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Introduction

It is known that a Markov process can be associated with a certain
nonlinear equation of Boltzmann type ([2][3][4][5][7]). In the case of the
spatially homogeneous Boltzmann equation of Maxwellian molecules, the
associated Markov process was constructed by solving certain stochastic
differential equation (abbreviated: SDE) based on a Poisson random meas-
ure ([7]. see also [5][6]). The purposes of this paper are to simplify the
proof of existence of solutions of the SDE of [7] by modifying the form
of the SDE and also to give some remarks concerning the uniqueness of
solutions.

We consider the Boltzmann equation of Maxwellian molecules:

(1) ou

(w'u,—uu,)Q(6)dodedzx,, t>0, z€ R,

ot S(ﬂ.r)xw,z;)xkf’

where u=ul(t, ), u,=u(t, x,), ' =u(t, '), w'=u(t, x{) and oze:de/Zn. Q(0),
0<0<x, is a positive function determined by the intermolecular repulsive
force which is inversely proportional to the fifth power of their distance

k3

and has the property: Q(8)~const. 872 6l0: so ,‘ QO)df=co (non-cut-
0
off) but

(1) g:ﬁQ(ﬂ)d0<oo.

However, the special form of Q(f) is not important in our methods and
hence in this paper we assume that Q(#) is an arbitrary nonnegative
function satisfying only the condition (I) or even the following weaker
one:
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(I1) s Q0o <o,

The two cases (I) and (II) are discussed separately.

A molecule with velocity z collides with a similar test molecule with
velocity x,; the post-collision velocities are denoted by 2’ and x|, respec-
tively. If S(x, x,) denotes the 2-dimensional sphere with center (x+=z,)/2
and radius |x—ux,|/2, then 2’ and z] are always on S(z, z,), or more pre-
cisely, S(a’, #))=S(x, #,). Taking a spherical coordinate system on S(x, x,)
with north pole z, denote by # (resp. €) the colatitude (resp. longitude)
of #’. Then x’ and x{ can be regarded as functions of x, z, 6 and e.
We set

a(x, x,, 0, €) =2 —x.

A probability measure valued funection wu(t), £>0, is called a weak solu-
tion of (1) if

% Cult), p>=Cut)@ult), Koy, o€ Co(R),

where (Ko)(x, x,):g {go(x’)—go(x)}Q(ﬁ)dH(ie (see Appendix of [7]).

(0,7)X(0,27)
In [7] the following SDE was considered in connection with the
Boltzmann equation (1) under the assumption (I):

(2) X(t, 0)=X(0, »)
a(X(s—, w), Y(s—, @), 0, € N(dsdfdeda).

S(O,t]x(o,n)X(O,ZI)X(O,I)
Here, N(-) is a Poisson random measure on (0, o)X (0, z) X (0, 2x) X (0, 1)
with intensity measure ds@ (0)&eda, and the solution process {X(t, ), t>0}
is to be found on a basic probability space {R2, P} under the condition
that the process {Y(t, @), t>>0}, defined on the probability space {(0, 1), da}
and describing the motion of a test molecule, is equivalent in law to
{X(t, »),t>0}. The relation between the Boltzmann equation (1) and the
SDE (2) is that the probability distribution of X(¢) is a weak solution of
(1) (general theory of SDE’s including jump parts goes back to K. Itd
[1]).
The modification we are making for the SDE (2) in proving existence
theorem is as follows:
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(i) N(-) is replaced by a Poisson random measure (again denoted
by N(-)) on (0, o) X (0, 7) X S*x 2, with intensity measure dsQ(6)dfdodP;,
where {2, P} is a copy of the basic probability space {2, P} and do is
the uniform probability distribution on the 2-dimensional unit sphere SZ

(ii) Y(s—, a) is replaced by X(s—, o).

(iii) a(x, 2, 0, €) is replaced by b(x, x,, 6, o) (the definition is given in

§1).
Thus in the case (I) the modified SDE can be written as

(8) X[t ©)=X(0, o) +L b(X(s—, 0), X(s—, @), 0, o) N(dsdbdodw,),
t

where S,=(0, t]1X (0, #) X S*X 2, (in the case (II) the modified SDE is given
by (3.83) in §3). Advantage of the modified SDE (3) is that the new
coefficient b(x, x,, 8, ¢) is Lipschitz continuous in (x, ;) as an L'(d¢)-valued
function for each fixed 0 (see Lemma 1) and that the process deseribing
the motion of a test molecule is exactly a copy of the solution process
X(t, w), and in fact, by virtue of these, (3) can be solved easily by using
a routine iteration method. The proof of pathwise uniqueness for (3) is
also easy.

