# Removable singularities for Yang-Mills connections in higher dimensions

## By Hiraku NAKAJIMA

(Communicated by T. Ochiai)

#### § 1. Introduction

We shall study on the removability of point singularities of Yang-Mills connections in higher dimensions. In 4-dimension K. Uhlenbeck [U1] has proved that point singularities of Yang-Mills connections with curvature in  $L^2$  can be removed by a gauge transformation. But in higher dimensions, this is false if we only assume that the Yang-Mills connections have curvature in  $L^2$  as shown by examples in [U1]. L. M. Sibner (for the case n=3 and  $n\geq 5$ ) and P. D. Smith (for the case n=2) have proved that point singularities in Yang-Mills connections with curvature in  $L^{n/2}$  can be removed by a gauge transformation ([S1], [S2], [Sm]).

In this paper we shall strengthen L. M. Sibner's theorems. We shall prove that point singularities in Yang-Mills connections whose curvature has sufficiently small  $L^2$ -norm can be removed by a gauge transformation.

(1.1) THEOREM. Let B be the unit ball  $B_1(0) \subset \mathbb{R}^n$   $(n \ge 4)$  with a Riemannian metric g which satisfies

$$\left| \frac{\partial^2 g_{ij}}{\partial x_k \partial x_l} \right| \leq \Lambda$$

with a constant  $\Lambda$ , where we assume that the coordinates  $(x_1, \dots, x_n)$  are the normal coordinates around 0 with respect to g. Let D be a smooth Yang-Mills connection in a G-vector bundle E over  $B-\{0\}$  with respect to the metric g. Then there exists a constant  $\varepsilon=\varepsilon(n,\Lambda,G)>0$  such that if D satisfies  $\int_B |R^p|^2 dV \leq \varepsilon$ , then for some gauge transformation  $\gamma, \gamma^*(E)$  extends to a smooth G-vector bundle  $\tilde{E}$  over the full ball B and  $\gamma^*(D)$  extends to a smooth Yang-Mills connection  $\tilde{D}$  in  $\tilde{E}$ .

As a corollary of theorem (1.1), we can prove L. M. Sibner's results in dimension  $n \ge 4$ , by using the Hölder inequality and the rescaling argument. But our method of proof is limited to higher dimensions, since we use the monotonicity formula which is available only for dimension  $n \ge 4$ .

As a special case, we study the following situation. Let D be a smooth Yang-Mills connection in a G-vector bundle E over  $S^n$   $(n \ge 4)$  with respect to the standard metric, and we define  $f: B^{n+1} - \{0\} \to S^n$  by  $f(x) = \frac{x}{|x|}$ . Then f\*D is a Yang-Mills connection in f\*E over  $B - \{0\}$  and has

curvature  $R^{f^*D}(x) = |x|^{-2}R^D\left(\frac{x}{|x|}\right)$ . So  $f^*D$  satisfies

$$\int_{B}|R^{f^{\bullet_{D}}}|^{2}dx=\frac{1}{n-3}\int_{S^{n}}|R^{D}|^{2}dV.$$

If  $\int_{S^n} |R^{D}|^2 dV \leq (n-3)\varepsilon(n,0,G)$ , then by theorem (1.1),  $f^*D$  extends to a smooth Yang-Mills connection over B, which means  $R^D=0$  on  $S^n$ . (In fact our proof of theorem (1.1) also shows that this gap theorem holds for a general metric g). Thus we have;

(1.2) COROLLARY. Let g be a metric on  $S^n$   $(n \ge 4)$ . There exists a constant  $\varepsilon = \varepsilon(n, g, G) > 0$  such that if D is a smooth Yang-Mills connection in a G-vector bundle E over  $S^n$  with respect to the metric g, and satisfies

$$\int_{S^n} |R^D|^2 dV {\le} \varepsilon,$$

then D is flat (i.e.  $R^D = 0$  on  $S^n$ ).

To prove theorem (1.1), using a priori estimates obtained in [Na] and the monotonicity formula proved in [Pr], we first show that  $|x|^2|R(x)|$  is bounded. Then we can take "the broken Hodge gauges" of E due to K. Uhlenbeck [U1]. In this gauge we can prove that for some  $\alpha>0$ ,  $|x|^{2-\alpha}|R(x)|$  is bounded. This implies that  $R\in L^p$  for some p>n/2, from which our assertion follows by the result of K. Uhlenbeck [U2].

