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Symmetric Markov processes with mean field potentials

Dedicated to Professor Seiz6 It6 on his 60th birthday
By Shigeo KusuokaA* and Yozo TAMURA

§0. Introduction.

Let M be a Polish space, ¢ be a probability measure on M and
{P,;x€ M} be a family of probability measures on D([0, co)—M) which
induces a p-symmetric Markov process on M. We denote by {P.}is0, €
and _ the induced semigroup, the Dirichlet form and the infinitesimal
generator on L*(M;dp) respectively. Since P, is a stationary probability
measure on D(0, ) — M), it is extensible to a stationary probability
measure on W (=D(R—M)). We denote it also by P, for simplicity of
notation.

Now let V:MXM—R be a symmetric bounded continuous funection.
Let @;, T>0, be a probability measure on W given by

(0.1) O (dw) = Z7" exp(—z%—S:S:V(w(t), w(s))dtds)P;,(dw),
where
02) Zrzswexp (%S:S:V(w(t), w(s))dtds)P,,(dw).

In this paper, we shall study whether @; converges as T—oco and, if so,
what is the limit probability measure.

The basic assumption which we impose on the Markov process P,
is the following.

(H.1) (1-.L)7' is a compact operator in L*(M;dpy).

(H.2) P, satisfies the Donsker-Varadhan’s large deviation principle, i.e.,

©3  lim % log P,(or(w) € G)= —inf{E(g, 6); ¢(x)*e(dx) € G}

*) Research pé&léﬁy sup—pgfi:éd by Grant-in-Aid for Science Research 61740116 Min. Edu-
cation.
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for any open set G in (M), and

04)  Hm ——log Por(w) € K)S —inf(E(p,4); dla)'uda) € K

T—oo

for any closed set K in P (M), where P (M) denotes the metric space
consisting of all probability measures on M with Prohorov metrie, and

(05) o)) =——|  suol@dte PBL),  weW.

Then by virtue of Donsker-Varadhan [2], we have
(0.6) lim 2—17' log Zy = — inf {F(g) ; 6 € Dom(E)},

where

07  Flg)= —Sm V(w, ¥)8(@)°p)*ed2)2(dy) +E(8, 9).

It is likely that if there is a unique ¢ minimizing the function F, then
@, converges to a ¢(x)’¢(dx)-symmetric stationary Markov process as
T—oco. However, we do not know how to prove such a statement in
general. Therefore we think of more restricted cases.

Let

f=—lim % log Zr, By=1p € Dom(E); F($)=F, $=0}

T—co

and LP,={g(x)n(dx); s € PP (M). We will add two more assumptions
as follows.

(A.1) There are a compact metric space S, a signed measure on S with
bounded total variation, and a bounded continuous function g¢g:MXS—R

such that V(x, y)=Lg(x, 8)g(y, s)a(ds).

(A.2) §M¢(x)"’y(dx)<oo for any ¢ € @, and 1<p< oo,
For each ¢ € Dom(E), let
08) A)=€g.9) -2, Vi 0da)dw)uld)nldy)

and
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(0.9) V(g) () =25M Vi, ¥)¢(y)*e(dy) +A(g).
Let us define P,,c P, by

(0.10) =!pe P,; there is an >0 such that

4| Vix, y)¢@)$ ()¢ ()¢ (y)p(da)p(dy)

<(- )( 6. 9=, V@@l ud)

for any ¢ € Dom(E) with SMgb(x)gb(x)y(dx):O},
and let Po={d(x)*u(dx); ¢ € Pu}.

Our main result is the following (Theorems (3.17) and (3.18)). Under
the assumptions (H.1), (H.2), (A.1) and (A.2),

(0.11) 0< lim e/ Z;< oo,
T—+co
(0.12) lim ¥/ Z,<co, iff Po,=%Py,,
T—oo
and

(0.13) if Py=%Py, then #(P,)<co and @, converges as T—oo to a
stationary probability measure on W which is a convex combination of
v-symmetric strongly mixing Markov process (v€ &P,).

