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Applications of the Malliavin calculus, Part 111
By S. KusuokA and D. STROOCK*®

0. Introduction

The present article is a continuation of our earlier work in [5] and
[6]. In so far as possible, we will adhere to the notation introduced in
those papers; and, when the reader encounters unexplained notation here,
he is advised to seek an explanation in one of those articles. Just to
help the reader get started, we provided below a brief list of some of
our most frequently used notation along with a reference to the place
where it was introduced in [5] or [6].

i)y (0, B,9) is the standard Wiener space with paths in R* ([5,
Sec. 1]).

ii) H={h€0O;h' € L*[0, oo); R*)} with Hilbert norm |k| z=|h/| L%c0,c0r; =%
([5, Sec. 1]).

iii) For functions @ on © with values in a separable Hilbert space
E D®:0—H(E) (=H*QE) and L@ :0—E are the basic operations on
which the Malliavin caleulus is built; G(.L; E) is the space of E-valued
@’s to which D and L can be applied infinitely often; and for @, ¥ ¢
G(L) (=4(L; R))KD, V)= (DD, D¥)nr, ([5, Sec. 1]).

iv) Given vector fields V,, ---, V,€ Cy(RY; RY), L is the second order

d
(degenerate) elliptic operator %;;1 Vi+V, and X({,x): O—RY is the

solution to the Stratonovich stochastic integral equation

0.1) X(T, o) =z + zd: ST

0

VL(X(t, 2))od6,(t) + S Va(X(t, z))dt,
(T, x) €0, o) X RY;

J(T, z) is the Jacobi matrix of 2—X(T, z), A(T, z)=({Xi(¢, ), X;(t, 2)>)1g: san
is the Malliavin covariance matrix of X(T, x), and

*) Both of the authors have been supported in part by both NSF/DMS 8415211 and ARO-
DAAG 29-84-K-0005. The first author has been also supported in part by Grant-in-Aid
for Science Research 61740116 Min. Education.
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A(T, 2)=J(T, x)""A(T, )'J (T, z)*
is equal to

(0.2) 3 S:J(t, 2) Vi X(t, ©)QJ (¢, 2) V(X (t, x)dt (6, Sec. 2]).

k=1

v) A=@U 001 - d; for aeh:

{O if a=¢ .
I if ae(fo,---,dp¥

lall=|a|+card{l<j<|al; @;=0}, and 6“(T) is the multiple stochastic
integral of order « ([6, Appendix]).

vi) Given vector fields V,, ---,V,and V and an a€ A, V=V if
a=¢and Vi, =[Vo, Via,...qpplif a=(ay, - - -, ;) with [ 21; JVO(Vl, e, V)=
{(Vk)(a); 1<k<d and aeeJl} and

o(@) =inf {i

k=1 llaj<i-1

(Vi) (@), 9)2¥; n€ S”"} ([6, Seec. 2]).
vii) Given c¢€ CP(RY),
‘P(T, x, ~)E[exp <S:0(X(t, x))dt)CW]oX(T, z)!

and {°P, t=0} denotes the corresponding semigroup of operators on C,(R");
and when ¢=0, the superseript is left off ([6, Sec. 3]).

Sections 1) and 2) of the present article are devoted to the study
of the smoothing properties of {°P,; t>>0}. Under the assumption that
the Lie algebra J vo(Vi, - -+, V,) is finite dimensional as a C7(R")-module
(cf. hypothesis (H) at the begining of section 2)), we show (cf. Corollary
2.19 below) that for every pair a=(a;, - - -, @) and f=(B,, - - -, Bn) from A:

[ Va0 0 VyoPioVsomeeo Vﬂm“L”(nN)-.LP(RN)éC(a, ) [t +1en 2

for all p€[1, o] and 0<t<1. Although this estimate is clearly related
to the sub-ellipticity result of Rothschild and Stein [8], we do not know
how to get from their result to ours or ours to theirs. In particular,
our result does not contain any of the subtle cancellation on which
theirs (involving singular integrals as it does) rests. Moreover, ours
holds under much more general conditions than it appears likely that
there is a chance of proving theirs. The technique with which we derive
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our result is a refinement of the ones which we used in [6, Sec. 2].

In the rest of this article we turn our attention to the detailed
study of the transition function P(T,z, -). In order to carry out our
program, we have to impose much more rigid conditions on the vector
fields V,, - -+, V.. For one thing, we must assume that there is an [,EN
and an ¢>0 such that v, (r)=¢ for all z€ R". Secondly, and much more

d
objectionable, we have had to assume that V,= ¥ 0,V, for some choice
k=1

of gy, ---,0,€CP(RY). Under these hypotheses, we have shown (cf.
Theorem 4.13 below) that P(t, x, dy)=p(t, x, y)dy where p(t, x, ¥) is bounded
above and below by “Gaussian kernels” in which the Euclidean metrie
has been replaced by a “control metric” defined in terms of the vector
fields V,, ---, V.. Such estimates, at least for x essentially equal to v,
were obtained by A. Sanchez [9]. In collaboration with D. Jerison,
Sanchez [4] has recently extended his estimates to cover x and y which
lie within a unit (control theoretic) distance of one another. So far as
we know, ours is the first time that the global estimate has been proved.
(In both [4] and [9], the condition on V, is that it can be expressed in
terms of the {V,, - -, VJU{[V. V.]; 1<k<I<d}. It seems likely that
our technique can be extended to cover this case also, but there would
be quite a bit of work involved.) Once we have established the pre-
ceding estimate on p(t, x, ), it is a relatively easy step to obtain both
a quantitative Harnack principle as well as a Poincare inequality for the
operator L. We have given the derivation of these corollaries in sec-
tion 5). Using entirely different ideas, Jerison proved the same version
of the Poincare inequality in [3].

1. Preliminary results

(1.1) DeErFINITION. Let E be a separable real Hilbert space and n be
an integer. We say that f€Jl,(RY; E), if f is a measurable map from
(0, ©) X R¥ X0 into E such that

(1) f(t, -, 6): R"—>E is smooth for each t€ (0, co) and W-a.e.f €6,

(2) f(-, -):(0,00) XO—E is progressively measurable for each
x € RY,

(3) éa;—af(t, z, -)€G(L; E). and is continuous in t€ (0, c0) for any

multi-index « and x € R", and
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aa (
N —=——f(¢, x, 6)
0%x »

integer m=>1, T>0 and 2<p<co.
Then the following is obvious.

(4) sup sup —— 1

0<t<T zeRN t"lz

m)
<oo for any multi-index «, any
3 B

(1.2) LEMMA. (1) Let f€JI.(RY; E), n€Z. Then DfeIL.(RY; H(E)) and
LfeJl,(RY; E).

(2) Let f.-Eﬂ’lni(R”; E) n,€Z i=1,---,m and A: E;X --- XE,—~E
be a continuous multilinear operator. Then A(fy, ---,fa) € JL(RY; E),

m
where n= 3, n..
=1

By Kusuoka-Stroock [6] Theorem 1.9, we have the following.

(1.3) LEMMA. (1) Let f(t, x,0)=X(t, x; 0)—x. Then f€Jl,(R"; RY).
(2) g(X(t, z; 0)) € IL(R"; R), for any g €Cy(R"; R).

For any feJl(RY;E), we define Hf [0, ©) X R" X O—>H(E), 1=
-,d, and I,f:[0, ©o) X R"XO—E, 1=0, ---,d, by

(1.4) H.f(t, =, 0)(h):§:f(s 2,0) % his)ds. heH, i=1,---,d,

ds
(1.5) Lf(t, @, 0) =S:f(s, z, 0)ds,
and
(1.6) LA, ©, 6) :&0 fls,z, 0)d0i(s),  i=1, ---,d.

Then we can easily prove the following by an induction argument
based on Kusuoka-Stroock [5] Lemma 2.2,

(1.7) LEMMA. If feJl(RY;E), n=0, then H,f€Jl, . (R"; H(E)), Lfe€
I..(RY; E), i=1, ---,d, and L,f €Tl .(R; E). Moreover,

(1.8) D(H.f)=H(Df), L(Hf)=H(Lf), i=1,---d,
(19) D(Lf)=L(Df), LLf)=L(Lf). and
(1100  D(Lf)=L(Df)+Hf, LI.f)= (.Ef)—%L-f, i=1, .-, d.

For each Ue€ CP(RY; RY) we define Yy :[0, o) X RY X®—R" by
(1.11) Yt x 60)=(X#):'U)(x)=J(t, x; 6)'U(X(¢, x; 0)).



Malliavin calculus 395

Then we have the following.
(1.12) LEMMA. For any U€C7(RY; RY) and any integer n=0,
Yot 2, 0)— > 0<()-U”(x) € IL(RY; RY),

and =
Ttz OU@ — T (—1)=0(0) U (Xt 3;0)) € Tu(RY; R).

lajsn—1

ProoF. The first assertion is obvious from Lemma 1.4 and the
argument [6] section 2. To prove the second, observe that

710,2:0)[| Tl 2T (X(5, )00 (s
=U“(X(t, ©))0 (t) —J (¢, x; 0) Z S:J(s, 2) [V, U=](X(s, 7)) -0 (s)odBi(s)

5 s, ) U (X (s, 2))od8 (o).

=U9(X(t, )0 (t)—J(t, x; 0)

itge

Therefore, by induction, we have
J(¢t, x;0)Ux)=U(X(t, 2)) —J(t, ;0)(Yy(t, x, 6) —Ux))
=U(X(t, )~ Jlt. %:0)% S (s, )" [V, U1(X(s, ©))odbi(s)

0

— Z ( l)lllelo(a)( ) ( U(a)(X( ))

lajlgn—1

+ S (=1 0)S:J(s, 2: 0)" U (X(t, x))od0 (s).

llall=n

Using this formula succesively, we obtain our results. Q.E.D.

Let A(t, x)= i}lS:’J(s, )V (X(s, )@ (s, ©) " Vi(X(s, x))ds, 0<t <1 and
x€RY. Also, let {h;}© be an orthonormal basis in H.

(1.13) THEOREM. For any @€ G(L), f€CF(RY), Ue CY(R"; RY) and >0,
E[0-U{f(X(t, x))}]
=—B| £ o) (5 H(Yy) €. a)(k). (Alt.5)+2D)"Ula))-AXt, ) |
E[@j& izlei(Yvi)(h,-)(t, z), (A(t, @) +el)"-DA(t, ) (hy)

X (A(t, 2)+¢1) V() )X (0. 2) |
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—E|0- % (L(Yy)(t. ), (Alt, 9)+e])"Ule) SX(t, )]
+eE[0- (Ulw), (A(t, @)+el)™ grad(f(X (¢, 2))))].
To prove this theorem we need to make some preparations.