Most of the discussions on the uniqueness in the law sense are es-
sentially the same as the proof of Theorem 4.1 of [7] but they are
somewhat simplified. In formulating the uniqueness in the law sense we
further modify the SDE (3) as follows:

(i") {£,, P.} is replaced by a probability space {2, P} which need not
be a copy of {Q2, P}.

(ii’) X(s—, @, is replaced by X(s, @) which is an arbitrary measurable
process defined on {2, P} such that it has the same distribution as the
solution X(s, w) for each s.

The uniqueness in the law sense is proved for this modified SDE so (in
the case (I)) the solution process has the same law as the solution proc-
ess of (8) (and also (2)).

Similar discussions in the case (II) are also given.

§1. L*-Lipschitz continuity of b(x, z,, 6, o)

Think of S(x,x,) as a celestial globe with north pole z and let
C(x, x,, 8) denote the circle on S(x, x,) with constant colatitude 4. Given
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c€8? let s(x,x,0)=27"2x—x,|0+2 (x+2,), let M(x, x, 0) denote the
meridian on S(z, 2,) passing through s(z, x,, ¢) and set

bo(x, 2y, 0, 0) =Cl(x, x,, 6) N\ M(zx, x,, 6) =a point on S(z, x,),
b(z, ., 0, 0) =by(x, x,, 0, 0) —2x.

Then for fixed z, x,€ R®, x#2x, and 6 € (0, n), by(x, x,, 6, ¢) is uniformly dis-
tributed on C(x, x,,0) as a random variable defined on the probability
space {S% do}. When z=ux, we set b(z, x,, 0, 0) =0.

LEMMA 1. For any x,%, Y, . € R® and 6€ (0, n),
(1.1) Ssz b(@, ©,, 0, ¢) —b(y, ¥s, 0, 0)|do<const. {|x—y|+ |a:—:}6,
where const. 18 independent of x, 2., Y, ¥, and 6.

Proor. First we consider a special case.
(i) Special case: S(x,x)=S(y, y) =S

In this case the integral on the left in (1.1) depends only on 6 and
the angle & (0<&<n) between 2 and y. Therefore, it is enough to con-
sider the case

(1.2) x=(0,0,1), y=(0,sin &, cos &), ;= —2x, ¥,=—Y,

and prove that the integral on the left in (1.1) is dominated by const. 6¢.
Let A be the rotation in R®* around the x'-axis by the angle & Then
in the case (1.2) we have

(1.3) b(y, v, 6, 0) =A7"b(x, z,, 6, Ao).

A point ¢€S* is expressed as o=(r,v1—7*cos ¢, v 1—r’sin ) where
—1<r<], 0<p<2r. We assume 0<r<1 for simplicity. We notice that
Ao=(r, VI=7cos (p+&), VI—7*sin (p+¢)). Next, we define a and a,
respectively, by

o8 a r sina— V1—7*cos ¢
AP+ (1—=1r) costo’ TP (1—7 cos’ ¢
2
cos G r V1—7% cos(p+&)

VATl oos ot 8’ RO VR I coslp 1)
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Then
b(x, x,, 0, 6) =(sin 6 cos a, sin f sin &, cos § —1)
b(x, ®,, 6, Ao)=(sin 6 cos &, sin @ sin &, cos 6 —1),
and hence from (1.3)
b(y, 1, 0, o) =(sin 6 cos &, sin 6 sin @cos £+ (cos§—1) sin &,
—sin# sin@sin £+ (cos 8 —1) cos &).
Therefore

(1.4) b(x, x,, 0, ) —b(y, Y1, 6, o)
=(sin 6 (cos @ —cos @), sin @ (sin @ —sin @ cos &) + (1 —cos ) sin &,
sin @ sin @ sin £ — (1 —cos 6) (1 —cos &)),

and hence

Ss Ib(x, ©,, 6, 0) —b(y, ¥, 6, 0)|do

El_S S |b(x, 1, 0, o) —b(y, ¥y, 0, 0)|drde < const. 6

follows from (1.4) once we prove the following estimates.

