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Introduction

The theory of 2nd microlocalization was initiated by M. Kashiwara
in 1975 in Nice. He constructed the sheaf of 2-microfunctions from the
sheaf CO of microfunctions with holomorphic parameters.

Let M=R/?XR! and its complexification X=C.¢XC! We set
N=R;*xC? in X and set A=S%X (=+/ —1S*R"¢XxC?) and A=S;XNA
(=4 —1S*R"*xR%. /is endowed with the sheaf CO of microfunctions
with holomorphic parameter z. M. Kashiwara constructed the sheaf (%
on S%/, by which we can study the properties of microfunctions defined
on A precisely. More explicitly, there exists the sheaf B? of 2-hyper-
functions on 4 which satisfies the exact sequences

0—CO|—Bi:— 7, C:—0
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and

0—’CMIA_>@/%-

Here 7 :S%4—>/A. See Kashiwara-Laurent [7] for C? and Y. Laurent
[9] for 2-microdifferential operators which act on C2 See also N. Tose
[14], [15], [16] and [17] for their applications to the propagation of
singularities for some classes of microdifferential equations.

In this paper, we reconstruct the sheaf C} in the framework of the
cohomological Radon transformations developed by K. Kataoka [3]. As
mentioned above, the sheaf of 2-microfunctions C? is defined purely
cohomologically from the sheaf C©. By virtue of the global vanishing
theorem for CO, we can express 2-microfunctions as boundary values of
microfunctions with holomorphic parameters by expressing the cohomol-
0ogy groups as Cech cohomology. But the choice of coverings itself is
not canonical. If we take the covering depending on the fibers of S%/
—/ and replace the sums in Cech cohomology group to the integration
along fibers of S%/4—/A, we gain the notion of cohomological Radon
transformation. Roughly we express 2-microfunctions and 2-hyperfunctions
as a microfunction valued (d—1) formmz‘% . fa(t, z, x*¥)dx*’ depending holo-

morphically on z and z*. Here 2z* denotes the fiber coordinate of
S%4—A. Then the global vanishing theorem for CO (Theorem 1.1) will
play an essential role. See also the introduction of K. Kataoka [3] where
an intuitive explanation of Radon transformation can be found.

Now we give the plan of this paper. In 1° we prepare some notation
about the sheaf of microfunctions with holomorphic parameters, the
abstract form of the theorem of Edge of the Wedge, 2-microfunctions
and the nuclear properties of the sheaf of holomorphic functions with
smooth parameters. Again we recall the crucial fact used to apply the
theory of Kataoka [3] is given in Theorem 1.1, which will be proved in
2°. In 3° we define the sheaf of microfunctions with both holomorphie
parameters and smooth parameters and study its cohomological properties,
which will be used to construet the cohomological Radon transformation
in 4°. In 5° we give a morphism C,|,— B2 using the Radon transfor-
mation. In 6° we relate the Radon transformation of 2-microfunctions
to the Cech cohomology group with value in CO. In 7° we consider the
curvilinear wave expansion of microfunctions with holomorphic parameters
and give a theorem of Edge of the Wedge of Martineau type for B

Applications of this note will appear in the subsequent paper [18],
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where several operations for 2-microfunctions and 2-hyperfunctions will
be defined with the aid of the Radon transformation. Moreover we will
give theorems about the interdependence between the support of a
microfunction and its 2-singular spectrum.

A few words on the process how this joint paper has come to being.
Actually, a substantial part of the result of this paper is contained in a
Thesis for Master’s Degree of the first author submitted to the Univer-
sity of Tokyo in March of 1985 (M. Noro [11]). Then the first author took
his current job which is not tightly connected with this field of mathe-
matical research and had some difficulty in completing the manuscripts
for publication. Under these circumstances, the second author, who believes
in the importance of this work and who already contributed to the pro-
gress of the study through continual discussions with the first author at
the Komatsu Seminar for a long period, has joined in order to complete
the present English version with some elaboration.

The authors would like to express their gratitude to Prof. H. Komatsu
for the guidance and the encouragement mentioned above.

1° Perliminaries

1.1° Sato’s microlocalization

Let X be a C* manifold and Y be a closed submanifold of X. D*(X)
denotes the derived category of bounded below complexes of sheaves of
modules on X. For & €Ob(D*(X)), the Sato’s microlocalization of &F
along Y is defined by

(1.1) tty(F) =R s x(n™'F)*

where 7y x : Mon¥(X)=(X\Y)US}X—X is the comonoidal transformation
of X along Y and a:Si¥X—S%X is the antipodal map of fibers. (For
G eO0b(D*(S%X)) G* stands for the inverse image of G by a.) Here we

remark that Mon%(X) is expressed as YX* in Sato-Kawai-Kashiwara [13].
We also define the monoidal transformation of X along Y as

(1.2) Tyix: Mony (X) =(X\Y) U Sy X— X,
which is written as ;3(/ in Sato-Kawai-Kashiwara [13].

1.2° Microfunctions with holomorphic parameters

Let
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(1.8) M=R:iXR;y

and X be its complexification C¢XCr % We set

(1.4) N=XN{Imw=0}=C¢X R}
and
(1.5) A=StX.

We take a coordinate of SiX as (2,¢;4/ —1 (&-da+7-dt)oo). Then A is
called a partial complexification of an involutive submanifold of S%X:

(1.6) A={(z. t; v —1( 7)) € SEX ; £=0}.

A is endowed with the sheaf CO or C; of microfunctions with holo-
morphic parameter z, which is constructed in Theorem 2.2.5 of Chapter
3 of Sato-Kawai-Kashiwara [13]. See also Kashiwara-Laurent [7]. Ex-
plicitly, CO is defined as

(1.7) CO=px(Ox)n—d].

Here we remark that CO is concentrated in degree 0. We put N,=R}*
and X,=C5? and have the identifications:

(1.8) Mon%(X') =Mon} (X,) X C*
and
(1.9) SEX=S% X, xC¢=+—1S*R"*xC"

The following global vanishing theorem for CO is essential in the
following construction of the Radon transformation of 2-microfunctions
and will be proved in 2°.

THEOREM 1.1. For an open convex subset U of ~/'—1S*R*™* and a
Stetn open set D of C* we have

(1.10) Hi{UXD,CO)=0 (j=1).

1.3° Abstract form of the theorem of Edge of the Wedge

We quote the abstract form of Edge of the Wedge which is proved
by Kashiwara-Laurent [7]. We remark that the prototype of it can
be found in M. Kashiwara [4].

Let T be a topological space. We assume that there exists a functor &
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(1.11) {X:X is a complex manifold} g {sheaves of vector spaces on X X T}
X - > g:x.

Moreover for a holomorphic map between complex manifolds ¢ : X—X’,
we have the operation of substitution

(1.12) ¢* 1 (pXidy) F x—F x

which satisfies the following conditions.

(H1) Let U and V (cU) be two open subsets of a complex manifold X
such that U is connected and that V is nonempty. Let W be an open
set of T. Then we have

I wwixwUXW, Fy)=0.

(H2) f:X—C is a holomorphic map with df%0 on X. Let Y=5"(0)
and 1:Y—X be the canonical injection. Then we have an exact sequence

O———»ffx—+§xi>9"y—>0.

(H3) Let X and Y be two complex manifolds such that Y is compact.
We put f: XXYXT—XXT. Then we have for any ¢=0

qu*gXxY:gX @ HG(Y, Oy)
In the above situation, we have

THEOREM 1.3. Let G be a closed subset in C* and x be a point of G.
We assume there exists mo C-linear affine subvariety L in C" with
dim L=n—q—1 such that L>x and LNG is a meighborhood of x in
L. Then we have for any te T

(1.13) Hégxa(Fer)oy=0  (k<aq).

