt{M}}$ starting from $\sigma(\bar{s}^{-1})$ instead of s. Since u is in the open $Z_{G_{\mathtt{K}}}(s)$ -orbit on the set of unipotents $u' \in G_{\mathtt{K}}$ satisfying $su's^{-1}=u'^{r^2}$, we see that the element $\sigma(\overline{u})=\sigma(u)$ is in the open $Z_{G_{\mathtt{K}}}(\sigma(\bar{s}^{-1}))$ -orbit on the set of unipotents $u'' \in G_{\mathtt{K}}$ satisfying $\sigma(\bar{s}^{-1})u''\sigma(\bar{s}^{-1})^{-1}=u''^{r^2}$.

Let ${}^{\sigma}f = \sigma \circ f$. Since f is defined over C. $f \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = u$, and $(s, r^2) \in (M_f)_K$, we see that ${}^{\sigma}f$ is defined over C, ${}^{\sigma}f \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \sigma(u)$ and $\sigma(\bar{s}^{-1}) \in (M_{\sigma_f})_K$. We have $\sigma(\bar{s}^{-1})^{\sigma}f \begin{pmatrix} r^{-1} & 0 \\ 0 & r \end{pmatrix} = \sigma(\left(\bar{s}f \begin{pmatrix} r^{-1} & 0 \\ 0 & r \end{pmatrix}\right)^{-1}) = \sigma(\bar{s}_1^{-1})$. Hence the definition 2.4 of \hat{C}_M starting from $\sigma(\bar{s}^{-1})$ instead of s leads to $\sigma(\bar{s}_1^{-1})\sigma(u)$ instead of s_1u .

Since s_1u , $\sigma(\bar{s}_1^{-1})\sigma(u)$ are in the same G_K -conjugacy class \hat{C}_M , it follows that s_1 , $\sigma(\bar{s}_1^{-1})$ are conjugate in G_K . Since any semisimple element $t \in G_K$ is G_K -conjugate to $\sigma(t^{-1})$, it follows that s_1 , \bar{s}_1 are G_K -conjugate. We can find a C-linear isomorphism $\bar{s} : CV \to CV$ such that $\bar{g}\bar{y} = \bar{g}\bar{y}$ for all $g \in G_K$, $y \in CV$, and $\bar{\xi}y = \bar{\xi}\bar{y}$ for all $\xi \in K$, $y \in CV$. It follows that the eigenvalues of $\bar{s}_1 : CV \to CV$ are obtained by applying $\bar{s}_1 : CV \to CV$, it follows that $\bar{\lambda}$ is an eigenvalue of $\bar{s}_1 : CV \to CV$. Since \bar{s}_1 is an eigenvalue of $\bar{s}_1 : CV \to CV$. Since \bar{s}_1 is also an eigenvalue of $\bar{s}_1 : CV \to CV$. Since \bar{s}_1 is \bar{s}_1 are \bar{s}_2 -conjugate, $\bar{\lambda}$ is also an eigenvalue of $\bar{s}_1 : CV \to CV$. Since \bar{s}_1 is \bar{s}_1 thempered we have $\bar{s}_2 : CV \to CV$.

Thus, we have verified that λ satisfies the hypothesis of Lemma 2.8; it follows that $\lambda \in C^*$. Hence the G_{κ} -conjugacy class of s_1u contains some C-point of G. The proposition is proved.

2.10. Let E be a simple \underline{J} -module and let \underline{B} be an \underline{A} -algebra with 1. Then $E_B = E \bigotimes_C B$ is naturally a \underline{J}_B -module and it can be also regarded as an \underline{H}_B -module, via $\phi_B : \underline{H}_B \to \underline{J}_B$. Hence, for B = K, $*E_K$ (see 2.6) is again an \underline{H}_K -module.

2.11. Proposition.

- (a) If E is a simple \underline{J} -module, then $^*E_{\kappa}$ is a simple \underline{H}_{κ} -module in Y. (See 2.5 (a).)
- (b) If E' is another simple \underline{J} -module and E'_{κ} is isomorphic to E_{κ} as an \underline{H}_{κ} -module then E' is isomorphic to E as a \underline{J} -module.