We will also discuss r-body potentials (r=38) in Section 4. This work
is an extension of our previous work [4] on a sequence of ii.d. random
variables, and the technique of the proof is quite similar.
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§1. Preliminary Remark.

Let us think of the situation in Introduction. We assume the as-
sumptions (H.1) and (H.2) in Introduction throughout this paper as we
declared. Let d denote the Prohorov metric function on P (M). Then
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by the assumptions (H.1) and (H.2), we see that

lTim ﬁlog P[d(or(w), #)>e]<0 for any ¢>0.

Therefore we see that the stationary Markov measure P, is ergodic.
Suppose that ¢€ Dom(.L) and V:M—R is a bounded continuous
function satisfying

(1.1) é(x)>0 pa.e. x,
and
(1.2) (L+V)p=0.

Let v be a probability measure on M given by dv=¢*dp.
From (1.2), we see that

(1.3) é=exp(t-(L+V))p,  t=0.
Let us define U=U,: L*(M, dv)—~L*M ; dg) by
(1.4) Usp=6-¢.

Then U is a unitary operator. By virtue of (1.3) and Feynman-Kac’s
formula, there is a probability measure @, on W satisfying

1.5 | ) =gtw(— TN (D) exp|

il _TV(w(t))dt>

for any T>0, where F%,=c{w(t); —T<t<T}. Actualy @, is a v-sym-
metric stationary Markov process and its induced semigroup {@.}.s, in
L*M; dv) is given by

(1.6) Q.=U" exp(t(L+V))-U.
(1.7) LEMMA. There is a 2>0 such that
th_H|L2—'L2_S_e_“’ tgo-

Here II is a orthogonal projection in L*(M;dy) defined by

(L8) (19) ()= | v

In other words, Q, is strongly mizing and Spec(.L)c(—oo, —2]U{0}.



Mean field potential 375

Proor. Let /I’ be a projection operator in L*(M ;dy) given by

(1.9) II'p=(¢, §)r2-¢.
Then it is obvious that
(1.10) II=U"Ir'u.

Because the operator exp(t(.L+ V)) is a compact, symmetric and positivity
preserving operator for t>0 and P, is ergodic, by virtue of Perron-
Frobenius’ theorem, we see that ¢ is a unique ground state of L+ V and
there is a 1>0 such that

(1.11) lexp(t(L+V))—I"|s2.2<e™,  t20.

Then by (1.6) and (1.10), we have our assertion. Q.E.D.
Let R; be a linear operator in L*(M;dy) given by

(1.12) R¢:2r(exp(t(.£’+ V) —II')dt,

and let G, be a linear operator in L*(M;dy) given by

(1.13) GD:2S:°(Qz—H)dt.
Then we have
(1.14) G,=U"R,U.

§2. Basic Lemmas.

Let us think of the situation in the previous section continuously. For
each a>0, let

V.={pe L=0L; d); |§l-Sa, G ST and [ g dv=0).

Then we have the following.
(2.1) LEMMA. For any a>0 and ¢>0, there is a 6>0 such that

sp s ool 5o ([ ). | 2 o] <ol

ProOF. Take a ¢€¥,. Then
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EQ»[exp<xS:¢(w(t))dt>]
=5 x"EQ”U-m]« g P0Gl ds, .ds,,].

Set @,=Q,—11 and ¢=the multiplication operator ¢-. Then th~ey are
bounded and symmetric, and also we see that I7¢II=0 and Q,/I=0.
Therefore we have

EQ»[ exp< x ET O(w (t))dt)]

=1+ gzxng 0 (1v Qr,)&Qtlé . 'Qtn_lél)Lz dTo‘ . dfn—l

Tos "9 Tp—1>
Tt +T, _1<2T

and for n=2,

(1,Q.9Q.9---Q.,_ 1)1
(n2)

=% T LIH@9 QP9

X (@, AIP) - @y P2
=% MG UHGe, P By DD

Set A,,:S( (¢ Q- -@._@1)ilds, - -ds,,, k=2, Then, since
(&, Qu)12=>0, we have

4,=[" 0. Q) uds=1G.p. 9=
and
aslol=( L) 1gres(L) e kzs.

