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Introduction

In this paper we shall study a certain relation between coverings of
a curve over a finite field of characteristic p>0 and those of a system
of curves over Q,.

Let C be a proper smooth curve over a discrete valuation ring R of
characteristic zero with finite residue field F,, and C the reduction of C.
We assume that there exists a symmetric correspondence I on CxC
whose special fibre consists of the graph of the gth power Frobenius
morphism and its transpose. We consider the geometric generic fibre x

of the system X ={C——9T " 2C }, where I denotes the normalization
of <. Y. Ihara [8][9] established the comparison theory between the
finite étale coverings of X and certain finite étale coverings of C over F,.
Furthermore, he constructed a group I whose profinite completion qis
canonically isomorphic to the algebraic fundamental group of ¥. The
purpose of this paper is to extend his comparison theory to the case of
certain ramified coverings of ¥ and C, while the construction of I" has
not yet been accomplished.

It seems quite important to consider not only étale coverings but
also certain ramified coverings, as indicated in the case of the modular
correspondences of the elliptic modular curve (cf. Ihara [5][6]). The cru-
cial point_ is how to give a good condition on the ramifications of cover-
ings of ¥ and C compatible with the ramification of ¢. For that pur-
pose, we define a {1,2, - - -; oo}-valued function € on the set of all points
of the generic fibre C, naturally determined by the ramification of ¢,,
and consider such coverings of % for which all ramification indices of
points lying above Q€ C, divide €(Q). Here, for each point @ of C,,
€(Q) is the greatest common divisor of all ramification indices of Pe J,
lying above @ such that ‘e, is unramified at ‘p,(P). (When such a point
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P does not exist, we put E(Q)=co.)

We now explain our main result. An F srational point « € C is called
special if the point (x, %) is a normal point of <. If the set of branch
points of ¢, has certain good properties (Definition 4 in § 1), there exists
a canonical categorical equivalence between the following two categories.
(For precise statement, see Theorem 1’ in §1.)

(i) Tamely ramified finite coverings f:C*——C over F, satisfying
the following: (a) for each Q€ C, all ramification indices of points of
C* lying above the specialization of Q divide €(Q), (b) all points of C*
lying above the special points of C are qu-mtional.

(ii) Finite coverings F : Y——X with Y={Y «+—Y,—Y,}, satisfy-
ing the condition that, for each Q€ C, all ramification indices of points
of Y, and Y, lying above @ divide €(Q) and are prime to p.

While our result looks rather complicated, it should be noticed that
it is a natural generalization of Ihara’s comparison theorem in the ellip-
tic modular case.

In principle the proof of our theorem closely follows that of Ihara
in the unramified case. The key points in the ramified case are Main
Lemma A in §2 and Main Lemma B in §3. The former, describing the
local behavior of the inverse images of I, serves to prove the existence
of its local extensions, The latter supplements results of Thara-Miki [11]
which gave a criterion for potential good reduction of unramified cover-
ings.

We state basic definitions and main result in §1. In §2, we prove
the existence of the unique extension of <. In §3, we study the reduc-
tion of coverings of ¥. In the final section, we collect the results in
§2 and § 3, and complete the proof.

I express sincere gratitude to Professor Y. Ihara for kindly inform-
ing me of his theory of congruence relations. I am also very grateful
to Professors K. Kato, F. Momose and T. Saito for valuable conversations.

1. Definitions and main theorems

In this section, we shall give basic definitions and the statements of
our main results. Throughout, the word “(algebraic) curve” will mean
a proper smooth irreducible (not necessarily absolutely irreducible) alge-
braic curve over a field. We use the following notation.
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: a prime number.
: a power of p.
: the finite field with g elements.
. a complete discrete valuation ring of characteristic 0 with res-
idue field F, and quotient field k.
n : afixed prime element of R.
k : the algebraic closure of k.
R“ : the unique unramified extension of R of degree d.
Let C be an algebraic curve over F,; then
II; : the graph on CXC of the qth power Frobenius morphism.
II%: the transpose of II.

SRS

Sometimes we write simply II and II’ for them, when there is no fear
of confusion. We consider I7+II' as a closed reduced subscheme of CxC.

The word point will mean a closed point, unless otherwise stated.
For a scheme (or a morphism) Z over a discrete valuation ring, Z, de-
notes its generic fibre and Z, its special fibre. But we always abbreviate the
subscript “#»” for points of generic fibres. Let X be an arbitrary scheme.
For any irreducible closed subscheme Y of X, Oy y denotes the local ring
of X at the generic point of Y. If X is integral, K(X) denotes the
Function field of X. For any local ring A, A denotes the completion of
A with respect to the maximal ideal of A. By abuse of language, we
shall consider any non-zero integer as a divisor of oo.

We shall use the word ‘“signature” for curves over any field, in
analogy with that for compact Riemann surfaces or Fuchsian groups. In
general, let X be a curve over a field F. A signature on X is a {1, 2,
.- .; oo}-valued function e=¢(P) defined on the set of all points P of X,
such that ¢(P)=1 except for a finite number of points of X. Let F” be
a field containing F. Put X'=XXrF’. Then any signature on X can
be extended naturally to a signature on X’. We shall use the same
notation for it.

DEFINITION 1. We say that a covering f: Y——X over F is admis-
sible with respect to a signature ¢ on X, if for each P¢ Y, the ramifi-
cation index of P divides e(f(P)).

Let A be any normal ring. A system of three normal schemes over

A is a system "U={U1<¢—1Uoﬂ>Uz}, where U, (1=0,1,2) are normal

schemes over A and ¢, ¢, are finite A-morphisms. If CU={Ul<¢—1Uoﬂ>U2},
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* *
and ‘U*z{Ui“&US"ﬁ»UQ‘} are systems of three normal schemes over
A, a finite morphism G :U*—U is a triple F=(f., fofo) of three
finite A-morphisms f;:Uf—U, (1=0,1,2) satisfying the following two
properties;

(i) fiog¥=diofe  (1=1,2),
(i) K(U)=KU¥)Qxw, K (U) (canonically; i=1, 2).