PROOF. (a) From 1.3 (d) and the fact that E is simple it follows that

there exists $i \in N$ such that $t_w E \neq 0 \Longrightarrow a(w) = i$. By Burnside's theorem, the endomorphisms $t_w \colon E \to E$, (a(w) = i), span the C-vector space $\operatorname{End}_c(E)$. Hence we can find $w_1, \dots, w_r \in W$, $r = \dim_c(E)^2$, $a(w_1) = \dots = a(w_r) = i$, such that $t_{w_1}, \dots, t_{w_r} \colon E \to E$ form a C-basis of $\operatorname{End}_c(E)$. From 1.3 (c), we see that $\phi_K((-r)^i C_{w_j}) = \sum\limits_{\substack{z \in W \\ a(z) = i}} \pi_{w_j,z} t_z$ as endomorphisms of $E \bigotimes_c K$, $(1 \le j \le r)$;

moreover $\pi_{w_j,\,z}\in C[r]$ has constant term 1 if $z=w_j$ and 0 if $z\neq w_j$. Expressing $t_z:E\to E$ as C-linear combination of $t_{w_k}:E\to E$, we see that $\phi_K((-r)^iC_{w_j})=\sum\limits_{1\leq k\leq r}\phi_{j,k}t_{w_k}$, as endomorphisms of E_K $(1\leq j\leq r)$; moreover $\psi_{j,k}\in C[r]$ has constant term 1 if j=k and 0 if $j\neq k$. In particular, $\det(\psi_{j,k})\in C[r]$ has constant term 1, so it is $\neq 0$. Thus $\phi_K((-r)^iC_{w_j}):E_K\to E_K$ span $\operatorname{End}_K(E_K)$ as a K-vector space. Using again Burnside's theorem we see that the H_K -module E_K is simple; hence the H_K -module E_K is simple.

From 1.3 (c) we see that $\phi_{\tt K}((-r)^iC_w) = \sum\limits_{\substack{z \in W \\ a(z)=i}} \pi_{w,z}t_z$ as endomorphisms

The H_{κ} -modules E_{κ} , ${}^*E_{\kappa}$ come by extension of scalars from \underline{A} to K from \underline{H} -modules on the underlying \underline{A} -modules E_{Λ} . Hence $\mathrm{Tr}_{\kappa}(\tilde{T}_{w}, E_{\kappa})$ and $\mathrm{Tr}_{\kappa}(\tilde{T}_{w}, {}^*E_{\kappa})$ are in \underline{A} for any $w \in W$.

Let $\bar{c}: E \bigotimes_{c} K \to E \bigotimes_{c} K$ be the map defined by $e \bigotimes_{\xi} \to e \bigotimes_{\xi}, (e \in E, \xi \in K)$, where $\bar{c}: K \to K$ is as in 2.7. The elements C_w are known to be fixed by $\bar{c}: H_K \to H_K$. Hence the elements $h_{x,y,z} \in C[r, r^{-1}] \subset K$ (see 1.2) are fixed by $\bar{c}: K \to K$. From 1.3 (b) it now follows that

$$\overline{\phi(C_w)(e \bigotimes \xi)} = \sum_{\substack{d \in \mathfrak{D} \\ z \in W \\ z \in W}} (t_z e) \bigotimes h_{w,d,z} \xi$$

 $(w \in W, e \in E, \xi \in K)$, hence $\overline{hm} = \overline{h}\overline{m}$ for all $h \in \underline{H}_K$, $m \in E_K$. We then have also $\overline{(*h)m} = *(\overline{h})\overline{m}$, $(h \in \underline{H}_K, m \in E_K)$, since $\overline{(*h)} = *(\overline{h})$ for all $h \in \underline{H}_K$.

Thus we have verified that the \underline{H}_{κ} -module $^*E_{\kappa}$ satisfies the hypothesis of 2.9. It follows that $^*E_{\kappa} \in Y$ and (a) is proved.

Now let E' be another simple \underline{J} -module such that E'_{κ} , E_{κ} are isomorphic as \underline{H}_{κ} -modules.