Also, we have

St o de I D@,y )
X(éril+"‘+ij+‘ 1¢) )1,2]3 (2lT) f:]_ ,+].

Therefore we obtain
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T © (a2 - (2T)l. ! .
E%[exp(xg_r¢1(w(t))dt>]§l+ ;2.% l; ¢1+.%€,=n_sz ,«I=Il Aijn
i, it

_ gj LZ;X 7 (2 Ai+lxi>l—_—exp((2T)x2<§ As+zx‘>>

of 1 o i @ e )
gexp<(2T)x<§+ ;,x <2> a)
— 2 4a’ ; -~
= exp(Tw (1+x--—2277- , if 0Zx=<2/2a.
Thus we see that

| 5| swerde|>x)

< exp(—2T=% {E’Q»[exp<x ST_Tgb(w(t))dt)] + E"»[exp(w ST_T—(ﬁ(w(t))dt ]}

<2 exp(—Zsz{l ——;—(l—i—x- 4o’ })

r
sten(-214(3-1)

A el
f <z AN
or 0=r= 2a A 8a’

el

8 Then we have
a

A
Set 6=—"—
© 2a/\

pofexp(152 | [ otwwnar| ). | o] gtwimnat] <o

:S:_ exp(T(l—e)xZ)Qt[|21—TS:¢(w(l:))dtl € dm]

:SZ 2T(1—¢)- exp(T(l—e)xZ)Qy[.’Dé ‘”ZLT -S:qb(w(t))dt’ <5]dm
~[exv (-9m@ 2| - otwena| o]
<1+4(1—)| Toexp(— T < o)z
4

<1+—.
€

This proves our assertion. Q.E.D.
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Now let ¢, € L*(M;dy), i=1, ---,m, and suppose that SMgb.-dv:O,
1=1,.--,m. Let {a},;-., ... be a symmetric matrix and let Ulx, y)=

Zm‘, a;;¢:(x)-¢;(y). Then we have the following.

1,]=

—-

(2.2) LEMMA. If there is an ¢>0 such that

23 |, U690 6.HWH @M S (1) G, g
Jor all ¢ € L*(M; dy), then there is a d>0 such that

sup E° [exp(% E%S:S:U(w(t), w(s))dtds),

21T .V &i(w dt’<i)‘ 1=1, ,m]<oo.
PROOF. Let E=Y R$,CL*(M;dy). Then (G, #)|sxs is a strictly

positive definite symmetric bilinear form. Therefore there are ¢;€ E and
tER, 1=1, .-, d(= dim E) such that

2.4) G.gud)=0s  ig=l-d,
and
(2.5) Uley)= 3. 1))

Then we see that ¢, <1—e, t=1, - -+, d from the assumption (2.3). There-
fore

[" [ vt wenidssa-a £ ([ awnar).

-T i=1

Since {xERd;Hng—Ii—e}:n{{we R%; (x, é)g—i%}ll&‘ll:l}, there are

g=(&, ... EHeRYi=1, .-, N with ||&] =1 such that

ﬁ{xekh<msogiﬁj} {we R [z <1).

i=1

This implies that
(2.6) lel*<(1+e) max (x.&)"  z€R.
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U R
Set ¢;=> & ¢g;€ K, 1=1,---,N. Then we see that
iT1

(2.7) (G.8:, $i)r2=1

and

2.8) Suqz,»(x)v(dx)zo, i=1, ..., N.

Also we have

29) = ([, sctwindt) s@+e) max ([° swendt).

It is obvious that there is an a>0 for which {@,}*,c¥,. Therefore by
Lemma (2.1) for sufficiently small 6’>0,

STBP E% [exp(l -i—ST ST Uw(t), w(s))dtds),

2 2T J-r)-r
max TS é:(w dt}<6’]
< sgg’r?ax EQ[ ( <S T¢ (w(t))dt>2>,
| %S_Tii(ev(t))dt‘<6’]
< oo,

Since @;’s are linear combinations of ¢;, we have our assertion. QE.D.