(1.5) Slrr |cos a —cos @|drdp<const. £.
0Jo
(1.6) Sl Sh |sin « —sin @ cos &|drdp < const. £.
0Jo

The proof of (1.5) is as follows. Setting f(r, ¢, §)=cosa—cos@ and
fe(r, o, &) =0f[0&, we have
1 r2r 12z (¢
S S |cos a —cos dldrdqa:SoSo Sofé(fr, o, n)dr)’drdgo
0Jo

ng dr)S: g: | fe(r, ¢, 9)|drdp<const. ¢,

because
Slgzzlfé('r, o, v)ldrdgozgoso r(1—=7*){r*+ (1—17°) cos’ ¢} ~*”*|cos ¢ sin ¢|drdep
0oJo

45 S F(L—1) {2 (1 — 1))~ Pdrdz

4

IA

rx rx) S Pdrdr<<oco (use r*+ (1—r)ax*>rx).
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As for (1.6), it is enough to prove
12z . .
g S |sin @ —sin @|drd¢ <const. &,
0Jo

and for this it is also enough to prove that
1 (2
(L7) H \9:(r, ¢, &) |drdp=indep. of & <oo,

where g(r, ¢, ) =sina—sin& and g.(r, ¢, &) =dg/0¢. But the left hand side
of (1.7) is dominated by I,+ I, where

I

Sogo V1= 4 (1—7?) cos? p} ?|sin p|drdep
45 So 1’4+ (1—7%) 2} 2drdx<<oo (because 1+ (1—1%)x*>rx).
I2=S: :”(1 ) B{r2 + (1 —7*) cos? ¢} ~*” cos® p|sin ¢|drde
g4S: S:{o‘z+ (1—7%) 2} 2?drdr << co.
(ii) General case: Since

b(z, %, 0, o) =b(£;_“1, —%, 0, a)z@b(el, —ey, 0, 0),

T—T e, = Y—U

€= y €= s
|2 —a,| |Y — ¥l

we have
SSZ Ib(x; xl, 0, U) _b<yy ylv 07 U)I&U

ggsz%- Ib(elr —€, 0, 0')—“b(ezy — €z, 0! 0')!(20'

|2 —x| _ |y —uil S _ i
+| - . ||, 1bles —ea, 0, 0)1do

0

< const. Ix_Tx‘I le;—es|0+ I | — 2| _Iy;yl[

gconst.H(x—x) :x z’ly y:‘+’|m x1|—[?/ y1|'}
— Y1

where we have used the result of case (i). Now (1.1) follows from the
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following trivial inequalities.

‘Iw—xll—ly—yll <lz—y|+|v,—vy|.
|w—a) = 2=y —y) | <2(0—yl +lo— ).
A

§2. Stochastic differential equation—I
In this section we assume that Q(6) satisfies the condition (I).

2.1. Existence theorem

We assume that a basic probability space {2, &, P}, equipped with
a filtration {f,} of increasing sub-o-fields of ¢, satisfies the following
conditions.

(2.1) The o-field &, contains all P-negligible sets and is rich enough in
the sense that, for any probability distribution g in R®, there exists
an Y ,measurable R*-valued random variable with distribution g.

(2.2) There exists an <.-adapted Poisson random measure N(-) on
(0, o0) X (0, ) X S*X 2, with intensity measure dsQ(d)d6dedP, where
{2, P} is a copy of {2, P}.

A Poisson random measure N(-) on (0, o)X (0, 7) XS*X £, is said to be
% -adapted if, for each t>0, F'\cF, and ¥, is indepedent of *, where
G0 (resp. &t,) is the smallest o-field on 2 with respeect to which the
random variables N(A), A€ A? (resp. A€ JL.), are measurable; here A
(resp. AL) denotes the class of measurable subsets of S,=(0, t]X (0, )
XS*X 2, (resp. St,=(t, o) X (0, 7) X S*X £,).

REMARK 1. The conditions (2.1) and (2.2) are not severe restrictions
on {2,%, P}; in fact, it is easy to see that even the unit interval (0, 1)
with the Lebesgue measure satisfies these conditions.

The SDE we are going to discuss is the following (=(3)):
2.8) X(t, ) =X(0, ») +L b(X(s—, 0), X(s—, w,), 6, 6) N(dsdbdodw,).