It follows that $E'_{C(r)}$, $E_{C(r)}$ are isomorphic as $\underline{H}_{C(r)}$ -modules, hence $E'_{C((r))}$, $E_{C((r))}$ are isomorphic as $\underline{H}_{C((r))}$ -modules.

We must show that $E' \cong E$ as \underline{J} -modules.

As in the beginning of the proof, we can find $i, i' \in N$ such that $t_w E \neq 0 \Longrightarrow a(w) = i$ and $t_w E' \neq 0 \Longrightarrow a(w) = i'$. We may assume that $i' \leq i$.

Let $\alpha: E_{c((r))} \to E'_{c((r))}$ be an isomorphism of $\underline{H}_{c((r))}$ -modules. Replacing if necessary α by $r^k \alpha$, $(k \in \mathbb{Z})$, we may assume that α maps $\mathcal{E} = E \bigotimes_{c} C[[r]]$ into $\mathcal{E}' = E' \bigotimes_{c} C[[r]]$ but not into $r\mathcal{E}'$.

Hence, if we identify in the natural way $\mathcal{E}/r\mathcal{E} \cong E$, $\mathcal{E}'/r\mathcal{E}' \cong E'$, we see that there exists a *C*-linear map $\tilde{\alpha}: E \rightarrow E'$ such that

(c)
$$\alpha(e \otimes \xi) = \tilde{\alpha}e \otimes \xi \pmod{r\mathcal{E}'}$$

for any $e \in E$, $\xi \in C[[r]]$.

Let $w \in W$ be such that a(w) = i. Since $i' \le i$, we see from 1.3 (c) and the definition of i, i' that:

 $\phi_{\mathcal{C}(r)}((-r)^iC_w)$ maps \mathcal{E} into \mathcal{E} and \mathcal{E}' into \mathcal{E}' . Moreover, it commutes with $\alpha:\mathcal{E}{\to}\mathcal{E}'$. We shall express this commutation using 1.3 (c):

$$\alpha \left(\sum_{\substack{z \in W \\ a(z) = i}} t_z(e) \otimes \pi_{w,z} \xi \right) = \left(\sum_{\substack{z \in W \\ a(z) = i}} \pi_{w,z} t_z \right) \alpha(e \otimes \xi)$$

for all $e \in E$, $\xi \in C[[r]]$. Using (c), this can be written as follows

$$\sum_{z \in W \atop a(z)=i} \tilde{\alpha}(t_z(e)) \otimes \pi_{w,z} \xi = \sum_{\substack{z \in W \\ a(z)=i}} t_z(\tilde{\alpha}(e)) \otimes \pi_{w,z} \xi + \text{element in } r\mathcal{E}'.$$

Here $\pi_{w,z} \in C[r]$ has constant term 1 if w=z and 0 if $w\neq z$; hence the previous equality implies

$$\tilde{\alpha}(t_w(e)) \otimes \xi = t_w(\tilde{\alpha}(e)) \otimes \xi + \text{element in } r\mathcal{E}'$$

hence

$$\tilde{\alpha}(t_w(e)) = t_w(\tilde{\alpha}(e))$$
 for all $e \in E$, $w \in W$, $a(w) = i$.

Since $t_w: E \to E$, (a(w) = i) span $\operatorname{End}_c(E)$, and $\tilde{\alpha} \neq 0$, we can find $e \in E$, $w \in W$ (a(w) = i) such that $\tilde{\alpha}(t_w(e)) \neq 0$. For that e, w we have $t_w(\tilde{\alpha}(e)) \neq 0$, hence $t_w E' \neq 0$ hence i = i' by the definition of i'.

From the definition of i, i' and the equality i=i', we see that the equality $\tilde{\alpha}(t_w(e))=t_w(\tilde{\alpha}(e))$, $(e\in E)$, holds also if $a(w)\neq i$. Hence it holds for all $w\in W$. Hence $\tilde{\alpha}$ is a \underline{J} -module homomorphism. Since E, E' are simple and $\tilde{\alpha}\neq 0$, we see that $\tilde{\alpha}$ must be an isomorphism. The proposition is proved.