1.4° 2-microfunctions

We follow the notation in 1.2°.
M. Kashiwara introduced the sheaf of 2-microfunctions in [5]. Ex-
plicitly, the sheaf of 2-microfunctions C}: is defined as

(1.14) Ci=pC3) [d].

Here C? is concentrated in degree 0.
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We also define the sheaf of 2-hyperfunctions as

(1.15) Bi=94(C).
We set
(1.16) Ai=Cila

There exists the canonical spectral map
(1.17) Spi:n B —Ch
where 7 :S%4—/A. For a 2-hyperfunction u, we set
(1.18) SSi(u) =supp (Spi(w)),
which is called the 2-singular spectrum of wu.
For details about 2-microfunctions, see Kashiwara-Laurent [7].
1.5° A theorem about the nuclearity

Let X=CuXC!»XR!. There exists the sheaf OO.L of smooth
functions with holomorphic parameters z and w on X. Then we have

PROPOSITION 1.4. Let W be an open subset of C™ satisfying
(1.19) dim, H*W, Ox) <oo.
We take an open subset D in C"2X R"s such that

(1.20) H'(D,0L)=0 (1=1),

where OL 1is the sheaf of smooth functions on C"X R"s with holomorphic
parameters w. Then we have

(1.21) HYWxD,00L)=H"W,0) Q I'(D,O0L).

c

We can prove the proposition above in the same way as Lemma 2.4
of the following section 2.

2° Vanishing theorem for the sheaf of microfunctions with holomorphic
parameters

We follow the notation prepared in 1.2°.
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2.1° Proof of the Theorem 1.1

Because S%X is purely d codimensional with respect to z7'Ox («:
Mon#(X)—X), we have

(2.1) HiI{UXD, C;)=Hy:ip(UxD, n70x).

Here U=Q2UU"® is an open set of Mon¥,(X, with 2 open in C*\R‘ (U*
is the inverse image of U by a:S}¥X—S%X.) Consider the long exact
sequences

22)  —HyeplTXD, 7 Ox)—H(T XD, ' Ox)—H 2 x D, 0x) 5.

By Lemma 2.4, if dimc H*Q,C x,) <o, there exists an isomorphism

(2.3) H*2xD,0x)=H"2,0) QI'(D,0).
On the other hand, we have
(2.4) H2,0)=0 (k=d)
by a theorem of B. Malgrange. Thus
(2.5) H*(2 % D,0x)=0 (k=d)
follows.
Since we have an isomorphism
(2.6) . Hiop(U X D, 7'0x)==H (U x D, Ox)
by (2.2) and (2.5), it is sufficient to prove
(2.7) Hi({UXD, z7'0x)=0  (5=d).
Take a flabby resolution of Ox as
(2.8) 0—-0x—L".
Then
(2.9) 00— Ox—>r'L"

is an exact sequence. Moreover we can prove
LEMMmA 2.1.

(2.10) H({UXD,z'LH=0 (=1, k=0).
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Proor. Consider the long exact sequence
(211)  —Himp(U X D, 77 L)~ HH(T X D, 7 L4~ H(Q X D, L%,
Since _[* is flabby, we have
(2.12) H/(UXD, L*=0 (j=1).
On the other hand, by Proposition 1.2.4 of Chapter 1 of [13], we have
(2.13) Hijoyp(UX D, 7' L*) = lim Hj(X, L*).

z

Here Z runs the family of locally closed subsets of X satisfying the
condition of Proposition 1.2.4 of Chapter 1 of [13]. Thus

(2.14) Hio,n(UXD, 7' LY=0  (j=1)

follows and we have proved Lemma 2.1. (g.e.d. for Lemma 2.1.)
Using Lemma 2.1 above, there is an isomorphism

(2.15) H(UXD,z7'Ox)=H(I'UXD,z*L")).

Hereafter we calculate the right side of (2.15).
We consider the problem in the general situation as follows. Let

(2.16) M=R"={0} X R"C>R!X R} =N

and F be a sheaf on N. We take the comonoidal transformation of N
along M:

(2.17) 7 : Monk(N)={(R"\.{0}) USY '} X R"—>N=R'X R"

and take an open proper convex subset U of SEN=S"'XR". We regard
Si' as a unit sphere in R"'\{0}. Then we set in M\ N=(R'"\\{0}) X R"
(2.18) Q={(z,t) € M\ N; there exists a point (£, t) € U such that (x, £) >0}.

Here we remark that U=QUU® is an open subset in Mon%(N). Because
U is proper convex, we can take a sequence {K,};.y of compact proper
convex subset of U satisfying
(219) KjCKj+1 and U: UN Kj.

J€

We set in 2
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(2.20) Q2,={(x,t)eQ;|x|<j and there exists a point (&, t) € K; satisfying

(w,§) =0}
We define
(2.21) K,=Q;UK,
Then K; is a neighborhood of int K; in Mon#(N) and satisfies
(2.22) K;cint (K;,) and U= U K,
Thus we have ]
(2.23) ru, =9 = l(i_m 'K, =™F).

i

Here we give
LEMMA 2.2. We have an isomorphism
(2.24) I'K; r7F)y=TI(=zK,, F).
PROOF. We can show K, is compact in Mon%(N). Thus
P=r|g, :K,—n(K))

is a closed map with connected fibers. We show that the canonical
morphism F—p, p'F is isomorphic. Take a point g€ x(K,;). We have
the following isomorphism.

(2.25) (psp7'F),= lim I'(p7'(q), p7'F)== lim I'(V,p'd).
;3—; VDF?G)
Here the second isomorphism is due to the closedness of p. Moreover
we have the morphisms
(2.26) lim I°(V,p™'d)—I(p7(q), p~'F) =>4,
._._.)
vop~Lq)

Here the first morphism is injective. The second one is isomorphic since
p has connected fibers. After all we have a commutative diagram

(Pap™'F),

(2.27) / \ﬁ\

id
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Because f is injective, a is isomorphic. We have proved that the canonical
morphism

(2.28) F—pyp”F

is isomorphic. Thus

(2.29) r@K&,), $==rp"=K,),p"F) =K, z"9F).
(q.e.d. for Lemma 2.2)

We get back to the original situations.

We take 2 and K;=0Q;UK, in Mon} (X, as defined above in the
general situations. Moreover, since D is Stein in C% we can take a
sequence of compact analytic polyhedra in C* satisfying

(2.30) D;cD;,, and D= U D,.

Then we have by Lemma 2.2, ]

(2.31) I'U XD,z *.L*—==> ljin I'x(K;) X D;, L*".

Thus we get an isomorphism

(2.32) H*(U XD, ﬂ_IO)ZH"(li(I_n I@(K;)xD;, L")).
Now we quote a classical Lemma about Mittag-Leffler’s argument.
LEmMMA 2.3 (ef. M. Kashiwara [20]). Let

(2.33) —GF, —F [ —F o —

be a projective system of complexes of modules. We assume for any 1
{F'} satisfies the condition

(ML) {Im (ZFi,,—~%F})}, is stationary for any j.

Then

1) the canonical morphism

(2.34) ¢ : H*(lim & ;)—lim HY ;)
<« «—

J j
18 surjective.
2) Moreover if {H“S;)}; satisfies the condition (ML), then @ui 1s
180morphic.

Let F*=I(x(K;)xD; L*. Since L* is flabby, {<*} satisfies the
condition (ML). Here we remark



Radon transformation 319

(2.35) HYY;)=H"(x(K,;)x D;, Ox).
Thus if we show
(2.36) H*(z(K,;)x D;,Ox) =0 (k=d),
we can prove by Lemma 2.3
(2.37) H*'QxD, 7 '0x)=0  (k=d).
Since 7(K,) and D; are compact, there is an isomorphism

(2.38) H'(z(K,;) X D;, Ox)= lim  HY WX W, Oy)

s
WX WoDk(K;)XD;

where the inductive limit in (2.38) is taken for any open subset W, in
C"* and any open subset W, in C° satisfying the condition in (2.38).
Because D; is a compact analytic polyhedron, there exists a fundamental
systems of neighborhoods of D; which consists of Stein open sets. Thus
we can show that the right side of (2.38) vanishes in case k>d by using
Lemma 2.4. After all we have got the desired vanishing of cohomology
groups. (q.e.d. for Theorem 1.1)

2.2° Lemma about the nuclear property of the sheaf Oy

We prove a lemma concerning the nuclear property of the sheaf Oy
of germs of holomorphic functions.