Corresponding results for the case of the harmonic maps have been proved in [Li] (see also [Ta]). Our results are inspired by their results.

We would like to thank Prof. T. Ochiai for his advice, and Prof. J. Kazdan who informed us the reference [S1], [S2].

### § 2. Notation

We shall describe the notation. Let M be an n-dimensional Riemannian manifold. Let E be a G-vector bundle over M where G is a compact Lie group. We write Ad E for the adjoint bundle with fiber  $\mathfrak{g}$ , the Lie algebra of G, and Aut E for the automorphism bundle with fiber G. We put a fiber metric on Ad E by some  $Ad_{G}$ -invariant metric on  $\mathfrak{g}$ .

We write  $R=R^D$  for the curvature form of a connection D. We define the Yang-Mills action by

$$\mathcal{YM}(D) = \frac{1}{2} \int_{M} |R|^{2} dV,$$

where dV is the volume element of M. A critical point of the Yang-Mills action is called a Yang-Mills connection. The above action is also defined for  $L_1^2 \cap L^4$ -connections. So we say  $L_1^2 \cap L^4$ -connection D is a weak Yang-Mills connection if D is a critical point of the above action.

It is well-known that a connection D is a Yang-Mills connection if and only if

$$D^*R = 0.$$

where  $D^*$  is the adjoint operator of D.

A gauge transformation  $\gamma$  is a section of Aut E which acts on connections as follows;

$$\gamma^*(D) = \gamma \cdot D \cdot \gamma^{-1}$$
.

Then we have  $R^{r^*(D)} = \gamma \cdot R^D \cdot \gamma^{-1}$ . The space of Yang-Mills connections is invariant under the action of the gauge transformations.

Later we shall show that the bundle E in theorem (1.1) is trivial  $E=(B-\{0\})\times R^N$  (fact (3.5)). In this situation we take the following notation. Let d be the flat connection of  $E=(B-\{0\})\times R^N$ . Then a connection D in E is given by

$$D=d+A$$

where A is a Ad  $E = (B - \{0\}) \times \mathfrak{g}$  valued one form. The curvature form R of D is given by

$$R = dA + \frac{1}{2}[A, A].$$

We denote by  $\delta$  the adjoint operator of d. The Yang-Mills equations are

$$D*R = \delta R + *[A, *R] = 0.$$

We shall use the radial coordinates  $x\!=\!(r,\phi)\!=\!\left(|x|,\frac{x}{|x|}\right)$ . The one form  $A\!=\!(A^r,A^\phi)$  splits into radial and spherical parts. The two form  $R\!=\!(R^{r\phi},R^{\phi\phi})$  also splits into two pieces since  $R^{rr}\!=\!0$ . We denote the flat connection of  $E|_{\partial B_r}\!=\!\partial B_r\!\times\! R^N$  by  $d^\phi$ , and its adjoint operator by  $\delta^\phi$ .

#### § 3. Proof of the Main Theorem

(3.1) LEMMA (Monotonicity Formula). If D is a Yang-Mills connection in a bundle E over  $B-\{0\}\subset R^n$   $(n\geq 4)$  for which  $\int_B |R|^2 dV < \infty$ , then we have for  $0<\rho_1\leq \rho_2\leq 1$ 

$$\begin{split} &\exp(C_{\scriptscriptstyle 1}\rho_{\scriptscriptstyle 2})\rho_{\scriptscriptstyle 2}^{\scriptscriptstyle 4-n}\!\!\int_{^{B}_{\rho_{\scriptscriptstyle 2}}{}^{\scriptscriptstyle (0)}}|R|^{2}dV\!-\!\exp(C_{\scriptscriptstyle 1}\rho_{\scriptscriptstyle 1})\rho_{\scriptscriptstyle 1}^{\scriptscriptstyle 4-n}\!\int_{^{B}_{\rho_{\scriptscriptstyle 1}}{}^{\scriptscriptstyle (0)}}|R|^{2}dV\\ &\ge \!4\!\int_{^{B}_{\rho_{\scriptscriptstyle 2}}{}^{\scriptscriptstyle (0)-B}\rho_{\scriptscriptstyle 1}{}^{\scriptscriptstyle (0)}}\exp(C_{\scriptscriptstyle 1}r)r^{\scriptscriptstyle 4-n}|R^{r\psi}|^{2}dV, \end{split}$$

where r=|x| and  $C_1=C_1(n, \Lambda, G)$ .