By a solution of (2.3) we mean an ¢ ,-adapted process X(t, w), >0, which
is right continuous and has left limits for almost all w. X(t, ), t>0,
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is said to be integrable if STE]X(t, )|dt < oo, 0<VT< oo,
0

THEOREM 1. Let the condition (I) be satisfied and let X(0, w) be a
giwen < -measurable random variable with E|X(0, w)|<co. Then there
exists a unique integrable solution of (2.3).

Proor. We set X,(t, v)=X(0,w), t>0, and define X,(t, 0), n>1,
successively by

2.4) X.(t 0)=X(0, ) +S b(X,i(s—, 0), Xo_r(s—, @), 0, 0) N(dsdbdodwy).

Sy

The stochastic integral is well-defined for each n by virtue of the esti-
mate |b(z, 2y, 0, 0)|<|x—x,|6/2. By Lemma 1 we have

B{ sup [Xna(s) — X.(5)1

-

gE{L b(X.(s—, @), Xu(s—, @), 6, 0)
—b(Xas(s—, @), Xos(s—, @), 0, ) ]N(dsd&dadwl)}
< const. E[L (1 Xa(s—, @) —Xos(s—, 0|

+1Xus— @) = Xusls—, ) 10d5Q(O)dOP,(dw)

< const. StEIX,,(s, 0)—X,_(s, ®)|ds,
0

and hence

i)oE{ 0s;}gIX,,+1(s)—X"(s)|}S > cle't)” -

with some constants ¢ and ¢’. Therefore

X(t, w)= lim X, (t, o)

exists as a uniform convergence on each finite -interval (a.s.); clearly
X(t, w) is an integrable solution of (2.83). To prove the uniqueness, let
X(t,w) and Y(t, ®) be any integrable solutions of (2.3). Then we have

E|X(t)—Y(t)| < const. S:E|X(S)—Y(S)|ds and hence X(t)=Y(t), t>0, a.s.
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2.2. Uniqueness in the law sense

The uniqueness in Theorem 1 asserts that there is only one solution
of (2.3) so far as the basic probability space, the initial value and the
Poisson random measure are fixed. Different choices of the basic prob-
ability space ete. yield different solutions, but we can prove that their
probability laws in the path space are the same provided that their
initial distributions are the same. We prove this uniqueness in the law
sense for a slightly modified SDE (Theorem 2).

Let {2, %, P} be a probability space with a filtration {<f,} satisfying
(2.1) and (2.2) as before. But now we replace {2, P} by {2, P} which
need not be a copy of {2, P}. A process Y(t, @) defined on {2, P} is said
to be integrable if it is jointly measurable and if

S:SDIY(t,cb)Idth<oo, 0<VT< .
Let W denote the space of R*-valued right continuous paths with left
limits.

Given an integrable process Y(t,@) defined on {2, P}, we consider
the SDE

2.5) X[t 0)=X(0, o) +S b(X(s—, o), Y(s, @), 6, 0) N(dsd0doda)

St
where S,= (0, £]X (0, =) X S*x Q.

PROPOSITION 1. Let the condition (I) be satisfied and let X(0, ») be
a given F,-measurable random variable with E|X(0, w)|<oco. Then for
any given integrable process Y(t, @) there exists an integrable solution of
(2.5). Also the law uniqueness holds in the following semse: The proba-
bility measure on W induced by a solution of (2.5) is uniquely deter-
mined by u, and w%(t), t>0, where u, is the probability distribution of
X(0, w) and %(t) is that of Y(-, @) at time t.

PrROOF. The existence of a solution is proved by a routine iteration
method as in the proof of Theorem 1. The law uniqueness is proved as
follows. First we choose a sequence {h,(t),t>0} of step functions such
that

(2.6) each h,(t) is expressed as

0 for t=0

hn(t): {tnk fOI' tnk<tgtnk+l (k:O’ 1’ o .)'