Now let U:MXM—R be a function satisfying the assumption (A.1)
in Introduction as V=U.

(2.10) LEMMA. If there is an ¢>0 such that

(2.11) SMX Ulz, ¥)(G.¢) (@) (G.9) (y)v(d2)R@u(dy) < (1—e) - (G.&, §)r2
for all ¢ € L*(M;dv), then there is a 6>0 such that

sup B exp( T, Ultn v (or(0) =)y, @) )

T>0

sup
8€S

SMg(y, s) (or(w) —v) (dy) ‘ <6]<oo.
ProoF. Let g,: MXS—R be a continuous function given by

(2.12) go(, 8) =g(x, s) —SM 9(y, s)v(dy).
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Then we have

218) |, Uty lor(w) —»=dy@du) = o(ds)( [, oy, o) @) ).

and

(2.14) [, 0. 9)ortw) =) (@) = 9w, sl ().

Let K;, denote the set {we W;sug)H-M (Y, s)pT(w)(dy)l<6}. Let
€

{Simhe, m=1,2, ---, be decompositions of S satisfying

(2.15) l;_r)nm max{diameter(S{™); k=1, - - -, m}=0.

Choose an element s{™ ¢ S{™ for each j=1,--.,m and m=1,2, ---, and
let

(2.16) oW, 9)= X rsp@only. i), yEM, s€S.

Then we have

(2.17) d.= sup |g,(y, 8) — g™ (¥, 8)|—>0,  m—co.
s€S
Let Uy: MXM—R and U™ : M X M—R be functions given by

2.18) Uile., v) =) gs. 810nw. 90(ds),

and

219) U )= i (e 510w, 9o(ds) = £ o(S) oo, 7)oy, 7).

k=1

Then we see that
(2.20) Sm Uz, ¥)(G.¢) () (G.¢) (y)v(da)v(dy)

:guxM Uo(x, ?/) (G,¢) (x) (G»¢) (y)v(dw)u(dy), ¢ € Lz(M; dv),

and

(2.21) SM 1T, ) = U™ (@, 9)olda)p(dy)—0,  m>oo.

Note that G)* is a bounded linear operator. Then from the as-
sumption (2.11) and (2.20), we have
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222) [, U 9)(G)(0)(Gg) )olda)oldy) S (1) . dlus

for any ¢ € L*(M;dyv). Therefore, by (2.21) and (2.22), there is an m,
such that

223 [, U960 @6H Wdapdy S(1- 5 )G.h )

for any m=m, and ¢ € L*(M;dv). Observe that for any 6>0,

(2.24) log EQ»[exp( TS Us(t, ) 02 () (d1: Q) ) KT_,,]
. MxM .
éI(Tl,)m,d + (7‘2,)m,zh
where

2.25) I, , =L log EQ»lexp<p~ TS ™ (g, yz)pT(w)@(d%@dyz)), KT,,,],
p MxM

(2.26) ¥, , =% log EQv[exp<q' T ngM (U, ¥2) = U™ (W1, ¥5))

X pr(w)@(dy@dyz)), K m],

___1——6@_ and q:L.

1—¢/2 p—1

Let 6=0,—0, be the Jordan decomposition of the signed measure ¢
and let g,=0,+0,. Then ¢, o, and o, are finite measures on S. Since
we have

D

[y Ul ) = U 01, v)pr ()% dy, @l
=|,0@s{(], ntw. rertw @) = ([, o w. shortaw) (@) )}
<[ odas)| Lau{], (ontw. o)+ 0 w. shprtow) (dy) )

+2dz2{{, @y 9 - w. Dertw @w)| |

Therefore we obtain

2.27) IP.,

g%L% o, (ds) {% log E"»[exp(Tq'r . d,,.{SM (90(y, 8)
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+9i (v, 9)os)(dv)} ). K |
+ L 10g B exp(Tar-d:{| (0w, 9)— 0w, s)oslw)dw) ] ). Ko ).

where r=o0,(S). Observe that
SUp {g7- du(go(¥, 8) + 647 (Y, 8))}—0,
sup {gr-da'(90(y, 8) =™ (¥, 8))}—0,  m—oo,

and

[, @l 9= 0w, shost) ) = | (@owle), o) a8 (o). s)dr.