When & is a finite morphism as above, we say that the pair (‘U* &) is
a finite covering of U over A.

Now we shall give some brief review of definitions related to con-
gruence relations (ef. [8] §1). For a curve C over F,, we call C a lifting
of C to R, if C is a proper smooth R-scheme such that C®:F,=C. A
pair (C, ) is called a congruence relation over R, if

(i) C is a lifting of a curve C=C, over F, to R;
(ii) < is an R-flat integral closed subscheme of C X :(C, such that

T x wexe)(CXC) =1 +1T".

A congruence relation (C, ) (or simply ) is called symmetric, if ‘T =9,
where ‘d is the transpose of 9. Throughout this paper, all congruence
relations will be assumed symmetric, and hereafter we omit the word
“symmetric”.

The ring of global sections I'(C,O;) of C must be F, or F, We
say that a congruence relation (C, <) belongs to Case 1 if I'(C,Oy)=F,,
and Case 2 if I'(C,Oc)=F .

If PellINnlIl’, the degree of P over F, denoted deg P, is at most 2.
The two projections /I +II’——C induce one and the same bijection

{points P of II NII'}={closed points @ of C with deg @<2}.

A point Q€ C with deg Q<2 is called special (with respect to <), if the
local ring O« of the corresponding point P is normal. We also call P
special. A point @ € C or P¢ Il +II’ which is not special is called ordinary.
Note that all points of C of degree >2 are ordinary.

Denote by <" the normalization of . Let ¢ (resp. ‘¢) be the com-
posite of the first (resp. second) projection of < to C and the normali-
zation map. Put

X={E2T" 2,0},
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This system is a system of three normal schemes over RE. By definition,
X is called a CR-system over R. Congruence relations and CR-systems
are equivalent notions.

DEFINITION 2. A point P€ d, is called quasi-symmetric, if ¢,(P)=
t
@o(P).

The special fibre I, consists of two irreducible components which
can be identified with /I and II’. These two components meet only at
special points. We also call such a point special and all other points of
IJ" ordinary. For any ordinary point P,€ J. there exists a unique
generization P€d, of P, such that P is quasi-symmetric. By definition,
P (resp. ¢,(P)) is the canonical lifting of P, (resp. ¢,(P,)). For more
precise definition, see [8] § 3.

For a congruence relation (C, <), the special points defined above
can be considered distinctive points of C,. On the other hand, the branch
points of ¢, stand out among the points of C,. The ramification of ¢,
naturally determines a signature on C, as follows. Let R be a set of
(not necessarily all) branch points of ¢,.

DEFINITION 3. For Q€ (,, €(Q) denotes the greatest common divisor
of all ramification indices ¢(P/Q) of points P, lying above @ which
are not quasi-symmetric. (If all points of <, lying above @ are quasi-
symmetric, we put (@) =o0.) Then the signature on C, associated with
QR is a signature e on C,, defined by:

e@=C@Q), if QeR,
(@)= 1 , if Q¢ R.

Note that, in the case of the Kronecker congruence relations of the
elliptic modular curve, above defined signature e coincides with that de-
fined by the modular group. We shall now describe e explicitly. Put

SD;:(Q):elPI—l— -+ +e, P, QGgQ
I. The case where Q, is special. There exists at most one quasi-
symmetric point of I, lying above Q. If P, is quasi-symmetric, P, is
symmetric, P,/Q is unramified and deg P,=deg @ over k. (See § 4 Lemma

4.1 and its Corollary.)
(i) If P, is quasi-symmetric,

e(Q) =(es -+ - e.),
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where ( ) denotes the greatest common divisor. Note that e(@) is a
divisor of ¢, hence a power of p.
(ii) If there exist no quasi-symmetric points of <, lying above @,

e(@) =(e, -, e,).
II. The case where @, is ordinary. Assume that (P,),€ Il (¢,=1) and

(Py),, + -+, (P,),€ll’. Furthermore, if @ is the canonical lifting of @,
suppose that P, is the canonical lifting of (P),=---=(P,),.
(i) If @ is not the canonical lifting of @Q,,
e(@=1.
(ii) If @ is the canonical lifting of @, and r>2 (e;<q),
e(@)=(e, - -, e,).
(iii) If @ is the canonical lifting of @, and r=2 (e,=q),
e(Q) = oo,

After the manner of the modular curves, we call @ a cusp when ¢(Q)=co,
and elliptic when 1<<e(Q)<oo.

We shall always impose the following conditions on a set of branch
points of ¢,.

DEFINITION 4. A set R consisting of branch points of ¢, is called
regular, if R satisfies the following conditions:

(i) if @ @€ R and Q+Q’, then Q,+Q,,

(i) deg@=deg@, for all Qe R.

REMARK. In the case of the elliptic modular curve, if p=2 or 3,
7=0 and 12° have the same specialization, but if p>5, 7=0, 12°, co satisfy
the above conditions.

Let R be a regular set of branch points of ¢,. Put R,={Q,|Q¢c R}.

DEFINITION 3°. The signature on C associated with R (or the special-
ization of e) is a signature e, on C defined by:

e, (Q)=¢e(@), if QeR,
e@)=1, if Qe¢R,.

We say that a finite covering (X* F) of X over R is a finite CR-
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covering of X, if X* {C*«—ET*-—>C *} is another CR-system over R,
and fi=f, where F=(f..fof.). Then finite CR-coverings of X form a
subcategory of the category of finite coverings of X over R. By defini-
tion, a CR-covering (X* &) is admissible with respect to a signature e
on C,, if (fi), is admissible with respect to e.

Let (C, <) be a congruence relation over R and X the associated CR-
system. Put C=C,. Let R be a regular set of branch points of ¢, and
¢ the signature associated with R. Then our first result is the following

THEOREM 1. The following two categories are canonically equivalent:

(i) Tamely ramified finite coverings f:C*——C over F, admissible
with respect to ¢, such that all closed points of C* lying above the special
points of C are of degree <2 over F,.

