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By Mikio FURUTA

§ 0. Introduction.

The possible postive definite unimodular forms over Z which are
represented as intersection forms of smooth 4-manifolds are much re-
stricted by the following theorems. Let M be a smooth closed oriented
4-manifold with H,(M, R)=0 and positive definite intersection form Q(M).

THEOREM (Donaldson [D1]). If there is mo homomorphism from
7, (M) to SU(2) except the trivial one, then Q(M) can be diagonalized over
Z.

THEOREM (Fintushel-Stern [FS1]). If H,(M, Z) contains no 2-torsion,
the number p(a,) defined by

tlay) =1/2 % {a € H} (M, Z)|a=a, mod 2, * = a7}

s even for any o € H* (M, Z) with a*=2 or 3. Moreover if H*(m (M), Z,)
=0, then p(a,) is even for any a,€ H*(M, Z) with a=A4.

Fintushel and Stern’s theorem implies that for example if a positive
definite unimodular quadratic form has a direct factor isomorphic to E,
type, then it can not be realized by a smooth 4-manifold.

The proofs of above theorems depend on the structure of the moduli
spaces of self-dual connections on certain SU(2) or SO(3)-bundles
respectively.

We shall show in this paper that we can replace the assumption
Hom (=,(M), SU(2)) =1 in Donaldson’s theorem by Hom (z,(M), S*)=1.

MAIN THEOREM. If H,(M, Z)=0, then Q(M) can be diagonalized over
Z.

The framework of the proof is the same as Donaldson’s [D1]. (See
also [FU]) We explain it here briefly. Let P, be a principal SU(2)-
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bundle with ¢,(P)=—1 over M. Fix a metric on M and we call a principal
connection A on P, is self-dual if the anti-self-dual part p_F(A) of the
curvature F'(4) of A vanishes. Here p_ is defined by p_=(1—%)/2 using
Hodge’s star operator * acting on 2-forms with coefficient in the adjoint
bundle ad P1=Pliisu(2). The moduli space M of self-dual connections

is defined by M=/{self-dual connections}/G(P;), where &G(P,)={automor-
phisms of P, covering the identity of M} is the gauge group of P..

Roughly speaking, Donaldson showed that if we “perturb” M
slightly, we get a singular 5-manifold 9t which gives a cobordism
between a certain number of CP(2) and ends of 9. The crucial points
in his proof seem to be the following.

(1) If H\(M, Z)=0, then " -{singular points} is orientable.

(2) If Hom (x,(M), SU(2))=1, then M has only one end diffeomor-

phic to MX (0, 1).
Since the perturbation in [D1] is such as changing a compact piece of ‘M,
the above (2) also holds for 9j{°*. If Hom (m,(M), SU(2)) has a non trivial
element, the statement (2) might not be true. But if Hom (=,(M), S*) =1,
then we can prove that there is a perturbation such that any other ends
than M X (0,1) in (2) disappear (Theorem 5.4). The point is to consider
perturbation over different bundles at the same time. Such perturbations
are also used in [D2].

After we had completed the preliminary version of this article we
were informed from Donaldson that Main Theorem holds without any
assumption on H;(M, Z) [D3]. He considers a similar perturbation of
(anti-)self-duality equation, and moreover he shows the orientability of
moduli space even in the case when H,(M, Z) is not trivial. Donaldson’s
perturbation is rather concrete and has an advantage when it is to be
extended on different bundles from the original bundle on which the
equation is perturbed. Our perturbation is more abstract and could be
formulated in a context of Banach manifold, Banach bundle and Fredholm
operator. It seems that self-duality equation gives a “Fredholm section”
on some Banach bundle and should be understood in a similar context of
“Bordism theory of Fredholm maps” as in [K]. With this understanding
we believe it is still of some interest to present our method of pertur-
bation in this paper.

We deal with preliminary local lemmas in §1. In §2, a weak com-
pact theorem for a certain family of ‘“almost self-dual connections” is
proved. We consider “almost self-dual connections” on principal SU(2)-
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bundles P, and P, (c;(P,)=—k) in §3 and §4 respectively. The required
perturbation is constructed in §5. In §6 we apply the perturbation
method to some orbifold case and prove the statement announced in
Remark 1.5 of [F].

We refer to [D1], [FU] and [L] for general back ground material.

The first version of the paper contained a gap in the proof of Prop-
osition 3.3. In revising I have profited from the conversations with S.
Donaldson I had at Berkeley before the gap was pointed out to me by
the referee. 1 am grateful to him for that enlightening conversation
and also wish to thank Professor A. Hattori for his advice and encour-
agement.

Notations.

B,: the open r-ball in R* centered at the origin.

B(z, r): the open r-ball centered at .

I lzzw.a: Li-Sobolev norm on open set U defined by using the covari-
ant derivative V, associated with Riemannian metric and connetion A.

[+ a fixed integer larger than 5.

Ly(QYKE)): L3 i-forms with coefficient in E.

p_: the projection (id—=*)/2 on anti-self-dual part.

Q" (E)=p_Q*E).

C(P): the set of L-principal connections on P.

G(P): the set of L’ ,-gauge transformations.

B(P)=C(P)/G(P): the moduli space of connections.

F(A): the curvature of connection A.

REMARK. After the preliminary version of this manuseript was
written down, I was informed that Fintushel and Stern [FS2] proved
Main Theorem under the condition that H,(M, Z/2)=0. They used a
compact moduli space of self-dual connections with a certain property on
a principal SO(3)-bundle.

§1. Local lemmas.