(1.14) LEMMA.
(1) AL )= 5| LV )~ L VX ) |odbilt)

+[ Lyt o) ++ 3 WVixe, @) Vi, o) Ja.
2 =1 ox
@ dZ ke, X))
=2( 35 71t ) {2V (X(t, ) LIX( 3) — LV, )} )odite)

+27(t, 2){ 2V (X(t, 2) LIX(E ) = LIVo(X(E )

Proor. Note that

AX(t,3) = 3 Vi(X(s, 2)d0:(0)+{ Va(X(t, )+ 3 2V (Xit, ) VX, ) .

i=1

Therefore by Kusuoka-Stroock [5] Lemma 2.2, we have

AL 2) = & [LVilXls, 2) =L V(X Lt ) Jabite)

i=1

Since d(V.(X(t, x)))-d6,(t )—iE(X(t, x))Vi(X(¢t, x))dt, we see that

d(L(V(X(E, @))) -doi(t)

—[r(3V: 1av: .
_[_5<_55-( (t, 2)) V(X (¢, x))> 5 5y (X T ViX(E, w))]dt-

Hence

|Lovixie. o —Lvicxe o) Jodoe



Malliavin calculus 397

=[Lvxte 2l — SVt ) |aout

1 6V1 aVz
+ L3V ) VX 0) )= 2L (Xt ) VX ) i

Thus (1) is proved.
Note that

ATt 7)) = — }f Jit, x)“?;/j(X(t, 2)) od0,(t) — I ¢, x)‘“%%’%X(L x))dt.

Therefore we obtain
d{J(t, x)7", X(t, x))
= 5[t 2)7, VXt @)y = ) L Xt ), Xt 2)) |edBile)

+[<J(t, x) 7, Vo(X (8, ))>—<J (¢, w)“%—‘:’(X(t, x)), X(t, 2)>

— £ 7t ) 2V X, 0) VilX e, ) [at.
i ox
Observe that

Tt 2)7 VXL, 2))y—<J(E, x)ﬂ%(xu, 2)), X{t, 7))

={(J7Y). Vu(X)>_<(J—1),D_%§(X), X+

SCEFE ORACE SRR IS ORLAT SEP R WELAT o o

= — Y., (x)xe Xy = —2(J“1).u<_£’V“~ oV (X).EX“)

oz ox” ox*
——2J(t, x)-l(_L’(V(X(t, %)) —-%(X(t, ) L(X(t, ) )).
Thus (2) is proved. Q.E.D.

== 3 J(t, %) VX, 2)d6i0)

|
-

J(t, 2) 7 Vi(X(s, x))odbi(t).

)
i
i
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Proor. Using (1) in Lemma (1.14), we have
d(J(t, z)" L(X(t, x)))
t, ®) ) e L(X(t, ®) +J(t, x) Fod(L(X(t, x)))

= 57t 27 = 2 (X (t,0) L (X0, 2)) + LUV ) —-L Vi X (8,3 odeift)

+J, w)-l{—%ﬁ(xu, 2)LIX(t, 7))+ LVi(X(t, )

Vi x(t, ) Vi(X(t, x))}dt.
x

Combining this with (2) in Lemma (1.14), we have our assertion. Q.E.D.
PrOOF OF THEOREM (1.13). It is easy to see that

(A(t, @) +eI)J (¢, x)*(grad f)(X(t, )
=J(t, ») 7 fX(E, x)), X(E, x))>+e] (¢, x)*(grad /) (X (¢, z)).
Therefore
E[0 grad(f(X(t, )))]=E[®J (¢, »)*(grad f)(X(, x))]

=E[0(A(t, »)+el ) J(t, 2) " AX(E, @), X(t, 2))]

+¢E[9- (U(x), (A(t, »)+eI) " grad(f(X(t, 2))))]
= —E[f(X(t, 2) KP(A(t, ®)+el) I (t, 2) 7, X(t, 2))]
—2E[f(X(t, z))(A(t, ®)+eI) I (t, 2) "L (X2, @))]

+eE[@- (Ulx), (A(t, x)+el )7 grad(f(X(¢, x))))].
Observe that

(O(A(t, ©)+el )T (¢, x) 7", X(E )
=0(A(t, w)+el) It 2) 7 X(E @)
q)i D((A(t, %) +eI)7) (k) (¢, 2)""DX(t, @) (h)

i DO(h;)(A(t, x)+eI ) (¢, ©) *DX(t, @) (hy).
i=1
Note that from [6] (2.5) we see that
J(t, ©)'DX(¢, x) =H(Yv,)(t, x).
From Lemma 1.4, we have

2-J(t, x) " L(X(¢, 2)+<JI (¢ @) X, 2)d=—L(Yy) (¢ 2).
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Thus we have our theorem. Q.E.D.

(1.16) REMARK. If we introduce the dual operator o of D, we can prove
Theorem (1.13) easily in the following way. (For details about this
operator 9, see Meyer [7] and Sugita [10].) Note that

E[2-U{f(X(, ) ]=E[Q(J (¢, x)Ulx), VAX(¢, x)))],

J(t, 2)*VAX(t, %)= (A(t, @) +e]) T (¢, 2)(D(f(X(E, ), DX(t, 2))n

+eJ(t, 2)*Vf(X(¢, x))
and

DX(t, &) =J(t, x)é HY, (¢ ).
Thus we have
E[Q(U(x), (A(t, ©)+eI)7WJ(t, 2)(D(f(X(t, ), DX(t, ))g)]

=E[(D(f(X(t, %)), (@-Ulz), (A(t, %) +eI)*J (¢, @) *DX(t, )]
=E[f(X(t, )2(@-Ulx), (A(t, ) +eI) (¢, 2) "DX(t, x)))]

= & BLAX(, 2)0(0-Ule), (A(t, 2)+I)"H.¥y,(t, )]

=— % BLf(X(t, 2)) ({6, 2)+e]) " Uls), (DO, H. Yy (¢, 2)x)]
+ 33 BLA(X(t, 0)@(Ula), (DIA(t, 2)+¢1) 7%, KTy, (8, )a)]
— & BLAX(, 2)O((A(t, 2)+eI)"Ula), LYy (¢, )],

where we have used

0(¢-¥)=—(Dp, ¥)u+¢- 0¥
and

A(H.f(t) = S:f(s)db’,(s), i=1, - d.

Since

E[Q-U{f(X(¢, z))}]
=E[O(U(x), (A(t, x)+¢I) (¢, @) (D(F(X(t, %)), DX(t, %))x)]
+eE[@- (Ulx), (A(t, ©)+eI) ™ grad(f(X(t, x))))],

we get Theorem (1.13).



400 S. KusuokA and D. STROOCK

2. Precise regularity estimates for semigroups

In this section, we set for each multi-index a€ A induectively,
Viy=0 if a=¢ or 0, V=V, if a=(k) and k=1,---,d, and Vi,.y=
[Vi Vi), 1=0,1,---,d, for simplicity of notation. Then it is easy to
see that Vi;.y=(Vi)w if 1=1,---,d and Vi;,,=0 if :1=0.

Throughout this section, we will always assume the following.
(H) There is an [,>1 such that for any multi-index a, || >, there are
a.s ECT(RY; R), |BI|<l,, satisfying Vi,(z)= “ﬁél Qo 5(x) - Vigy(x) for any

0

Z € R".
(2.1) REMARK. If thereis an [,=>1, such that

inf{(§, A, (1, x)&); x€ RY, £€RY, |&|=1}

>0,
then the hypothesis (H) holds. Here At 2)= 2:[ ; V) @ (@) R
(Vi) @ ().

Proor. Note that A,(L2)= % Ve(#)@Vi(@). and AL )€

Ce(RY; R®®R"Y). Thus for any U €Cy(RY; RY), we have U(x)=
> (U(x),zzo(l, %) 'V (®)) Vi (x). This proves our assertion. Q.E.D.

lal=t,

From the hypothesis (H), we see that there are b{)€C7(R";R),
1=0,1, ---,d, |af, [|Bl|<!, such that

[Vi. Vwll@)= 3 bb(@)- Viple),  1=0,1, -+, d, [laf <l

1811,

(2.2) PROPOSITION. Let Y, ,(t, @), |all, | Bl =L, be the solution of the sto-
chastic differential equation:

Ma.

(2.3) dY,s(t, @)= “ZS? by (X (¢, @) Yy 0(t, %) 0ds(t)

+ E b«(xo,)r( (tv x))YT,ﬁ(trx)dtv

1711,

Y.:0,2)=1 if a=p, and Y, (0, x)=0 otherwise.
Then (X()3' V) (@)= > Yault, 2): Vig(@), llall <l t=0, =€ R".

1811y
Proor. Let Z,(t,x)= E; Y. s(t, ) Vigy(x). Then it is easy to see
181ty
that

il

1
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dZ,(t, x)= é“ﬁél bW X (t, ) - Zp(t, x)odB:(t)+ X bOW(X (2, x)) - Zs(t, x)dt,

H 18I=1,

Z,(0,x) =V (). On the other hand, we have

d(X(t)5' Vi) (@) = izl(X(t);‘[Vi, Viw)) (@) odb(t) + (X (8) 5[V, Vi) (@)dt
= :Z; 1811, bes(X (¢, 2)) - (X (t)5' Viay) () 0dB;(t)

+ 3 b(X(E, ) - (X(E)5 Veny) (@) dt.

1811,

This and the uniqueness of the solution of S.D.E. imply Z,(t, z)=
(X(t)5' Vi) (x). This completes the proof. QE.D.

(2.4) REMARK. Since Y,4(t, z), |l«|, |8l <l, are given by the SD.E. (2.3),
it is easy to see that Y, ,€Jl,(RY;R) and that there are C<co and 1>0
such that

2.5) CW[sup | Yuslt, )= Y. sl0, 2) | >1]|<C exp<_ _;_ )

0<t<T
for any xz € RY, 0T, |laf, |8 <l

(2.6) PROPOSITION. For each multi-index e, ||| <l, there are c,;€
Tasi-ianso(RY; R), Bl <Ly, such that

(XB V) @)= 3 Caplt, 2) - Vig().

1811y
ProorF. Note that
(X' V)@= X 0P0) Vian)
I8l=ty—llal
S, (X(+)% Viwmy) ()

18" 1=Tg—lal
SO, (X(+)5 Ve, (@)).
1871=lolad -1

From Proposition (2.2) and the hypothesis (H), we see that for any
multi-index «, ||| >1,,

(XOF V)@= ¥ GsX(E 2) Y, (¢ 2) V().

18IS 1g, 171STy

Therefore we have our assertion from Lemmas (1.2), (1.3), (1.7), and
Remark (2.4). Q.E.D.
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The following is obvious from the definition of A(t, #), Lemmas (1.2),
(1.7), and Proposition (2.6).

(2.7) PROPOSITION. There are e, p€ Iy 1a(RY; R), llll, [|BII<l,, such that
At.2)= T easlt, 2) V(@) @ Via(@).

lal sty 181,

(2.8) THEOREM. Let A(t, z)= inf{(§, A(t, v)€); E€RY, (§, A, (t, 2)8)=1}. Then
there are C<oo, ¢>0 and v>0 such that

2.9) CW[Z(t, 2) <%]gc exp(—cK?)

for any K>1, z€RY and 0<t<Ll.
PROOF. First observe that A(t/K,x)<A(t, x) and that

& A/K, x)& dz 8)3'V.) (%))ds
1
2 ¢

e
> S”x{uau?,o 00, (Vo)) ds— 5[ & Rils, 2))ds,

0

IA

where
Ris, 0)=(X(s)'Vi)(@)— ¥ 09)(Vi)w(®)

lalSTp—1

=3'S9 (s, (X(*)5 (Vi) ) (x)).