§ 3. The main results

3.1. Fix $r_0 \in C^*$. To any simple H_{r_0} -module M, we can attach a semi-simple element $s \in G$ (a C-point of G) well defined up to conjugacy, by the procedure of 2.5: we can find a non-zero vector $\xi \in M$ and a homomorphism $\chi: X \to C^*$ such that $\tilde{T}_x \xi = \chi(x) \xi$ for all $x \in X^{++}$; then there is a unique element $s \in T_0$ such that $\chi(x) = \chi(s)$ for all $\chi(x) = \chi(s)$. This is the required semisimple element. We then have a canonical decomposition

$$K(\underline{H}_{r_0}) = \bigoplus_s K(\underline{H}_{r_0})_s$$

indexed by a set of representatives for the semisimple classes in G, where $K(\underline{H}_{r_0})_s$ is spanned by the simple \underline{H}_{r_0} -modules M such that the semisimple class associated above to M is that of s.

Then $K(\underline{H}_{r_0})_s$ is a free abelian group of finite rank.

If r_0 is not a root of 1, then

(a)
$$\operatorname{rank} K(\underline{H}_{\tau_0})_s = \sum \sharp (\rho_0 \overline{M}(u, s))$$

where u runs over a set of representatives for the Z(s)-orbits on the set of unipotent elements $u' \in G$ such that $su's^{-1} = u'^{r_0^2}$ and $\rho_0 \overline{M}(u, s)$ is as in 2.2. This follows from [4].

The equality (a) remains true for $r_0=1$, by the Springer correspondence [9] for the irreducible representations of the Weyl group of Z(s).

3.2. We now attach to each simple \underline{H}_{κ} -module $M \in Y$ (see 2.5 (a)) a semisimple element $s \in G$ (defined up to conjugacy). The definition of s is given in terms of a fixed $r_0 \in C^*$. Let s_1 be a semisimple element of

G, u a unipotent element of $Z(s_1)$ (both defined over C) such that $s_1u \in \hat{\mathcal{C}}_M$. Choose a homomorphism of C-algebraic groups $f: SL_2(C) \to Z(s_1)$ such that $f\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = u$ and define $s = s_1 f\begin{pmatrix} r_0 & 0 \\ 0 & r_0^{-1} \end{pmatrix}$. The conjugacy class of s in G depends only on M. The fibres of the map $M \to s$ will be denoted Y_s . Thus, we have a partition $Y = \coprod_s Y_s$ indexed by a set of representatives for the semisimple conjugacy classes in G.

From the results of [4] applied to \underline{H}_K we see that

$$\sharp(Y_s) = \sum\limits_f \rho_0 \overline{M}^{\scriptscriptstyle (K)} \left(f \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \; s f_{\scriptscriptstyle K} \begin{pmatrix} r r_0^{\scriptscriptstyle -1} & 0 \\ r^{\scriptscriptstyle -1} r_0 \end{pmatrix} \right)$$

where f runs over a set of representatives for the Z(s)-conjugacy classes of homomorphisms of C-algebraic groups $f: SL_2(C) \to G$ such that $(s, r_0) \in M_f$ and $f_K: SL_2(K) \to G_K$ is the natural extension of f. (See 2.2, 2.3.)

For any such f, we denote

$$\begin{split} &u \!=\! f \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\!, \ s_1 \!=\! s f \begin{pmatrix} r_0^{-1} & 0 \\ 0 & r_0 \end{pmatrix}\!; \ \text{then} \ M^{(\mathtt{K})} \! \left(u, s_1 f_{\mathtt{K}} \! \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix}\! \right) \\ &= \! \left\{ \left. (\gamma, \alpha) \in G_{\mathtt{K}} \! \times \! K^* | \gamma u \gamma^{-1} \!=\! u^{\alpha}, \gamma s_1 \!=\! s_1 \! \gamma, \gamma f_{\mathtt{K}} \! \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \!\! \right. \!\! = \!\! f_{\mathtt{K}} \! \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \!\! \gamma \right\} \\ &= \! \left\{ (\gamma, \alpha) \in G_{\mathtt{K}} \! \times \! K^* | \gamma u \gamma^{-1} \!=\! u^{\alpha}, \gamma s \!=\! s \! \gamma, \gamma f_{\mathtt{K}} \! \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \!\! = \!\! f_{\mathtt{K}} \! \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \!\! \gamma \right\} \!\! = \!\! M_f(s)_{\mathtt{K}}, \end{split}$$