LEMMA 2.4. Let X=C?*XC:. Let W be an open subset in C* and D
be an open subset of C°. We assume

(2.40) H(D,Ox)=0 (5=1)
and
(2.41) dime H*(W, Or) < co.

Then we have an isomorphism
(2.42) H"WxD,Ox)=H*W,Op) Q I'D, O).
PrOOF. First we remark that for any open subset D of € I'(D,0)

is a Fréchet nuclear space. Thus by H. Komatsu [22] (see also A. Douady

[19]),-@ I'(D,0) is an exact functor for topological short exact sequences
of Fréchet spaces. Thus we have for any open subset U [resp. V] of
C? [resp. CY],
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(2.43) LU OWV)=LOUXV)
and
(2.44) OW) & OV)=0UX V).

Here [ denotes the sheaf of smooth functions and L takes for that
of smooth functions with holomorphic parameters w € C.

We can take the partial Dolbeault resolution with respect to 2z
variables on X as

0, d, 2,
(2.45) 0—Ox— L) Lo o S LOn()—0,
On the other hand, since H'(D, Oy)=0 (j=1), we can show
(2.46) H(WxD, Lo =0 (j=1,i=0)

by using Andreotti-Grauert [1]. Thus

(2.47) H(WxD,Ox) =H((WxD, L))
~HI((W, L) (D, O))

follows.
Let
(2.48) 00— gp— L0
be the Dolbeault resolution on C?. We set
(2.49) B=Im ([(W, Lo —T(W, L))
and
(2.50) Zi=ker (D(W, LO")— (W, L))

Because dim H*(W, O¢)<oco, B* is a closed subspace in I'(W, L»)
by Theorem IV. 3.4.9 of H. Komatsu [21]. Thus

(251)  0-Z'& I'(D,O)—»I(Wx D, L) —B*& I'(D,0)—0
and
252) 0-B*® I'D,O)—2*Q I'(D,O)—~H"W,O) @ I'(D, ©)—0

are exact.

On the other hand, since the functor -@I’(D, O) is a left exact
funetor, we have for any 1
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(258);  Z'® I'(D,0)= ker(I'(Wx D, L0\~ (Wx D, L®0)).
By (2.50) and (2.53),_,, we get

254) B*QI'(D,O)=Im (I(WxXD, Lo T(WxD, L4),
After all,

(2.55) H{T(WxXD, L)=H"W,Oc) & I'(D, Oka)

follows from (2.53),, (2.54) and (2.52).

3° Sheaf of microfunctions with smooth and holomorphic parameters

We define the sheaf of microfunctions with both holomorphic para-
meters and smooth parameters and give some vanishing theorems con-
cerning it.

Let X=CuXCi:XR» (w=t++/—1s) and N={Imw=0}NX=R}1X
C=X R, We put N,=Rn and X,=C™. Then we have

(3.1) Mon%(X) =Mon3,(X,) X C'2X R,

For a complex manifold W, there exists the sheaf 0,OL of smooth
funetions on W XC!2X R'* which depend holomorphically on W xCiz.
The shenf O0yOL is also denoted by <y in this section. < -, which is
the sheaf on X, is also expressed as OOL.

Here we give

PROPOSITION 3.1.
(3.2) HHpx(O0L)=0  (kxmn).

PrROOF. ,’s trivially satisfy the condition (H1) and (H2) in the
subsection 2.2° when we put T'=C"2X R"s.
When Z is a compact complex manifold, we have

(3.3) dim¢ H*(Z, O7) < oo (for k=0)

by a theorem of Cartan. Using Proposition 1.4, we can show that &,’s
satisfy the condition (H3) in 1.2°. Thus we can apply Theorem 1.3 for
Fys.

We identify
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(3.4) SiX~=4/—1S*R"1 X C"X R"s

and take a coordinate of S%X as (t, v/ —1rtdtoo;z, u) with € R4\ {0}.
Take a point p€S}X. We may assume from the begining p=
(0, v/ —1tdtco;0,0) with z,=(1,0, - -+, 0).
We take m, points of R"'\{0}:7, ---, 7, such that the convex hull of

{tp T - -+, 7s)} is a neighborhood of the origin in R". We put t=(zy, - -,
7,,) and
(3.5) G.={(w,z,u) € X;dmw, ;)20 (I=1, -, m)}.

Then we have

(3.6) I (OO L)) = lim L5, (OO0 L)

where the inductive limit is taken for r satisfying the condition above.
Applying Theorem 1.3, we have

(3.7) HE(O00L)e=0  (k<m)
thus

(3.8) HHpn(00L),=0  (k<mi).
Let for a positive number 4

(3.9) U,={(w, 2z, u) € X; |w|<8,|2]|<0, |u| <0}
and

(3.10) Us, ={(w, 2z, u) €Uy ;{Im w, 7,)<0}.
We remark that

(3.11) He (00L)ei0= 1i_r§ Ht (U, 00.L)
and d

(3.12) U \G.= lt:Jli U, .

Because {U,, Uy, 1, - -+, U, 4} is a Leray covering for OOL.
(3.13) H: (U, 00L)=0  (k>mn)

holds. Thus we have
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(3.14) I &, OOL) ey =0 (k>mn,). (g.e.d.)
DEFINITION 3.2, We set
(3.15) COL =9 (uy(0O0L)).

DEFINITION 3.3 (Andreotti-Grauert [1], Kataoka [3]). Let D be a con-
nected open subset of C":XR". D is called a regular family of Stein
domains if the following conditions (3.16) and (3.17) are satisfied.

(3.16) Let m:C"XR"—R" be the natural projection. For any x¢€=(D),
Y (z) is Stein.

(8.17) For any x€=x(D), there exists an open subset W, in C™ and an
open neighborhood U, of z in R™ such that both (W.xU,, = (U, N D)
and (z7'(x) N D, W,) are Runge pairs.

By Andreotti-Grauert [1], if D is a regular family of Stein domains
in C™XR", we have

(3.18) Hi(D,0L)=0 (7>0).

Here OL is the sheaf of smooth functions on C"2x R™ which are holomor-
phic with respect to the variables of C™.

Moreover, there exists a sequence of compact analytic polyhedra
{@}; in Cr2X R"s satisfying

(3.19) Q:cQ;i;; and D= U Q:
and

(3.20) @; has a fundamental system of neighborhoods {W, such that
H (W, 0L)=0 (5>0) for any 2.

Using Proposition 1.4 and the remarks above, we can prove the fol-
lowing theorem in the same way as Theorem 1.1.

THEOREM 3.4. Let U be a proper convex subset of v/ —1S*R™ and D
be a regular family of Stein domain. Then we have

(3.21) H/({UxD,COL)=0 (7>0).
We settle another notation. Let

(822) X=C"XR2 N=R'XC", X=XXR» and N=NXR".
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We set

(3.23) p:X—X and p:Mon}(X)—>Mon%(X).
S%X is endowed with the sheaf

(3.24) CL=I"(uy(OL))

of microfunctions with smooth parameters where O is the sheaf of
smooth funections on X holomorphic with respect to the variables of C™i.
Here we give a vanishing theorem for p~'C_L.