360 Hiroshi TANAKA

where {t,.} satisfies
0=tno<tn1< Y hm tﬂk_—‘OO, hm su (tnk+1_tnk) =0,
k—o0

n—co k

2.7) lim HD 1Y (s, @) — Y(ha(s), @)|dsdP=0, 0<Vi<co,

n— JO

Let X(t) be the solution of (2.5) and let X,(t) be the solution of
(2.8) X.(t)=X(0) +S b(X.(ha(s)), Y(h,(s), @), 0, ) N(dsdfdod).
Then X,(¢) is obtained as follows:

29 XO=Xltw) ], | BXKultw). Yt 3.0, 0N,
b <t<tmy (£>0).

Making use of the estimate

(2.10) |b(x, x,, 6, 0)| < |x—2,|0/2,

and also (2.7), we can easily prove that

(2.11) E|X,(s)|< const., 0<s<t,

(2.12) sup {E| X, (t,) —X.(L,)] : 08y, t,<t, [t —1t| <e,m>1}—0 as ¢]0,

where const. may depend on ¢ but not on n. Then, making use of
Lemma 1 and then (2.7), (2.12), we have

E|X.(f) — X(t)| < const. g:E’lXﬂ(h,.(s) )— X{(s)|ds
+const. S Sa Y (hals) — Y (5)|dsd P
< const. EE|X,,(3) — X(s)|ds+o(1),
and hence by Gronwall’s inequality
(2.13) lim E| X, ()~ X(t)| =0.

On the other hand, by (2.9) we have for any £€ R® and t,,<t<t.is:

E[exp{«/—_1§~X,,(t)}‘£Zf,nk]
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= eXp['\/ Tlem(t —t,@&o e {ev—“lé-“z-mnk»mm - 1}Q(0)d0&adﬁ]

- eXp[vfis-x+ (t—t,,,,)S {emf-b«nmw —1}Q(a)d0&ou (e dy)]

(0,7)x S2x R3
where we put x=X,(t,.). This conditional expectation formula implies
that the probability measure on W induced by the process X,(t) is
uniquely determined by wu, and #@(t), ¢>0. Therefore, by (2.13) the
probability measure on W induced by X(t) is also uniquely determined
by 4, and %(t), £>0. This completes the proof of the proposition.

Now we consider the following SDE for which we are going to prove
the law uniqueness:

(2.14a) X(t)=X(0) +s b(X(s—), X(s, @), 0, o) N(dsdfdodo).

Here, an ¢ ,-adapted integrable solution X(¢) is found under the condition
that

(2.14b) )g(t, ®) is a measurable process defined on the probability space
{(Q, P} such that X(¢t, ®) has the same distribution as X(t) for
each .

REMARK 2. When {2, P}={Q2, P}, a solution of (2.3) is also a solu-
tion of (2.14).

THEOREM 2. Let the condition (I) be satisfied and let X(0, ) be any
R*-valued and Fymeasurable random variable with E|X(0, )| <oco. Then
the probability measure on W induced by any integrable solution of (2.14)
18 uniquely determined by the probability distribution w, of the initial
value X(0, w).

Proor. Let f):[O, 1], F = -the o-field of Borel subsets of [0, 1], P(A)=
the Lebesgue measure of A (€ <) and let {2, P,} be a copy of {.@, B} As
in 2.1 we construct, on the probability space {Q, P}, a u,-distributed ran-
dom variable X and a Poisson random measure N(-) on (0, )X (0, 7) X
S*x Q, with intensity measure dtQ(#)d6dsdP, so that X and N(-) are
independent. We then consider the SDE of the type (2.8)

(2.15) X(t)=X+§ b(X(s—), X(s—, w), 0, o)A,

.
Sy
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where S,=(0,t]x (0, 7) X S*x2,. We are going to prove that for any
solution X(¢) of (2.14) there exists a solution of (2.15) which (as a proc-
ess) is equivalent in law to X(t). Once this has been proved, the law
uniqueness of solutions of (2.14) follows immediately from the pathwise
uniqueness of solutions of (2.15).

On the probability space {2,, P;} we can find an R°’-valued right con-
tinuous process X,(t, »,) having left limits which is equivalent in law to
a solution X(t) of (2.14). Given such a process X,(t, w)), we consider the
SDE

(2.16) X(t) :X+§§ b(X(s—), Xols—, @), 0, o)AN.

Since the both (test) processes X(t, @) and X,(t—, »,) in (2.14) and (2.16)
have the same marginal distribution at each time ¢, Proposition 1 implies
that the unique solution X,(t) of (2.16) is equivalent in law to a solution
process X(t) of (2.14). Next we construct X,(t) for n>2 by X,(t)=the
solution of (2.16) with X,(s—, »,) replaced by X, .(s—, ®,). Then as in the
proof of Theorem 1 we can prove that X,(t) converges to a solution X(t)
of (2.15) as n—oo. Since each process X,(t) is equivalent in law to X(t),
so is X(t). This completes the proof of Theorem 2.