In this section we state some local lemmas. We fix a principal
SU(2)-bundle B,XSU(2) on the 4-dimensional standard unit disk B, and
its adjoint bundle B, Xsu(2).
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DEeFINITION 1.1. We call two norms | ||, and | |, are c-equivalent
if they satisfy the following for every f.

21 LS I 1 =el Al

LEMMA 1.2. For any >0 there exists m=m(e)>0 such that if a
connection A on B, and a flat connection A, satisfy

lall e, 4g<m (A=A,+a),
then Li(B,, A,) and Li(B;,, A) are (1+e¢)-equivalent.
PROOF. 1N e2emy, 09— 1 22y, 49| S [[@ @ F 1 22
Zllal syl fllesmy Scllal zag I 1 2ay-
Therefore if m satisfies 1+cm, 1/(1—em)<1+¢, then we have the result.

LEMMA 1.3. For any >0 there exists m=m(e)>0 such that if a
connection A on B, and a flat connection A, satisfy

lall s, 4g<m (A=A,+a),
then LB, A,) and LB, A) are (1+4e¢)-equivalent.

ProorF. We can assume LB, A) and Li(B,, A, are (1+¢')-equiv-
alent for ¢’<<e. Then we have

11 23 S Al w24 (L) IV af 2eap
U Fle2+ Q4N Vafllitay + e @ F 1l 2ay)
S ezt @A) IV f l12ay +ellall deap 1 F 11 22eap)
< (1+e) (1 +cllalszap) S |-

Similarly we have
1 Lty S L A+eN)f Nazew +elltll s2iag 1 1 azeay-
Therefore if m satisfies
14e=(1+¢)(14+cem) and 1+e=(1+¢')+em(l+e),
then we get the result.

LEMMA 1.4. For any m>0 there is a constant c=c(m)>1 such that
if a connection A on B, and a flat connection A, on B satisfy
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“a“L?(Bl.AO)<m (A=A+a),
then Li(B,, A) and Li(B,, A,) are c-equivalent for k<[+1. We can take
c(m) so that c(m)—1 (m—0).

Proor. If k=0, the equality holds for ¢=1. Estimating
Vif=Vaf+la, f1 and V,f=V,f—[a,f]

in LB, A)-norm and in L}(B,, A,)-norm respectively, and using L{X
! >L: ((=8,k<[) we can get the result by induction on k.

The following a priori estimate is known ([FU] Proposition 8.3).

THEOREM (Uhlenbeck). There are constants >0 and ¢>0 for any
0<r<1 such that if a self-dual connection A on B, satisfies
“F(A) ”L2(81)<5,
then for a flat comnection A, on B, we have
1a=0, *q|SP=0 (A=A,+a)
and
lall:2, @,ap SCll F(A)]2s,.

For non self-dual connections the following estimate holds.

PRrOPOSITION 1.5. There are constants ¢,>0 and m,>0 such that for
any 0<r<1, there is a constant ¢>0 and if a connection A on B,
satisfy

[ F(A)] 222y <e,
and
ID_F(A)|l 125, 4 <ms,
then for a flat connection A, on B, we have
1a=0, *a|SP=0 (A=A,+a)
and
”CLHL?H(B,. A <c(|F(A) [ 225y + | P_F(A) [l 28,.0)-
Proor. We use the next theorem of Uhlenbeck [U2].

LEMMA. There are ¢>0 and ¢>0 such that when a connection A on
B, satisfies
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[ F(A)ll 2y <e,

then there is a flat connection A, such that, if we write A=A,+a,
foa=0, *a|S*=0 and ”a||L§<B,.A0)§c||F(A)”L"<Bl)-

We write f€ L} if f=f(A, A,) is estimated as follows for some ¢>0
dependent only on m,, ¢ and 7.

IFll228,.a) <C( F(A) | 28y + | P_F(A) | 125, 4))-
We follow the proof of [FU] Proposition 83. Take A, as in the
above Lemma. Then we have a € L? and the 2-equivalence of LB, A,)

and Li(B,, A) from Lemma 1.2 if ¢, is small. We also have the following
equation for a.

(1) La+(1/2)(p_d)*p_[aAa]=0,
(d=ds, L=dd*+(p-d)*(p_d), 0=(p-d)*p_F(4)).
For fixed ¢€ C>(B,) and g€ R, we have

(2) (L+p)(da)+(a, d(ga))y=hra+ (ks da);+hs(a, a);+pda+do,
and

(8) (L+p)(ga)=ha+(hs, da)s+hi(a, da)s+pda+do.

Here h;€ Cy*(B,) depends on ¢ and ( , ); is a certain bilinear form. When
lall 2, 4 (<c||F(A)|lz2s,) is sufficiently small, the next bounded maps
are invertible for sufficiently large .

(4) L+p+(a, d( ))o: Li — L%,
and
(5) L+p+(a,d( )): Li,—L.

Here L% ,=LiNL%, and L?, is the L3-closure of C7.

We can show a€ LZ since the R.H.S. of (2) is L*bounded and (4)
and (b) are invertible. Then LB, A, and Lj(B,, A) are 2-equivalent
from Lemma 1.3 if ¢ and m, are small.

* So far we can not say the R.H.S of (8) is in L3}, but for any small
0>0, it is in L?*?° because L:XL:—L%® This implies a€ L’ So
now we can show the R.H.S. of (8) is in L! because L;’XLj;—L3.
This implies that a € L. We can use the following processes inductively
to show a€ L%,

(6) For k=3, if a€ L: and o€ L}_,, then a€ Li,,.
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(7) For 3<kxl, if a€ L} then L}.(B. A) and L;,(B, A) are
2-equivalent if ¢ and m, are small.