(ii) Finite CR-coverings (X*, F) of £, admissible with respect to e,
such that (f1), is tamely ramified.

Now, to each CR-system X, we shall associate a CR-system X
belonging to Case 2, in the following way. When 2 belongs to Case 2,
we put X°=%. When X belongs to Case 1, X" is obtained by the
twisted base change ®rR® defined as follows. Let ¢ be the involutive

automorphism of R®/R. Then X" ={C* ol Sogr 2ot } is defined by:

C*'=CR:R®, I =9"®R:R®,
=pX1, ¢@i="pXe.

Put X;=C"®zok (i=1,2), X,=9 Qok, and ¢;=¢fQzok (i=1.2). Con-
gider the system

X=X Q=X X,-2>X,}.

By definition, a finite covering (Y, ) of F is admissible with respect
to a signature ¢ on C,, if f; (¢=1,2) are admissible with respect to e,
where F=(f., fo, f2). To compare coverings of C with those of ¥, we
replace C by C* which is defined to be C(X)Fq2 in the Case 1, and C in
the Case 2. Then our second result is the following

THEOREM 1’. Suppose that there exists at least one special point Q,,
such that ¢, is unramified at all generizations of Q,. Then the following
two categories are canonically equivalent:

(i) Tamely ramified finite coverings f:C*——C* over F 5, admissible
with respect to e, such that all points of C* lying above the specml points
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of C* are qu-mtional. .

(ii) Finite coverings (Y, F) of X over k, admissible with respect to
e, satisfying the condition that, for every point P of Y, (1=1,2), the
ramification index of P is prime to p, where Y={Y,«—Y,—Y,}.

REMARK. Let Q€ C be a special point with respect to . Then ¢,
is unramified at all generizations of @ if and only if @ is special with
respect to S®(R/(n?) in the sense that T ®(R/(z*)) cannot be divided
into two R/(n®)-flat proper closed subschemes at Q. If the genus of C
is not smaller than 2 and q=p, Y ®(R/(z?) has at least one special point
by [10] Theorem 2. Therefore, in this case the assumption in Theorem 1’
is automatically satisfied.

The notion of a signature ¢ on (, associated with R is an extension
of that on the modular curve. We shall also show that, under somewhat
stronger conditions, any finite covering (¥, F) of I is necessarily ad-
missible with respect to e.

PRrROPOSITION 1. Suppose that specializations of any two branch points
of ¢, are mutually distinct. Let (Y, F) be a finite Galois covering of
¥, such that f; (i=1,2) are ramified only at points belonging to R.
Then (Y, F) is admissible with respect to e.

2. Liftings of congruence relations

In this section we shall investigate the possibility of ‘ pull-back™ of
congruence relations. We adopt the same notation and definitions as in

§1. Let (C, ) be a congruence relation over R and X ={C«2-T N }
the associated CR-system. Recall that C=C, R is a regular set of
branch points of ¢, and e is the signature associated with R.

Let f:C*——C be a finite covering of curves over F, A finite
covering f:C*——C over R is called a lifting of f to R, if C* is a lift-
ing of C* to R and f,=f.

DEFINITION 2.1. A congruence relation 9* on C*xC* is called an
extension of 9 on C*xC* with respect to f, if (Fxf)(I*=9.

This condition is equivalent to saying that the pair consisting of a
CR-system X* associated with (C*, 9*) and a morphism & : X*—X
induced from f is a CR-covering of ¥.
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The purpose of this section is to prove the following

PROPOSITION 2. Let f:C*——C be a tamely ramified finite covering
over F, which 1is admissible with respect to e, satisfying the condition
that all closed points of C* lying above the special points of C are of
degree <2. Then there exist a unique lifting f:C*——C of f to R such
that f, is admissible with respect to e, and a unique extension I* on
C*xC* of I with respect to f.

We begin with local calculations. Let @ be a point of C, such that
deg @ =deg @,. By a suitable choice of a prime element x of @, we have
an isomorphism

Op.0, = R'[=1],

were R'=R"“ with d=deg Q. Let f(x)=a,+ax+- - +a,_ " +x* (a, - - -,
a,_1€7R’) be an irreducible polynomial in . Then (f(x)) is a prime ideal
of R’[[x]] of height one different from (z). Conversely, every prime ideal
of height one different from (z) of R’[[x]] must be generated by such
an irreducible polynomial in x. We identify x with ¢*(x). Put y="'x.
Let P, be a point of I, such that ¢,(P.) =@, and put

AZ@gft’p‘ .

Then we see that:

(i) if @, is ordinary,
{R’[[m]] (if P,ell
R[[y]] (if Pell’),

(ii) if @, is special,
A=RX, YI/(XY—azr'), a€ (R,
where
X=x—y'+7F(x, y)
Y=y—2'+rG(x, y),

with some F,G € R'[[x, y]] Note that (1) implies:

r=X+Y'+X"+.. . +70(X,Y)
Y=Y +X'+Y"+... +2¥ (X, Y),

with some @, ¥ € R[[X]]+R[[Y]].
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Since there exists a symmetric local equation for & at @, ([10] p. 466,
Proof of (II)), we may assume that G='F and ¥='¢. As usual, we may
take X and Y so that XY ==' but in order to preserve the symmetry
between X and Y, some unit a is necessary.

The proof of Proposition 2 is based on the following

MAIN LEMMA A. Let e be any positive divisor of e(Q) prime to p.
By a suitable choice of eth roots s of ¢ and t of y, B=A[s, t] is expressed
as follows.

(i) If Q, is ordinary and P,€ll,
B=R/[[s]], t=s'mod (x);
(i) If Q, is ordinary and P,ell’,
B=R'[[t]]. s=t'mod (r);
(ii) If Q. is special,
B=R'[[S, TN/(ST—bx"), be (R,
S'=X, T'=Y,
s=t'mod (x, S),
t=s'mod (x, T).