§ 3. Stochastic differential equation—II
In this section we assume
(3.1) j”o@(a)dazoo, 5”02Q(a)d0<oo.
0 0
Let {Q, P}, {£,, P,} and N(-) be the same as in 2.1 and set M(A)=N(4)—
A(A) for a measurable subset A of (0, o)X (0, 7) XS*X 2, with A(4)=
S dtQ(#)d0dodP,<oo. Then the stochastic integral on the right of (2.3)
A

can be written as

Ss b(X(s—. w), X(s—. w)). 0, a)dM-l—g b(X(s—. ), X(s—, ). 0, )da.

Sy

The first integral in the above will make sense under the condition (3.1)
while the second integral equals

—cS:{X(s, ©)—X(s, o)}ds



The spatially homogeneous Boltzmann equation 363

where X(s, w)=E{X(s, w)} and c=S”2“(1—coso)Q(0)d0. So we are led to
0
the following SDE:

3.2) Xt o)=X(0 o +L b(X(s—, ), X(s—, @), 0, 0)dM
—cSt{X(s, o) —X(s, o)}ds.

0

If Ssz[b(x, %, 0, 0)—b(y, ¥y, 0, 0)*de were dominated by a constant

multiple of {|x—vy|*+|x,—,|*}6° we could solve (3.2) easily. But this is
not likely to be true. So we further modify the SDE (3.2) so that it
can be solved in an easier way. First we introduce the predictable s-field
P on [0, o) X2XA,; it is defined as the smallest o-field on [0, co) X 2 X 2,
with respect to which all functions a(t, v, ) satisfying the following
conditions (i) and (ii) are measurable.

(i) For each fixed t>0, a(t, o, @) is F,Q%F-measurable where {2,
, P} is a copy of {2, <, P}.
(ii) For fixed @ and w,, a(t, », ) is left continuous in ¢.

Let R denote the class of predictable processes (i.e., -measurable func-
tions on [0, o) X2 X N,) with values in the space 0(3) of orthogonal
matrices of degree 3. Then our modified SDE can be written as

(3.3) Xt w)=X(0, ) +L b(X(s—, ), X(s—, ). 0. R(s, . 0)0)dM

—cS:{X(s, ) — X(s, @))ds.

By a solution of (3.3) we mean an ¢ ,-adapted process X(t, »), t>0, which
is right continuous in ¢, has left limits for almost all @ and satisfies
(3.3) with some R=R(t, 0, w,) € R. X(t, w) is said to be square integrable

i STE{IX(t, )[P}dt < oo, 0<VT<co.
0
REMARK 3. If we set

N(A) =SS 14(s, 0, R(s, 0, w,)0) N(dsdOdodw,),
M(A)=N(A)—1(4),

then N(-) is also an &,-adapted Poisson random measure with the same
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intensity measure i and (3.3) becomes (3.2) with M replaced by M. In
this sense (8.2) and (3.3) may be regarded as equivalent. The corre-
sponding martingale problems are the same.

For ¢,0’ € S* we denote by R(c,¢’) the rotation (orthogonal matrix)
in R* which sends ¢ to ¢’ along the geodesic connecting ¢ with ¢/, and
set R(x, 2, ¥, y)=R(x—x)|z—z|"", (y—y)ly—w:|"") (for z+#x, y+u),
—=the identity matrix (otherwise). Then we have the following lemma
(see Lemma 3.1 of [T7]).

LEMMA 2. For any =, %, Y, Y. € R®
1b(x, @, 0, ) —b(y, ¥, 0, R(z, x4, ¥, ¥1)o)| < const. {|x —y|+ |2z, —u:|}0.

THEOREM 3. Let the condition (II) be satisfied and let X(0, w) be a
given F,-measurable random variable with E{|X(0, 0)|?}<oco. Then there
exists a square integrable solution of (8.3). Moreover, the law uniqueness
holds for (3.83) in the sense that the probability measure on W induced
by any square integrable solution of (3.3) is uniquely determined by the
probability distribution u, of X(0, w).