Here X’ denotes the summation on a multi-index a satisfying |a| =l
with Ila’ |<l,—1. Then by the hypothesis (H) and Proposition (2.2), we

have
Ris,x)= X 1i(s, x) Vipy(),

181=1y
where
(s, 2)=3" 5 898, G (X(-, ) Yyl 7).

Iristy

Now, by virtue of [6] Theorem (A.5), we see that there are C'<co,
¢’>0 and v/>0 such that

Wt { 5[5 006 Vo) ds

0

EERY, (& Azo(t x)&) = 1}<2K—(lo+1/s)]

[ kwint {5 [{ 2 Zobhe vonvi @) ds

lalstg—1 gl
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EE R, (& At m)E) =1} <2K™
:CW[K‘O-inf { i S

EERY, (¢ At m)8) =1} <2K™"

1/K

{“a"; _10(11)(3) (&, tial2(V)) <a)(x))}2ds;

0

<C’exp(—c¢'K")
for any K>1, x€ R and 0<t<1.
On the other hand, if (&, A, (t, 2)§)=1 and 0<s<t<1,
[€ Ri(s, 2)) IS X |719(s,2) (€, V(@) [SET0 3 [1i(s, ) |,

lalisiy lalisly
and so

5[ R aas= 3 3t Lo sup 1719, 1)
& i=1 Jalisl,

0 K \ossstix

Therefore, taking into account Remark (2.4) and arging as in the proof
of [6] Theorem 2.12, we see that there are C”<oo, ¢”>0 and »">0
such that

CW[suD{ i S”K (€, Ri(s, x))ds; EERY, (& A, ¢, x)g)—_—l}>K-uo+m)]
écw[i < sup |74 (s, @) |>2><L>”°_”3’]

i=1 lalsly \ 0Ssst/K K
<C” exp(—c"K”)

for any K=1, x € RY and 0<t<1. This completes the proof. Q.E.D.
(2.10) COROLLARY. For any a, B€ A with |al, |8l <l |

sup(t™ | (Veo(@), (A(t, 2)+D) Ve (@) 1%
TERY, 0<t<1, e>0}<oo,

Jfor any 1<p<oco. In particular, (Vi,(x), (A(t, ©)+el )7 Via(x)) converges
m LPasel 0 for all t>0 and 1<p<oco. Finally, if we denote the limit
by (Viw(x), A(t, ) ' Vipy(X)), then we have

(2.11) sup{t= e+ BOEET| (V (), At, ) Vig(2)) 717 £ € RY, 0<tZ1, >0}
<o, '

Jor any 1<p<co.
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The proof is obvious, since

| (Ves(), Ayy(t, 2)™ 1V<,s>(06))l
< (Ve (@), Auy(t, 2) 7 Ve (@) [ (Ve (@), Au(t, 2) 7 V() [
<g-Ual+ighre

(2.12) THEOREM. (V(s(%), A, ) Vi (@) € T1_ay 100 (RY; R) for any a, €
A with ||, 18] <.

ProOF. Note that (A(t, z)+el) € G(L, R"QRY), t>0, € RY, ¢>0.
Therefore we have

D(Ve(®), (At 2)+el) " V(o)
= (Viw(@), (A(t, ®)+eI) "DA(t, ) (A(t, @) +eI )" Vg (@)
> Doy y,(t, 2) (Ve (@), (A(t, @) +eI) 7 Ve (@)

Iryl=ty Irgl<tg

X (Vi (@), (AL, @) +eI) Vg (),

I

and

L((Ves(®), (AL, 2)+el) " Vegy(@))

=(Vew(), (At @) +eI) " LA, 2) (A(t, 2) +eI) " Vs (@)

(
+ 3 (Veol@), (At )+eD) " DA(t, o) (k) (A(t, ) +¢I)

X DA(t, @) (h:) (A(t, ©) +eI) Vs ()
= 5 % Lepg,t 0) (Vi (@), (Al 2)+el) V(@)

Ir =ty I7alsty
X (Vp(@), (A2, @) +el) 7 Vg (@)
(Dey,,1,(t, %), Deyy (¢, @)

TSl Iralsly IrglSly I740Sl .

X (Veas(®), (A(t, ) +el) 7 V() (Virp (@), (A, @) +eI) 7 V()

X (Verp(®@), (A(t, @) +el) 7 Vigy ().
Thus, as ¢} 0, D(V(,(2), (A(t, ©)+¢) " Vip(x)) converges in L*(O; I (R), W)
and L((Vie(®@), (A(t @) +¢) "' Vip())) converges in L6, 9) for each 1<
p<oo. Therefore (Viy(x), A(t, x)"Vig(x) € K(L; R) and
(2.18)  D(Viw(@), A(t, 2) 7 Vegy(@)) i

= ¥ X Deyylt, 0) (Vi (@), AR, 2) Ve (@) (Ve (@), Alt, 2) 7 Vigy (),

71ty Irallsty

and
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(2.14) L(Vip(@), A(t, 2) 7 Vig(@))) )
= % 5 Lt ) (Vin(®), Alt, 2) 7 Ve, (@) (Virp(@), Alt, 2) 7 Vg ()

171ty Irgl=ly

+ X X X X (Dey,(t x), Deyy,y (t, @)
71T I7glSly I7gl=ly I7glS1,

X (Viwy(®), Aft, %) V() (Vi (), A, %) V(@)
X (Vap(®), AL, )7 Vs ().
Also, by Propositions (2.7) and (2.11), we see that
sup{t=1<'* BV B[ || D(V (@), A(t, #) 7 Viay(@)) [ %em ] 2 € RY, 0<t<1)<oo
and
sup{t=1< VB[ _L( Vo (), At, @) Vig()) P17 € R, 0<t<1}<co.
Because of (2.13) and (2.14), it is now clear that we can proceed by
induction to get our conclusion. Q.E.D.

(2.15) THEOREM. For any ®€Jl(RY;R), n€Z, and ac, there are
?,, 0,€I,_y(RY; R) such that

J E[D(t, ©) Vi, [(X (¢, 2)) 1= E[Pa(t, 2)f(X(¢, x))]
an
Vi E[D(, 2)f(X(t, 2))]) = E[O.(t, x)f(X(¢, %))]

for any fECY(RY; R), t>0, x € R".

Proor. It is sufficient to prove our assertion for @ € A with ||| <.
From Theorem (1.13), we have

E[O(t, o) Ve FX (2, 2))}]
=— % % E[(DO(t, z), Hilews)(t )

i=1 |8l
X (Veay(), (A(t, @) +eI) Vg (@) v f(X (2, )]

+Z > E[(Hi(cw,s)(t, %), D{(V g (@), (A(t, @) +eI) 7 Viey (%)) a})
X0, 2)f(X(t, 2))]

— 2 2 E[O(t x)i(c (¢, x)

11812,
X (Vegy(®), (A(, @) +€I) 7 Vo (@) ah £ (X (2, 2)) ]
+eE[D(t, ©) (Vo (@), (A(t, %) +eI) 7 grad(f(X(t, ©))))e¥].

However, it is easy to see that
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B[Ot ) (Ve (@), (A(t, ) +eI)* grad (F(X(t, 2))))ev]]
<R[ D(¢, ) |(Vew(®), (
(
(

A(t, ®) +el) V() U5
X {e(grad(f(X(t, ), (A(

)
A(t, z) +eI) ™ grad (f(X(t, 2))))av}"]
SeE[|O(t, 7) [(Vewy(®), (A(t, #) +eI) Vi (@) 2| grad (f(X(t, x))) [
—0 aselO.

Thus we have

(2.16)  E[D(t, @) Vi {f(X(t, 2))}]

Il
I

>, E[(DD(t, x), Hi(c.6)(

1811,

E E[(Hi(cw,p) (¢, @),

t, ®)u( Vs (@), A, ©)7 Vs () ¥ (X (2, 2))]

'Ma. JLM:.

-,
[}
-

+

D{(Vep(®), A(t, 2) 7 Veoy(2)) 2@ (8, 2)f(X (2, @))]

|
Me
™
E‘
s
5

L 0)Li(cw,0) (8, 2) (Vi (@), A(t, )7 Vigy () w2 (X (2, 2))].

.
i
)
E
"
I

Note that

VlE[D(t, 2)f (X (2, 2))} =E[ Ve (@(E, @) f(X(E, ) + (2, @) Vior (F(X (2, 2)))].

Therefore, from Theorem (2.12), we see that @, exists.
To find @;, observe that
E[D(t, 2) Vo [(X (2, 2))]=E[D(¢, ) (X ()5 Vi) (), (X(t)*dSf) (x))]
= “Elo E[D(t, )ca,5(t, ) Voo (f(X(2, 2)))]-

Thus from (2.16) and Theorem (2.12), we see that there is a @, with
the required properties. Q.E.D.

By induction, we can easily see the following.

(2.17) COROLLARY. For any @ € JI,(R";

,R),?’LGZ,a’ndaly o 'yamvﬂlv ‘ ",,31,6
A, there is a @' € Jl,_,(R"; R) such that

Vi Veal B0, 2) Vg -+ Ve fIX(, @) = E[@'(t, 2)f(X (2, 2))]
for any fECS(RY; R), >0, s € R, where 1= % ]+ 3 I8,

(2.18) THEOREM. For any ay, -, am P

o, Be A and 1<p<co, there
18 a constant C<oo such that

| (Veap = Via P Vaay *++ Vapof ) (@) [SCETE P f 1) ()7
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m k
for any fEC(RY; R), 0<t<1, x€RY. Here l= % |a;ll+ X |IBill.
i=1 i=1

Proor. Let

t

Di(t, x)= equ

Then @, @,€ Il (RY; R), by Lemmas (1.3) and (1.7). Therefore from
Corollary (2.17), there is a @’ € Jl_,,y_1s(RY; R) and

| (Vg +++ Ve, "PiVi, -+ Vi, ) (@)
=| Vo = Vo [E[Di(t, ) Vi, - - - Vi, F(X(E, @)}
=|E[P'(t, x)f (X (2, x))]|
SE[Q'(t, x) ['Do(t, x)"TIE[D(8, @)| F(X(2, @) 177
SE[Q'(t, x) ['Dult, @) 1P| f ) ()7

Therefore we have our assertion. Q.E.D.

c(X(s, w))ds) and @,(t, )= exp<—S:c(X(s, w))ds).

0

(2.19) COROLLARY. For any ay, -+ -, @, B, -+ -, B € A, there is a constant
C< oo such that

[ Veay =+ Viapy PeVesy =+ Vigoff |02e® SCE2| f || 1o,
m k
for any fECP(RY; R), 1=p=<co and 0<t<1l. Here l= % llajll+ X [IAill.

Proor. By Theorem 2.18, it is obvious that our assertion is true
~ ~ d

for p=co. Let V.=V, i=1, ---,d, VoE~Vo+%kZdiv(V,‘)Vk, and ¢=
=1

d

3> (div(V,))%.. Then it is easy to see that

k=1

o= div(Vo++ 5 Vdiv(Vi)+

0o |

the family of vector fields {V,, ---, V,} satisfies the hypothesis (H). Let
{*P,; t=0} be the semigroup associated with {V,, ---, V,} and é Then
by Theorem 3.14 in [6], °P, is the formal adjoint of °P,. Since our as-
sertion holds for °P, in the case of p=oo, we see that our theorem is
true for p=1. Then, by the interpolation theorem, we see that our
theorem is true for all ». Q.E.D.

