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Removable singularities for Yang-Mills connections

in higher dimensions
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§1. Introduction

We shall study on the removability of point singularities of Yang-
Mills connections in higher dimensions. In 4-dimension K. Uhlenbeck
[U1] has proved that point singularities of Yang-Mills connections with
curvature in L* can be removed by a gauge tramsformation. But in
higher dimensions, this is false if we only assume that the Yang-Mills
connections have curvature in L* as shown by examples in [Ul].
L. M. Sibner (for the case n=3 and n=5) and P. D. Smith (for the case
n=2) have proved that point singularities in Yang-Mills connections with
curvature in L*” can be removed by a gauge transformation ([S1], [S2],
[Sm]).

In this paper we shall strengthen L. M. Sibner’s theorems. We shall
prove that point singularities in Yang-Mills connections whose curvature
has sufficiently small L*-norm can be removed by a gauge transforma-
tion.

(1.1) THEOREM. Let B be the wunit ball B,(0)CR* (n=4) with a
Riemannian metric g which satisfies

2
0°g.; I <4
0,02,
with a constant A, where we assume that the coordinates (xi, - -, x,) are

the mormal coordinates around 0 with respect to g. Let D be a smooth
Yang-Mills connection in a G-vector bundle E over B—{0} with respect to
the metric g. Then there exists a constant e=e(n, A, G)>0 such that if
D satisfies SBIR"IZdVge, then for some gauge tramsformation y,r*(E)

extends to a smooth G-vector bundle E over the full ball B and y*(D)
extends to a smooth Yang-Mills connection D in E.
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As a corollary of theorem (1.1), we can prove L. M. Sibner’s results
in dimension n>=4, by using the Hoélder inequality and the rescaling
argument. But our method of proof is limited to higher dimensions,
since we use the monotonicity formula which is available only for dimen-
sion n=4.

As a special case, we study the following situation. Let D be a
smooth Yang-Mills connection in a G-vector bundle E over S* (n>4) with
respect to the standard metric, and we define f: B"*'—{0}—>S" by f(x)=

I—x[. Then f*D is a Yang-Mills connection in f*E over B—{0} and has
x
curvature R.r‘D(x):|x|-2RD<-|-x—|>. So f*D satisfies
x
5 |Rf‘0|2dx=LS \R2dV.
B n—38Js»

I Ssn]RDldeg(n—3)e(n, 0,G), then by theorem (L1), f*D extends to

a smooth Yang-Mills connection over B, which means R’=0 on S".
(In fact our proof of theorem (1.1) also shows that this gap theorem
holds for a general metric g). Thus we have;

(1.2) COROLLARY. Let g be a metric on S* (n=4). There exists a
constant e=e(n, g, G)>0 such that if D is a smooth Yang-Mills connec-
tion in a G-vector bundle E over S™ with respect to the metric g, and
satisfies

[, 1BoFav<e,

then D s flat (i.e. R°=0 on S").

To prove theorem (1.1), using a priori estimates obtained in [Na] and
the monotonicity formula proved in [Pr], we first show that |z|*|R(x)| is
bounded. Then we can take ‘“‘the broken Hodge gauges” of E due to
K. Uhlenbeck [U1l]. In this gauge we can prove that for some a>0,
|z|>¢|R(x)| is bounded. This implies that R¢€ L? for some p>n/2, from
which our assertion follows by the result of K. Uhlenbeck [UZ2].

Corresponding results for the case of the harmonic maps have been
proved in [Li] (see also [Ta]). Our results are inspired by their results.

We would like to thank Prof. T. Ochiai for his advice, and Prof. J.
Kazdan who informed us the reference [S1], [S2].
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§2. Notation

We shall deseribe the notation. Let M be an n-dimensional Riemannian
manifold. Let E be a G-vector bundle over M where G is a compact
Lie group. We write Ad E for the adjoint bundle with fiber g, the Lie
algebra of G, and Aut E for the automorphism bundle with fiber G.
We put a fiber metric on Ad E by some Ad¢-invariant metric on g.

We write R=R? for the curvature form of a connection D. We
define the Yang-Mills action by

_1 2
WW(D)_§§M|R| av,

where dV is the volume element of M. A critical point of the Yang-
Mills action is called a Yang-Mills connection. The above action is also
defined for L:N L*-connections. So we say LN L*connection D is a weak
Yang-Mills connection if D is a critical point of the above action.

It is well-known that a connection D is a Yang-Mills connection if
and only if

D*R=0,

where D* is the adjoint operator of D.
A gauge transformation 7 is a section of Aut E which acts on con-
nections as follows;

r*D)=r-D-r"

Then we have R™®=y-R?.y™'. The space of Yang-Mills connections is
invariant under the action of the gauge transformations.