(8) For 3kl if LiB,, A, and Li(B,, A) are 2-equivalent, then
g e Li_p

REMARK 1.6. (1) Definition 1.1, Lemmas 1.2, 1.3 and 1.4 are valid on
any compact manifold with boundary.

(2) Proposition 1.5 also holds even if the metric of B; is not stand-
ard, but is very close to the standard metric in L},;-norm.

§2. Global compactness.

In this section we fix a compact oriented Riemannian 4-manifold M
and a prinecipal SU (2)-bundle P on M.

PropPOSITION 2.1. Let {U,} (U,=B(x. 7)) be a finite open covering of
M and suppose a sequence {A:} of commections satisfies the following con-
dition for some m>0. For any A; and any U, there is a flat connection
A; . on U, such that

la, alle2, (wea, p<M (Ai=Aiat+aia).
[+1 La

Then there are a subsequence {A.}, a sequence of gauge transformations
{9:} and a connection A, such that {g.(A:.)} is L}, -weakly convergent
(hence Li-convergent) to A..

ProoF. For feI'(U,NU, adP) using Lemma 1.4 twice we have
||f”L%+1(UaﬂU'qvAi,a)écl|f”L[2+1(UanUﬂy 4,9

Apply this for f=a; 4 and we find that Li,,(U,NU, A .)-norm of A; ,—
A; s=0; s—a; . is bounded. We fix a trivialization &, ,: B,xSU(2)—P|U,
such that the pullback of A; . is equal to the trivial flat connection @
on B;xSU(2). The gauge transformation g;.s=h:.his on U,NU; trans-
forms A; ; to A. . Using bootstrapping to

dA,-, oJiva, 8=0i a s(Ai s—Ai ),

we can show that Li ,(U.NU, A; )-norm of g¢; . s is uniformly bounded.
Therefore we can choose a subsequence {¢’} such that

(1) {hi o*as, o} is Li(B))-convergent for any «,
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and
(2) {9i.a 8 ts Li.i(U.NUs-convergent for any a and B.

Then by the discussion in [U2] § 3, there is a sequence of gauge trans-
formation {g.} such that {g.(A.)} is L}, ,-weak convergent.

We suppose that the injectivity radius of M is larger than 3 and any
ball with radius smaller than 1 is flat enough to satisfy the local lemmas
in §1. '

DEFINITION 2.2. We define K (m) to be the set of Ac( satisfying
[D_F(A)| L2, 1) =M.

PROPOSITION 2.3. Let m, be the constant in Proposition 1.5. If {A.}
1s a sequence of commections in K(m,) and {|F(A)|.~} s bounded, then
there are a subsequence {A;} and a sequence of gauge transformations
{9:} such that {g.(A.)} 1s LI, ,-weak convergent (hemce L}-convergent).

PRrROOF. Since |F(A))||.= is bounded, we can take a finite covering
{V.} such that

Va=B(&a 7o), 27.<1, M=UV,,
and
| F(A) || 123y, 2ry<e  for any e« and i.

Take a flat connection A; ., on V, as in Proposition 1.3. Then, if we
write A; .+a; . for AV,

lla:, a”L,ZH(Vn, A )

is uniformly bounded, so that we can apply Proposition 2.1 to get the
result.

COROLLARY 2.4. K (m,) s a closed subset of C(P). Here the topology
of C(P) is defined by L*-norm.

Proor. When {A;} is L}, ,-weak convergent to A., {p_F(4,} is L}
weak convergent to p_F(A.), so we have
IP_F(A) 1201, 4 < lim inf [[p_F(A) || L3, 4,-

COROLLARY 2.5. {A€ K (mo)||F(A)||,.~<D}/G 1is compact for any
D>0.
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COROLLARY 2.6. K (m,)/G is locally compact and paracompact. Here
the topology of K(m,)|G is defined by the quotient topology.

For convenience we assume m,<2m.

PROPOSITION 2.7. If {A)} ts a sequence of comnections in K(m,) with
| F(A))||p=—> 400, them there are a subsequence {A!} and sequences {x}
(x € M), {4} (4.>0, 2,—0) and {e.} (e : R* X SU(2)—>P is a bundle map
covering v > exp, A.v, where we identify TM.=R') which satisfy the
Jfollowings.

(1) eXA; 1is L? .-convergent to a self-dual commection I onm R‘X
SU(2).

2) 82| F(D) |3y <87(—c(P) and | F(I)]i==1.

PROOF. Fix w; and 2; so that |F(A,)|.>=|F(A))|., and [e}F(A)[.,=1.
Since {4} is convergent to 0, the metrics on R* induced by {e} are Ci-
convergent to the standard flat metric (after multiplying by constant
1/2). So we assume for simplicity that the induced metrics are flat in
some fixed bounded domain in R*. We can apply Proposition 2.4, which
is also valid on R, to {efA.} so that after changing gauges we have a
subsequence {¢’} such that {e;A;} is L} j,-convergent to a connection I on
R'. Then we have

IF(I)|32k4 < lim inf | F(A:) |22
=87%(—cy(P))+2 lim inf || p_F(A:) |22
<87 (—c,(P)) +2my".

Especially ||p_F(I)||%24 is bounded. On the other hand the estimate
1Va, P-F(Ai) | L2820, 2,0, 4,0 =M, implies

lle¥, Va, D_F(A:) || L2, 2,4, = Ai Mg,

Therefore p_F(I) is parallel on B, for I and similarly we can see that
p_F(I) is parallel on R*. Then |p_F(I)||,2< +oco implies that p_F(I)=0.
When I is self-dual, |F(I)|3z is a multiple of 8#* from removability of
singularity [Ul]. It is not zero from |F([)|.,~=1. Therefore we get
the required inequality.