Then by virtue of Lemma (2.1) and (2.27), we see that there exist an
integer m, and positive numbers §,, m=m,, such that

(2.28) sup I(Tz,)m,dm<(x>r m =M.
T>0
On the other hand, since p-<1—%>§1—§, by Lemma (2.2), (2.23)
and (2.25), we see that for each m>=m,, there is a 9,>>0 such that
(2.29) sup I, 5 <oo, m=m,.
T>0

Therefore from (2.24), (2.28) and (2.29) we have our assertion. Q.E.D.

§ 3. Main results.

Let us think of the situation in Introduction. We assume the as-
sumptions (H.1), (H.2), (A.1) and (A.2) in Introduction. From the as-
sumption (H.1), we see that the set {¢ € Dom(E);E(¢, ) <K} is compact
in L*(M;dyg). Therefore P,+ @ and

w— 1 P ®2
3.1) lim . log B [exp(zT gm V@, y)or(w) (dw®dy)>,

d(pr(w), P) >5] <—f

for any 6>0, where d is the Prohorov metric of P (M).
Let 2(¢) and V(@) be as in Introduction ((0.8), (0.9)). Then we have
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the following.
(3.2) PROPOSITION. g’oc.@om(.f), and for each @€ P,

33 (L+Vig) @)g=0.
and
34) 4{, . V. 0g@P0)9E)9 ) pda)pdy)

<&, ¢>—j V(@) (2)¢h(2)*pe(dr)

M

for any ¢ Dom(E) with SM¢ ()6 () 2(dx) =0

PROOF. Take an arbitrary ¢ € Dom(E) with SM¢(x)¢(x) p(dx)=0. Then

Gt)=F((@p+t-¢)/|p+t-Pll2a: am)=f for t€ R near 0. Since G(0)=f and
G(t) is smooth in ¢t near 0, we have

dG
(3.5) 7(0) =0,
and
d*G
(3.6) W(O) =0.

From (3.5), we get
81 4, | Veuswrsaiadnud) 266, ¢)=0.

This implies that

88 2|, Ve 0 eEda)ndnndy) —E@ §)+2d) 6, =0

for all § € Dom(£). This proves the first statement. The latter one also
follows from (3.6). Q.E.D.

Now take a ¢ € @, and fix it. By Proposition (8.2), we see that we
can apply the results in Sections 1 and 2 to ¢. Let v, Q,,G,, U; and R,
be as in Section 1.

Then we have the following.

(3.9) LEMMA. Suppose that ¢ € P, i.e., there is an >0 such that
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3.10) 4{, V@ 0wk dnudy)

<(1-a{E. 9)- |, 79 @)p()ulda)

for any ¢ € Dom(E) with Lgb(x)gs(x) 1(dz)=0. Then for any pe [1, 11_e>,

there is a 6>0 such that
81) s B exp(p-2T [, Vie,v)(orlw)—)®(de@dy) ).
d(pr(w), ») <0 |<co.

PROOF. From the assumption (3.10), we see that
312) 2, Vi 0g@d) (Red) @) (Reg) (0)ldz)nldy) < (1) (R, )
for any ¢€LM;dy). Let Ulw,y)=2pV(s,y). Then from (1.14) and
(3.12), we have
313) [, , U )G @) 6. )vlde)s(dy) SP1L—e) (G, )

for all ¢€L*M;dv). Noting that R— sué)HM g(x, s)(R—y)(dx)| is a
8€

continuous function from &P (M) into R, we have our assertion from Lemma
(2.10) and (3.13). Q.E.D.