Later we shall show that the bundle E in theorem (1.1) is trivial
E=(B—{0})XR" (fact (8.5)). In this situation we take the following
notation. Let d be the flat connection of E=(B—{0}) X R¥. Then a con-
nection D in E is given by

D:d+Av

where A is a Ad E=(B—{0}) Xg valued one form. The curvature form
R of D is given by

R:dA+%[A, m
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We denote by 6 the adjoint operator of d. The Yang-Mills equations are
D*R=0R+*[A, *R]=0.

We shall use the radial coordinates x=(r, gb):(lxl,l—xl) The one
x

form A=(A", A% splits into radial and spherical parts. The two form
R=(R", R*) also splits into two pieces since R"=0. We denote the flat
connection of E|,; =9B,XR" by d*, and its adjoint operator by ¢*.

§3. Proof of the Main Theorem

(3.1) LEMMA (Monotonicity Formula). If D s a Yang-Mills con-
nection i a bundle E over B—{0}CR" (n=4) for which S |RI*dV < oo,
B
then we have for 0<p,<p, <1

exp(c,p»p;-"L (0)1R|2dV—eXp<clpl>pr"§ IRFAV

Py Bpl
2_45 exp(Cyr)r™"|R?[*dV,
B FZ(O) —le(o)

where r=|x| and C,=C;(n, 4, G).

Proor. For the case that D is a weakly Yang-Mills connection in
the full ball B and stationary under the reparametrizations of B, the
above inequality is proved by P. Price [Pr].

We shall show that if the variational vector field X satisfies | X(z)| <
C|z| for some constant C, then the first variation vanishes;

(3.2) L (|R*div X—4(R(V. X, ¢;). Rle. ¢;))}dV =0.
Then we can follow the proof of [Pr], and we get the assertion.

Take a cut-off function f,€ C=(B) so that

i) fix)=0 if |x|<t and f.(x)=1 if |z|>2¢,

ii) | Dfe(x)|<4/z.
Since D is a smooth Yang-Mills connection over B—{0}, we get from the
first variational formula '

[, (1B div(7.X) —4(R(V.(£.X). e, Blew e;)}aV=0.
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Since f. has support in B,,—B., |Df.-X(x)| is bounded by
4 .ozl <sc.
T

We have

|div(f.X)|=|Xf.+f.div X| < constant independent of z.
Similarly we have

V. (fX)|=le.f.- X+f.V., X]| < constant independent of <.
So letting 7—0, we have got (3.2). Q.E.D.

(3.3) Fact ([Na]). There exist constants oc=d(n, 4,G) and C,=
Ciy(n, 4,G) (n=4) such that if D is a Yang-Mills connection over B,(x) with

’I“_"g |R|*dV <o, then
B, (z)

sup |R|2§Cﬂ""L |R|*d V.
r(2)

B, 14(=)

(3.4) LEMMA. There exist constants e,=¢,(n, 4, G) and C;=Cs(n, 4, G)
(n=4) such that if D is a Yang-Mills connection in a bundle E over

B—{0} with g \RdV <e,, then
B

lxl“lR(m)PéCaLIRlde for all z€ Bya—10}.
Proor. We have the estimate for x€ B,,—{0}

|x|4_,,§ |R|2dV§|x|4—"5 |R|2dV§Cs |RI*dV <Ce,
B, () (0) B

2]z
In the second inequality we have used (3.1). Thus if we choose ¢ suf-
ficiently small, then we can apply (3.3) in the ball B, (x) to get

IR(x)lzgczlxl‘"S )lRIZdV§CC2|x|“SB|RI2dV. Q.E.D.

z
Iz|

Now let U,=B, ,—B,_,_,, S,=0B, , for [=1. The next lemma shows
the existence of broken Hodge gauges over B,,—{0}=UU, which is
l

proved by K. Uhlenbeck [U1].
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(3.6) FAcT (Broken Hodge gauges [Ul]). There exists y,=7,(n, 4, G)

such that if D is a smooth connection in B,,—{0}, and the growth of the
curvature satisfies |x|'|E(x)[*<y=<y, then there exist gauges for Ely,
which are continuously consistent across S, and in which D=d+ A,
A],,le, and R|y,=R, have the following properties for all /=1;

(3.6) 04,=0 in U,
(3-7) A?|Sl:A?+1ISV
(3.8) 0*A{=0 on S, and S,,,,

(3.9) gs A{da:L Arde=0,
(3.10) |A,|§C,2"'s13p|Rl|§C42‘«/7, C,=Ci(n, 4, G),
(3.11) (z]—csr)jv |Al|2dV§2‘2‘SU \R[dV,
A=A(n A, G), Co=Cs(n, 4, G),
(3.12) (lz—CsT)L IA‘flzdﬂéL |RY|*de, 2=2(n, 4, G), Ce=Cy(n, 4,G).