PROOF. For the case that D is a weakly Yang-Mills connection in the full ball B and stationary under the reparametrizations of B, the above inequality is proved by P. Price [Pr].

We shall show that if the variational vector field X satisfies  $|X(x)| \le C|x|$  for some constant C, then the first variation vanishes;

(3.2) 
$$\int_{B} \{|R|^{2} \operatorname{div} X - 4(R(\nabla_{e_{i}}X, e_{i}), R(e_{i}, e_{i}))\} dV = 0.$$

Then we can follow the proof of [Pr], and we get the assertion.

Take a cut-off function  $f_{\tau} \in C^{\infty}(B)$  so that

- i)  $f_{\tau}(x) = 0$  if  $|x| < \tau$  and  $f_{\tau}(x) = 1$  if  $|x| > 2\tau$ ,
- ii)  $|Df_{\tau}(x)| < 4/\tau$ .

Since D is a smooth Yang-Mills connection over  $B-\{0\}$ , we get from the first variational formula

$$\int_{B} \{|R|^{2} \operatorname{div}(f_{\tau}X) - 4(R(\nabla_{e_{i}}(f_{\tau}X), e_{j}), R(e_{i}, e_{j}))\} dV = 0.$$

Since  $f_{\tau}$  has support in  $B_{2\tau} - B_{\tau}$ ,  $|Df_{\tau} \cdot X(x)|$  is bounded by

$$\frac{4}{\tau} \cdot C|x| \leq 8C.$$

We have

$$|\operatorname{div}(f_{\tau}X)| = |Xf_{\tau} + f_{\tau}\operatorname{div}X| \leq \text{constant independent of } \tau.$$

Similarly we have

$$|\nabla_{e_{\tau}}(f_{\tau}X)| = |e_{i}f_{\tau} \cdot X + f_{\tau}\nabla_{e_{\tau}}X| \leq \text{constant independent of } \tau.$$

So letting  $\tau \rightarrow 0$ , we have got (3.2).

Q.E.D.

(3.3) FACT ([Na]). There exist constants  $\sigma = \sigma(n, \Lambda, G)$  and  $C_2 = C_2(n, \Lambda, G)$  ( $n \ge 4$ ) such that if D is a Yang-Mills connection over  $B_r(x)$  with  $r^{4-n} \int_{B_r(x)} |R|^2 dV \le \sigma$ , then

$$\sup_{B_{r/4}(x)}|R|^2 \leq C_2 r^{-n} \int_{B_{r}(x)}|R|^2 dV.$$

(3.4) LEMMA. There exist constants  $\varepsilon_1 = \varepsilon_1(n, \Lambda, G)$  and  $C_3 = C_3(n, \Lambda, G)$   $(n \ge 4)$  such that if D is a Yang-Mills connection in a bundle E over  $B - \{0\}$  with  $\int_{\mathbb{R}} |R|^2 dV \le \varepsilon_1$ , then

$$|x|^4|R(x)|^2 \le C_3 \int_B |R|^2 dV$$
 for all  $x \in B_{1/2} - \{0\}$ .

PROOF. We have the estimate for  $x \in B_{1/2} - \{0\}$ 

$$|x|^{4-n}\!\!\int_{B_{\lfloor x\rfloor}(x)}|R|^2d\,V\!\leqq\!|x|^{4-n}\!\!\int_{B_{2\lfloor x\rfloor}(0)}|R|^2d\,V\!\leqq\!C\!\!\int_{B}|R|^2d\,V\!\leqq\!C\!\!\epsilon_1.$$

In the second inequality we have used (3.1). Thus if we choose  $\varepsilon_1$  sufficiently small, then we can apply (3.3) in the ball  $B_{|z|}(x)$  to get

$$|R(x)|^2 \le C_2 |x|^{-n} \int_{B_{1+1}(x)} |R|^2 dV \le C C_2 |x|^{-4} \int_B |R|^2 dV.$$
 Q.E.D.