(see 2.2). Hence $\overline{M}^{(K)}\!\!\left(u,\,s_1f_{K}\!\!\left(\begin{matrix}r&0\\0&r^{-1}\end{matrix}\right)\right)$ may be identified with the group of components of $M_f(s)$, hence with $\overline{M}(u,s)$, (see 2.2 (c)). Moreover the variety $(\mathcal{B}_K)^s_u$ is obtained by extension of scalars from \mathcal{B}^s_u ; hence these two varieties (one over K, one over C) have the same étale cohomology; it follows that $\rho_0 \overline{M}^{(K)}\!\!\left(u,\,s_1 f_K\!\!\left(\begin{matrix}r&0\\0&r^{-1}\end{matrix}\right)\right) \!\!\cong\! \rho_0 \,\overline{M}(u,s)$. Hence

$$\sharp(Y_s) = \sum\limits_f
ho_0 \, \overline{M} \left(f egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}, \, s
ight)$$

where f is as in (a). It follows that

(b)
$$\sharp (Y_s) = \text{right hand side of } 3.1 \text{ (a)}.$$

3.3. Let Y' be the set of isomorphism classes of $\underline{H}_{C(r)}$ -modules M' with the properties (a), (b) below.

(a) $M' \bigotimes_{C(x)} K$ is a simple \underline{H}_K -module in Y (see 2.5 (a)).

There exists an H-submodule M'_1 of M such that M'_1 is of finite A-rank equal to $\dim_{C(r)} M'$.

Let Y'' be the set of isomorphism classes of simple \underline{J} -modules. We have natural maps

$$Y'' \xrightarrow{\alpha} Y' \xrightarrow{\beta} Y$$

defined as follows. If E is a simple \underline{J} -module, then $E_{c(r)} = E \bigotimes C(r)$ may be regarded as an $\underline{H}_{C(r)}$ -module, via $\phi_{C(r)}:\underline{H}_{C(r)}\to\underline{J}_{C(r)}$; by 2.11, we have $*E_{c(r)} \in Y'$ and we define $\alpha E = *E_{c(r)}$. If M' is an $\underline{H}_{c(r)}$ -module in Y', then $M' \underset{c(r)}{\otimes} K$ is in Y and we define $\beta(M') = M' \underset{c(r)}{\otimes} K$. Let Z[Y''], Z[Y'], Z[Y] be the free abelian groups with bases Y'',

Y', Y respectively. For fixed $r_0 \in C^*$, we define homomorphisms

as follows: $\bar{\alpha}$, $\bar{\beta}$ are induced by α , β . If E is a simple \underline{J} -module we can regard E as an \underline{H}_{r_0} -module E_{r_0} via $\phi_{r_0}: \underline{H}_{r_0} \rightarrow \underline{J}$ and we define $\varepsilon(E) = *E_{r_0}$. If $M' \in Y'$, we choose M'_1 as in (b), and we let $\delta(M')$ be the class of the $\underline{H_r}$ -module $M_1' \otimes C$ where C is regarded as an A-module with r acting as multiplication by r_0 . (A standard argument shows that $\delta(M')$ is well defined, i.e., independent of the choice of M'_1 .) It is clear that $\varepsilon = \delta \circ \bar{\alpha}$.

Theorem. Assume that r_0 is not a root of 1, or that $r_0=1$. the maps $\alpha, \beta, \bar{\alpha}, \bar{\beta}, \varepsilon, \delta$ (in 3.3) are isomorphisms.

PROOF. From 1.9 we see that ε is surjective. Since $\varepsilon = \delta \circ \bar{\alpha}$, it follows that δ is surjective.