3. The distribution of the approximating process

Until further notice, we will be assuming that
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8.1) i) V,=0 and {Vy, ---, V,JCC(RY; RY)
i) v, (®)=e, € RY for some [,€N and ¢>0.

Under these conditions we will (ef. Theorem 4.9) obtain some reasonably
precise estimates on the density p(t,z, -) of IWoX(t,2)'. Our method
will be to expand X(t, x, 6) in a stochastic Taylor expansion at t=0 and
to make a careful analysis of the Taylor approximations. This procedure
can be viewed as a stochastic analogue of the ideas introduced by L.
Rothschild and E. Stein in [8] and sharped by C. Fefferman and D. Phong
in [1] and A. Sanchez in [9].
Given a € A, define V@ so that

Ve it a=(k)
VO=\ sy 0VP e (8 k).
=1 axi
For €N, set
(3.2) Xt z)=x+ ¥ 09 V() (tx)E[0, o)X R
1|al Ll

(Note that, since V,=0, we might as well take A={¢}U lq {1, -, d}}
and we can ignore the distinction between |a| and ||«||.) The process
X,(-,x) is, of course, the I-th order Taylor’s approximation of X(-,x)
which we will be studying in this section (cf. Theorem 3.36). In order
to get the kind of refined estimates on 9o X,(t, x)~ which we will need,
we must begin by studying the distribution of {#*(¢): 1<| |

Set A= U {1, ---,dcA and for i=1, ---,d, define
j=1
0

zd ’
0slalsi-1 02,

(3.3) W=

where z;=1. It is then easy to check that, for all z€ R#, there is a
unique solution Z(-, z) to

d T
(3.4) Z(T, 2 0) =2+ ES WAZ(t, 2 0)odo(t), T=0.

=1 J0
Moreover, it is easy to check that 6@ (-)=2Z,(-), a € A, where Z(-)=Z(-, 0).
Thus, we would be well-advised to study the family of vector fields

{(W,, ---, W;}. The following result summarizes some facts proved in
the appendix A.
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(3.5) THEOREM. Let G=Lie(W,, ---, W,)(0) and think of G as a subspace
l

of R%. Then G= @Y, where Q;zgﬂspan{-aqﬁ;|a|=2}. Moreover,
=1 2

there is @ mapping (n,v) € GXG—uxve G and vector fields Wi, ---, W,
on G such that

i) (4, X) 18 a nilpotent Lie group with w™'= —u,

ii) Lebesgue measure is G-invariant,

iii) Lie(W,, ---, W.) is the Lie algebra of right G-invariant vector
Jields,

iv) for all a>0. (S,)«W.=aW,, 1<k<d, where S, : §—G is the linear
map such that S;u=a'*u for ue G, and 121
Finally, there is a proper immersion ¥ :G—R* such that |¥(u)—u|<
Clult for some C<co and all u€ G with |u|<1 and Z(-)=TU(-) (a.s.I)

where
T

(3.6) U(T) = ki S W U()edout),  T=0.

Because of Theorem (3.5), we now transfer our attention to the
process U(-) in (3.6).

(8.7) LEMMA. There is a smooth map (t, x)€ (0, o)X G—p,(u) € (0, o)
such that

i) (WU)™) (du)=p,(u)du, t>0,
ii) for all (s, t,u)€ (0, 00)X (0, ) XG:
Pose(®) =L p(uv™") o, (v)dv,

iii) for all (t,u)€ (0, 0)XG:
pw) =t=%0,(S,-1u), where v= 3 2dim(G),
A=1

and
iv) there exist C€ (0,00) and 6>0 such that p,(u)<Ce " for all
(t, u) € (0, ©) X G with |u|=1.

PrOOF. Since the W,’s are right G-invariant
U(T) X u=u+ ki r W (U(t) X w)odOult),  T=O0.

Hence, if Q,=9/-U(t)™, then (t v)€ (0, 0)XG—>Q,0R;* is a transition
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probability function (R,(u)=uXwv, w€G). In particular:
(3.8) QD)= QU@ T'eB, and 5,t>0.

Also, because (S,)xW.=aW,, we see that Wo(S,U(-)) =W -Ula-)"", and
S0

(3.9) Q.= (S,u2)™",  a>0.

Next, observe that, because Lie(W,, ---, W,)(0)=G, Theorem (4.5)
of [6] tells us that there is a smooth (¢, u) € (0, o) X G—p,(u) € [0, )
such that Q,(du)=p,(u)du, t>0, and that

(3.10) p.(u) < Ce 011t

for some C<co and 6>0 and for all (¢, u)€ (0,1]X4 such that |u|<1.
Clearly iii) follows from (3.9), and so (3.10) holds for all £>0 and u € g
with |u|=1. That is, iv) holds. Finally to see the p,(u)>0 for all
(t,u) € (0, 0) X g, simply note that supp @.=G,t>0, and therefore that
{0,>0} is a dense open set for all £>0. Clearly pr(u)>0 follows from
this and ii) with s=t=1T/2. Q.E.D.

In order to complete our discussion of W oU(t)~!, we define U(-,u, h) €
C([0, o0); G) for (u, h) € GXH by

O(T, u, ) =u+ ki ST WOt w, B)he(t)dt,  T=0,

and for u,vel§ we set

e(u, v)=inf{||h|x; UQ,u, h)=2}.

Because Lie(W,, - --, W,)(u)=G for all uc G, e is a metric on G which
has all the properties described in Lemma (B.1). In addition, if U(-, h)=
U(-,0, k) and e(u)=e(u, 0), then T(-,u, h)=UT(-, k) xu, S,U(-, h)=0U(-, ah),
and so:

{ e(u, v)=e(uv™)

(3.11) e(S.u)=a-e(u).

(3.12) THEOREM. There is an M€ [1, o) such that

'M%»'/Z exp(—Me(u)’/t) <p.(u) < % exp(—e(u)?*/ Mt)
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for all (t,u)€ (0, 0)X 4.

Proor. In view of property iii) in Theorem (3.7) and the scaling
property of e in (8.10), it suffices to treat t=1 and u+0.

To prove the upper bound, define w(u), u € G\{0}, so that w(u)=a if
|Sy.u|=1. Clearly w(S,u)=a-0(u) and w(u)=1 if and only if [u[=1.
Also, o= sup{—e—(u—)*; ueg\{O}}z max{—e{@; || =1}<oo. Hence, the

w(u) w(u)
required upper bound follows from the corresponding upper bound with
o replacing e. That is, we must check that p,(u) <M exp(—w(u)’/M) for
some M<oco and all ue€G\{0}. Obviously, there is no problem when
|w|<1. On the other hand, if |u|=1 and l/t=w(u)? then 0<t<1 and,
by iv) and v) of Theorem (3.7):

p1(w) =t"P0,(Saisu) < Ce™*!* =Ce o’

since | Spyzu|=1. The upper bound follows from this.

The lower bound is proved as follows. Set B,(u, r)={v € G;e(u, v)<r}
for w€& and r>0, and note that y=inf{p,(u);u € B,(0,3)}>0. Given
u € G with e(u) =8, let n=[e(u)?]+1. Then

01(u) =Sd’U1 te S dvn_lpl/n(%)M/n(Ule) cet Pl/»(uv17—11)-

Using Lemma (B.2), choose u,, - - -, %, 80 that u,=0, u,=u, and e(t,_y, )=
e(u)/n for 1I<m=<mn. Then for v, € B,(Un, ™%, 1SMm=Zn—1: (v, 0,)<

3n~"* for 0<m<n—1 where v,=0 and v,=u. Hence, by ii) and iii) of
Theorem (3.7):

v

d'u---g dv v ) 2
SB,(ul.n—‘/“’) 1 | PSS w101/ 1),01/1,(’02’01 ) 0172 (UV524)

2 (yn*)" B,(0, n71%)| "7

01(u)

Noting that |B,(0,r)|=7*B,(0,1)| and recalling that n=[e(®)?]+1, one
can easily derive the lower bound from here. Q.E.D.
Define F: R*#XR"—>R" and F: GXR¥—RY by F(z;x)= Y 2,V®(x)

= 1glalgl-1
and F(u;x)=F @ (u); x). Denote by JF(u,z) the Jacobian transformation

determined by u—F(u, x).

(8.13) LEMMA. There ts an ¢ >0 such that JF(0, x)'JF(0, x) =e'Ipv, x € R,
so long as 1=1,.
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Proor. Clearly it suffices to treat the case when l=l,, As in the
l
proof of (A.9), introduce the quantities ¢, and Ca,aeufl,o, in G%(R“)@",
o A=1
and define 5: 16{2 (R*)®*—C=(R™; R™) to be the linear map such that 5(e,) =
V@. Then &(Cup)=Vauy for 1<k<d and 0<|8|<l,. Next, let {D,}r
be an orthonormal basis for {C,; aed,} and define B,,=(D, e,) 1,

(RH®A
2,

Set V,= ¥ B,.V® and u,= ¥, B, for 1I<pg<m. Then {V,}I spans

a€dy, aEdy,

{V,a;ﬂGJLQ} and {56 }:n is an orthonormal basis in §. In particular,
Y4

by ii) of (3.1),

i V.(x)QV,.(x)=e'Ipy  for some ¢>0 and all x € R”.
v,

Noting that ¥'(u)—u=0(|uf) as |u|—0 in G, we see that Aa—(O):
ul‘
092 0)=B,,. Hence
ou,
OF(.2) )= ¥ B, . Ve(x)=V,@)
0U, aEdy,
and so

JF(0, x)'JF(0, ) = i V(@)@ V(@) = e. QE.D.

In view of Lemma (3.13) and i) in (3.1), the following statement is
a standard application of the implicit function theorem.

(3.14) LEMMA. Let 1=, be given and set D=dim G—N. There exist
7, 12€ (0, c0) and a bounded mapping x€ R'—F.cCy({ucg;|u|<r}X
{E€ RY; |E—x|<7m}; RP)) such that u—(F.(u, &), Fi(u, §)) ts a diffeomorphism
of weg:|u|<r) onto an open set O(x, &) D{v € RV*?; |v|< ). In addition,
£t € RY—>F1eCy({(v, &) € RV P X RY; |E—x|<r and v € O(x, &)}; G) is a bound-
ed mapping. In particular, if M,,={ueG;|u|<r. and xz+F(u, z)=y}
for (x.y) € RN X RY, then:

i) either M,,=¢ or M,, is a smooth open sub-manifold of G having
codimension N,

i) ifx,ye R, |E—w|<riand M, +¢, then F.(-,€)lu,, ts diffeomor-
phic onto {w € R®; (y—¢, 0) € O(z, &)},

iii) if (x.y) € RYXR¥>m, , € Cy(G)* is defined so that m,,=0 when
M,,=¢ and m,, is the Riemannian volume on M,, (as a submanifold
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of G) when M, ,+ ¢, then for each n=0 the mapping ¢ € Ci({u € G; |u|<r})—
S d(u)m., w(du) € C3(R¥ X RY) is bounded, and
M.‘c

iv) (4, x)—>det(JF(u, x)'JF(u, ) s a uniformally positive element
of Ce(lue G:|u|, r} X RY) and for each ¢ € Cy({u€G; [u|<ry}):

Sggb(u)du:SRNdyS o(u) K(u, )m, ,(du), € RY,

where K(u, x)=(det(JF(u, x)'JF(u, ))) ™"

(8.15) LEMMA. Let 1=l,, Then there s an 7€ (0, " A7) and a @€
Ce(u € G;|u|<r) X R¥X{n € RY; |p|<ms}; {ve G:|v|<r)) such that

i) O(u,x 0)=u for (u,x) € GXRY with |u|<r; and

i) F(@wu,z n),z)=F(u,z)+n for (u,x,7) €GXRYXRY with |u|<rs
and |9|<rs.
In particular, O(-, x, n) maps M, , into M, ., for all (x,y,n) € RY X RY X RY
with |p|<7s.