Now let  $U_l = B_{2^{-l}} - B_{2^{-l-1}}$ ,  $S_l = \partial B_{2^{-l}}$  for  $l \ge 1$ . The next lemma shows the existence of broken Hodge gauges over  $B_{1/2} - \{0\} = \bigcup_l U_l$ , which is proved by K. Uhlenbeck [U1].

- (3.5) Fact (Broken Hodge gauges [U1]). There exists  $\gamma_0 = \gamma_0(n, \Lambda, G)$  such that if D is a smooth connection in  $B_{1/2} \{0\}$ , and the growth of the curvature satisfies  $|x|^4 |R(x)|^2 \le \gamma \le \gamma_0$ , then there exist gauges for  $E|_{U_l}$  which are continuously consistent across  $S_l$ , and in which D = d + A,  $A|_{U_l} = A_l$  and  $R|_{U_l} = R_l$  have the following properties for all  $l \ge 1$ ;
  - (3.6)  $\delta A_i = 0$  in  $U_i$ ,
  - $(3.7) \quad A_i^{\phi}|_{S_i} = A_{i+1}^{\phi}|_{S_i},$
  - (3.8)  $\delta^{\phi} A_i^{\phi} = 0$  on  $S_i$  and  $S_{i+1}$ ,

(3.9) 
$$\int_{S_{l}} A_{l}^{r} d\sigma = \int_{S_{l+1}} A_{l}^{r} d\sigma = 0,$$

$$(3.10) \quad |A_{l}| \leq C_{4} 2^{-l} \sup_{U_{l}} |R_{l}| \leq C_{4} 2^{l} \sqrt{\gamma}, \quad C_{4} = C_{4}(n, \Lambda, G),$$

$$(3.11) \quad (\lambda_{1} - C_{5}\gamma) \int_{U_{1}} |A_{1}|^{2} dV \leq 2^{-2i} \int_{U_{1}} |R_{1}|^{2} dV,$$

$$\lambda_{1} = \lambda_{1}(n, \Lambda, G), C_{5} = C_{5}(n, \Lambda, G),$$

$$(3.12) \quad (\lambda_2-C_{\rm G}\gamma)\!\int_{S_1}|A_1^{\phi}|^2\!d\sigma\!\leq\!\int_{S_1}\!|R_1^{\phi\phi}|^2\!d\sigma, \quad \lambda_2\!=\!\lambda_2(n,\,\varLambda,\,G),\,C_{\rm G}\!=\!C_{\rm G}(n,\,\varLambda,\,G).$$

From this fact we can extend the vector bundle E over  $B-\{0\}$  to the full ball B through the above trivialization.

(3.13) LEMMA. There exist constants  $\varepsilon_2 = \varepsilon_2(n, \Lambda, G)$ ,  $C_7 = C_7(n, \Lambda, G)$ , and  $\alpha = \alpha(n, \Lambda, G)$   $(n \ge 4)$  such that if D is a Yang-Mills connection in a bundle E over  $B - \{0\}$  with  $\int_B |R|^2 dV \le \varepsilon_2$ , then for some  $\alpha > 0$ 

$$|x|^{4-\alpha}|R(x)|^2 \le C_7 \int_B |R|^2 dV$$

holds for all  $x \in B_{1/2} - \{0\}$ .

PROOF. Owing to (3.4) if we choose  $\varepsilon_2$  so that  $C_3\varepsilon_2 \leq \gamma_0$  and  $\varepsilon_2 \leq \varepsilon_1$ , we can apply (3.5).

By integration by parts we first obtain

$$(3.14) \quad \int_{v_l} \! \left( R_{\scriptscriptstyle l}, \, R_{\scriptscriptstyle l} + \frac{1}{2} [A_{\scriptscriptstyle l}, \, A_{\scriptscriptstyle l}] \right) \! dV = \! \int_{v_l} \! (R_{\scriptscriptstyle l}, \, DA_{\scriptscriptstyle l}) \, dV = \! \int_{s_{l}} \! - \int_{s_{l+1}} \! (A_{\scriptscriptstyle l}^{\phi}, \, R_{\scriptscriptstyle l}^{\tau \phi}) \, d\sigma.$$

Here we have used  $D*R_i=0$  since D is a Yang-Mills connection.