THEOREM 3.5. We take an open subset D of R"X R"s such that there
exists a sequence of open subsets in D: {W;} satisfying

(8.25) UW,;=D and W,ce W,.,eD
and

(3.26) for any xER™ pix)NW; and px)NW,; and p z)ND are
contractible (p: R2X R—R"). Then for any open proper convexr subset
U in v/ —1S*R™, we have

(3.27) HUXD,p*CL)=0 (k>0).
Proor. First of all, we have _
(8.28) p'CL=p""px(0L) [m]=p2(p~'0L) [n]
by Lemma 2.2.3 of Chapter 1 of Sato-Kawai-Kashiwara [13]. Thus
(3.29) HYUXD, p7'CL)=HYp(U XD, z"'p7'0L)

follows with U=U*UQ (U* denotes the image of U by the antipodal map

a:SiX—S§X). Here U is an open subset of Mon%*s(C™) and 2 is an

open set in C*\ R™ and r is the comonoidal map = : Mon}(X)—X.
Consider the long exact sequence

(3.30) —Hba,p(U XD, 7'p OL)->H*U XD,z 'p'OL)
—H*QxD,p0L)—~

and a resolution of p~'OL

(3.31) 0—p  OL—-p ' Lo L

which is the inverse image of Dolbeault resolution of O on X. By
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Theorem 2.1.4 of K. Kataoka [3], we have

(3.32) H(@QXD,p?' L% L)=0 (5=1,k=0).
Thus
(3.33) HYQXD,pOL)=H*T'(2xD,p*L*.L))

follows. Moreover, since p is open and with connected fibers, the right
side of (3.33) is isomorphic to H*(I"(2 X p(D), L*'.L)). Thus we have

(8.34) H*Q2XD,p'OL)=HTI'(Qxp(D), L L))=H*RxpD),0L).
Here the last term in (3.34) vanishes in case k=>n,. Hence we have
(3.35) Hoyp(UX D, z7'p70L)=HU X D, 7 'p'OL) (k>my).

In the same way as the proof of Theorem 1.1, it is enough to prove
(3.36) HYKxW,;,p0L)=0 (k>m,)
for a compact subset K in C. But we have
(3.37) HYKx W, pOL)=H"KxpW,,0L),

because p| kxw, i proper and with contractible fibers and K x W; is Haus-
dorff. Here right side of (3.37) vanishes in case k>n,. (q.e.d.)

4° Cohomological Radon transformation for 2-microfunctions

4.0° We construct the cohomological Radon transformation for B2 and
C? in the same way as K. Kataoka [3].

Let X=Ci¢XC¢(w=t++—1s, 2=x++/—1y) and
(4.1) N={Im w=0} X=R:~* x C%.

4.1° Take an r-dimensional complex manifold Y. We denote the sheaf of
holomorphic relative I-forms with respect to Y on XxY by O:0%.
Then we have an exact sequence on X;=XXY

(4.2) 0—-p ' 0x—>0:09—-0x09— - - - 5009 —0

with p: X,=XXY—X. We put N;=NXY and microlocalize the exact
sequence (4.2) along N,. Then we can obtain an exact sequence (by
Lemma 2.2.3 of Chapter 1 of Sato et al. [13])
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(4.3) 0—p ' CO-COOO—-LOOM— . . . —LOO—0
with p:S¥ X;=S§X X Y—S}X. Here

(4.4) CO=H""*(ux(Ox))

and

(4.5) COOD =" (11y (Ox09)).

On the other hand, we consider the relative Dolbeault resolution of
009 with respect to C¢

(46) O—’@xOY—)@cn_dI(o' : )@y.
When we microlocalize (4.6) along N, we have an exact sequence
(4.7) 0—-COO—-CL 0.

4.2° Take a smooth manifold Y of dimension d instead. O, s.L oL
denotes the sheaf of smooth relative I-forms with respect to Y on X,=
XxY depending holomorphically on C*™¢. (L stands for the sheaf of
smooth functions on X which are holomorphic in w.

Consider the relative de Rham’s resolution on X;:

(48) O%p_l@.f—“?cn_d.[:cd.f(y‘ ).

Here p: XxY—X. We microlocalize (4.8) along N, and obtain an exact
sequence on S¥ X;:

(4.9) 0->p CLSCLLOSCLLY—- - - >CLL"—0
with p:S§ X;=S§XXY—S{X. Here

(4.10) CL =9y (OL))

and

(4.11) CLLY=9"(un,(Ogn_oL 1aLP)).

On the other hand, Ox.L¢ is the sheaf of smooth relative I-forms
with respect to Y on X, holomorphic with respect to (w,z). We can
obtain the following exact sequence on S¥ X, in the same way as (4.9).

(4.12) Oﬁp_ICO—*C@I(O)—»C@I“)_—). o COLM 0

where
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(4.13) COLY = (un,(OxLY)).

4.3° We follow the notation of 4.1° and take a complex manifold Y.
Consider the diagram

(4.14) N=RI*XCXY—CoixXCiXY=X,
|7 |7
N=RI4xC:—Cr¢xCi=X

and the commutative diagram on S§ X,

(4.15) 0 0 0 0
v v y !

dy dy
0—>p‘f?—> C?@“” —»C(?@“) — C?@‘Z’ —
0—>p 'CLOOC L OO C LOOP—-CLOOP—

y
O—>p“C£E‘°' U_)CIDO' 1)@(19)_*6’_1?0,1)@(;)_,6’_%0.1)@(5)_,_

Here C_L®" is obtained by the microlocalization along N of the sheaf
Opn_aL®" of smooth relative (0,l)-forms on X with respect to ce
depending holomorphically in w. Explicitly

(4.16) CLOD = I x Opga-aL).

CLoMOy is derived from the sheaf O,,_,.L*"0y of smooth relative (0, [)-
forms with respect to C? which are holomorphic in C*™¢ and Y:

(4.17) CLOPOy = (15, (O gu_a-L " Oy)).

Take a Stein open subset D in C* ¢X Y satisfying the assumptions
of Theorem 3.4 and Theorem 3.5 and an open subset U in v/ —1 S*R*™¢,
Then in the commutative diagram

0 0

!
¢ I‘(U1<D, coOO®) —r (U %D, CcOO™) —
0-I'(U >l< D, p‘IC.Em'”’)—»F(U)f D,C L0 - (U XD, CL"O")—
0—>F(U>fD, p“C.[’<°'1’)—>I“(U>l< D, C.C‘“"’@‘“’)—»F(U%D, CLOPOM)—

(4.18) 0 —

all columns and all rows are exact except the first row and the first
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column. Then by a lemma of Weil, we have the isomorphism
(4.19) HYT'UXD, COO“)=HI'(U XD, p~*CL ).

Here the right side of (4.19) is isomorphic to H*(I"(U X p(D), CL**)) (p:
C*X Y—C% because p is open and with connected fibers. Moreover, since

(4.20) HYU X p(D),C.L*") =0 (k=1,1=0),
the isomorphism

(4.21) HYI'({UxD, COO)=H*U x p(D), CO)
follows.

4.4° We follow the notation prepared in 4.2°. That is,
(4.22) Ni=R"*XCXY—CixXCiXY=X,
lp D
N= Ri‘xXC!@ — (C"!xCi=X.

Take an open subset D in C?¢XY satisfying the assumption of Theorem
3.4 and Theorem 3.5. When we consider the resolution (4.11) i.e.

(4.23) 0—-p ' CO-COL ),
we can deduce the isomorphism
(4.24) HYI'(UxD,COLY) =H*U X p(D), CO)

with p:C* X Y—C".

4.5° Radon transformation for C} with smooth parameters
We follow the notation prepared in 4.0°. We also set
(4.25) M={(w,2) € X;Imz=0,Im w=0}=R¢ X R:™°.

We take a coordinate of SiX (=+/—1S*M) as (¢, x;+v —1(cdt+Edx)oo)
and set

(4.26) A={(x, t; vV =1 (r,8) € SEX; £=0}=+ —1 S*R" "¢ X R
and

(4.27) A=8}X=+—18*R"*xC:.
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We consider the diagram

(4.28) V=1 S* R X CE X St 2/ T1 S* R Ci= 1
T
v/ —1S*R" ¢ X RIX S '—+/ —1S*R" X Ri= /.