Proor. (i) The case where @, is ordinary. It is easy to see that
the proof in the case P,€ Il and that in the case P,€/l’ are symmetric.
Therefore, we may assume that P,€Il’ and @ is the canonical lifting of
Q,. Recall that ¢¥(@Q)=P +e,P,+ePy+ - - +e,P,, where (P),€1l, (P),=

.-=(P,),=P, and P, is the canonical lifting of P, Then we have
e(@)=(es, - -+, 6,) or e(@) =oco according as r>2 or r=2. Since y is a
prime element of ‘Q, ¥ is also a prime element of P, and we can take
irreducible polynomials in ¥ as prime elements of P; (¢=3, ---, 7).

Now we consider the decomposition of x into prime elements in
A=0gqn 5. Since P, is ordinary, « is of the form

r=yY'+7rg(y)
in A with g(y) € R'[[y]] By the Weierstrass’ lemma, we have
x=5(a0+a]y+ A +a/q—1yq_1+yq)’
with e€1+zR/[[y]] and a,, - -+, a,_.€wR’. Hence, in view of the decom-
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position of @ in I, we obtain

w=eyfo(y)"® - - f:(y)", (8)
where
fi(y) :a’i.o +ai,1y+ st +ai,ni—lyni_l +yni,
with @;,, * -, @;,.,.1 € TR’, are irreducible polynomials (¢=3, ---, 7). Note

that e,+ 3 emi=q. By the definition of (@), ¢ divides ¢; (i=8, - - -, 7).
1=3

Put e;=ee] (¢t=3, ---, 7). Furthermore, since e=1mod (), ¢ has an eth
root in R'[[y]]. Denote by ¢* the eth root of ¢ in R/[[y]] such that
e*=1mod (7). Let t be any eth root of y. Then it follows from (3) that

m= (e 40) - S )"
We put

s=e*tafy(y)4 - - - f.(y) € R[[E]]. (4)

Then s*=2 holds. As y=t° and e,+e¢ i e¢!- deg f;=q, the right hand side
=3

of (4) is congruent to t?mod (). Therefore, we conclude that B=R'[[t]]
and s=t"mod (7).

(ii) The case where @, is special. As e is prime to p, we may assume
that there exist no quasi-symmetric points of I, lying above Q. In the
same manner as in the proof of Lemma 3 of Ihara [7] pp. 321-2, x can
be decomposed into prime elements in A as follows. By (2) and Weier-
strass’ lemma, we have

Yo=Y(X+Y'+X"+ - +70(X, Y))
:ﬁ(bo'i‘blY—{—-.._*_bqu_l_Yqﬂ) -

in A, with € R'[[X]]+R/[[Y]] and b,, - - -, b,€ 7R’ satisfying the condi-
tions that

7=1+Y" "+ Y "+ ... mod (z, X),
by=az' mod (z'*).

The factorization of b,+b,Y+---+b,Y '+ Y into irreducible polynomials
gives the decomposition of @ in &,. Hence we have

Yo=phy(Y)" - -h,(Y)" (6)
in A, where
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hs(Y) :bi.0+bi,1y+ s +b;,mi_1Ymi_1+ Ymi,

with by, -+, bim 1 €7R’, are irreducible polynomials (t=1, ---,r), and
_:El e;m;=q+1 holds. By the definition of ¢(Q), ¢ divides each ¢; (1=1, ---, 7).

Put e;=ee! (i=1, ---,7). Since y=1mod (z, X, Y), » has an eth root in
A. Denote by »* the eth root of » such that »*=1mod (z, X, Y). Then
from the equation (6), we obtain

Yz =(n*hy(Y)4 - - h(Y)7)" (7)
Similarly, by the symmetry of X and Y, we have
Xy=(p*hi(X)% - - - hi(X)")". (8)
Let s (resp. t) be an eth root of x (resp. y), and put
S=t"tip*ni(X)1 .. BYX)" €A
T=s""p*h,(Y)1 .- h(Y)r€sA.

(9)

Then, by the equations (7) and (8), we see that S'=X, T'=Y and
(ST)*=XY=az'. As can be easily seen from the equations (5) and (6),
we have

bi) =ax' mod (x'*).

';H1 bi',‘o:(

r

i

-

Hence ¢ divides ! and a has an eth root in R’. If we put l=el’, we
obtain ST=bz" with b€ R’ such that b'=a. Furthermore, we get

T b =bibr,
with bje (R’)*. Therefore we have
Ts=p* [’ +bY + - - - + YU ) =p*(bIST+b{T*+ - - - + T,

and hence
s=p*(BIS+b{T +--- +T9), (10)

where the right hand side is econgruent to 7*(b{S+ T°) mod (z). Similarly,
we have

t=tp*(bsT+-- - +5S°). (11)
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It follows immediately from (10) and (11) that B=A[s, t] coincides with
R'[[S, TTI/(ST—bx").

Now we prove the last congruences. Note that y—ax'=t'—s*¢ (r, T)
and z—y'=s"—t"€ (z, S). It follows from this and ST=0mod (z) that

t—&8°=0 mod (z, T)
s—Ct"=0 mod (7, S)

with ¢, {,€ R’ such that &={;=1. Therefore, replacing ¢t by (i, we
obtain

t—s'=0 mod (z, T).
On the other hand, in view of (10) and (11), it holds that

t—s'=("p* —9*b9)S* mod (z, T)
s—t'=(p* —'p*bs) T*mod (x, S).

Hence t—s'=0mod (z, T') implies s—t*=0mod (z, S). This completes the
proof of Main Lemma A.

We now begin the proof of Proposition 2. First note that the unique
liftability of tamely ramified coverings of C has already been established
in Grothendieck-Murre [4].

LeEMMA 2.1. (Grothendieck-Murre) Let f:C*——C be a tamely rami-
fied finite covering over F, which is ramified only at points of R,. Then
there exists a unique lifting f:C*——C of f to R, which is ramified
only at prime divisors of C corresponding to points of R. Furthermore,
for each P€C¥ such that f,(P)€ R, the ramification index of P is equal
to that of P..