Proor. Given (u,x)€ G XR", define 5,.&)=Fu+'JF(0,x)¢ z) for
EE€RY. Then, (5,.)"(0)=JF(0,2)'JF(0, x)=¢Ir~. Hence, we can choose
an 7;,€ (0, 1, A7) so that, for all (u,x) € GXRY with |u|<r, 5,. maps a
open neighborhood of 0 in R" diffeomorphically onto {£ € R";|&|<7s} and
the map (u,x,7)—>@u,z p)=u+'JF (0, 2)(5,.) () is an element of
Celue G;|ul<rXR¥X{n€ RY: |n|<rs); e G:|v|<r)). Clearly @ has
the desired properties. Q.E.D.

Warning. From now on, we will be assuming that [=I,.
Recall the process X,(-,x) defined in (3.2) and note that X(-,z)=
z+F(U(-),x). Given neCy{u e g;|u|<rs}), set

Pi(t, x, -)=(nU(t))W)e X,(t, x)™", (t. )€ (0, o) X R".
Then, by Lemmas (3.7) and (3.14), P}(t, z, dy)=p](t, z, y)dy where

(3.16) pilt. . y)zj n(w)o.(W) K, m)m.., (d).

M:r,y

Our goal is to use (3.16) in conjunction with what we already know
about p.(u) to get precise local estimates on pJ(t, z,y) as ¢ | 0.
Given (x, h) € R X H, define X(-,x, k) € C([0, o); RY) by

X(T, % h) =2+ ir Vi X(t, @, )R (t)dt, T=0.
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For z, y € R¥, define
d(x, y) =inf{||h]| x; X(1, %, h)=y}.

By Lemma (B.2), d is a metric on R which is compatible with the
Euclidean topology.

(8.17) LEMMA. For each 1=, there exists a C,€[1, o) such that

(3.18) |X(T, =, h)—(x+F(U(T; h), x))|<C||k|F, (T, k) €[0,2]X RYXH,

(3.19) %lulée(u)é&lul‘“, we G with |ul Ae(w)<1
(3.20) le(w) —e(v)| < Cilu—v|™, u,ve G with |u|, |v|<1,
and

(3.21) dx, z+F(u, 2))<Ce(u), (u,x) € GXRY with e(u)<1.

Moreover, there is a K €[1, co) such that

(3.22) I%Ix—yléd(x, Y SKlz—y|", o, y€ RY with |z—y| Ad(x, y)<1.

ProoF. The existence of a C, satisfying (3.18) is an easy consequence
of Taylor’s theorem. The left hand side of (3.19) is obvious and the right
hand side follows by homogeneity. Given (3.19), (3.20) follows from
le(u) —e(v)| <e(u, v)=e(uv™?) and |uv™'|=e(uv, vv)<Cilu—v| for u,veyd
with |u], [v|<1.

The left hand side of (3.22) is again obvious. To prove the right
hand side, take l=1[,. Because ©(0, z,0)=0, we can choose B¢ (0, o) so
that |@(0, z, »)| < Blp| for (x, ) € R¥ X RY with [p|<r;. Now choose 0<d<r,

so that (Ci“B-a‘”)vB&g%/\n. Given z,y€RY with |x—y|<d, we

choose {(%m, Unm, ha) ] C{E € RY; |E—y|<0}X{u € G; |u|<1} X H inductively as
follows. First, x,=«. Secondly given =z, take u,=@(0,2,, y—2,) and

choose h,, € H so that ||h,||z=e(u,) and #,=U(1, h,). Then |u.|<B|z,—y|
gB&g%/\m. Thirdly, take %,,,=X(1, Zn, k). Then

@1 = Y| = T+ F (U, Tn) = X(1, T, b)) | SCi Bl =Cre(wn)
gCi”lu,,.l‘“”gCi“le,,.—yl”’”
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§(Cf+2B'5‘”)lxm—y|é%\xm—yléﬁ-

Note that
A (X Bonyr) = || || e =6t )<Cz|u |"'< C, B |%w—y|""
SCBW( ) 1y
2 |y —=|

Hence, since z,—Y,
© mfl
afe, y)=lim d(a, 2 S(CB" ()" o=y,
m—o0o 0

Clearly the right hand side of (3.22) follows from this.
To prove (3.21), let € G with Cie(u)'*’<1 be given and choose h € H
so that ||h|z=e(u) and U(1, h)=u. Then

d(x, z+ F(u, x))sd(x X1,z h)+d(X(1,x,h), 2+ F(u, )
<e(u)+d(X(1, 2, h), s+ F(u, x)).

Note  that  |X(L x,h)—(@+F(u, )| =|X(1, 2 k) —(@+FOL k), 2)| <
Cillh||#*=Ce(u)**<1. Thus by (3.22),
d(, 4 F(u, z) <e(w) + K(Cie(w) )b, QED.

(3.28) LEMMA. There is an r,€(0,7] and a y€(0,1] such that for all
zERY and yeY.={x+F(u,x); |ul<r), there is a diffeomorphism S,,
from M, ,N{ueEG; |ul<r} wnto M..N{weG; |v|<ry} with the property
that

1

(8.24) ym..<(K(-,x)m,,)eS; < Tm” on {S,,(u);ueM,, and |u|<r}

and
(3.25)  y(e(S.,(w) +d(x, y) <e(u )S%( (S..,(w) +d(z, 9)),

ueM,, with |u|l<r,
for all xe RY and y€Y..

Proor. Choose p, € (0, 7)) so that
[v|+10(1, v, h) |+ X (1, 2, h) —2| +|F(T(1, v, h), 2) = F (v, x)| <7y
for all (x,v, h) € RYXGXH with |v|V|k|z=<p:, and for such (z,v, h) set
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O, x, h)=0(U(1, v, h), z, X(1, xh) —x—F(U(1, x, h), x) —F (v, x)).

Next, choose p,€ (0, 5] so that |®(v, x, h)|<1/C, for all (v, z, h) € R¥ X Gx H
with [v|V]|k] < p..
Given x€R" and (v, h)EM,.XH with |v|\V|h|z<p. note that

r+F(@(v, x, h),x)=X(1,x, h). Hence, by (3.21):
(3.26) d(z, X(1, z, b)) < Ce(®(v, x, h)).

Next, choose h,€ H so that |h,|z=e(®) and v=U(1, h,), and define g to
be the element of H such that

h,(t), t€[0,1]
g(t ={h
(1) +h(E—1),t€[1, o).

Then, U(2, g)=U(1,v,h). Thus, if A€ (0, co) is chosen so that |®(u,y,7)
—u|<Alu| for all (u,y, ) € GXRYXRY with |u|V|2| <7, then

|D(v, 2, h) = U(2, g)|
<A|X(1, 2 h)—2z—F(U2,g), )|

By (8.18), | X(2, 2, 9)—x—F(U(2, 9), )| <C\|lg|l4*. On the other hand, there
is a Be€(0,) such that |X(1,2/,f)—X(1, 2", f)|<B|x’—x"| for all 2,
x” € RY and f € H with || f|l#s=<p.. Thus, since X(2, z, 9)=X(1, X(1, x, h,), h),

| X(1, z h)—X(2 2 9)|<B|X(1,z, h,)—2|.
But v€ M, , and therefore, by (3.17):

| X(1, z, h,)—2|=|X(1, 2, h,) —2—F(v, x)|
=|X(1, x, h,)—x—F({UQ1, h,), 2)| <Cie(v)'*.

We have therefore shown that there is a C € (0, o) such that
1B, ©, h)—T(2, g)| <Cle(v) ™+l gl i)
Thus, by (3.20):
le(@(v, z, k) —e(T(2, 9))| <C’ (e(w) " + || g||5"),

where C’=C,C. In particular, since e(U(2, 9))<2"%||g|lx<2"(e(v) + ||k x),
we see that there is a C” € (0, oo) such that

(827) e(@(v, x h))ZC"(e(v)+|h|x) for any (x,v,h)ER"XGXH
with [v|V k] z< 0.
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At the same time, e(v)=e(0,v)<Ze(0, U2, 9))+e(U2, 9),v)=¢U2, g))+
e(U(1, h))Ze(U(2, g))+||hllz; and so '

e(D(v, z, b)) =e@) —||h]| g —C’ (e(v) ™+ g|| 5"
>e() — | h]la—C' (e(®) M + (2" (e(v) + | k] £) ).

Hence, there is a p,€ (0, p;] such that

(3.28) e(@(v, z, b)) z%e(v) —2|h| =

for all € RY and (v, k) € M, . X H with |v|V |h]|zZps.

Note that @ (v, %, 0)=v for x € R¥ and v€ G with |v|<p,. Hence, by
the implicit function theorem, there exist p€ (0, p;] and r € (0, 75] such
that @(-,x, k) is a diffeomorphism from {v€G;|v|<p} onto an open set
containing {u €G; |u|<r} for each (v, k)€ R¥XH with ||h||z<p. In ad-
dition, we may assume that the maps (x, h)—®(-, z, h) € C3({v € G; |v|<p};
G) and (v, h)—®(-, 2, h) " €Cs({ueg; lu|<r}; {ved; |v|<p}) are bounded
on R¥X{h€H;|h|z<p}. In particular, (since for (v,2,h)EGXRYXH
with [v|V |kllx<p, D, 2, h) € M, g4, if and only if veEM,,), &(-, x h)™*
is a diffeomorphism on M, zq.nN{u€G; |u|<r} into M,.N{veg; |v|<p}
and there is a 4 € (0, 1] such that

(8.29) 0My 21,5,1) gmz,zoé( * L, h)—lé%mx,xu.x,h)

on M. za.nN{u€G;|u|<r} for all (x, k)€ RYX{h€H; |h]z<p}.

Finally, using (3.19) and (3.21), choose 7, € (0, ] so that d(x, x+F(u, x))
<p for all z€ RY and u € G with |u|<r, Given x€ R" and y € Y,, choose
h.,€H so that d(x,y)=|h.,lx and y=X(1,,h,,). Clearly, ||k,,|z<p;
and so _

Sr,v( ' ) E@( %, h)_1|M¢,yﬂ(ueg;lul<r4)

is a diffeomorphism into M, .N{v€G; |v|<p}. Also, because (4, x)—>K(u, x)
is uniformly bounded and uniformly positive on {u € G; |u|<r}XR", the
existence of a y € (0, 1] satisfying (3.24) follows immediately from (3.29).
To prove the right hand side of (3.25), take v»=S, ,(u) and h=h,, in
(83.27). To prove the left hand side, combine (3.26) and (3.28) with the
same choice of v and h. Q.E.D.