(3.14) THEOREM. Suppose that ¢ € Pn. Then there is a 6,>0 such that
¢ o) -exp v/ —1-v/ 27 [ula) (or(w) ) (da)
xexs (" (7 v, wipdsdt). dlostw). 5 <]
— (0], plaet)) - detT-GV.GH

X exp( = S(GHI— G V.G G, ) s

as T—oo for any bounded FT -measurable function @ : W—R, w€ L=(M ;dp)
and 0<6<d,, Here V, is a nuclear operator in L*(M;dv) given by
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(3.15) Vgl =2, Vie, vigw)(dy).
ProOF. Note that
¢ TEP#[@ (w) - exp(«/ —1v qu(x) (or(w) —v) (dx))

1

X e _—
Xp( 2T

.17, v, wepass), atprw, »<o]
- Eo{@(w)sﬁ(w(— )" (w(T)) exp<¢_—1. VIT 3 (&) (on(20) ) dx))

X exp(zTg V(& Y)(or(w) =) (dz®dy) ), dlpr(w), y<al

Mx

Since @, has the strong mixing property, we see that @(w), g(w(—T)),
d(w(T)), {1/ oT sv(oc)(pr(w)—u)(dx), veLz(M;du)} are asymptotically in-
dependent as T—oo under Q,(dw) and that

3.16 B4 exp(v/ =T 2T [v(a)(or(w) —)(do) ]
1 2 —o0
— exp(—TZ—(Gw, V)L > T ,
for any v€ L*(M ;dv). Observe that
B |0(w)(w(— 1)) g(w(T)

xexp(27 [, | Vi v)(os(w) —)(da@dn) )|, dlprw), 1) <a]

MxM

<0l ([, $(o)*n(da) )

B2 exp(pr-2T(, | V(e )(esw) ~)(da@d) ) dlos(w), 5 <a,]

Mx

for p,q,r>1 with p™'4¢'=1. Then by Lemma (3.9), if we take p and
v sufficiently close to 1 and if we take sufficiently small §,>0, we have

sup B%| | @(w)g(w(—T)“$(w(T) "

T>0

x exp(2T | V(@ v)(orw) —)®(da@dy) )|, dlorw), ») <d| <o,

Therefore our assertion follows from this, the asymptotic independence
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and (3.15). Q.E.D.
(3.17) THEOREM. If P\Pu+#J, then lTim 17 =co.

Proor. Take a ¢¢€ P\P,. Then we have
ez”Zr=E"’"[¢(W(—T))“‘sZS(w(T))‘1

x exp(27|, V(e v){estw) —)®(da@d) )|

XM

pw(—T)), ¢(w(T)), {x/ﬁgv(w) (or(w) —v)(dzx), ve L} (M, dv)} are asymptot-

ically independent as T—>co_under Q,(dw), since @, is strongly mixing.
The assumption that ¢€ P\P, implies that the symmetric bounded
operator I—G*V,G)* has zero spectrum. Therefore we see that

lim B9 exp(27 [, Vi, v)(orw) —)®(da@dy) ) |=o.

Thus we have our assertion from Fatou’s lemma. Q.E.D.

(3.18) THEOREM. Suppose that P,=Pw. Then

819)  limerze= 5 ([ (@i nap) detlI-Girv.G

T—oo VE EPO

and @r converges to 3 a,Q, as T—oo weakly as probability measures on

vER,
W. Here
(3.20) au=z—*(ju(du/dm”2du)z det(I—GY*V,GI") ",
and
(3.21) o= % ([ (@viaprran) detr—crv.gun
vezy \Ju

PrOOF. Let T,>0and @ be a bounded &7y, -measurable function on
W. Then by (3.1) and Theorem (3.14), we have

2 o) exp( | |7 Vi), wis)dtds)|

% <§M(dv/dﬂ)"2d#>2 det(I—G*V.,G.") 7 ES[D(w)].

uePo

This proves our assertion. Q.E.D.