§3. The case c,(P)=0.

In this section we assume that the intersection form of M is positive
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definite and that H,(M, Z)=0. Let P, be a principal SU(2)-bundle with
c(Py) =0, i.e., P,b=MxSU(2).

ProposiTION 3.1. K (m,)(P,)/G(P,) is a compact subset of B(P).
Here the topology of K(m)(P,) s defined by Li*-norm and the topolgy of
K(m,)(P,)|G(P,) is the quotient topology.

ProoF. Assume that {4} is a sequence in K(m,)(P,). If {|F(A)] .=}
is not bounded, Proposition 2.7 (2) contradicts ¢,(P,)=0. Then Corollary
2.6 implies the required result.

Next we perturb the map p_F:C(P)—L:,(Q%(ad P,)) following
Donaldson [D1].

DEFINITION 3.2. We write & for the set of the maps
o MXC(Py)—L}Q (ad Py)
satisfying the followings.

(1) o is smooth and G(P,)-equivariant.
(2) Jolle= sup llo(e, A)| 2. 1< +oo.

(3) suppo(x, A)cM— B(zx, 3).

PROPOSITION 3.3. There is o € P with arbitrary small ||o|s such that
for any x € M and A€ C(P,), we have p_F(A)+o(x, A)=0, iff A is globally
Aat.

Proor. Step 1. We review the local description of moduli space by
using the Kuranishi map ([AHS], [D1], [FU]). When ¢,(P,) is zero, self-dual
connections are flat connections. Fix a flat connection A. We write
HY, H, and H% for the cohomology groups of the following complex.

(8) 0= Li((ad Py~ Li(@(ad Py) 224 L1 (0" (ad Py)—0.
Set I'y={g€ G(P,)|g*A=A} and fix a [',-invariant complement subspace
HY of Imp_d, in Li_,(2%(ad P,)). Then by Kuranishi’s method we ecan
find a [,-equivariant diffeomorphic map L from a neighbourhood U of
0 in Ker(d* : L3(Q'(ad Py))—L:_,(2%(ad P,))) to U itself (L(0)=0), and a
smooth map ¢ from a neighbourhood of 0 in H, to a neighbourhood of
0 in H%(4(0)=0) which satisfy the followings.

(4) A coordinate of the neighbourhood of [A]€ B(P,) is given by
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UIr.cB(P,), [a]-[A+a].

(5) The following diagram is commutative.

g B L2_,(2° (ad Py))

L} I
L P Im (p_da)* PEv) H!®Imp_d,

Especially the neighbourhood of [A4] in M(P,) = (p_F)~*(0)/G(P,) is homeo-
morphic to ¢7(0)/ 4.

Step 2. A reducible connection, i.e., a connection with L,{+£1}, is
given by an element of Hom(x, (M), S') which has the only element zero
since H,(M, Z)=0. Therefore reducible connections are globally flat. When
A is globally flat, [A] is an isolated point of ‘M since HY=H"'(M, su(2))=0.

Step 3. Let x, be a point of M and A be an irreducible flat smooth
connection. Since I',={=+1} acts on C(P,) trivially, U is a neighbourhood
of [A] in B(P,). Using Unique Continuation Principle for second order
elliptic system with scalar principal symbol, we can find HY in Step 1
so that for any a € HY, a is smooth and the support of « is contained in
B(z,, 1).

Step 4. Fix two points z, and z,’ on M such that the distance of z,
and z, is larger than 8. Since M=Hom(x,(M), SU2))/SU(2) is compact
and the point of globally flat connection is isolated, we can get from
Step 3 a finite number of oy, ---,0,€ P with support in B(x, 1) and
o, -+, 0, € P with support in B(x,,1) such that the Fredholm section

’

(A ty o b bl - o ) F(A) + 3t (1—1) 3 t/0/

j=1

of the Banach bundle
Cx L¥(2%(ad P))) X R*X R* X R>BXR"XR" XR
q
is transversal to the zero section on an open neighborhood U xC/xC{/’ x
G of M x0x0X[0,1]CBXR"XR"XR, where M =_M—{globally flat

connection}. Let B:$—[0, 1] be a smooth cut off function satisfying =1
on M’ and B=0 outside U. Then

(At o bt oo bl )P F(A) +BA)E 3 toit (1—1) 3 1/0/)

is transversal to the zero section on BXCYXCV’ xIV. Atiyah-Singer
index theorem [AHS] says the index of the complex (8) is +3, so the
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index of this Fredholm section is —8+n+n’+1 and the zero set is a
smooth m+n’—2 dimensional submanifold of BXCY XV’ xG. The
projection image of the zero set to CI/xC{/’ is nowhere dense, so we can
take arbitrary small (¢, - - -, t,, tf, - - -, £5) € U/ XCY’ from the complement
of the projection image. Let p be a smooth function on M such that
0<p<1 on M, p=0 on B(x, 4) and p=1 on B(z,/,4). Now we can define
o as follows.

o=B(0 X tioi+(1—p) 2 t/s/).

PROPOSITION 3.4. There exist m and a disjoint decomposition K (m)(P,)
= KU K* which satisfy the followings.

(1) X° and K are G(P,)-invariant closed sets.

(2) Ewvery globally flat conmection is contained in K°.