The map β is clearly injective. Let $Y_s = \beta^{-1}(Y_s) \cap Y'$ (s semisimple class in G), where Y_s is as in 3.2. Then we have a direct sum decomposition $Z[Y'] = \bigoplus Z[Y'_*]$. From the definitions it follows easily that δ (resp. $\bar{\beta}$) defines by restriction a homomorphism $\delta_s: \mathbb{Z}[Y_s] \to K(\underline{H}_{r_0})_s$, (see 3.1) resp. $\bar{\beta}_s: Z[Y_s] \to Z[Y_s]$. Moreover, each δ_s is surjective, since δ is surjective. Also $\bar{\beta}_s$ is clearly injective. In the diagram

with $\bar{\beta}_s$ injective, δ_s surjective, the free abelian groups $Z[Y_s]$, $K(\underline{H}_{r_0})_s$ have the same rank. (See 3.1 (a), 3.2 (b).) It follows that δ_s is an isomorphism and $\bar{\beta}_s$ has image of finite index. Since $\bar{\beta}_s$ is induced by an imbedding $Y'_s \to Y_s$, it follows that $Y'_s \to Y_s$ is bijective. Hence $\beta: Y' \to Y$ is bijective. Since δ_s is an isomorphism for all s, we see that δ is an isomorphism.

From 2.11 (b) it follows that $\beta \circ \alpha$ is injective, hence α is injective, hence $\bar{\alpha}$ is injective. Since $\varepsilon = \delta \circ \bar{\alpha}$ with ε surjective, $\bar{\alpha}$ injective and δ bijective, it follows that ε and $\bar{\alpha}$ are both bijective. It also follows that α is bijective. The theorem is proved.

- 3.5. Let r_0 be as in 3.4. For any simple \underline{J} -module E we define $a=a_E\in N$ by the requirement that $\underline{J}^aE\neq 0$ (see 1.3 (d)). For any simple \underline{H}_{r_0} -module M we define $a=a_M$ as in the proof of 1.9; we define a \underline{J} -module \tilde{M}_J and an H_{r_0} -module \tilde{M}_J both with underlying C-vector space $\underline{H}^a_{r_0} \underset{\underline{H}_{r_0}}{\otimes} M$ as in the proof of 1.9.
- **3.6.** COROLLARY. In the setup of 3.5, the \underline{J} -module \widetilde{M}_J is simple, for any simple \underline{H}_{r_0} -module M; we have $a_M = a_{\widetilde{M}_J}$. The \underline{H}_{r_0} -module \widetilde{M} has M as a quotient and all its other simple constituents M' satisfy $a_{M'} > a_M$. The rule $M \to \widetilde{M}_J$ defines a 1-1 correspondence between the set Z of simple \underline{H}_{r_0} -modules (up to isomorphism) and the set Y'' of simple \underline{J} -modules (up to isomorphism).

PROOF. Let Y_a'' (resp. Z_a) be the set of simple modules $E \in Y''$ (resp. $M \in Z$) such that $a_E = a$ (resp. $a_M = a$). For any \underline{J} -module E, we denote by $(\phi_{r_0})_*E$ the \underline{H}_{r_0} -module obtained from E, via $\phi_{r_0}:\underline{H}_{r_0} \to \underline{J}$.

(a) If $E \in Y_a''$, then all simple constituents of $(\phi_{r_0})_*E$ are in $\coprod_{a' < a} Z_{a'}$.

Indeed, we have $(\phi_{\tau_0})_*E=E$ as C-vector spaces. Assume that $C_wE\neq 0$ $(C_w\in \overline{H}_{\tau_0}, a(w)>a)$. Then $\sum\limits_{\substack{z\in W\\ a(z)=a(d)=a}}h_{w,d,z}|_{\tau=\tau_0}t_zE\neq 0$. It follows that there

exist $y, z \in W$, a(z) = a such that $h_{w,y,z} \neq 0$. It is known that $h_{w,y,z} \neq 0$ implies $a(z) \geq a(w)$. We get a > a, contradiction. This proves (a).

(b) If $M \in Z_a$, then all simple constituents of \tilde{M}_J are in Y_a'' .

Indeed, from the definition of \tilde{M}_J , it is clear that $t_w \tilde{M}_J \neq 0 \Longrightarrow a(w) = a$, and (b) follows.