Let f:C*——C be the lifting of f to R as in the above lemma. Put
I1*=I1,. We shall show that our problem is local: namely, for each
Pell*+II*, we only have to construct a local extension I % of I with
respect to f in a neighbourhood of P. For this purpose, we require the
uniqueness of local extension of .

LEMMA 2.2. For each P II*+II*, there exists at most one extension
TI¥ of T at P with respect to f.

PrROOF. Let K (resp. K*) be the completion of K(C) (resp. K(C*))
with respect to the valuation defined by C (resp. C*). Then I deter-
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mines a Frobenius ¢ of K in the sense of [11] p. 238, Definition 1 (cf.
also [11] p. 247). A local extension 5 of I also determines a Frobenius
of K* extending ¢. Then the lemma follows from the uniqueness of the
extension of ¢ to K*.

In consequence of Lemma 2.2, we can glue local extensions of <.

LEMMA 2.3. Suppose that, for each P€II*+II*, there exists an ex-
tension % of I at P with respect to f. Then there exists a unique
extension I* of I on C*XC* with respect to f.

Now we shall construct an extension I3 of I at each point
Pell*+I1*. Put (fXf)(P)=QeIl+II', pr,(P)=P,; and pr,(Q)=Q,._ Take
prime elements x of @, and u of P, so that O o =R'[[¢]] and O. r=
R"[[u]], respectively. Then we may assume that x=au’* and u'=eu,
with a€ (R”)* and e€ R"[[u]]*. Put y='z, v'='w’ and A=0sg for
@’ € d; lying above Q. In order to apply Main Lemma A to the con-
struction of %, it is necessary to extend the constant ring of A to R”.
Let ¢ be the Frobenius automorphism of R”/R. Put x'=a 'z and y'=
(@) 'y (resp. (@™ )'y) if Pell* (resp. IT*'). Then it is easily checked
that replacing A by A’'=ARXRrR” and z,y by z/,y’, Main Lemma A
can be applied. Take eth roots s of ' and ¢ of %’ as in Main Lemma
A and put B=A[s,t]. Define an R’-homomorphism ¢ from Op=0uxcs»
to B by: ~

0 :0;=0p=R"[[w,v']—B

where the first homomorphism is the natural inclusion, and the latter
sends u’ (resp. v’) to s (resp. t). Then Ker¢@ is a prime ideal of O; of
height one. Hence it determines a prime divisor D; o at P.

(i) The case where Pg¢lI* and f(P)¢ll, or P¢II* and f(P)¢ll'.
There is only one point @ of I, lying above Q. If we put 43=D;y,
TI%¥ is an extension of 4 at P by Main Lemma A.

(1)) The case where P¢lIl* or PglIl*, but f(P)ellINIl’. In this
case there are two points of I, lying above Q. Take Q' € I, lying above
Q@ so that @’ belongs to the component lying above II (resp. II’), if P¢
IT* (resp. IT*'). Then I f=Dpo is an extension of < at P by Main
Lemma A.

(1)” The case where PecII*NII* and f(P,) ts ordinary. Let @, Q"
be two points of <, lying above Q. Then, in view of Main Lemma A,
d¥=Dpqo=Dpg is an extension of I at P.
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(ii) The case where f(P,) ts special. Put Ker@=(h). Since B is

isomorphic to (@/Pﬁh)), P is an ordinary double point on the special fibre
of Dyo by Main Lemma A. Furthermore, the reduction of 4 is a divisor
of (y—ux')(x—y*) mod (r), hence a unit multiple of (v—v?)(v—u’) mod (x)
by the last congruences in Main Lemma A. This completes the proof
of Proposition 2.

3. Reduction

In this section we shall study the reduction of coverings of the
geometric generic fibre of a CR-system to prove the rest of the theo-
rems.

Let (C,9) be a congruence relation over R and X" the associated

CR-system over R® defined in §1. Recall that X=X +®l€={X1<—‘D1—Xo

—"LXZ} is a system of three normal schemes (i.e. curves) over k. Let

(Y, F) be a finite covering of ¥ over k with Y :{Yl<¢—1 YoﬁrYz} and

% =(fu fof:). Then the purpose of this section is to prove the following

PROPOSITION 3. Suppose that there exists at least one special point
Q. of C, such that ¢, is unramified at all generizations of Q,. Let (Y, )
be a finite covering of X which is an object of the category (ii) defined
in Theorem 1’. Then there exists a unique covering f:C*——C" over
R® satisfying the following conditions:

(i) Y:=C*Q®k (i=1,2) and fi=fQk (i=1,2),

(i) C* is smooth over R® and the specialization f,:C*—>C* is a
tamely ramified covering of C* over F 5, such that all points of C¥ lying
above the spectal points of C* are F ;rational.

The proof of Proposition 3 consists of two parts. We first prove the
fact that Y, (=1, 2) have good reductions and next deal with the F o
rationality.

MAIN LEMMA B. Let (Y, F) be a finite covering of °C, satisfying
the following conditions:

(i) if @ Q €X, (resp. X;) and f, (resp. f2) is ramified at Q, Q’, then
Q.#Q.,

(i) all ramification indices with respect to f, (resp. f.) are prime
to p.
Then Y, (resp. Y,) has good reduction.
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In the unramified case, the fact that Y; and Y, have good reductions
is based on the following two results; (I) a criterion for the potential
good reduction of unramified coverings of ecurves (Ihara-Miki [11]);
(II) Zariski-Nagata “ purity of branch locus” ([3] X 8.1). The former is also
applicable to the ramified case, but the latter can not be applied directly
to ramified coverings. We introduce the method used in Popp [12].
Denote by R the ring of integers of k. In general, let Z be a proper
smooth R-scheme whose special fibre is a curve over F,. The following
two lemmas are cited from [12] Zwolfte Vorlesung.

LEMMA 3.1. Let @, ---, @, be points of Z, whose specializations are
all distinct. Then there exists a function t in K(Z), such that the divisor
of t is of the following form;

(()=PitPot- - +Py— @+ Q- +Qut - +Qu),

where Py, --+, Py, @, -+, Qy are points of Z, whose specializations are
all distinct.