(8) Ewvery irreducible flat connection is contained in K.

Proor. In Step 4 of the proof of Proposition 3.3, we find the point
of globally flat connections is isolated in M. From the definition we
have M= N K(m)(P,)/G(P,). So we get the result from the compactness

of K(m)(Py)[G(Py) (m=ms,).

If necessary we replace m, and assume Proposition 3.4 holds for m=
m, From now on we write K(P) for K(mo)(P,) and we fix g,€ P
satisfying the condition of Proposition 3.3 and |go||e<<m./2. Let a>0 be
the minimum of |p_F(A)+oa,(x, A)||;2 on the compact set M X K'/G(P,).

LEMMA 3.5. For any 0>0, there is p=p(0) such that when A, A€
K(Py), x€ M and they satisfy

||A1—Az||L?(M—B(x,p),A1)<5/2,
then for a gauge tramsformation g,
| A1—g(As) || 2, 4y <0 and g|M— B(z, 2p) =id.

ProoF. Suppose that {4, .} and {4, .} are sequences of connections
in K (P, and satisfy that for some z;€ M and p,—0,

| Ay i — A, i”L?(M_B(z‘-' p;)r Ay, ,~><5/2-

If we take a subsequence and change gauges, we can suppose that {4, .}
is L’-convergent to A, . from Proposition 3.1 and {x;} is convergent to
Z.. Let {U.} be finite open covering which has the property as in Prop-
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osition 2.1 for every connection of relatively compact set K(P,)/G(P,).
Then Li,,(U,, A, i .)-norm is uniformly equivalent to Li,,(U,, A4, )-norm
from Lemma 1.4. So similarly

L?+1(Ua — B<xi, P.‘), Al, i a) :L?+1(Ua - B(xi, Pi)» Az, .‘)
:L?+1(Ua_B(xiy Pi)y Az, i a)
(= means uniform equivalence).

From the proof of Proposition 2.1, this implies that if we take a sub-
sequenee, {4 ;|M—{z.}} is L} .-convergent to some connection A, . on
M—{z.} without changing gauges and |4, «—A4i wlcw-(ey, 4, ., is bound-
ed, i.e., 4,.€C. On the other hand if we take a subsequence we can
find {g:} from Proposition 3.1 so that {g:(A4. )} is convergent to some
connection Aj .. There is a gauge transformation g, on M—{x.} such
that g.(A4;.)=A} . Since A4,. and A} . are elements of C, g. is an
element of & ([FU] Proposition A.5). Therefore {gz'g:(4, :)} is L’-con-
vergent to A, . and

lﬁm | Ar i —92'9:(As, o) L2, 4 0= A1 o— A, woll L2, 41, 0
100

=1i£13 lim |A: i — A, iHL?(M—B(zm, ", Alvi)éa/z-
r 1—00

Therefore for sufficiently large ¢, we have
| Ay, i—9g(As, ) ||L?(M.A1,,-) <0 (9=95'9:).

Since A, ;— A, ; is Li-estimated on M — B(x,0)), we can assume that g¢;
and g, are identity over M — B(z,2p,).

We suppose that the function p(d) of d is monotonely decreasing and
0(0)—0 (0—0). The following lemma is easily shown.

LEMMA 3.6. We can take positive numbers o, and pi=p(d,) small
enough to satisfy the followings.

(1) If A, A€ K(P), [[Ai—Aullita, 4,<0: and distance(w, x,) <pi,
then |loo(x1, Ay) —0o(s As)| <a/f8.

(2) If Aye K° and A€ K, then [ Ao— Aill 20, 4> 01

§4. The Case c,(P)=—1.

In this section we assume that M is a closed oriented Riemannian
4-manifold with positive definite intersection form and P, is a principal



288 Mikio FuruTa

SU(2)-bundle with ¢,(P,)= —k.
DEFINITION 4.1. For s=0,1, we set

QJ 6, p)={A€C(P)| There are x€ M, A’ € K*(P), ¢>0 and a bundle
map h:P|M—B(z, o) > P,|M—B(z, p) such that LjM—
Bz, 0,/2), A’) and L}M—B(z, 0,/2), h*A) are (3—c)-equi-
valent and ||h*A—A'||12u-5w, », 4) <0}

LEMMA 42. There exists 0, such that all the connections in
U (6s, p(02)) are irreducible and

U(8s, p(32)) N U (s, p(3,) = 2.

PROOF. Since the moduli space of reducible connections is compact
and the intersection of all U’ (3, p(8))(6>>0) is empty, the first half of the
statement follows. Let {0;} be a sequence convergent to 0, A, e U@,
p(6)) NU"(6:, 0(6:) and A! ;€ K and A/ ,€ K  as in Definition 4.1. Taking
a subsequence and changing gauges, we can suppose {A! ,} is L¥-conver-
gent to AL€ K’ and x—x., from Proposition 3.1. We have

AL o= (highi, ) AL 1l L2ut-B e, oy,a1, p <01/2
for sufficiently large i¢. From Lemma 3.4, there is g:€ G(P,) such that
1A% 0 —g:(AL, 1) [ 23ar, 4y <O
This contradicts Definition 3.6 (2).
DEFINITION 4.3. We fix D, so that
Dy> max {[| F(A') | o= A’ € K(Py)}.
For D>D,, we define KX (P, D) by

K (P, D)={A € K(P)||F(A)|.~=D and A is self-dual on 2-neighbour-
hood of {x € M| |F(A)|.>Dy}.}

and qJ* (s=0,1) by

U*={A €Y (0: p(02)) | There is x,€ M such that {x||F(A)|=D}C
B(m, 1/2)}. '

PROPOSITION 4.4. When {A} is a sequence of connection in K (P, D,)
such that {||F(A;)| .~} is unbounded, there is a subsequence {A;} such that

e
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Jor some x, € M and A,)0 the followings hold.