Now choose and fix 7€ Cy({u € G; |lu|<r}) and ¢ € CP((—1,1)) satisfy-
ing 07, ¢<1,5(u)=1 for |u|<r,/2, and ¢(&)=1 for |£|<1/2. For 1>0,
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define ¢,(-) =¢( P ). Given a>0, let Pi(z, o, -) = (p(U(0) hule(UH) W)

(X,(¢, x))"". Then, by (8.16) and Lemma (3.23), Pi(t, x, dy)=p:(, =, y)dy,
where :

830) 7, 7SS OIS o) o)

<piltm DS, ASHODlelSH oS, 0 me.(d0)

For >0 and x € R”, set B,(x, r)={y € RY; d(z, y) <7} and for I" € Be~
let |I’| denote the Lebesgue measure of I

(8.31) LEMMA. For each B€(0,1) there is a d(B) € (0,1) such that for all
1 N,
a, be[ﬂ, ﬁ] and (£, %) € (0, L]XR":

832 1m0 € M..; o) <(at) ™| Bz, (b)) €[00) 5 |

In particular, there is a K,€[1, o) such that

(3.38) m,.({v € M. .; e(v) < (2¢)""}) SKim, .({v € M, .; e(v) <t'?})
for all (t,z) € (0, 11X RY and a CE[1, o) such that

(3.34) | Ba(x, (28)")| <C|Ba(a, £"7)|

for all (t, x) € (0, 1] X R".

Proor. First, take a=<—4—>2. Then, by (3.30), (3.25) and (3.19) to-

7
gether with Theorem (3.12):

—Ma/2

pi(t o, 9) 210

6/

= 1212

m,.({veEM,, |S;,(v)|<r/2 and e(v)+d(z, y) <2t"%})

m,,.({v € M, .; e(v) <t'?})

for any y € Bi(x, t¥?) and t€ (0, T,;]), where 6’ =yre ™**/M and T,=(r,/2C)"
Hence, since gp;'(t, z, y)dy<1:

tm, ,({v € M,.,; e(v) <t'*})| By(x, t'%)| g%,



Malliavin calculus 419

for all (¢, x) € (0, T]XR".
Second, take a=7*. Then, by the same estimates as we used in the
preceding paragraph :

M

pit , y) éﬁﬁmm({v €M, .; e(v) <t%).

At the same time, by (3.19) and (3.21):

j o PE (0 2 Y)Y
d z,

W) =72, eUQ) <yt d(z, x+FU?), ©) <t')
=W (e(U(t) <pt")

for some A>0 and all (¢, x) € (0, T\] X RY. Since t "% (U(t)) is distributed
under 99 in the same way as ¢(U(1)) is, we conclude from this and the
preceding that:

(3.35) t=om, ({v € M. .; e(v) <t"%})| Ba(w, 47)| € [5, %]

for all (¢, ) € (0, T,]X RY and some 4 € (0, 1].
From (3.35) it follows that

m..({v € M. . e(v) <(28)"})| Ba(w, (28)"")]|

=%/ m, .({vE M, elv) <t4%))| By(, )|

for all (¢, x) € (0, To/2] X RY, and from this it is obvious that for every
T>0 there is a C(T) such that

m.,.({v € M., .; e(v) <(28)*}) SC(T)m.,.({v € M.,.; e(v) <t"?})
| Ba(, (2¢)"")| <C(T)|Ba(w, t'7)|

for all (¢, x) € (0, T]X R™. Finally, given g€ (0,1), set T=1/8T, and use
the preceding in conjunction with (3.35) to find a 4(B8) € (0, 1) for which
(3.32) holds. Q.E.D.

REMARK. The inequality in (3.34) is known as the “doubling condi-
tion” and was first proved for the metric d by A. Sanchez [9]. Al-
though Sanchez’s proof also involves the use of a nilpotent group related
to G, our method differs substantially from his.

Let Pyt z, -)=@UE)W)o(X.(t, )", (t,x) € (0, ) X RY, where 7 is
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the same as it was in the definition of P(¢, x, -). (Note that Pt z, -)=
P;v(t’ xv ')')

(8.36) THEOREM. There is a p, € C((0, o) X R¥ X RY) such that P(t, z, dy)
=p(t, x, y)dy for all (¢, x)€ (0, 0)XRY. Moreover, for each [=l, there
exists an R, € (0, o) such that p,(t, z, -) eCe(ly €RY; ly—x|<R)}) for all
(t, x) € (0, ©) X RY; and for each m=0 there exists a v, € (0, o) such that
Jor all 1=1,:

(3.37) I1B4(t, @, )l gy SCU 47, (2, 0) € (0, 1 X R”

Sfor some C(l,n) € (0, ). Finally, for each 1=, there exist r, € (0, 1] and
M, €[1, oo) such that

1 2
(3.38) W exp(—Md(x, y)*/t) <pi(t, x, y)
S e e b, 1M

for all (t,z) € (0, 11X RY and y € RY with d(x, y) <.

Proor. The existence as well as the support property of p, are
obvious. In proving (3.37), the only problem is to show that v, can be
chosen independent of [=[,. To this end, set A,(t, x) ={(X\(t, ), X,(t, )>>,
(the Malliavin covariance of X,(t, )) for (¢, x) € (0, o) X RY. Then desired
estimate will follow from Theorem (1.31) in [5] once we show the exist-
ence of a £ € (0, 0) such that for each p€[l, o) there is a C,€ (0, o)
with the property that

(3.39) E¥[(1/det(A,(t, 2)))*, (U®R)|<rd ?<Cpt™*
for all [=1, p€[1, o) and (¢, x) € (0, 1]X RY. Noting that
A(t, 2)=JF(U(t), )<KU(t), U(t)>>'JF(U(t),90)
=JF(U(t), )z KUR), Ut)))m' JF(U(t), x) = A, ¢, ),
where 7, AELEQ’ i g:alg . denotes orthogonal projection, we see that

A(t, x)= A, (t, z). Therefore we need only produce g and {C,;p€[1, o)}
for l=l,, But Lie(xyW,, ---, 74 W,)(0)=C implies that ||1/det(KU(¢),
Ut)))) llovan =Bt ™, t€(0,1], for some p€(0,) and B,€(0,c0). In
addition, by Lemmas (3.13) and (3.14), JF(u, )'JF(u, x)=elgy, |u| <ty
for some ¢ € (0, o0). This implies (3.39) for [=I,.
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To prove (3.38), first note that by (3.29) (with a=o0):

pilt, 5, 9) 27| 2(S74,(0)0u(S54 (0) .. (do)
(veux_x;e(v)«ﬁt)‘/z}

for any 5>0. Thus, by (3.19) and (3.25), if d(x,y)<yr/4C, and B is

small enough, then

nit. 2 9) 27| (S53,(0))m .(d)

veM, e(n)<(A)l/% o
for t€(0,1]. Hence the left hand side of (3.38) follows from (3.25),
(3.32), and Theorem (3.12). To prove the right hand side of (3.38), we
again start with (8.25) and thereby obtain:

pi(t, o, y)élj
7 Jive, em<y

1

r S(veszz;e(v)<l)

(ne.) (S75(v))m. .(dv)
(no.) (SZ5(v))m. .(dv).

Note that, by (8.25), if d(z,¥)<1/2 and e(v)=1, then (7p.)(S;i(v)<
Mexp(—2/t), t€(0,1], for some 2>0. Hence the second term on the
right can be ignored. At the same time:

(70.) (S54(v))m.,.(dv)

S(veMx,zQe(")<1)

<Mt~ exp(—(rd(w, v) M) x | exp(— (re(v)/Mt) m, . (dv)

(veMx,I;z(V)<1)

and

exp(—(re(v))*/Mt)m. .(dv)

S{VEM,,,;e(z')<1)

:T?g_j: sexp(—(rs)’/Mt)m. .({v € M, .; e(v)<s})ds

2?,2 t—1/2

=2 S s exp(— (ys)M)m.,..({v € M,..; e(v) <t"s})ds.
0

Finally, by (3.33), m..({vE M, . e(v)<t"’s})) SK'*"'m,.({vE M, ; e(v)<t'?)

for some K € (0, o0) and for all s€(0,¢7V%]. Hence, the right hand side

of (3.38) now follows from (3.32). Q.E.D.
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4. Upper and lower bounds for the fundamental solution

We continue to work under the conditions stated at the beginning
of section 3) (cf. (3.1)).
Given x € RY, let X°(-,x) be the solution to
d T
(4.1) X(T, ) =2+ 3, S Vi XO(t, 2))odbu(t), T=0,

and set P°(t, x, -) =T/ -X"(t, z)"". Then (cf. [6]) there is a p°€ C=((0, o) X

RY X R™) such that P°(t, x, dy)=p"(t, x, y)dy, (¢, ) € (0, ) X R¥. Moreover,
d
if L°:%L§ Vi and (L°)* is the formal adjoint of L° then

(4.2) "’a—’;"(t, 2, y) =[LP(t, -, y))(2) =[(LH)p°(E, . -)](w),
(t, x, y) € (0, ©) X R¥ X R”,
ljfrol P'(t, 2, y)=0(x—y).

In addition, for each n=0, there exist C, € (0, oo), v, € (0, o), and g, € (0, )
such that

a 0
(4.3) max |2 ip

lal+1g1sn | 0x*0x?

(t, 2, y) | SC.t7>n exp(—pa|y —2|*/t)

for (¢, z,y) €(0,1]XR¥"XRY. Our goal in this section is to provide more
precise estimates for 2°(t, x, ) (cf. Theorem (4.9) below.)

(4.4) LEMMA. For each [=1 there exists a B, € (0, o) such that
W(X°(t, ©) — X,(t, x)| = R) < Blexp(— R""“*"| Bit) +exp(— R*“*?| Bit)]
for all t€(0,1] and RE€ (0, o).

Proor. After transforming Stratonovich integrals to their Ito equiv-
alents, one sees that X°(t,2) —X,(t,x) can be written as a finite linear
conbination of terms, each of which has the form I'“y(t)=(I,po-- I, »)
where 7:[0, ©)XO—R is a progressively measurable function uniformly
bounded by 1 and a€ A with |«| €{{+1,1+2}. Thus, we need only
show that for each a € A\{¢} there is a C,€ (0, o) such that

(4.5) Cw<supT |I“’>77(t)|gR)gCaexp(—RZ/"““/ZT), T€(0,1] and R€ (0, oo).
<t



Malliavin calculus 423

If a=(k), 1<k<d, then (4.5) with C,=2 is a standard estimate on
stochastic integrals. If a=(0), then CW(OsupT | [“9(t)|=R)=0 for R>T
sts

and so (4.5) holds with C,=e"®. Next, assume that (4.5) holds for « and
let B=(a, k). If 1<k<d, then (by the same estimate as we used above)
CW( sup |I®p(t)] gR)gz exp(—RY2AT) +CW( sup |I@y(t)] ;A)
0st<T 0StET
<2exp(—R%2AT)+exp(— R 2T)
for all A€ (0, ). Taking A=R'<WI*V" we see that (4.5) holds for B
with C;=2+C,. If k=0, then

CW( sup |I “’n(t)lzR>§CW(02uspT | (“)r/(t)lgR/T>§Ca exp(— R /2T +2et),

O<t<T

Since R+l > REAIT for R>T'¥% we see that (4.5) again holds with
Ci=C,+e'™ Q.E.D.