LEMMA 3.2. Put K=K(Z). Choose a function t on Z, as in Lemma
3.1. Let m be any positive integer prime to p. Then the integral closure
Z' of Z in L=K(t''™) is smooth over R.

PROOF OF MAIN LEMMA B. Put K=K (X)), K*=K(Y,) and I'=C " ®zoR.
Then X,=I"®:k. Denote by I'* the integral closure of I in K*. Now
we shall apply above lemmas to I” and R. Choose a function t€ K as
in Lemma 3.1 and put L=K(t'"). Denote by A4 and A* the integral
closures of I" in L and K*L, respectively.

K*L____K* tl/m
K* — ) r* /A*

L=K(s"
r— (2'm) I‘/A

Function fields. Schemes over R.

Let V be the discrete valuation of K defined by I",. By [11] Theo-
rem 1B and the proof of Theorem 2A, V is unramified in K*. By Lemma
8.2, V is also unramified in L for any positive integer m prime to p.
Hence V must be unramified in K*L. Therefore, the extension V, of
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V to L is unramified in K*L/L. On the other hand, we can apply
Abhyanker’s lemma ([3] X 3.6) to K*/L to conclude that, by a suitable choice
of m prime to p, all discrete valuations of L trivial on k are unramified
in K*L/L. Therefore, by “purity of branch locus™, A* is étale over A.
This implies that A4* is smooth over R.

Now we shall show that the smoothness of 7'* is deduced from that
of A*. As A* is smooth over R, its special fibre A* is a smooth curve
over F,. The covering A*——I"* is a finite Galois covering whose degree
is prime to p. Let G be the automorphism group of A4* over I'*. Then
G acts on A faithfully. Let {Spec A%} be an affine open covering of A*.
Put A!=A*Q.F, and B'={a€ Alla°=a, Yo €G}. By the smoothness of
A¥, A? is normal. Let b, be any element of the quotient field of B?
which is integral over B?. Then b, is a fortiori integral over A? hence
contained in A?. Moreover, b, is fixed by G. Hence b, belongs to B2
This implies that B? is normal. Let A*° be the scheme obtained by
glueing the schemes Spec B?, which is independent of the choice of affine
open coverings of A*. Then A*° is normal, hence a smooth curve over
F,. Since the order of G is prime to p, any element of B? can be lifted
to a G-invariant element of A’ Indeed, for any element b, of B? take

a lifting b of b, to A* and put b’=|—G1—| Zab". Then b/=b’ for all ¢€G
43

and b/=0b,. Hence we obtain
A¥C=T*,

This implies that I'* is smooth over R.
Finally, as the conditions of f; and f, are symmetric, we can simi-
larly prove that Y, has good reduction. This proves Main Lemma B.

Let V be as in the above proof. In consequence of the smoothness
of I'* over R, V is uniquely extended to a discrete valuation of K*.
Let k" be the maximal unramified extension of k¥ and R" the ring of
integers of k. Put C*=C"®zoR", X'=X"®zoR" and K"=K(C"). Let
M be the Galois closure of K*/K*. Then a discrete valuation of K is
ramified in M/K if and only if it is ramified in K*/K. Moreover, all
ramification indices in M/K are prime to p. Therefore, by the same
argument as in the above proof, V is uniquely extended to a discrete
valuation of M. By [11] pp. 248-9, Proof of Theorem 2A, we obtain the
following

COROLLARY. Suppose that f: (1=1,2) satisfy the conditions (i) and
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(ii) of Main Lemma B. Then there exists a unique covering (Y", F") of
X" over R" such that

(Y, F)Quub=(Y, F).

Let (Y*, ") be as in the above Corollary. Then we may assme that
(Y*, 9" is defined over a finite unramiﬁed extension R’ of R® with

residue field F,. Put X'=X"QzoR' = {X’ Aox #, X’} Let (Y, 4
be a finite covering of X’ over R’ such that (Y, F')\QxR'=(Y", F").

, ¢
Put Y ={Y[— Y’—»Y’} and F'=(f, f%, ). We first prove that (fl),

(¢=1,2) are defined over F..

LEMMA 3.3. Let (Y, F’) be as above. Then there exists a unique
finite covering f,: C*——C* over Fg, such that (Y}),=C*QF, and (f}),=
fQF, (1=1,2).

Proor. The proof closely follows that of Ihara [6] Proposition 4.2.1
and Lemma 4.2.6 in the unramified case. Denote by S the set of special
points of C* and by Il 4511’ the join of II and I’ crossing transversally
at each (s, %) (s€S). Note that (97),=I1+sII". Let G=(g,, g, g) be the
composite of F' and the natural morphism ¥’ =X QR —>X".

Y! (Y7),
vi— | Ty ), (.
Jo
g1 g
+ .
C+/g\c+ C+/II+5H/\C+
(over R®) (over F )

Let UcC" be the open subscheme obtained by removing the closures
of all branch points of (¢f),. Put U/=U (1=1, 2), Uy,=(¢7) ™ (U?) N (¢3)(U}),
V=g (T, Ui=0F(U,) (t=1,2) and V;=¢i(V,) (¢=1,2). The restrictions
of g; (1=0,1,2) to V; are all étale morphisms. Therefore, we can apply
the argument used in [6] pp. 184-5, Proof of Lemma 4.2.6 to the follow-
ing diagram
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/VO \

Vi V.

U,
v— v,

to conclude that
(*) V1>< UIUO: VU:UOXUZVZ (OVGI' Uo).

Regard their special fibres as schemes over F,. Since the restrictions of
(9:), (1=1,2) to (V,), and those of (¢f), (¢=1,2) to (U,), are all étale,
(VixoUs)e= (V)i X w,,(U0), (¢=1,2) are isomorphic to the joins of Iy,
and I}y, crossing transversally above the double points of II+I1.
Therefore, (*) induces two isomorphisms 7, —1y, over II and
IIty, — iy, over II’. From them we obtain two isomorphisms

en & (Vi) —>(Va), over U,
such that

for any geometric points y € (V,), lying above the special points of C*.
If we put e=¢iloe, we get

Gioe=g, e(y)=vy".