Let $\varepsilon_1: \mathbb{Z}[Y''] \to \mathbb{Z}[Z]$ be the homomorphism of group rings defined by associating to $E \in Y''$ the sum of simple constituents of $(\phi_{r_0})_*E$, with multiplicities. From 3.4, it follows that

(c) ε_1 is an isomorphism.

Note that ε_1 is compatible with the filtrations $\bigoplus_{\substack{a' \\ a' \leq a}} Z[Y'']$, $\bigoplus_{\substack{a' \leq a \\ a' \leq a}} Z[Z_{a'}]$ of Z[Y''], Z[Z] (see (a)) hence it induces an isomorphism on the associated graded groups: $Z[Y''_a] \xrightarrow{\longrightarrow} Z[Z_a]$ for all a. In particular, it follows that

(d) If $E \in Y_a''$, then some simple constituent of $(\phi_{r_0})_*E$ is in Z_a .

Assume that for some $M \in Z_a$, \tilde{M}_J is not simple. From (b) and (d) it then follows that $(\phi_{r_0})_*\tilde{M}_J$ has at least two simple constituents in Z_a . But, as shown in the proof of 1.9, $(\phi_{r_0})_*\tilde{M}_J = \tilde{M}$ has exactly one simple constituent in Z_a . Thus, \tilde{M}_J is simple for all $M \in Z$. The second assertion of the corollary is proved in 1.9. It implies that the map $Z \to Y''$ defined by $M \to \tilde{M}_J$ is injective. It also implies that the restriction of ε_1 to $Z[Y_0'']$, (where Y_0'' is the image of $Z \to Y''$) is an isomorphism $Z[Y_0''] \xrightarrow{\cong} Z[Z]$. From (c) it now follows that $Y_0'' = Y''$ hence $Z \to Y''$ is bijective. This completes the proof.

3.7. Let M be a simple H_K -module such that ${}^*M \in Y$ (see 2.5 (a)). We define a canonical direct sum decomposition $M = \bigoplus_{d \in \mathcal{D}} M_d$ into K-linear subspaces, such that the action of the elements $C_s \in H_K$, $(s \in S_1)$, on M is given in terms of this decomposition by a particularly simple formula.

By 3.4 we can find a simple \underline{J} -module E such that $M \cong E \bigotimes_{c} K$ where $E \bigotimes_{c} K$ is regarded as a \underline{H}_{K} -module via $\phi_{K} : \underline{H}_{K} \to J_{K}$. We have a direct sum decomposition $E = \bigoplus_{d \in \mathscr{D}} E_{d}, E_{d} = t_{d}E$. We define $M_{d} = E_{d} \bigotimes_{c} K$; then $M = \bigoplus_{d \in \mathscr{D}} M_{d}$.

For any $y, w \in W$, let $\mu(y, w) \in N$ be defined by $\mu(y, w) = \text{coefficient}$ of $r^{l(w)-l(y)-1}$ in $P_{y, w}(r^2)$, if y < w, $\mu(y, w) = \mu(w, y)$, if w < y, $\mu(y, w) = 0$,

otherwise. (See [3].) For $y, w \in W$, we shall write $y_{\widetilde{L}}w$ whenever y, w are in the same left cell of W.

Let δ' , $\delta \in \mathcal{D}$ be such that, for some $s \in S_1$, we have $s\delta > \delta$, $s\delta' < \delta'$. We define a K-linear map $f_{\delta',\delta} : M_{\delta} \to M_{\delta'}$ by

$$f_{\delta',\delta}(m) = \sum_{\substack{z \in W \ z > \delta \ z^{-1} \sim \delta'}} \mu(z,\delta) t_z m.$$

(Note that for z in the sum we have $t_z m = t_{\delta'} t_z m$, since $z^{-1} \mathcal{L} \delta'$, hence $t_z m \in M_{\delta'}$; by our assumption on δ' , δ the sum is finite. It is independent of s.)