(4.6) LEMMA. There exists a 6 € (0,1] and M€E[1, oo) such that

1
MBI R —M-d 2p) — 0
M|By(w, t7)] exp( (m, y)*[t) —Mt<p°(t, x, y)
M
=— —d(z, y)?
= By(x, t7)| exp(—d(x, y)*/ Mt) +Mt

Sor all (t,x,y) € (0, 11X RY X RY with d(x, y)<d.

ProOF. In view of (3.38), it suffices to show that there is an I>I,
such that
1°(t, x, y) —pu(t, @, y) | <Ct
for some C€ (0, o) and all (¢, x, y) € (0, 1] X RY X R™.
Define 7'(t,3,£) = | exp(i(é, v)a)1(t, . y)dy and pilt, z,€) = [ expli(e, v)wr)

X(t, x, y)dy for (t,x,&) € (0, o)X R"XRY. By (4.3) together with the
results in Lemma (3.36), we see that there is a B, € (0, o) such that

|§IN+lli)0(t' x, 'S) —pl(t’ x, §>|§Blt—ﬂ

for (¢, x,8) € (0, 0) X R¥"XR", where p€ (0, ) does not depend on =1,
At the same time, by Lemma (4.4):
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|ﬁ0(t7 x, 'S) _i)l(t! @, E)'
S EY[1-9(U(t))]+E¥[| exp(i(X°(¢, ®) — Xi(t, ©), §)a¥) —1[]
éA[(l + |$l)t(1+1)l2

for some A,€ (0, ) and all (¢, z, &) € (0, 1]X R¥ X RY. Hence
Ipo(tv x, y)_pl(t! x, y)lg ”ﬁo(t’ z, ) _ﬁl(tv x, ')“Ll(RN)

gA,t““"zj o (1 lehds +B,t-ﬂ§ |~ de
< =R
éCl(t(Hl)/zRNﬂ +t*RY)

1€1

for some C,€ (0, o) and all (¢, R) € (0,1]X[1, o). Taking R=t"*, where
A=(+14+24)/2(N+2), we conclude that

(¢, =, y) —mult, x, y) | S2Ct7, (¢, @, y) € (0, L]X RY X RY,
where 7,=(l+1—2(N+1)g)/2(N+1)—co as [—co. Q.E.D.
(4.7) LEMMA. There is an M €[1, o) and a o € (0, ) such that

pi(t, =, y)git”;exp(—d(x, Y Mt)

Jor (t,x, y) €(0, 11X R¥ X RY with d(x, y)<1.

ProOoF. Choose ¢ €Cy(RY)* so that ¢=1 on {y€R";|y|<1/2} and
¢=0 on {y€RY;|y|=1}. Given (t,x,y) € (0, 11X R¥ X RY, set q(t, x, y; &)=

Sexp(i(&, Q) r¥)P((C—E)t70)p°(t, 2, {)dE, LERY. Then, by (4.3), there is a
B¢€ (0, ) and a 2€ (0, co) such that

p°(t, 2, )< gt ©, ¥ )| st S B[RYW (| X (¢, x) —y| <th) +¢*R™]
for all Re¢ (0, =), and so
P(t, x, y) S2BL NN (| X2, @) —y| Sth) D,

Hence, we need only check that there exist A€[l, ) and g€ (0, o)
such that

(4.8) WX, %) —y|<th) éﬁ— exp(—d(x, y)*/At)

for (t,x, y) € (0, 1]X R¥ X RY with d(z, y)<1.
Let K€[1, o) be the constant appearing in (3.21). If d(x, y) <3Kt'"?
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then (4.8) is trivial. Thus we will assume that 3K¢/'<¢<1. Since, by
(8.21),

| X°(t, ) —yl”‘D;%d(X%t, z), )

zfﬁ—[dm y)—d(@, X, (t, 7)) —d(X(t, 2), XO(t, 3))]

so long as |X°(t, #)—y|<1, we then have

WX (t, ) —y| Stho) W (d(w, Xi(¢, @) Zd (=, ¥)/3)
+W(d(X,(t, z), X°(t, x)) Zd (=, ¥)/3).

By (3.29) (with a=o0), (3.24), and Theorem (3.11), we see that

Wid(a, X, t, 9) Zd(@. 9)/3) = expl —ad(@, y)t)

or some C¢€(0,) and a€(0,c0). At the same time, by Lemma (4.4)
and (3.21):

W(A(X(t, @), X°(t, x)) Zd(x, y)/3) STV (| X°(t, ®) — X,,(t, ©)| = (d(x, y)/3K)")
< B, exp(—(d(z, y)/3K)™/"*/2t) < B, exp(—d(z, y)*/18K*t). Q.E.D.

(4.9) THEOREM. There is an M €[1, o) such that

1 ) 0
M|By(x, t%)| exp(—Md(z, y)'/t) <P°(t. @, )
M \
<, gy P dl MY

for all (t,x, y) € (0, 1]X R" X RY.

Proor. We first prove the right hand side. Assuming that d(z, y)<1,
the desired estimate follows from Lemma (4.7) when either 1>¢>
exp(—d(z, y)*/2p¢At) or d(x,y)=d. On the other hand, if both d(x, y) <o
and t< exp(—d(z, y)/2¢At), then the estimate follows from Lemma (4.6).
Hence we need only be concerned with the case when d(x, y)=1 and

0<t<1. To handle this case, set n=[|y—=z|]+1 and &,=z+".(y—ax).
. n
Then, by (3.21):
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- n—1 11y

Ao NS T e bu)SK T, lep—8alto=Kn( 2701)
SEn<K(1+K")|y—x|.
Hence, the case when d(z, y)=1 and 0<¢t<1 follows from (4.3).

The proof of the left hand side is very much like that of the lower
bound in Theorem (3.11). By Lemma (4.6), we can find a 7€ (0, 8] such

1 . 2
that »°(¢, z, y)"ZMIB (o 87| for all (¢,x,y) € (0,7]1X RY X RY with d(z,y)’<2t.

Now let (¢ z, y) € (0, 11X R¥ X RY be given and set n=2<[d—(%—y)—zv—;—]+l).

Using Lemma (B.2), choose =z, ---,z.,€ RY so that x,=x, z,=y, and
A(Lm_1, ) =d(x,y)/n for 1I<m=<n. Then —t—gr, and, for y,, € B;(%n_y,(t/8n)'2),
n

1smsn—1,

1 1/2
AW, ym)_g_2<l,,> ’Zﬂ?&ﬂé(}i) ’ 1<m<n,
8n n n

where y,=x and y,=y. Hence:

p'(t, 2, y)

> 1

1 1 E dy,
~ (M) |Ba(w, £'7%)] Jsgtagetmntin | By(y,, (¢/n)')]

1
By(ra_g: 21812 | By(y,_y, (E/)"7)]
1 | By(0, (¢/81)"%)]
" |Balz, )] |By(mo, (2t/n)")
> 1 1
~ |By(x, t7)| (2MC?)"

AYnr

| Ba(@a_s, (t/80)")]

|
> || Bul®as, (2/0)7]

2M

’

where C is the constant in (8.33). Clearly the desired lower bound
follows from this. Q.E.D.

The estimate in Theorem (4.9) can be extended quite easily to cover
a slight larger class of operators. To be precise, let oy, - -+, 0,€ C7(R")

be given and set V,= f‘, 0, V.. For xeRY, let X(t,z) be the solution to
k=1

(4.10) X(T, z)= x+2§ WX(t, %)) odB,(t) + gVo(X(t,x))dt,
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T=0. Given ce CyP(RY), set

‘P(T, z, -) =<exp UTC(X(t, x))dt] -CW>oX(T, )

[}
Then, for (¢, ) € (0, ) X R", °P(T, x, dy) ="p(T, =, y)dy where “p € C=((0, =)
d
X R¥X RY):. Moreover, if L =% ;;1 Vi+V, then

(4.11) %f—(t' , y)=[(L+c)p(t, -, y)](@)=[(L*+c)p(t, @, -))(¥),

(¢, @, y) € (0, ) X R" X RY,
lim *p(t, x, ¥) =0(x —y).

t40

In addition, for each n=0 there exist C, € (0, =), g, € (0, o), and v, € (0, o)
such that:
a\a+ﬂ| cp

4.12
( ) oxoy?

(t, x, y) | SCot 7> exp(— |y —|*/t),

(t, x, y) € (0, o) X RN X R™.

(4.13) THEOREM. For each choice of oy, - -, a4, and ¢ from C7(RY), there
exists an M €[1, o) such that

1

i (Ml v S Dt 2. 9)

exp(—d(x, y)*/ Mt)

s
| Ba(x, t'7%)|

for (t,x,y) € (0, 1]X RY X R".

Proor. As in the proof of Theorem (4.9), the desired estimate for
all (¢, x, ) € (0, 11X R¥ X RY follows readily from (4.12) once it has been
proved in the case when (¢, z,y) € (0, 1]X R¥ X R with d(x, y)<1. Thus,
we will restrict our attension to this case.

Choose ¢’ € C7(R) so that 0=¢’(§)<1 for all £cR, ¢'(€)=1 for all
|£]1<1, and ¢’(§)=0 for all |£|=3. Given 2€[1, o], define ¢;(p)=

”
0

S #/(&/2)de (=7 when 2=oo) for n€ R and set

R,(t. x)
:exp[ > {¢1<S:ak(X°(s, x))dﬁ,,(s))—% S;ak(X"(s, x))zds} +Stc(X°(s, x))ds].

=1 0

=
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Then “P(T,z, )= (Ru(t, x)I)o X(t,x)"". Hence, if feCyRY)* with
LN fE)de=1 and if £.(&)=cMf(&/e) for ¢>0, then for all A€[1, o) and
(T, 2, y) € (0, 0) X R X RY:
oL, @, y) =‘15ilrgl EY[B(t, x) f(X°(t, x) —y)]
=1§f§‘ E¥[qa,6(t, @, y) +71,(t 2, ¥)]

where ¢,.(¢, z, y) =EV[R,(, x) f.(X°(¢, x) —y)] and

T2t @, Y) =EV[(Bo(t, ) — R,i(t, %)) f(X°(¢, ) —y)].
Clearly there is a K €1, o) such that

—2d2
eK P°(t, 2, ¥)< limq, (¢, @, y) < lim q,.(¢, @, y) < Ke*p'(¢, x, )
€10

€0

for all 2€[1, ) and (¢, ¥)€(0, 11X R¥XRY. To estimate 7.t z,v),
define Fs(r;)zg f.(&)dé for e>0 and n€ RY. Then |F,(n)|<1

(—00,7;1X X (=0, 7N]
and

Paults ) =B (Rults )= Rift, ) ) 2T (X0 2)=)].

Recall that there is a g€ (0, oo) such that for each p€[1, oo)
1/det <KX (¢, @), X°(t, 2))) Nl woan = A, 7%, (¢, @) € (0, L]XRY,
for some A, € (0, ). Thus, by Theorem (1.20) in [5], there is a ¥ ,(t, z) €
N L*9Y) for all 2€[1, o) and (¢, x, y) € (0, 1]X R¥ X RY such that:

p€[l,00)

d
Tt x)=0 on n{
k=1

[outxett. ondouts)| <2,
1 (¢, %)l 2n<Bt™°, 2€[1, ) and (¢, z) € (0, L]X RY,
for some B¢€ (0, c0) and ¢ € (0, o), and
T1:(8, @, y) =EY[V;(t, 2)F.(X°(, ©) —y)].