From this fact we can extend the vector bundle E over B—{0} to

the full ball B through the above trivialization.

(3.13) LEMMA. There exist constants e,=e(n, 4, G), C;=Ci(n, 4, G),

and a=a(n, 4, G) (n=4) such that if Dis a Yang-Mills connection in a

bundle E over B—{0} with SBlRIZdVgsZ, then for some a>0

5/*~“| Rle) <l IRFAYV

holds for all x€ B,,—{0}.

Proor. Owing to (8.4) if we choose & so that Cu, <7, and ¢,<e,,

we can apply (3.5).

By integration by parts we first obtain

(3.14) Ll<Rl, Rﬁ%[A,, AJ)dV:S (Rl,DA,)dV:Ll—S (Af, Ri*)do.

Uy Si41

Here we have used D*R,=0 since D is a Yang-Mills connection.

=woen
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From (3.10) and |x|*|B(x)|*<Cse,, we can estimate the inner boundary
terms as

Ss (A?, Ri*)do | <C2(2)*(27)" ' =Cy(27)" %
I+1

So if m=>5 this terms vanishes as [—oco. For m=4 this term also
vanishes since (3.10) holds and |x|‘|R(m)|2§CSS |R|*dV.
BZI::] 0)

Thus summing up (8.14) over [=1, we get

S <R, R+1ra, A])dV: S (44, Ri*)do.

B2 2 5

The other boundary terms cancel since (3.7) holds and the curvature R
is continuous across S,.

Using (3.11), we can estimate the error terms

s (R,, %[Al, A,])dvi gcsezzz'gv |A,|2dvgcssz(xl—cgez)-ljv \R|*dV.
13 13

Uy

If we choose 2,—Cye,24,/2, we have

S IRldeécmszg IRlde+KS |A?|2d0+—l—g | R¥|do.
By o 2 5 KJs,

1

Here C,,=C;-2/2, and K is a constant which we shall fix later. The
second term can be estimated from (3.12) as

L |Af12dag(zz—cl,ez>-155 1R¢¢12dogcu§s |R|*do.
1 1 1

Here we have chosen 2,—Cye,=4,/2.
We choose Cye;<1/2, and using the dilation y=lx, we apply the
r

above inequality over B,=B,(0) to get
(3.15) 'r“”L lRldengKr“"LB |R|2d0+CmK‘1r5‘"§ |R"*[*do.
r r an

We set F(fr):exp(C{r)'r“"SB |R|*dV. Multiplying exp(Cyr) in (3.15) and
integrating from p/2 to p, we get
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j"ﬂF(r)drgcl4Kexp<clp)pﬂ-"j \RPAV
P) B,

+CMK‘1splzexp(Cl1')rﬁ‘”§ |R™|*de dr.

1) ):
Since F(r) is non-decreasing from (3.1), the left-hand side can be bounded

by %F(é’-) from below. We can also estimate the second term of the

right-hand side by CI4K-1p(F(p)—F<§)) from above by (3.1).
Thus we get

1 -1 PV« -1
( 10K )F( 2)_(CLJHCMK )F(0).
Taking K small so that %>CMK, we have

yF<%>§F(p) for some p=p(n, 4, G)>1.

By iteration we get

-1 -1 _l)_ —1\logyp l
F2Y) < F<2 —(27)"n F<2> for all L.
Since F' is non-decreasing, we finally get
Flo) gClapﬁL IR'dV where f= logyu.

Combining this inequality with

IR(x)Izéczlwl‘”S R4V = Cylz|F(22]),

2|z|
we get the assertion. Q.E.D.

(8.16) LEMMA. Let D be as in lemma (3.13). Then the curvature
Rec L? for some p>n/2 and is a weak solution of the Yang-Mills equa-
tions in the full ball B.

The proof is elementary, so we omit it.

Now the main theorem follows from the following theorem of



Removable singularities for Yang-Mills connections 307

K. Uhlenbeck [U2].

(3.17) FacT. Let D be a weak Yang-Mills connection in B with R
€ L? for some p>n/2. Then there exists L% gauge transformation y¢€
Lz(B, G) such that y*(D) is smooth.

Sinece LzcC® for p>n/2, the gauge transformation 7 does not change
the bundle E over B—{0}. Then D=d+ A and y*(D)=d+ A’ satisfy the
following relation;

A=—dyrr+r A’y

Since A and A’ are smooth in B—{0}, we can conclude that y is smooth
in B—{0}.
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