3.8. THEOREM. In the setup of 3.7, for any $s \in S_1$, the action of $C_s \in \underline{H}_K$ on M is given by

$$C_{m{s}}m = egin{cases} -(r\!+\!r^{\!-\!1})m, & if \ m \in M_{m{\delta}}, \ s\delta\!<\!\delta \ \sum\limits_{egin{subarray}{c} \delta \in \mathcal{G} \ s\delta' \in m{\delta'}, \ s'} f_{m{\delta'},m{\delta}}(m), & if \ m \in M_{m{\delta}}, \ s\delta\!>\!\delta. \end{cases}$$

PROOF. We have for any $m \in M_{\delta}$,

$$C_s m = \sum_{\substack{d \in \mathcal{D} \\ z \in W \\ z \atop \widetilde{L}}} h_{s,d,z} t_z m.$$

For any z in the sum we have $t_z m = t_z t_{\delta} m$; this is zero unless $z_{\widetilde{L}} \delta$, hence in our sum we can restrict ourselves to those z such that $d_{\widetilde{L}} z_{\widetilde{L}} \delta$; but it is known that two elements of \mathcal{D} are in the same left cell only if they are equal, hence:

$$C_s m = \sum_{\substack{z \in W \ z \gtrsim \delta \ L}} h_{s,\delta,z} t_z m.$$

If $s\delta < \delta$, we have $C_sC_\delta = -(r+r^{-1})C_\delta$ hence $h_{s,\delta,z} = \begin{cases} -(r+r^{-1}) & \text{if } z = \delta \\ 0 & \text{if } z \neq \delta \end{cases}$ and $C_sm = -(r+r^{-1})t_\delta m = -(r+r^{-1})m$. Assume now that $s\delta > \delta$. Then $h_{s,\delta,z} = \begin{cases} \mu(z,\delta) & \text{if } sz < z \\ 0 & \text{if } sz > z \end{cases}$. (See [3].) Hence

$$C_s m = \sum_{\substack{z \in W \ z > c \ z > \delta \ | L}} \mu(z, \delta) t_z m.$$

For any z in the sum there is a unique $\delta' \in \mathcal{D}$ such that $z^{-1} \sim \delta'$; we have

necessarily $s\delta' < \delta'$. Conversely, if for some z, δ' , we have $z^{-1} \sim \delta'$, $s\delta' < \delta'$, then sz < z. Hence

$$C_s m = \sum_{\substack{\delta' \in \mathfrak{D} \\ s\delta' < \delta' \ z^{-1} \\ z^{-1} L'}} \sum_{\substack{z \in W \\ z - \delta' \ L'}} \mu(z, \delta) t_z m = \sum_{\substack{\delta' \in \mathfrak{D} \\ s\delta' < \delta'}} f_{\delta', \delta}(m)$$

and the theorem is proved.

- 3.9. Remarks. 1. We can interpret 3.8, as saying that the \underline{H}_{κ} -module M admits a W-graph in the sense of [3]. An analogous result for (finite) Weyl groups is proved in [1], using [5].
- 2. There is a two sided cell \underline{c} of W (depending on M) such that $M_{\delta} \neq 0 \Longrightarrow \delta \in c$.

References

- Gyoja, A., On the existence of a W-graph for an irreducible representation of a Coxeter group, J. Algebra 86 (1984), 422-438.
- [2] Iwahori, N. and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke ring of p-adic Chevalley groups, Publ. Math. I. H. E. S. 25 (1965), 237-280.
- [3] Kazhdan, D. and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [4] Kazhdan, D. and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153-215.
- [5] Lusztig, G., On a theorem of Benson and Curtis, J. Algebra 71 (1981), 490-498.
- [6] Lusztig, G., Cells in affine Weyl groups, Advanced Studies in Pure Math. 6, Algebraic Groups and related topics, Kinokuniya and North-Holland, Tokyo-Amsterdam, 1985, 255-287.
- [7] Lusztig, G., Cells in affine Weyl groups, II, J. Algebra 109 (1987), 536-548.
- [8] Quillen, D., On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171-172.
- [9] Springer, T. A., Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207.

(Received January 7, 1987)

Department of Mathematics M.I.T. Cambridge, MA 02139 U.S.A.