Since (Y7), (4=1, 2) are algebraic curves over a field by Main Lemma B,
e, & and e can be extended to global isomorphisms. By the assumption
of Theorem 1/, U, contains at least one special point. Therefore, by [6]
Proposition 4.2.1, there exists a unique covering f,:C*——C" over F
such that (Y?),=C*QF, (i=1,2), and (f).=f.QF, (1=1,2). This proves
the lemma.

Let f,:C*——C* be as in Lemma 3.3. Now suppose that (f.), (i=
1, 2) are admissible with respect to e. Then it is easy to see that f, is
tamely ramified and admissible with respect to e,. Furthermore, it fol-
lows immediately from Lemmas 3.2, 3.3 and the unique liftability of
tamely ramified coverings (Lemma 2.1) that there exists a unique cover-
ing (Y', F") of X¥ over R®, which satisfies the conditions of Proposi-
tion 3 except for the qu—rationality of all points of C* lying above the
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special points of C* in (ii). Therefore, in order to complete the proof of
Proposition 3, we need the following

LEMMA 3.4. Suppose that (Y,F) is an object of the category (ii)
defined tn Theorem 1’. Let f,:C*——C* be as in Lemma 8.3. Then all
points of C* lying above the special points of C* are F y-rational.

Proor. It can be easily checked that we may assume that f; (1=
0,1,2) are Galois coverings. Then f, is also a Galois covering. Put
[I*=1II... In view of the proof of Lemma 3.3, we may put

q]+={c*<iyi;>6*} and F'=(f, 10 1),

with C¥=C*. Then the special fibre Y, consists of two irreducible com-
ponents which are generically isomorphic to //* and I7*. Therefore,
there exist two morphisms j,:/[*—Y, and j,:/[I*——Y, making the
following diagrams commutative

1 v
pr, / ljl pr, pr, ,J\prz
Yll Yl
C* T C* C* — T2 C*

Let P, be a point of C* such that f,(P,) is special, and P€ Y, any
point lying above P,. If P belongs to only one irreducible component of
Y., Oy, » must be isomorphic to O. », for C* is a complete non-singular
curve over F,. Therefore, if @Y Pi@m ¢, P belongs to both irreducible
components of Y,. Let y, be any geometric point of C* corresponding
to P, and y any geometric point of Y, corresponding to P lying above
y.. Then pr,(y)=y! holds. Therefore, if y belongs to both irreducible
components, (y, ¥!) € IT* and (y¢, yi) € II*" must be mapped to y by 7, and
7., respectively. This implies that y.:=y!, and hence v, is qu-rational.

Now we shall prove that P is an ordinary double point. By the
assumption that f, is a Galois covering, the ramification indices of P, and
¢y (P) are equal and a divisor e of e,(f,(P:)) prime to p. On the other
hand, Y is equal to the normalizations in K(Y) of C*X+T" (wrt. of)
and T % +C* (w.rt. ¢f). In particular Oy, contains both eth roots of
prime elements of f,(P,) and ‘f,(P)). Therefore, by Main Lemma A in
§2, P must be an ordinary double point. This settles the lemma and
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also completes the proof of Proposition 3.

4. Proofs of the theorems

We have already established most of our theorems by Proposition 2
in §2 and Proposition 3 in §3. In this section, we collect them and
clarify the functors between each two categories in the theorems.

ProOF OF THEOREM 1. As for the functor (i)——(ii), it is defined by
corresponding each covering f:C*——C over F, satisfying the conditions
in (i) to the CR-covering (X* &) associated with an extension (C* I*)
of (C,<) on C* whose existence and uniqueness are guaranteed by Prop-
osition 2.

Conversely, the functor (ii)—— (i) is defined as follows. Let (X™* &)

be an object of the category (ii). Put %*z{C*ﬂg*ﬂC’*} and ¥ =
(f,9.f). Then we correspond (X* &) to f,:C¥——C. It iseasy to see
that £, is tamely ramified and admissible with respect to e,. Let (X*,
F*) be the CR-covering of X associated with (X* &). Then, by
applying Lemma 3.4 to (X*". ¥7)Qzrok, we conclude that all closed points
of CF lying above the special points of C are of degree <2 over F,.

Obviously, these two functors are mutually inverse, hence equivalence
functors. This settles the proof of Theorem 1.

Proor orF THEOREM 1’. The functor (i)——(ii) is defined by taking
the composite of the functor (i)——(ii) in Theorem 1 and the base change
Rrok.

On the other hand, the functor (ii)—— (i) is defined by corresponding
each object (Y, ) of the category (ii) to f,:C¥——C* defined in Propo-
sition 3 which satisfies the conditions in (i). It follows immediately that
these two functors are mutually inverse. This proves Theorem 1’.

Now we shall determine the quasi-symmetric points of <, whose
specializations are special. We use the same notation as in §2. But we
do not assume that deg @=deg®,. Hence z is not necessarily a prime
element of Q.

LEMMA 4.1. Let Pe T, and ¢,(P)=Q¢€ C,. Suppose that Q, is special.
Then P 1is quasi-symmetric if and only if there exists a prime element
of P in A=0a» » of the following form.
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h(Y)=by+bY+---+b,_, Y* '+ 1",

where n=deg@, b, ---,b,_,€xR’, bby=(ax')", and bi=b;'(ax")""*b,_; (1=1,
co-,m—1). Furthermore, if P is quasi-symmetric, P is symmetric, P|Q
is unramified and deg P=deg @ over k.

Proor. Let z=a,+a;+---+a,_x" '+2" be an irreducible polynomial
in & which is a prime element of @. In the same manner as in the
proof of Main Lemma A, we have

Yrz=n(ao+a Y+ - - Fappn_r YOI YD)

in A, with g€ A* and a,, - -, Gpg41_1 € 7R’. Note that ord.(a,) =Iin. Sup-
pose that the right hand side decomposes into irreduacible polynomials as
follows.