We represent a point of v/ —1 S*R"¢ by p* for short.
For a C? function g¢:[0, o0)—[0, co) satisfying g¢(0)=g¢’(0)=0 and
g’ (x), g" (x)=0, we define

(4.29) D, .={(o* 2, &) € AX S ; |ly|<e, y& —g({y*— (¥€)*}*) >0}
with y=Imz2. Let

(4.30) CSk.=(z|D,, ) COL®
and
(4.31) CSt=lim CSt, ..

When we identify
(4.32) St A=~/ "1 S*R"*X R X S¢*
and regard CS* as a sheaf on S%/4, we can give

THEOREM 4.1. We have the exact sequences

(4.33) 07  AL—->CS'—CSi—- - -—»CS‘Z"‘—%CZAO
on StA and

on A. Here m:SiA—A.

We can prove the theorem above in the same way as K. Kataoka
[3] using (4.24) and the theorem of edge of wedge for CO.

REMARK 4.2. Take an open proper convex subset U in 4/ —1 S*R"¢

and an open convex subset V in R% Then {UX(V++—1RY) XS N
D, , satisfies the assumptions of Theorem 3.4 and Theorem 3.5. Thus we
have

(4.35) HN D(UX VXSS, ) =H(UX W, CO).
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Here W=(V++/—1{|y|<e}\R’. Thus we have
(4.36) HNUX W, CO)=Héyy(UX VE,CO) =T UXV, B

for d>2, where V¢ is a Stein neighborhood of V in C¢ Hence any 2-
hyperfunction is represented by a global section of COL“ V. This fact
can be shown directly in case d=1.

4.6° Radon transformation for (% with real analytic parameters (plane
wave decomposition)

We consider the situation in (4.26) and (4.27). We set

(4.37) N.={(eC!;C=—1,|Rel|<e} ((=6++—17)
and
(4.38) VZISHR™ X CIXN, -2 A/ T1S*RxCi=A

lz‘
AV —1S*R" X R:XV =187 1——4/—1S*R" X R!=/
where ¢ is given as (o*, 2, {)—(0*, Rez, v/ —1Im¢/| Im{|). We put

(4.39) D,={(p* 2, 0) €V —1S*R"*XCiXN,; ly|<e, Re (2) + (|£]/e) <0}
and

(4.40) CYl=(t|p) xCOOY
and
(4.41) CY = lim CY..

We regard C O‘Zj as the sheaf on S%/ and give

THEOREM 4.3. We have the exact sequences

(4.42) 02" A C P —CY —- - - —>CH ' —>C%—0
on SiA and

(4.43) 0> A2>pC I -0 — - - -0 CI T > B2—0
on A.

We can prove the theorem above in the analogous way as K. Kataoka

[3].



Radon transformation 331

5° Morphism C|,—B}

51° Let M=R'*xXR: and X=Cr¢xC!® We take a coordinate of
%X as (t,x ;v —1 (cdt+Edx)oo) and set

(5.1) A={(t,x; v/ =1 (r,&)c0) € SEX ; 6=0}=+/—1 S*R"* X R".
We put N=R:!¢xC? in X and
(5.2) A=8%X=+/—1S*R"* X C".

It is shown in Kashiwara-Laurent [7] that there exists a canonical
morphism Cy|,—B2 Moreover the morphism above is proved to be in-
jective. In this section we construct another morphism Cy|,—~%B} through
the Radon transformation for C, and B2

5.2° First we take the Radon transformation of C, with smooth para-
meters following K. Kataoka [3]. We regard S%X as Ry, ., xXS{7; and
define the sheaf S* as follows. We set in C*xS**

(6.3)  D.={w z;7¢§); [Imw|<e [Imz|<e (Imw, ) +(Im 2, £>>0}
and ¢:C"XS"'>R"XS"*
(w, z; (z, §)oo)—> (Re w, Re z, (z, §)o0).
We define the sheaf S* on SiX as
(5.4) St=lim (r]p )« OL®
—

€

where O_L™ is the sheaf of smooth relative k-forms with respect to S*!
on C*"xS"! depending holomorphically on C". Then we have an exact
sequence

(5.5) 07 Ay S— L, G158 1% 0,0

on SiX by K. Kataoka [3].

5.3° On the other hand, we have

(5.6) 0—>J§-+p*55°ié—>p*681—>- o CS B2 50

by Theorem 4. 1.

5.4° Take a point p,=(0,0; 4 —1rdtcc) € A with 7,=(1,0, ---,0). Then
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f€Cul,, can be expressed as
(6.7) f=o(F(w,z;7,§) da(z, §))

by FeOL({|lw|<e, |z|<e, |(z, &) — (to, 0)| <&, {Im w, > +{Im 2, £)>0}). Here
do(z, &) denotes the standard volume form on S" .
In the same way, g€ .$% can be written as

(5.8) g=0(G(¢, 2,§)da(§))

by GeCOL({(t, v/ —1zdtoo;z,&) €V —1S*R* X CXS*™; [t|<e, |t —7o| <6,
{mz, &)>0, |z|<e}). Here COL is the sheaf on v/ —1S*R"¢XC*XS*!
defined in 4.2° and do(§) is the standard volume form on S

5.5° We consider the Radon transformation of CO.L with smooth para-
meters. We regard VvV —1S*R*XC*X S as I=Ri* XS XCiX St
and put Y=Cr?xXSr4'xCixS¢'. We take an open subset in 2 as

(5.9) D.={w, 28 ;|Imw|<e dmw, t)>0}
and set
(5.10) r:35—7%

(w, 7,2 &)—>(Rew, 7, 2, §).

We denote the sheaf of smooth relative I-forms with respect to ¢ on )
holomorphic with respect to w and z as OLYOL. We set

(5.11) S$0OL=(z]5)x0LVOL
and
(5.12) SYOL = lim SPOL.

€

Then we have an exact sequence

(5.13) 07 OO L | pr-tyeiyst-)>SOOL-SSYOL—- - -
eSO L COL—0

with 7:4/ 1 S*R* X C¢X SR ¢xC*xS**. Here OOL is the sheaf of
smooth functions on Ci ?XC!xXS¢' with holomorphic parameters w
and z.

5.6° If Hw,7.2,8) eOLOL({(w, 7,2, €C" XS4 ' XC*X S ; [Imw| <,
IRew| <e, |z]| <e, |t —1,| <e.{Imw,c)>0,{Imz,&)>>0}), then o (o0 (Hdo(z))do (£))
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defines an element of Bjl,.
5.7° We define a map

(5.14) i Ry XS X S §e
@, 7, E)—>(r-cos 6, &-sin 6).

If we take a positive number 0 small enough, then

(5.15)  (c0, 0) €{(r-cos 8, &-sin 0) € S*; |t —1y| <&, £2=1,0<60< 3}
c{lr. §) €87 |(z, §) —(ro, 0) | <e}.

We have by Lemma 2.3.1 of K. Kataoka [3]
(5.16) j*do(r-cos 6, £-sin 0) =cos" %70 sin®* ' dO Ado(7) Ado (&)

and define
3

(6.17)  Hyw, 2, &)= S Flw, 2, 7-cos 0, & -sin 6) cos™ 0 sin®~0 do.

0

Then H, satisfies the condition in 5.6° thus ¢(¢(H,ds(z))dc(£)) defines an
element of B} ,.

5.8° We prove that the correspondence above is well defined as a mor-
phlsm CMIAﬁQj

We show that the correspondence in 5.7° is independent of the choice
of 0. Take positive numbers ¢ and 0, so that 6>6,>0. Then

8
(5.18)  H, —H51=Sa F(w, z,7-cos 6, &-sin 0) cos™ %70 sin*~'0 d¢
1

extends to real points with respect to w. Thus ¢((H,—H,)do(z))=0 as
an element of COL.