(

枚

From (3.10) and  $|x|^4|R(x)|^2 \le C_3 \varepsilon_2$ , we can estimate the inner boundary terms as

$$\left| \int_{S_{l+1}} (A_l^{\phi}, R_l^{r\phi}) d\sigma \right| \leq C_7 2^l (2^l)^2 (2^{-l})^{n-1} = C_7 (2^{-l})^{n-4}.$$

So if  $n \ge 5$  this terms vanishes as  $l \to \infty$ . For n = 4 this term also vanishes since (3.10) holds and  $|x|^4 |R(x)|^2 \le C_3 \int_{B_{n+1}(0)} |R|^2 dV$ .

Thus summing up (3.14) over  $l \ge 1$ , we get

$$\int_{B_{1/2}}\!\! \left(R,\, R\!+\!\frac{1}{2}\left[A,\, A\right]\right)\!\! dV \!=\! \int_{S_1}\!\! (A_1^{\phi},\, R_1^{r\phi}) d\sigma.$$

The other boundary terms cancel since (3.7) holds and the curvature R is continuous across  $S_i$ .

Using (3.11), we can estimate the error terms

$$\Big| \int_{U_l} \! \Big( R_{l}, \, \frac{1}{2} [A_{l}, \, A_{l}] \Big) \! d \, V \, \Big| \leq C_8 \varepsilon_2 2^{2l} \! \int_{U_l} |A_{l}|^2 d \, V \\ \leq C_8 \varepsilon_2 (\lambda_1 - C_9 \varepsilon_2)^{-1} \! \int_{U_l} |R_{l}|^2 d \, V.$$

If we choose  $\lambda_1 - C_9 \varepsilon_2 \geq \lambda_1/2$ , we have

$$\int_{B_{1/2}} |R|^2 dV \leq C_{10} \varepsilon_2 \int_{B_{1/2}} |R|^2 dV + K \int_{S_1} |A_1^{\phi}|^2 d\sigma + \frac{1}{K} \int_{S_1} |R^{r\phi}|^2 d\sigma.$$

Here  $C_{10}=C_8\cdot 2/\lambda_1$  and K is a constant which we shall fix later. The second term can be estimated from (3.12) as

$$\int_{S_1} |A_1^{\phi}|^2 d\sigma \leq (\lambda_2 - C_{11} \varepsilon_2)^{-1} \int_{S_1} |R^{\phi \phi}|^2 d\sigma \leq C_{12} \int_{S_1} |R|^2 d\sigma.$$

Here we have chosen  $\lambda_2 - C_{11} \varepsilon_2 \ge \lambda_2/2$ .

We choose  $C_{10}\varepsilon_2 \leq 1/2$ , and using the dilation  $y = \frac{1}{r}x$ , we apply the above inequality over  $B_r = B_r(0)$  to get

$$(3.15) \quad r^{4-n} \! \int_{\mathcal{B}_r} |R|^2 dV \! \leq \! C_{13} K r^{5-n} \! \int_{\partial \mathcal{B}_r} |R|^2 d\sigma + C_{13} K^{-1} r^{5-n} \! \int_{\partial \mathcal{B}_r} |R^{r\phi}|^2 d\sigma.$$

We set  $F(r) = \exp(C_1 r) r^{4-n} \int_{B_r} |R|^2 dV$ . Multiplying  $\exp(C_1 r)$  in (3.15) and integrating from  $\rho/2$  to  $\rho$ , we get

$$egin{aligned} &\int_{
ho/2}^{
ho} F(r) dr \! \le \! C_{14} K \exp(C_1 \! 
ho) 
ho^{5-n} \! \int_{B_{
ho}} |R|^2 dV \ &+ C_{14} K^{-1} \! \int_{
ho/2}^{
ho} \exp(C_1 \! r) r^{5-n} \! \int_{\partial B_{oldsymbol{\sigma}}} |R^{r\phi}|^2 d\sigma \ dr. \end{aligned}$$

Since F(r) is non-decreasing from (3.1), the left-hand side can be bounded by  $\frac{\rho}{2}F\left(\frac{\rho}{2}\right)$  from below. We can also estimate the second term of the

right-hand side by  $C_{14}K^{-1}\rho\Big(F(\rho)-F\Big(\frac{\rho}{2}\Big)\Big)$  from above by (3.1).