Yrz=nphy(Y)" - b (Y)",
where the coefficients of the highest terms of h,(Y) are equal to 1.
Assume that h,(Y) is a prime element of P and degh,=n,. Put h(Y)=

b+, Y+ - - +b,,1_1Y"‘_1+ Y". Then h(Y) can be described in terms of
X as follows.

X" (Y)=bX"4+b,YX"+.. . +Y"X"
=b X" +bar' X" 4 - -+ (ax)"
=by (X" +b;'ax'h, X"+ - by (axh)").
Put
h*(X)=bf +b¥X +- - +bE X"+ X",

with bf=b;'(az’)" and b¥=b;'(ax')" ‘b, _; (i=1,---,m—1). Then P is
quasi-symmetric if and only if h*(Y)=h{(Y) for some i (1<i<7). For
FER'[[Y]], let ord f denote the order of the constant term of f. Since

ord fifo=ord fi+ord f; for fi,f,€ R[[Y]], we have fg_i“,ei ord h;=In. Put
ord h,=m,. Then it is obvious that ord h*=In,—m..
(i) The case where h*(Y)=hi{(Y) (:>1). We have
In=¥ eord h;> ord h,+ord h*=ln,.

This implies that m,=n and ¢¥(Q)=P+P’ with deg P=deg P'=deg@.
As Z e;deg h;=(q+1)n>2n, this is impossible.
i=1
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(ii) The case where h*(Y)=hi(Y). In this case we have m1=—;—ln1,

and hence
In= Z} e;ord hizéln,.

From this, we obtain n,=n or 2n. If n,=2n, we have m,=ln, ¢} (Q)=P
and deg P=2deg @, which is a contradiction. Now suppose that n,=n.

Then we have deg P=deg @ and ord hl———-é—ln which implies that e,=1.
This settles the lemma.

COROLLARY. Let Q be a point of C,. Then, if Q, is special, there
exists at most one quasi-symmetric point of I, lying above Q.

Finally, we shall prove Proposition 1. Consider the following dia-
grams, the left being as in §1:

Y, P*
v |° v a1 T
fo
fi fe 1 [
X P
X~ ' %, Ql/ \Qz
(Points)

Then Proposition 1 is a direct consequence of the following

LEMMA 4.2. Suppose that specializations of any two branch points
of ¢, are mutually distinct. Then, if @€ R and Q,¢ R, the ramifica-
tion index e(QF/Q.) is a divisor of e(P/Q.).

Proor. If ¢(QF/Q.) does not divide e(P/@.), P*/P must be ramified.
On the other hand, as Q. ¢ R, ¢, and f, are both unramified at @,. In
particular, P*/P is unramified. Therefore, ¢(QF/Q.) divides ¢(P/Q,).

COoMMENTS. 1. We have little knowledge of the ramifications of
general congruence relations and can say almost nothing about the
existence of congruence relations which satisfy given properties of rami-
fications. However, it is known that there exist some relations between
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the ramifications of congruence relations and the poles of the asociated
differentials defined in [7].

2. Thara’s results in the unramified case involve those of fundamental
groups. In the ramified case, the same problem is also significant. Fix
an embedding k= C and consider the system of compact Riemann sur-
faces {R«——R,—R,} corresponding to ¥. Let 4, (i=1,2) be the
Fuchsian groups corresponding to R; and the signature e. Let e, be any
signature on R, and 4, the Fuchsian group corresponding to R, and e,.
Then we can easily describe the conditions of the ramification of ¢, and
those on e, for which there exist natural homomorphisms 4,—4; (i=
1, 2) and for which they are injective. It seems quite possible that, when
the natural homomorphisms 4,——4; exist and are injective, we will be
able to extend Ihara’s theory of fundamental groups to ramified con-
gruence relations.

References

[1] Deligne, P. and M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture
Notes in Math. No. 349, Springer-Verlag, Berlin-Heidelberg-New York, 1973, 143-316.

[2] Grothendieck, A., Eléments de géométrie algébrique (EGA) I-IV, Publ. Math. IHES,
1960-67.

[3] Grothendieck, A., Revétements étales et groupe fondamental (SGA 1), Lecture Notes
in Math. No. 224, Springer Verlag, Berlin-Heidelberg-New York, 1971.

[4] Grothendieck, A. and J. P. Murre, The tame fundamental group of a formal neigh-
bourhood of a divisor with normal crossings on a scheme, Lecture Notes in Math.
No. 208, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[5] Thara, Y., On congruence monodromy problems, Lecture Notes, Univ. Tokyo, Tokyo,
vol. 1, 1968, vol. 2, 1969.

[6] Thara, Y., On modular curves over finite fields, in “Discrete Subgroups of Lie Groups”,
Proc. Internat. Collog.,, Bombay, Oxford Univ. Press, Oxford-New York, 1975, 161-
202,

[7]1 Ihara, Y., On the differentials associated to congruence relations and the Schwarzian
equations defining uniformizations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974),
309-332.

[8] Ihara, Y., (a) Congruence relations and Shimura curves, Proc. Sympos. Pure Math,
Vol. 33, Part 2, Amer. Math. Soc., Providence, R. 1., 1979, 291-311; (b) Congruence
relations and Shimura curves, II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1979),
301-361.

[91 Ihara, Y., Congruence relations and fundamental grougs, J. Algebra 75 (1982), 445-451.

[10] Thara, Y., Lifting curves over finite fields together with the characteristic corre-
spondence [7+1I’, J. Algebra 75 (1982), 452-483.

[11] Thara, Y. and H. Miki, Criteria related to potential unramifiedness and reduction
of unramified coverings of curves, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975),
237-254.



Ramified congruence relations 269

[12] Popp, H., Fundamentalgruppen algebraischer Mannigfaltigkeiten, Lecture Notes in
Math. No. 176, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[13] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Publ.
Math. Soc. Japan, Iwanami Shoten and Princeton Univ. Press, 1971.

(Received July 24, 1986)

Department of Mathematics
Faculty of Science
University of Tokyo

Hongo, Tokyo

113 Japan