Proor. Define X,(t, w), n>0, by

Xo(t, 0)=X(0, w),
X, (t o) =X(0, o) +Ss b(X,_\(s—, ©), Xo_(s—, @), 0, Bo_o)dM

—cS'{Xﬂ_l(s, o) =X o)lds,  n>1,

Where Rn:Rn(Sv w, (01) :;[iilR(Xk—l(s—' (l)), Xk—l(s_’ wl)v Xk(s—' (,l)), Xk(s—9 (1)1))

Then, making use of Lemma 2 and the convergence of the second inte-
gral of (3.1) we have

E{ sup | X,,.(s) —Xn(S)lz}

0<s<Lt

gSE{S b(X.(s—, @), Xu(s—, 1), 0, Rug) —b(Xo_r(s—, @), Xos(s—, @),
St
0, R._10) |2d2}

+202tS:E{|Xn(s, 0) — X, (5, ©) — X, _i(5, 0) + X, (5, 0)|}}ds
< const. (1+t)§ E{ X, (s)— X,_.(s)}ds,

t
0
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and hence by a routine argument we can prove that

(3.4) > sup | X, (s, ©) — Xu_s(s, )]

n=10<s<t
is convergent for all t>0 with probability 1. We denote bX Q the set
of o for which (3.4) is convergent for all ¢>0 and also by 2, (C%,) the
copy of 2. We set

lim X(¢, o), we R
X(t, w) — n—+00
0 , otherwise,

I'={{t, o, o) €0, 0)xX2x2, : X{t—, 0)+X({t—, w)}.
Then I'e L. We first claim that R,(t, w, ®) is convergent as n—co for

each fixed (t, w, w;) € I". Using the notation ||A| =sup{|Ax|: |x|=1} for
a matrix A, we have
[ Ba(t, 0, @) — B, _1(t, ©, »)||

=[{B(X..(t— ),Xn (t—, @), Xu(t—, o), Xa(t—, @) —I}R.1(t, o, )]

<v'3 IIR(X ( — ), X, u(t—, o), X,(t—, o), X.({t—, o)) —1I]

<,\/3 X at—, 0)—X,_,(t—, w) Xn(t—’ w)—X,({t—, ;)

| Xaalt—, 0) = Xo st —, @) | | Xa(t—, ©) = X.(t—, @)]

<2'\/3{|Xn (t—, o) — Xn( )+Xn (=, @) — X, (t—, )}
| X (¢ — ) —X.(t—, wl)l )

(t—

If (t, 0, w,) €T, then |X, w)—X,({t—, w)|>¢ for some >0, and for all
sufficiently large n (say, for n>mn,) and hence

> |Ru(t, @, @) — Ruis(t, 0, @)

<BVE F Xt 0) = Xaalt—, 0|+ |Xalt =, 0) — Xt —, 0} <co.

Next we define Re R by

lim R, (t, w, w), (t, 0, 0)ET
R(t, w, w,) ={ "=
identity, otherwise,

and claim that {X(¢,w), R} is a solution of (8.8). For this it is enough
to prove that

(3.5) El

[, Bxas—1 0) Xuls—, 0,0, R
~b(X(s—, &), X(s—, v,),0, Ro)}dM| |
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tends to 0 as n—oo. If R,=R(X.(s—, o), X.(s—, o), X(s—, ®), X(s—, ©1)),
then (8.5) is dominated by

ZEH 0(X.(s—, @), Xuls—, @), 0, Bo0)

—b(X(s—, 0), X(s—, w), 0, B.Ro0)'dA
+2E{Ss, b(X(s—, @) = X(s—, @), 0, B.Ra0)

—b(X(s—, 0), X(s—, @), 0, Ra)lzdz}

< const. EZE{IX,,(S) —X(s) |2}ds+2E{Ss ba(s, @, @y, 0, 0)dA }

t

where

b.(s, w, w, 0,0)=|b(X(s—, w), X(s—, @), 0, Rio)
—b(X(s—, ), X(s—, ®).0,0)]>, R,=R.R,R.