Thus we get

$$\left(\frac{1}{2} + C_{14}K^{-1}\right)F\left(\frac{\rho}{2}\right) \leq (C_{14}K + C_{14}K^{-1})F(\rho).$$

Taking K small so that  $\frac{1}{2} > C_{14}K$ , we have

$$\mu F\!\!\left(\frac{\rho}{2}\right)\!\!\! \leq \!\! F(\rho) \quad \text{for some } \mu \!=\! \mu(n, \varLambda, G) \!>\! 1.$$

By iteration we get

$$F(2^{-l})\! \le \! \mu^{-l} F\!\!\left(\frac{1}{2}\right) \! = \! (2^{-l})^{\log_2\!\mu} F\!\!\left(\frac{1}{2}\right) \quad \text{for all } l.$$

Since F is non-decreasing, we finally get

$$F(
ho)\!\leq\!C_{\scriptscriptstyle 15}
ho^{eta}\!\!\int_{\scriptscriptstyle B}\!|R|^{\scriptscriptstyle 2}\!dV \quad ext{where} \;\; eta\!=\!\log_{\scriptscriptstyle 2}\!\mu.$$

Combining this inequality with

$$|R(x)|^2 \le C_2 |x|^{-n} \int_{B_{2|x|}} |R|^2 dV = C_{16} |x|^{-4} F(2|x|),$$

we get the assertion.

Q.E.D.

(3.16) Lemma. Let D be as in lemma (3.13). Then the curvature  $R \in L^p$  for some p > n/2 and is a weak solution of the Yang-Mills equations in the full ball B.

The proof is elementary, so we omit it.

Now the main theorem follows from the following theorem of

## K. Uhlenbeck [U2].

(3.17) FACT. Let D be a weak Yang-Mills connection in B with  $R \in L^p$  for some p > n/2. Then there exists  $L^p_2$  gauge transformation  $\gamma \in L^p_2(B,G)$  such that  $\gamma^*(D)$  is smooth.

Since  $L_2^p \subset C^0$  for p > n/2, the gauge transformation  $\gamma$  does not change the bundle E over  $B - \{0\}$ . Then D = d + A and  $\gamma^*(D) = d + A'$  satisfy the following relation;

$$A = -d\gamma \gamma^{-1} + \gamma A' \gamma^{-1}$$
.

Since A and A' are smooth in  $B-\{0\}$ , we can conclude that  $\gamma$  is smooth in  $B-\{0\}$ .

#### References

- [Li] Liao, G., A regularity theorem for harmonic maps with small energy, J. Differential Geom. 22 (1985), 233-241.
- [Na] Nakajima, H., Compactness of the moduli space of Yang-Mills connections in higher dimensions, preprint.
- [Pr] Price, P., A monotonicity formula for Yang-Mills Fields, Manuscriptia Math. 43 (1983), 131-166.
- [S1] Sibner, L. M., Removable singularities of Yang-Mills fields in R<sup>3</sup>, Compositio Math. 53 (1984), 91-104.
- [S2] Sibner, L. M., The isolated point singularity problem for coupled Yang-Mills equations in higher dimensions, Math. Ann. 271 (1985), 125-131.
- [Sm] Smith, P. D., in preparation.
- [Ta] Takakuwa, S., On removable singularities of stationary harmonic maps, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 373-395.
- [U1] Uhlenbeck, K., Removable singularities for Yang-Mills fields, Comm. Math. Phys. 83 (1982), 11-30.
- [U2] Uhlenbeck, K., Connections with  $L^p$ -bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42.

(Received October 29, 1986)

Department of Mathematics University of Tokyo Hongo, Bunkyo-ku, Tokyo 113 Japan