Mean field potential 387

(3.22) REMARK. The assumptions (H.1), (H.2) and (A.2) hold if the semi-
group {P}.s, in L*(M;dg) has the ultraboundedness property (cf. Davies-
Simon [1], Kusuoka-Stroock [3] and Stroock [5]).

§4. Remarks on 7-body potentials.

In this section, we consider r-body potentials, r=8. We will state
results without proof, because the proof is almost the same as in the
case of pair potentials. Let M, W, {P.;x€ M}, ¢, {P}izo -L,E be as in
Introduction, and we assume the assumptions (H.1) and (H.2). Let
V.:M"—R be a symmetric bounded continuous function satisfying the
following assumption.

(A.1’) There are a compact metric space S, a singed measure ¢ with
finite total variation, and bounded continuous functions f;:M—R, i=1,
-+-, 7, such that

V(xx, ety xr): P ')Z=(1 ) Ss ﬁ fij(xjv S)O’(dS),

i=1

for any (x,, ---,x,) € M".
Let @;, T>0, be a probability measure on W given by

(A1)
&, (dw) = Z7" exp(——(#jl- [ Ve, - wie)dt - )Py,
where

(42)

Ze={ exp( - | oVt - wie)d, - dt, )P du)

Let F: 9Dom(E)—R be a function given by
(4.3) F(g)=E(9, ¢)—SM, Vi@, - -, z)p(@)" - - () p(dw) - - - p(da,)
for each ¢€ YDom(£). Then by Donsker-Varadhan [2], we have

(4.4) ~f= lim ?1T_ log Zz= — inf {F(¢) : ® € Dom(E))}.

Let Py={¢€ Dom(E); $=0, F(¢)=f} and P,={¢(x)*u(dx); ¢c P,). For
each ¢ € Dom(E), let :
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(4.5) A9 =€, 9=, Via -2 )uldw)- - pida)
and
(4.6) V@) @) =2 @) +r(,, Vi, v heB) - $(0.)

Xp(dy)- - -pdy..), €M
Then we have the following.
(4.7) ProPOSITION. Py Dom(L), and for each ¢€ P,
(4.8) (L +V(9)())$=0.

Therefore we can apply the argument in Section 1 to each element
¢ in &P, For each ve P, let V, be a nuclear operator in L*(M;dy)
given by

(4.9) V.9(x) =7‘(7‘—1)SM'_‘V(00, 2oy * 0y Ze1)P(2o)v(dR) - - - v(d2,_s)
for ¢ € L*(M;dv). And let
4.10) Pp={ve P,; I-G*V,G!" is strictly positive definite in L*(M;dv)}.

Furthermore we assume the following.
(A.2/) Sugb(x)“”p(dx)<oo for any ¢€ Py, and pe (1, o).
Then we have the following.

(4.11) THEOREM. Suppose that ¢¢€ g-joo- Then there is a 0,>0 such that

77 0w)- exp( v T - v IT [ula)(or(w) ) (da)

X exp(_ﬁl‘)?sr_; [ vy, o wiedn- - dt,), dlertw), 5 <o ]

— B 0w ] )nle) -detI-GiV,Gir) e

X exp(——;—(Gi’z(I—GL’z V.Gl Gy, u)Lz(M;,,D)>

as T—co for any bounded FT ,-measurable function ®:W—R, u € L=(M;dp)
and 0<6<d,.
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(4.12) THEOREM. (1) If L\Pw+J, then 1Tim T Z =00,

(2)

If Py=LPy, then $(Lo)<co and

413)  lime¥™Z= ¥ (SM(dv/d/.c)”zdpy det(I— GV, GY?) ",

T—co vER)

and @r converges to szé a,Q, as T—oco weakly as probability measures
on W. Here ’

(4.14) a»=z'l(gy(du/dp)‘”d;z>z det(I— GV, Gi7) e,

and

(4.15) e= 3 <Su(dl)/d#)”2dﬂ>z det(I—GiV,Gy?) i~

(1]

(2]

[3]
(4]

[5]
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