Moreover, we can easily prove that R!(s, o, w;)—I as n—oo for each fixed
(s,w,w;) € I', and hence for each fixed (s, w, w,, 6) € (0, o) X 2 X 2, %X (0, 7)
we have

lim b, (s, w, ,, 8, 6) =0

n—co

for almost all ¢ with respect to do. Since we also have the bound
b.(s, 0, w,0,0)<|X(s—, w)—X(s—, w)|*-6*, an application of Lebesgue’s
dominated convergence theorem yields

lim E{j buls, . 01,6, 0)d2 | =0,
n—>co St
which implies that (8.5) tends to 0 as n—co. Thus the existence proof
is finished.
To prove the law uniqueness let h,(t)=k27" for k27"<t<(k+1)27"
and h(0)=0. Let X(t, ) be any square integrable solution of (3.3) with
auxiliary process R=R(t, o, w;) € R and consider the SDE

(8.6)  Y.(t 0)=X(0,0) +§ B(Y(ha(s), ®), Y(hals), w2), 0, Ruo)dM

Sy

[ (Yullle) = Yulh0)}ds,
where
R.=R,(s, », w,)
=R(X(s—, w), X(s—, w,), Y.(ha(8), ®), Y,(ha(s), 0,))R(s, 0, w,).
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(3.6) can be solved easily; in fact, once we know Y,(t, ) for 0<t<k2™™

we can define Y,(t, w) for k2 "<t<(k+1)2™" by the right hand side of
(3.6). We can prove that

E{|Y.(t)—Y.(s)|’} < const. [t—s|, 0<s<t<T,

and also, by making use of Lemma 2, that

E{|Y.(t)—X(t)|*}< const. s:E{] Y.(s) — X(s)|*}ds+const. 4,(t),
where
4,(t) = sup {E(|Y.(u) — Y,(s)|*) : 0<s<u<t, u—s<2™"} < const. 27",

const. being independent of n. Therefore

(3.7) E{|Y.() —X(t)}—0,  n—oco.
On the other hand, let k2 "<t<(k+1)2™", xz€ R® and set
Do(t) =iz Ya(h2 ™", o) +S (6 —1—iz-b)dA
S¢=Sig—n

—de(t—k2 2 (Y, (k2" o) — Y, (k2 ", @)}
(where b=b(Y,(k2™", w), Y.(k2™", @), 6, 0)).

Then, for k2"<t<(k+1)2™" we have
E{e = Yn | y—n} =%, a.s.,

and hence the probability measure on W induced by the process Y,(t, ),
t>0, is uniquely determined by %, This combined with (3.7) proves the
law uniqueness of square integrable solutions of (3.3).

In the rest of this section let {2, P} and {2, P} be the same as in
2.2 and consider the SDE

(3.8) X(t)=X(0) +_( b(X(s—), Y(s, @), 6, R(s, v, ®)o)dM

Sy

—05; (X(s)— Y5, @)}ds

where Y(t, @) is a given square integrable process defined on {2, P} and
R=R(t, w, ®) is similar to one in (3.3).

PROPOSITION 2. Let the condition (II) be satisfied and X(0, w) be a
given F-measurable random variable with E{|X(0, ®)|*}<co. Then for
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any given square integrable process Y(t, ®) there exists a square inte-
grable solution of (8.8). Also the law uniqueness holds in the same sense
as in Proposition 1.

The above proposition can be proved by a method similar to Propo-
sition 1. Only point one has to be careful is that the SDE (2.8) is now
replaced by

X.(t) =X(0)+§ b(Xa(ha(s)), Y(ha(s), @), 6, Ruo)d M

Sy

—e| 1%, (ha(s) — Yiu(el)lds,

where

R.=R.(s, 0, @)
=R(X(s—, ®), Y(8, @), X.(hn(s), ®), Y(ha(s), @) R(s, o, ).

Next we consider the SDE

(8.9) X(t) :X(O)+L b(X(s—), X(s, @), 0, R(s, o, d))o)dM—CSt{X(S) —X(s)}ds,
t 0
where X(t, @) satisfies the same conditions as stated in (2.14b). Then

the following theorem can be proved in the same spirit as in Theorem 2.

THEOREM 4. Under the condition (II) the probability measure on W
wnduced by any square integrable solution of (3.9) is uniquely determined
by the probability distribution u, of X(0, w).

REMARK 4. The martingale problems corresponding to the SDE’s
2), 3), (2.14), (3.2), (3.3) and (3.9) have the same form and the proba-
bility distribution u(t), at time ¢, of a solution to any one of these
SDE’s is a weak solution of the Boltzmann equation (1).
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