Next we show that the correspondence above is independent of the
choice of F. We prove for w€S*? Fdo(r, &) =d, o defines 0 in B2

Because 7,=(1,0, ---,0), we can take (z/,&)=(ts, +*+, Tu_g, &1, - - -, E4) [resp.
v/ =(ty -+, Ta_q)] a8 a local chart of S [resp. S*¢!]. Then we can
write

n—d d
(5.19) w= ;2 fidc i AdE+ Z_)l g;dt* AdE?

where de'i=de,\--7-- - Adr,_, and de'=dr,A\--- Adr,_; and d&=d& A
.. Ad§;. Thus it is sufficient to study the case a) w=fdr? Adé and b)
o=gdc' AdE
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a) In the case w=fdr?AdE.
(5.20) J¥do=dj*w=d.(f .cos"*7'0 sin® 0 dr'*) AdI A dE.

Thus Sj*Fdo(r, €)€Imd, and a(Sj*da(r, 5)):0 as an element of COL.

b) In the case w=fdc'\/dE",

(5.21) j*w=fcos" %0 sin*~'0 df Adt’ A2+ f cos” 470 sin*~*0 &, dz’ NdE!
+/f cos™?7%0 sin%6 &, dO AP NdE.

Here 2 is a (d—2) form on S*' and ¢ is an (n—d—2) form on S"¢7%.
We write j-th term in (5.21) as A;. Then

(5.22) j*do=dj*o=dA+d, A +d. As.

It is easy to see d.A, and d.A, define 0 in B3 On the other hand,
when d>1

SdgAzdﬂ —[(f cos™4~0 sin®~0) |,_,d=’]d&’

extends to real points with respect to w. Thus a((Sd(,Azdﬁ)dr’) defines

0 as an element of COL.
After all we have proved

THEOREM b5.1. The correspondence
(523)  Culan, Bi o,
o(Flw, 2, 7, &) dolz, E))l——)a[a{(S Flw, 2, ©-cos 0, &-sin 0)d0>d0(r)}do(§)]

18 a well defined morphism.

REMARK 5.2. The morphism above will be shown injective in Noro-
Tose [18].

6° Correspondence between the cohomological Radon transformation and

Cech cohomology group

6.0° In this section, we give a representation of the morphism o:
,CS:'>B: by a Cech cohomology group.
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6.1° First we prepare some notation about the integration along fibers for
COL. Let X=C'*XC! and N=R'iXC! (w=t++ —1s,z=x++—1v).
We take an r-dimensional smooth manifold Y and put

(6.1) X, =C"!XC!XY—C"*XC!'=X
¥ l
N,=R*"*XC*XY—R"*XC*=N.
Moreover we set
(6.2) p: 8% Xi=SFX X Y—StX.

Let K be an oriented compact piecewise smooth k-chain in Y. Then we
have the morphism of integration along fibers

(6.3) L : P (COL®D—CO

where p=p|stxxx and COL™ and CO are defined in (4.12) and (6.4).
We remark that the theorem of Stokes type holds for L

We take an r-dimensional complex manifold Z for Y. Then through
COO®-COL®, we can also construct

(64) gK : i)*(COO(k)|S;\,XxK) ‘—’CO

Here COO"™ is defined in (4.5). In this case, the theorem of Poincaré
type holds. Explicitly, we have

(6.5) SBK F=0

for a real (r+1) dimensional piecewise smooth oriented compact chain K
in Z=C" and F € py(COO"|s; xxx). Especially, we have the theorem of
Cauchy type.

6.2° We follow the notation in 4.5°. We take an open proper convex
set U in 4/ —1S*R""* and an open convex set V in R®. We put

(6.6) D={(z,8)€C*xXS*;xeV,|y|<e y-&—g({y*— (y&)2}"?) >0}

where g is a C? function on [0, o) satisfying ¢(0)=g’(0)=0 and g, g’ =0.
Then we have

(6.7) r(D)={z€C*;x €V, |y|<e}\ R
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Here = :C?*XS8*'—>C% By (4.23), we have

(6.8) H('(UXD,COL))=H"Y(Ux=(D), CO).

This isomorphism was obtained as follows. Consider the diagram

(6.9) 0 0 ] 0

y y 0, |

0—>C@(U>l<7r(D)) — C.E“"‘”(Ui'er(D)) — C.[’w'”(lUXﬂ(D))—»- .
0—-COL ‘°i(U xXD)—CL “’"”_L’i“” (UxD)—CL ““’.lf OUXD)—>- -+
0—-COL “i(Ux D)—CL ‘°'°’.£1“(U XD)—=C LY LU XD)—- - -

$
Here any column or row is exact except the first column and the first
row. Thus we can find a sequence {¢;_,, - --, ¢_,} as follows.

(6.10) Pe_1=0¢ € COL™(U X D).

(6.11) deby_2=0s_1, $a_s€CL™ LU*UXD)
(6.12) dep;=00;41, $;€CLO LD (0<5<d—3).
(6.13) $_,=0¢, € Ker (3 : CL"*D—CLOD).
Then the isomorphism (6.8) is given by [¢l——[é_.].

6.3° Take &, ---,&,€ R\ {0} so that &, - - -, &, are linearly independent in
R®. We put &,.==+& and set

(6.14) Vie={z €n(D); ¥,. —9({y’— (¥&,:)}}'") >0}.

Then U={UX V,.};. is a Leray covering of Ux=(D) for CO if ¢ is small
enough. Thus we have
(6.15) H UXz(D), CO)=H**C" (u, CO)).
This isomorphism is given explicitly as follows. Consider the commutative
diagram
(6.16) 0 0 ~ 0
\ + G i
0—-COU X = (D))—>C LU X z(D))~>C LU Xz (D))—- - -

y
000, (0 — Co,CLO) > O CLby)
{0 |0 |0
O%CI(U, CiO) — CI(U, CII'O)) — CI(U’ C’EII)) — e
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where any row or column is exact except the 1st row and 1st column.

Thus we can choose a sequence {¢,;_,, - -+, ¢_,} so that
(6.17) Gar=¢ € C*(u, CO),

(6.18) 0pa—2=0a_, Pas € C**(U, CLO")

(6.19) 0p;=0w;,,, ¢, € CI(U, CLO3729) (0<5<d—3)
and

(6.20) ¢_1=0¢, € Ker (CLO» VL LOD),

6.4° Composing (6.15) with (6.8), we obtain an isomorphism
(6.21) h:H"N['(UXD,COL)=HC" (u, CO)),

where h is given by

PROPOSITION 6.1. Let gi={(s), - - -,8) € R*;0<s,<1 (1<7<k), Tk_i5;<1})

be a k-dimensional standard simplex with its vertexes {e, ---,e.,..}. We
fine an affine map

(6.22) [Eien -0 &Gy rn] 1 4 =807 (51<0e< - - - <G, 6 =E)

satisfying

(6.23) (S50 -+ -2 &5, 80 (0) =€

Then for ¢ € I'(UxD,COL™), h([g]) =[{¢re,, .., ae,}1=[9] € H*Y(C" (U, CO))

18 given by

(6.24) D= o= , e - 6",

[5151. e ,éded]

Proor. Choose a sequence {¢g=¢,_,, - - -, ¢_,} from ¢ asin 6.2°. Then
it is enough to show that there exist ¢, ,, - - -, and ¢, (¢, € C'(u, CL™42b))
so that

(6.25) 8fus=¢, dy=¢_, and O, =0y,

For the image of [¢] in (6.8) is [¢_,] and the image of [¢_,] in the iso-
morphism (6.15) will be [¢] by (6.25). We define ¢, by

(6.26) Drtinduons = | b1.
171" 7k 4+1%%k 1 [57-‘51'""51'],%]
Then we have

k+1
(6.27) (a¢,,_1>(,-151,,..,,.k,k,=zg. |
s=1J0dge1 sd 18k 1]
1

Pre
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S dedr_, (by Stokes’ formula)
L€j161 € jg8al

:S a¢l‘:a¢k-(j131v"'.jd5d)‘
[Ejﬁl""’sjd‘d]

Thus we have proved (6.25). (q.e.d.)