(1) There is a bundle map e:: R*X SU(2)—P; covering v € R*—exp, Av
€ M such that {eX(A.)} is L} ,-convergent to the standard instanton Iy
on R'. Iy is defined by

dz
Iy=0+Im —*** _ ycH=R
std 1+|xlz
(We identify R* with the quaternions H. 6 denotes the trivial connection.)
(2) {z:} s convergent to some point x. and there is a bundle map

hi PolM—{xm}_’P1|M_{xoo}

such that {h¥A;} is L? -convergent to some conmection A in K(P) on
P M—{x}. A is self-dual on B(x.,1).

(3) For sufficiently large i/, |F(A.)|(x) €EC'(M) takes the maximum
value |F(A:)|L> at a unique point.

Proor. In the situation of Proposition 2.7, we have ||F(I)|.:=8="
and |F(I)||.»==1. By the classification of instantons on S* [AHS], this
implies that I is gauge equivalent to I, We may assume that {x;} is
convergent to ... We claim that {| F(A;)|r>w-5¢,,0p} is bounded for every
0.>0. If not, we get a contradiction as follows. Since Proposition 2.7
can be applied to M—B(x., 0i), there is an instanton I’ on R* with
| F(I’)|2:=87% and we have

(4) 162°<|F(I)|2+ | F(I') |2 <lim inf || F(A:) |72
=8n*+2 lim inf ||p_F(A;)|i: <8 7 +2m,* <16 7*.

This is a contradiction. Therefore we can get {k;} by applying Prop-
ositsion 2.3 on M—B(x., o)) and diagonal argument with 0;}0. Then
A, satisfies

[ F(Ax) [l i2<lim inf| F(A,) |72 —8 z* <8 =*.

Since A. is self-dual on B(zx., 1) —{z.}, using the removability of singu-
larity of Uhlenbeck [U1], we can suppose A, can be extended on M.
Then above estimate implies that we can suppose A.€C(P,). Moreover
we can see A€ K(P,) in a similar way to the proof of Corollary 2.4.
When {ef(A;)} is Li,, n-weakly convergent to I, {e¢fF(A;)} is Ci.-
convergent to F(I,4). Since |F(I,q)| have a unique maximal point at the
origin and the Hessian H(|F'(I4)|) at the origin is definite, H(|e}F'(A.)|)
have a unique maximal point near the origin for large i’. If |F(A,)|
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has another maximal point z!. for large A;, then z;, and x] are apart
enough from each other to obtain a contradiction quite similar to (4).

DEFINITION 4.5. From Proposition 4.4 (3), there is a constant D,/’>0
such that for any A € K (P, D,/), we can define x(A) €M by ||F(A4)|.>=
|F(A)|(x(A)).

COROLLARY 4.6. For any >0 and p>0, there is a constant D=
D(o, p)=D,’ which satisfies the following. When A 1is a connection in
K (P, D), we can find A’ € K (P,) and a bundle map

h : P\M—B(x(A), p)—>P,|M — B(x(A), o)
which satisfy
(1) supp p_F(A’)cM—B(x(4), 1)
and
(2) [h*A—A"|| 20 _Ba), o), 41 <O.

ProPOSITION 4.7. There exists 0,<min (0,/36, ;) such that if we set
0s=p(0s) and Dy=D(0,, p), then p;<p0:/2 and the following holds. When
A is a connection in K(Py, D)), we can find A’eK(P) and h:
Py|M— B(x(A), ps)—>P.| M—B(x(A), ps) which satisfy

(1) suppp_F(A’)cM—B(x(A),1),

(2) P A=Al 2ar -8, 0 <0s

(8) LYM-—B(x(A), 0)/2),A’) and L}(M—B(z(A), 0./2), h*A) are 2-
equivalent,
and

(4) Ih*p_F(A)—p_F(A")| 12<e/3.

Proor. Let {0;} be a sequence convergent to 0, D,=D(d;, p(d;)) and
A;e X(P,, D). From Corollary 4.6 there are A/€ K(P) and h; which
satisfy

supp p_F(A})cM— B(z(A)), 1)
and
[|h¥Ai— Alll L2t-ay, o), 45 <0
Taking subsequence and changing gauges, we can suppose that {Af} is

L’-convergent to AL¢c K(P,) and x,—x. from Proposition 3.1. Then
L}M—B (%, 0/3), A) and L}M—B (%, 0,/3, AL) are uniformly equiv-
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alent, so {h*A,M—B(x., 0,/3)} is Li-convergent to A.L|M— B(X,0:/3),
which implies that (8) and (4) hold for sufficiently large 1.

LEMMA 4.8. There exists D,=D; such that if A, A,€ K (P, D) satisfy
| Ay — Asll 2w, 4,,<0:/8, then the distance d(x(A.), x(A.)) satisfies d(z(A),

ProoF. If A, and A, ;€ K(P,) satisfy

A, i — Ay, ill 2,4, i)<51/.8’
| F(As, )|z, [ F(As, ) || 12— + o0,
and

d(z(A, ), z(As,, 1)) >,01/2;

then there is a subsequence such that z(A; ;)= o ©(As i) > » for
some ;. and X, ., With d(2) « 2, ) =0/2. We use the notation e; for
A;=A, ; as in the proof of Proposition 4.4. If we take a subsequence
and change gauges, then {e; 4,.} is L%, o-weakly convergent to a self-
dual connection as in the proof of Proposition 4.4. The assumption
T1,F T2, » implies the limit is a flat connection, so we get [e.*F(As, )|z
—0. On the other hand,

limSllp l|€5*(F(A1,f) —F(Az, s‘))“LZ
<limsup [[F(A.,:) = F(4s,:) | 2= limsup (|| Ay, s — A, [l 124, » 1| A1, i — Aol 72)
<0,/8(0,/8+1).