6.5° We make a remark about the operation of boundary values. We
define the real monoidal transformation of A along A by

(6.28) v : Mony (A) = (AN A4) US,A—A.
We put

(6.29) RY/ A =y

and define

(6.30) A4 =3 (COI7\4) | s47-

We take a coordinate of S;4 as (t,x, v/ —1tdtoo, v/ —1v0/dx 0) or
simply as (o, v/ —1v) with p=(t,z, v/ —1rdto). We set

(6.31) D A={(t, ¢, v/ —1v,/ —1&) €S, i<S;';/T (v, £)<0).

We set the commutative diagram in Figure 6.1. Then we have the
exact sequence constructed in Kashiwara-Laurent [7]:

/\
\/

Fig. 6.1

(6.32) 0—>u4,1—>r 1B2 s CE—0.

Following M. Morimoto [10] and A. Kaneko [2], we construct another
boundary value operator b with the aid of Cech cohomology.

We fix an orientation of R® and take a proper convex open set U in
S*R*% and an open subset V in R‘. We take a proper convex cone [’
in R* and a Stein neighborhood V¢ in C¢.
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We define a boundary value of ¢€COUX((R*++—1I')NV°)) as
follows. Take &, ---,§,€8°" so that

(6.33) {&, - --,&,} is linearly independent and has the same orientation of R*
and that
(6.34) Eln---nigdecr.

Here {£,}° is the polar set of {§;} in R®. We put
(6.35) U'={UX(V;,+N V)hgisa,«

where V; . is defined in (6.14). Then image of ¢ in H*}(C (V’,C0O)) is
giyen by

(6.36) Div,ar =9
and
(6.37) Gue=0  (xE(1+, -, d+)).

In this situation, we have

638) T(UXV,B)={3 b(g;);8;€COUX(V+v/=1I0)}.

=1

.

Here (UX(V++/—11I,0)) denotes an infinitesimal wedge of I'; type on
UxV in 4,
When ¢, € COU,X (V,++v/—=1T'0) (j=1,2) and I''NT#J we have

(6.39) b(#1) +b(p) =b(h1+ )
and

(6.40) $:1+6. € COL(UN Uy) X {(Van Vo) +4/ =1 ([N T5)0}]).

7° Curvilinear expansion of microfunctions with holomorphic parameters

7.1° Let M be R ¢XR: and X be its complexification C%¢XC¢ (w=
t+4/ —1s, 2=2++/—1y). We set

(7.1) A={(t, v ; v =1 (cdt+&dw)oo) € v/ =1 S*M ; £ =0}
and

(7.2) A=8StX=+/—18*R**XxC*
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with N=Rr~4xC¢
We consider the curvilinear expansion of microfunctions with holo-
morphic parameters.

We set
(7.3) N.={{eC*; =1, | Im{|<ée}
and
74 W= @70 (1=v =120 (1—v/—1 20 ()"

(—2 74/ —1)¢ 2L+ —1 (22— (209}
We have the following facts about the domain of holomorphy of W.

(75) For two open sets D, and D, satisfying D,c D, there exists a
positive number ¢ such that for any point z,€ 0D,++'—1B, (B.={y € R*;
ly|<e})) W(z—2,¢) is holomorphic on (D,++/—1 B,)XN..

(7.6) For a bounded open subset D in C¢, there exists a positive number
K such that Wig, ) is holomorphic on {(z,{) € DXN,;g(y, &) :=y&—(y*—
(¥€)")>K|n|} where y=Imz,§=Re( and n=Im¢.

ProposITION 7.1 (ef. K. Kataoka [3], A. Kaneko [2]). Let U be an
open subset in v/ —1S*R"~* and take D, D, and ¢ as above in (1.5). We
assume 0D, is piecewise real analytic. Take an open subset D in R
satisfying D> D, and an open convex cone I' in R*. We set

(7.7) Dy o=D++—1(I'NB.)

for ¢ >e. We take a € I'N B, and put

(1.8) F20=( _ ftaWe—20d
D0+‘\/—la

for f(t,2)€C1(UXDr,,). Then FeCz,(E) where
(7.9) Ay=Skn-t 0t xn (XX N,)=+ -1 S*R"*XC*X N,
and E is a meighborhood of
E:=Ux U {28 €D+ —1B)XS;:;9(y—yn¢)>0}

vo€B. NI

in A,. Moreover, for any proper convex subset 4 in S*”', we have

(7.10) FeCh(UX(D++ —1(I'+4)0x4°).
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Especially,

(7.11) FeC3,(UX(D)r, xS
and

(112) | Fit.2.0 do@)=rtt.2

on UX(D)r, . Here (D) ,=Di++ —1('NB,).

Proor. For any point y,€ /"N B, we define a d-chain in D+
v —1(I'N B,) by

(7.18) 7w= U {2+ —1y;y€aytUfz++ —1y,;x € Dy

z€0D,

(See Figure 7. 1.) We set

(7.14) F,(t.2.0) =Lo fit, 5) W(z—3 0)da.

By (7.5) and (7.6), we have

(7.15) F, eC3(UXE,)

where

(7.16) E,={(z,¢) € (Di+v—=1B)XN,; g(y—yo &) >Klyl}

for some K>0. We set

(7.17) E,,={(z ) € (Di+~ =1 B) XSt ; g(y—» §)>0}.
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Remarking that —g(y,¢) is a convex function of y for &€ .S**, we find

(718) E"onEl’l: N Etyo+(l—t)v1'
0st<1
We take a (d+1) chain in D++—1(I'NB,):
(1.19) K= U fo+v—ly;yevmty U {4+ —1vy;y € dayyy}).
z€ D, z 0

(See Figure 7.2.) Then for any (z,&) € E, NE,, there exists an open subset

Fig. 7.2.

Vin N Ey,a-n, such that f(t,2)-K(z—%¢) is defined in UX(K,,):X
0<st<1
(V).. Thus

(7.20) F,=F,

on UX(E,NE,) follows by applying the Poincaré’s theorem on K,,..
Here the assertion that F el i,(B) is verified.
Take an open proper convex subset 4 in S;*'. We have

(7.21) F, € C(UXIDAY =1 0 {y€R*: gly—1, §)>0HX4).

When we move vy, in I'N B,, then the 2nd assertion follows.

To prove the 3rd assertion, it is enough to show (7.12) locally on
UX (D)r.,. We take a point p,=((t, vV —117,dt),2,) € UX(D)r,.. Then
there exists a neighborhood U,={(t, v —1700); |t —t,| <3, |t —1,| <8} of (¢,,
4/ =1 7,) and a neighborhood W,={z=x++—1y € C%; |2 —x,| <0, |y — ¥, <6}
of z,=2,4+4v—1y, and a wedge I (CC: % on {tER"%;|t—t,|<d} and
F(w, z) € Ocn(2 X W,) such that
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(7.22) f(t, z2)=sp [F(w, z)].
We set
(7.23) Vo={z € R*; |2 —2,|<e} and L,={y € R*; |y|<e}

and take open subsets V, and V, in V, so that
(7.24) V,e VeV,
Then there exists a positive number h such that for any point 2€

U {e4++v/—1y,; |8—x|<h}, W(z—2¢) is holomorphic on {z++/'—1y;z¢€

T eV

Ve Ily—yo|<h}><N,,. We set for o=(=*1,---, 1) R"¢
(7.25) b,=vy,—p0 (with 0>0 such that |po|<h)

and define a d-chain 7, in (D));,. as in Figure 7.3. We put

Imz
4‘ a
L ; Y _ T _____ . Y y—wl<h)
----- N |
| P v, o |
: P e N L Re:
aDg V: aD’
V.
Fig. 7.3.
(7.26) I,={EcR*\{0};0.£,=0}
and
(7.27) r,=r,nsu

There exists an infinitesimal cone +/—1B, in 4/ —1R! summited at
4/=1b, and contained in +/—1 (b,4+1",) such that
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(7.28) F(t,2,¢0) €C3,(UX (Ve++ —1B,)XT,).