Since 0, is small so that 0,/8(d,/8+1) is smaller than 8z?% this is a don-
tradiction.

PROPOSITION 4.9. Let A, and A, be connections in K (P, D). Take
A/, by, A and h, as tn Proposition 4.7 and assume L:M, A,) and
L} (M, A,) are 2-equivalent and

| A1 — Asll 23, a,)<04/8.
Then there is g € G(P,) such that

. I AT —g (A2 | 2, 4y <0
and v
g|M —B(x(A.), 20,) =hi*hy| M — B(x(A,), 201).

ProoF. Since d(z(4.), x(A4:)) <p0./2, we have on M— B(x(A,), p.)
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Li(hi* Al)~L}(A:)~L}(Az) ~Li(hy*Aj),
where ~ means 2-equivalence. Then we get

e * Al —h:* Afl| L2 -Biacay, op. a7 1AD S |he'* Al — Aull L2u—Becay, op, a7 4D
+2|| A1 — Aol 12, 4y +8|| A, —hy™* Ajl LEM—B(z4y), py/2), by 45
<99;+20,/8<0,/2.

Therefore we can apply Lemma 3.5 to hi'h, to get the result.

COROLLARY 4.10. Under the same assumption as in Proposition 4.9,
we have

[ hi'*a(w(Ay), AL) —hi*ay(x(A4,), A7)l L2<e/3.

Proor. This is a consequence of the definition of d, the gauge
equivariance of ¢, and the fact that

supp ,(%(A), Ai), supp o,(x(As), Az) CM— Bl (Ay), 204).

The following lemma is an easy consequence of Corollary 4.6 and the
definition of D, and J°.

LEMMA 4.11. If D, is sufficiently large, then we have
K (P, D)ycU U

§5. Perturbation of self-dual equation.

We use the notations as in §3 and §4. Moreover we assume that
the intersection form of M is positive definite and H,(M, Z)=0.
We set

K*(P,, D)=XK (P, DynU".
For each A€ K'(P, D,) we take sufficiently small 3(A4)<d,/8 such that

U(A)={A+acU'|d%a=0, |a] 24 <5(A) and L¥A) and
L}(A+a) are (2—c)-equivalent for some ¢>0.}

gives a local slice of C(P)—B(P,) at A. Take a locally finite covering
{[U(A)]} of K (P, D,)|G(P,), which is locally compact and paracompact
from Corollary 2.7, and a partition of unity {8.} of {[U(4.)]}. We define
a cut off function B.:B(P)—[0,1] so that B.=1 on [K'(P,D,)] and
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supp B.. is contained in U [U(A.)]. We fix A.€ K" and h, as in Proposi-
tion 4.7.

DEFINITION 5.1. We define 0,(A)=0 for A¢U'. For AcU we
define o,(A) as follows. When [A]€[U(A.)] we find a unique g. up to
+1 such that g.(4) € U(A,). Let §.€ G(P,) be an extension of hi'g.h. €
G(Py|M— B(x(A,), p1/2)), which exists because g. is defined globally on M.
Since ¢, is G(P,)-equivariant and the support of o,(x(A4.), §z'(AJ) is con-
tained in M — B(z(A.), 01/2), we can define

01(A) = o 3 BalA)ha ™ 0o(@(Ad), Fa7(A2)),

which is independent of the choice of ..
LEMMA 5.2. |101(A)”L"f(u,,4)§mo-

PROOF. llos(A) 20, ) =2 X Ball ™0y (@(Aa)s G (Al 200,07 400
<4 3 Bullo(x(Aa), Ga_l(Aé))”L?(M, Tal4a)
<43 Bmy/d=m,.

LEMMA 5.3. p_F+o0, does not vanish on JC‘(Pl, D,).

ProOF. Take A’ and h for A€ KX'(P, D,) as in Proposition 4.7. Then
A’ is in X' and we have

Ip-F(A) +0:(A) |l 20,
2|p_F(A") +o,(x(A), A')l 2y — | p_F(A) —h™*p_F(A’) | 1280,
— 2 Ballha**oo(x(Ad), §* (A1) —h™ay(x(A), A') | L2y
Sa—af2— Y B.a/2=0.

In the above estimate we used Proposition 4.7 (4), Corollary 4.8 and
Corollary 4.10.

Main Theorem can be deduced from the following theorem.
THEOREM 5.4. G(P)-equivariant smooth map
01 : C—L2% (ad P,))
satisfies that of {A.} i1s a sequence of zeros of

p_F+a,:C—L_ (2% (ad P))),
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then there exists a subsequence {A/} and a sequence {9/} C G (P,) such that
either of the following holds.

(1) {g/(A)} s Li-convergent to a zero of p_F +o:.

(2) Every A/ 1is self-dual and there exists x.,€ M such that {g./(A/)
|M—{x.}} ts L 1oc(M—{x.})-convergent to a globally flat commection on
M—{x.}.