Moreover when we take p small enough, there exists an open subset I,
in v/ —1R? such that

(7.29) NB,D 1,3y,

Thus we have on U,X(Vy++/—11I,)

(7.30) Ld_lF(t, 2, 8)do(&)= 3 Sr F(t, 2, &)do(e)

=¥ L do(E)ST f(t, 5)W(2—3, £)da.

We divide 7, into two parts so that

(7.31) 7.=7 Uy’ (disjoint union)

and

(7.32) 1= N VitV =1{y; ly—wl <h}).

We set

(7.83) =3 SF do (£) 575 difit, 5)-W(e—728)  (i=1,2).

Then d U

(7.34) filt, 2) =sp[ Z”) Sruda(é)gddé F(w, z) - W(z—2, E)]
=sp [F(w, 2)]

on U,x(V,+4/—11I). Moreover we have

(7.35) it a=]  azfe |  doe) We—2.8),

sd—1

whereS W(z—%8) do(§)=0. Thus

sd-=

(7.36) fa(t, 2)=0
follows. After all we have proved (7.12) on U, X (V,++ —11I). (qe.d.

In the situation of Proposition 7.1, we have

COROLLARY 7.2. Take a sub-cone 4 (CI') and put



Radon transformation 345
(187)  Fltzd)=|, . Fit.28 do) Ca(Ux (K+v'=140).

Here 4° is a polar set of 4 and K 1is a compact subset in D. Then we
have

(7.38) flt,2)—F(t, z, 4°) € A4(UX K).
In the situation above, we give

COROLLARY 7.3. The morphism

Ai= 7 (04 CE e puCS* ) =77 B

is given by

(7.89) A, z)f—>Ld_J f(t, ) W(z—3,&)dzdol£).

D+v-la

The proof of Corollary 7.2 can be given in the same manner as A.
Kaneko [2]. Corollary 7.3 is obtained by Proposition 7.1 and the results
in 6°. The morphism

Ayt (04 CS Y dep o CS*)

is given by

[F(t, , s)]=[s fit, AW (z—3, e)dz].

D+v=1a

Then Proposition 7.1 assures that [F(¢, z, £)] coincides with b(f) through

the correspondence between the Cech cohomology group and the cohomol-
ogical Radon transformation in 6°.

Let U be an open subset in v/ —1 S*R"¢ and V be an open subset
in R:. Take a proper convex cone /" in R! Then for F(t, x) € C5(UX

(V44 —110)), we set
(7.40) b(F)=by(F)=F(t,x++ —110).

We give a proposition about a criterion for the 2-singular spectrum
of a 2-hyperfunction.

PROPOSITION 7.4. The proper convex cones I'y, - -+, 'y in R* and F;¢€
. N
CalU+(V++/—1T,0) 1<j<N). For u= 3 b (F;)€ BHUXV) and p €
U, we have

(7.41) (00 5 %o, v/ —1&dwoo) & SSHu)
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of and only if

142 Frao=3|

3 V0+1/—1 a;

Here a;€1; (|a;|<1) and V,c V.

Fi(t, )W (z—%,¢)dze C,

(P9, €g)

Proor. We assume (7.42). Let u(t,z)=0(F(z,£)do(€)). By the de
Rham’s Theorem for CO.L, there exists w € COL{S % . such that Fdo(§)=
d:w. Thus Spi(u)=0c(dw)=0 at (0, o, v —1&,).

Conversely, we assume (7.41). We put

(7.43) G,:SV L Rt 2We—20) dz
Then we have
(7.44) Fi(t, z)=S , Gilt,z,€) do(§)

on UX(V,+4/—=17,0) for an open subset V, in V, satisfying V.c V..
Thus on UX V,xS?!

145)  Ft.20=% | dz| | dol®Git.28 We-2.0)

Vot+v/' =1 by

when we take b;c I'; with |b;] small enough

modulo C 710! v

VI sR"~4xREx gt

and open subsets V, and V, in V, so that V,e V,cV,, We set
(146) D, ={(2,8) EC* XS ; |z—x | <e, |€—&|<e, y& —{y— (¥€)} >0}.

Now that (o, %, v/ —1&0) ¢ SS2(u), there exist a positive number e
and an open subset U, in U and w¢c COL“®(U,x D,) such that

(7.47) F(t, 2 &)do(&)=dw.

Again we take an open subset V, (< V,) small enough so that

(7.48) Vicfr € Vi lo—m| <e}

and take b,eI'; with |b,/ small enough so that we can integrate
(Ld‘lda(é)G,(t, z, E'))W(z—é, £) with respect to Z on V,++4 —1b;, Then

we have

(7.49) Flt z.0)= g

JV+v=1b;

dz{gsd_ldo(E)GJ-(t, 28}W—2.0
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modulo C; We take a proper convex open neighborhood
0

voissR xRSyt

4, of & in S*7' and divide S*'\4, as

(7.50) Sé-1\g,= u 4,

Then

5)  Fltz0= ¥ mejdz{gdkc;j(t, 2 8do(e) W(z—2,0

+ 5, @] G 2 e W20,

=

Because L i(t, 2,8)do(&) € Ca(UX{V,++ —1(;+4;)}0), we have
(152)  F(t,20)= j dz S doB)Gy(t, 2, é)}W(z—z, 0)

I, k21 V4+\/ ey

with ¢, €4, (k=0,1, ---, L).
We remark that

(7.53) SA Gy(t, 2 B)do(8) € C3(UX (Vi ++/ =14,)0)
k
and that
a5 | asf] Gt 8do@)Wie-20€Cs|  for k=1L
On the other hand, we have
(7.55) g Gy(t, 2, E)da(é):g dew= S o,
4 4y 94,
We decompose 94, into (d—1) dimensional simplexes as
(7.56) o4= U B,
Then
(7.57) S 0= E§ o,
a4, T JB,

Here we have

(7.58) Lwecz(on({xem; |z — | <&} ++/ =1 B°0)).
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Thus

(7.59) Wiz—3, C)di weCs,

Sva—_lco (Pgr zgr €¢)

follows. After all, we have proved

(7.60) F(t,2,0) eC;

1 (pyzg.8¢)

(q.e.d.)

Using the propositions above in this section, we can prove the follow-
ing two theorems in the same way as A. Kaneko [2].

THEOREM 7.5. Let U be a proper convex subset in v/ —1S*R*~* and
V be an open subset in R:. Take an open subset V,cV [resp. UycU].
Let I'; (=1, ---,N) be a proper convex cone in S*~'. Then for f(t,x)€
BLUUXV) satisfying

(7.61) SSXf) C Ux Vx+/=1 G re,

there exists F,€ C3(U,X (Vy++/—1I';)0) (5=1, -+, N) such that
N

(7.62) f= Z1 br (F).

THEOREM 7.6. Let U be a proper convex open subset in v/ —1 S*R*™¢
and V be an open subset in R'. For F;cC;(UX(V++—1I';))0) (j=1,
-+, N), we set f= ilbpj(Fj)eﬁj(Ux V). Here I'y’s are proper convex
cones in R*. If f=6 on UXV, then for an open set U, (cU) and an
open set V, (e V) and cones 4;. (3,k=1, .-, N) satisfying dscl';+T,
there exist H; € C3((UyX (Vo++ —1 4,))0) such that

(7.63) H,=—H,;

and

(7.64) F,= ij H;,.
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