PrROOF. Lemma 5.2 and Lemma 5.3 imply {A}cK(P)—XK (P, D).
If {|F(A)| .~} is bounded, then we can claim (1) from Corollary 2.6. If
not, then we can assume {A4/}cX'(P, D, and can claim (2) from Prop-
osition 4.7 and the definition of K'(P, D,).

Now if necessary we once again perturb ¢, as in [D1], then we can
see the perturbed moduli space

M ={A € C(P,)|p_F(A)+0:(A)=0}/G(P)

satisfies the condition required to show Main Theorem following the
discussion in [D1].

REMARK 5.5. As mentioned in Introduction, the orientability of M
is shown in the same way as the case that M is simply connected. In
fact it suffices to show that G(P)/Center(SU(2)) is connected ([D1], [FU]).
The primary obstruction for any g€ G(P,) to be homotopic to the identity
map is an element of H*(M, =3(SU(2))) =H,(M, Z), which vanishes in our
case. The secondary obstruction is an element of H*(M, ,(SU(2)))=Z/2,
so we have a surjective map Z/2—m,(G(P)). It is easily shown by an
explicit construction that the image of Z/2 is the same as the image of
Center(SU(2)) in 7,(G(Py)) ((FU]), which implies x,(G(P;)/Center(SU(2)))=0.

§ 6. Orbifold case.

We can use the perturbation method in the previous sections to prove
some properties of orbifolds. Let X be a closed oriented 4-dimensional
orbifold with finite singular point x, 2, ---,2,. The neighbourhood of x;
is of the form G,\U. where G is a finite group and U, is a G:-invariant
neighbourhood of 0 in a 4-dimensional G;-vector space V,; such that G;
acts on freely on V,—{0}.

We assume the following.

(1) X has positive definite intersection form and H,(X, Z)=0.
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(2) #G,= max {{G;|0=t<n}.

(3) There is an orientation preserving R-linear isomorphism «,:V,
—H and a homomorphism ¢,:G,—~Sp(1) such that «, is G equivariant
via ¢, and left multiplication of Sp(1) on H.

(4) There is not a homomorphism ¢ : G,—{+1}CSp(1) such that the
homomophism ¢y : G,—Sp(1) is conjugate to ¢,:G,—~Sp(l) and moreover
¢ is a restriction of a homomorphism =,(X—{x,})—>Sp(1). (It suffices
that G, is not isomorphic to Z/4 or to any binary dihedral groups.)

(56) @, is not eyclic, or G, is cyclic and the cardinality

¥ (lee H (X —{,}, Z)lt(e)z[X]=#—é— and ¢|G\U,—{0}=*e,}/+1)

0

is even. Here ¢ denotes the map
HY(X —{x,}, Z)>H'(X —{x,}, Q) =H*X, Q).

and ¢, denotes the Euler class of
Go\(ﬁo —{0}x 8" _’Go\ﬁo —1{0}.
S! is the maximal torus of Sp(l) containing ¢,(G,).

THEOREM 6.1. On the conditions (1)~ (5), there exists a singular point
x, (#z,) of X which satisfies the following.

(a) #Gi=max (G} (=#G,).

(b) There 18 an orientation reversing R-linear isomorphism ay: Vi—
H and a homomorphism ¢, :G—Sp(l) such that a, s Giequivariant via
1.

€ ¢,:G—~>Sp(l) and ¢, :G,—>Sp(l) are conjugate to restrictions of a
homomorphism f :m (X —{x, 2:.})—>Sp(1).

(d) When G, is not cyclic, then we can take x, so that G, is not
cyclie.

(e) When G, is cyclic and any singular point x; satisfying (a), (b)
and (c¢) has cyclic G;, then we can take x, so that f is a homomorphism
wnto S' (cSp(1)).

ProOF. When X is simply connected, (a), (b) and (¢) are shown in
[F] Theorem 1.8. We can extend the argument there to weaken the
hypothesis =,(X)=1 to H,(X, Z)=0. In fact, from the perturbation method
developed in the previous sections, we only have to show that the index
of the following complex is positive.
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0-28s(ad Py~ 04 p(ad Py —2"%.0° ..o (ad P,)—0.

Here ad P, is the product pseudo-bundle X xsp(1), Q%, is the set of
pseudo-forms on X and d, is d®id. The index of the above complex
is equal to 1.

In the proof of Main Theorem we need that the corresponding index
is larger than 1 in order to define ¢,€ % in Proposition 3.3 step 4, but
here we can adopt a new definition of & as follows.

DEFINITION 6.2. We write & for the set of the maps
0 : C(P)—> Li(2% oro(ad P,))

satisfying the followings.

(1) o is smooth and &G (P,)-equivariant.

(2) llolle=supllo(A)ll L2, < +oo.

(3) suppo(A)CM—B(x, 3).

In this case we do not need to take M as a parameter space as in
Definition 3.2. Then the proof of a proposition corresponding to Propo-
sition 3.3 is easier and it suffices to require the index of the above
complex is positive.

Next we show (d) and (e¢). We define a pseudo-bundle P, and a flat
pseudo-connection on P, from f:m (X —{x, x:})>Sp(1) in (¢). The index
of the corresponding complex

0—D%,0(ad P/)-2901  (ad P/)-2=%0, 02 . (ad P,)—0

is immediately calculated by an excision argument as in [F] Lemma 5.8.
The result is that the index equals dim sp(1)%, where G, acts on sp(l)
via ¢, and adjoint action. Therefore when G, is cyclic and then dim sp(1)%:
is positive, we can assume that A, is a reducible connection by the
perturbation method, and in particular G, must be cyclic. This implies
(d) and (e).
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