Hence,

172

Mn.

|72.6(t, 2, y)|§Bt“’< CW( g:ak(X%s, x))dﬁk(s)|22)>

k=1
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for all 2€[1, ), ¢>0, and (t, z, y) € (0, 1]X RY X R¥, and so, by standard
estimates, there is a C€ (0, ) and a 7y € (0, o) such that

|72.4(t. @, y)| S Ce 7"

for all A€[1, oo), >0, and (¢, z, ¥) € (0, ©] X RY X R".
After combining the preceding with Theorem (4.9), one sees that
the desired estimate for (t,z,y) € (0, 1]1XR¥ X RY with d(z,y)<1 follows

upon taking 1€[1, oo) to be sufficiently large. Q.E.D.
(4. 14) THEOREM There is an M<oo such that for any m, m=0, 1, - -,
T J1s im=1, -+-,d, there is a C<oo such that

Ve Vi Vi Vi ot 2 y) S - O exp(—dw, y) M)

t(n+m)/2|B (x tl/Z)l
for any 0<t<l1, x,y € R".

We will give the proof of this theorem in the end of the next
section.

5. Harnack’s principle and the Poincare inequality

First let us remind results in (3.22), (3.34) and Theorem (4.13) as
follows:

There are constants K’, C and M< oo such that

(5.1) é, =|Bix, 1)| =K,
(5.2) | Ba(x, 27)| <C|Ba(z, 7)|
and
1 2
(5.3) ’M{E(é}?‘/“’) | xp(—M-d(z, y)°/t) < p(t, x, )
M 2
=g, (@, 17 exp(—d(, y)*/Mt)

for all r€ (0, o), t€(0,1] and z, y € R".
We mainly think of the case where ¢=0.

(5.4) REMARK. By (5.2), we see that there are K<co and 8, § € (0, =)
such that
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|Ba(2, 4r)| < K2*| By(x, 7)|

for any x€ R¥, r€ (0, ) and 2€[1, ).

(5.5) LEMMA. For any k€ (0.1), there exists an a>0 such that for any
%, € R and re(0,1],

1
anlt, 2, Y= —— -M. 2
Py (t, @, Y) 2 M| Bz, £7)] exp(—M-d(x, y)*/t)

Sor allt € (0, (ar)’] and x,y € B(x,, kr) with d(x,y) <ar. Here Dryz0m(t, T, Y)dY
=P, [(>t, X(t) edy] and {=inf{t>0; X(t) ¢ Ba(z,, 1)}.

PRrROOF. Let x,y € B(x, kr) with d(x, y)<ar and t€ (0, (ar)?]. Then,

Dy (t, T, Y)
=p(t, z, y) —E[p(t—{ X(C), y). {<¢]

ngT(lx,theXp(_M -d(z, y)¥t) [1 Mzexp<—%<(12ﬂ§)2-—a2M>\)
B gty g Canig) <<t

Note that:

|Ba(x, '7)|  |Ba(X(Q), 47)] <4BK<_7' )ﬁ
), (¢

r
|BJX(), (t—0)")| = |BuX(Q), (¢=0)")| = )

and so

e[ |Ba(x t)] o o
b [le( ()(t—C)‘ﬂ)lexp( SNt c>>’ c<t|=ce

for some C<o and v>0. Thus, for 0<a$%

pEd(xo,r)(ty T, y)

gmexp(—M-d(x, y)z/t)[l—C-exp(—<(k4Ml) )/a)]

Choose 0<a<1 so that C-exp( (Uﬁ—l-+u>/a>sE Q.E.D.

(5.6) LEMMA. For any k€ (0,1) and d € (0,1), there exists a v€ (0, 1) such
that for each x,€ R and 0<r<l,
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z,,7 tv xv g—_-y—_
Dazg.n Y) [ Bu(@s, k7|

for all x, y € By(xy, kr) and or*<t<ra

Proor. Take a k'€ (0,1) with £’/>k. Then, by Lemma 5.5, there is
an a’ € (0,1] such that

1
pad(xo.r)(f, x, Y) = m(ml exp(—M-d(z, y)’/z)

for any x,€ RY, 0<r<(a’r)? and z, y € By(x,, k'r) with d(x, y)<a'r.
Let e=(k'—k)/24a’. Then we have

de(xo.r)(‘L.! x, y)z 1

= oMe K Bale, ey P M A W)

for any x,€ RY, 0<z<(er)? and z, y € By(x,, k'r) with d(z, y)Zer.
Let z, y € By(xy, kr) and 0r*<c<7% and set

n=16([re*c] +1).

Then 16:72L167%ce?<n<17rre?<17e7%. Choose &, ---, &, such that
=2, £&.=%, &=V, A& &)S<r/n and &, ---, &, € By(xy, kr). Then
d(&r, Eu) Srin'P<er/4. Set o=rt/n. Then o¢'*<er/4. Hence, if 5.€
B(&,, ¢'?), then d (7, 7s1)<er and so

1

2M|Ba(ms, 0™)|
1

2MC|B,(&., 0|

v

D527 (T Dy Nies1) exp(—M-d(ns, 7:41)"/0)

v

exp( —M‘d(m, Nip1)’[0).
Also, since n<17Tr%/e’r, 0 =t/n<17e7%(r/n)?, we have
(e, Tr) S +217)12e L < (141067 L
n n n

Since

de(zo.r)(Tv z, y) gs de(xo,r)(ty x, 7]1)

By(£,,0112) Ld(egpl.ollh

X P ya0,m (8 71, 7a) + - “DByc0.r (L Ponrs Y)AD1 - - Ay,

we now have:
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Paygn(T) %, Y g<2 1 S I Bl x» i SXP(—ML+10:7 o)
1
> —1\2/ a2
_<2MC> \B., o] P ML+ 10:7 o)
< 1 )“'5 exp(— M(1+10e-)2/0)
oMC) Kk ﬂ|B., ) P R
This proves our lemma. Q.E.D.

(6.7) THEOREM. For any ke (0,1), there is a p€(0,1) such that for any
re(0,1] and (s, %) ERXRY, if uc€C(RXR") satisfies du+Lu=0 on
(S0, So+17%) X Ba(o, ), then

Ose(u; sy, %o, k) < p Ose(u; sy, o, 7).
Here Osc(u, s, x, v)=sup{|ulo, &) —u(r, 9)|; s<o, t<s+71% & 9 € By(x, )}
Proor. Define

Y =supfu(r, 9); 0=t —8,=7% 1 € By, 1)},
c=inf{u(r, 1); 0t —8,Z7% 1 € By, 1)},
3 =supiu(z, n); 0t —3,=Z (k)% 9 € Ba(xo, k7)}

and
o’ =inf{u(z, ); 0t —s,Z (k)% 9 € Ba(wo, kr)}.

Set I'={x € Bu(o, kr); u(so+7° v) = (2 +0)/2}.
If |I"|/|Bau(m, kr)|=1/2, then P.(X(t) €T, {<t)=y/2 for all (1-K)r’<t<r?
and € By(x,, k7). Hence, if (z, ) € [so, 8o+k*r*] X By(x,, kr), then

u(z, p) —o=Eu((sy+1°)4¢, X((s,+7%)4g)) —o]
=(2—0)/2P.(X(4Q) € I, £<1)
2(2—o)/4,

where t=s,+7*—t. Hence: ¢/ —0=(2 —0o)v/4, and so
3r—g'<¥—0'<(1—v/4) (2 —0).
If |I'|/|Ba(x,, kr)| <1/2, replace w by —u. Q.E.D.

(5.8) COROLLARY. For any k€ (0, 1), there exist C<co and B¢ (0,1] such
that for all (s, ), 0<KR=Z1 and u satisfying d.u-+Lu=0 on [, s,+R*]X
B(x,, R):
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u(s, &) —ul(t, y)lgcnun(JL—_SI‘;;i(M)ﬁ

for all (s, ), (t, ¥) € [So, S0+, R*]X By(xo, KR).

ProoF. Let (s, ), (¢, ¥) € [so, So+K*R*]X By(y, kR) with st be given
and set d=|t—s|"*V/d(x,y). If 6=kR, then there is nothing to do. If
0<kR, choose m=1 such that £ " 26<d<k 3. Then [s,, s,+ (k™0)*]X
Bi(xo, k™0) C[s0, 8o+ R*]X By(®o, B) for 0<m<m. Hence, since ({,¥)€
[s, s+0*]X By(x, 0):

lu(s, ®) —u(t, z)| <2[lulp"
Thus, if B is defined by p=ZFk*, then, since k™" >R[d:
lu(s, x) —u(t, )| <2||u| (6/ R)". Q.E.D.

(6.9) THEOREM. There is an ME (0, 0) such that for all xz,y€RY,
s<t with R=d(x,y)V (t—s)"* and all u=0 with 0.u+Lu=0 in [s, s+ R*] X
B,(z, R):

u(t, y) <u(s, x) exp [M(1+d(x, y)*/(t—s))].
ProoF. We may assume that s=0. First assume that d(z, y) <t¥®

and that 1= min (0, -)=u(0, z,) where d(z, x,) <t
Bd(m,tllz)

Given >0 and 1>0, define S(z,l)={& € By(x, 4t'%); u(r, &) =1}. Then,
by Lemma 5.6, for <7< (4877)%:

1=u(0, z,) =vl|S(z, 1)|/| Ba(x, 4t'%)|; and so |S(z,1)|/|Ba(x, 48'%)| <1/ul.
Next, given R€ (0,1] and » € B,(x, 4t'%), note that

| Ba(n, Rt'?)| > | Ba(n, Rt'?)| Zl(.@)ﬁ
| By(x, 4t%)| — |By(p, 58%)] — K\5b

Thus if R()=5( ZIl{ )" <1, then for (z,7) €lt, (4#)1x Bylz, 4¢):
v

~ Buln, R()t") € S(r, 1).

Now define ¢ be 1—0:1%‘9 and set 2:1—_1{:1—%&6(1, co). Let
0

R(ol)<1 and [z, v+ (4R(0l)t'?)*1X Ba(n, 4R(al)t'?) C[t, (4t'%)*] X By(x, 48'7).
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Then there exists a &€ B,(y, B(ol)t'?) such that u(r,&)<ol. Hence, if
u(zr, &) =1, then

min u=0sc(u; 7, , 4R(al)t"*)
[z, o+ 4Rt 2]x By (7,4R (a1)t1/2)
=1L Osc(u; o, 7, Rlal)en) = L (u(e, g)—ulz, ) 2 Al
0 0

That is, R(ol) <1, [z, v+ (4R(0l)t'*)*] X Ba(n, 4R(cl)t'*) C[t, (48'%)*]1X Ba(x, 4817,
and wu(r,&) =] imply the existence of (¢/,&’)€[r, v+ (4R(al)t*?)?] X
Buly, 4R(l)t?) with u(z’, &)= Al.

Finally, choose [,>0 so that 1+4 }ojoR(ozmlo)gfi. Then

B2 S AR(0AM]) 81 < 4p2
m=0
and

14 3 (AR(0A™ L)1) < (4842)2,
m=0
Thus, if u(t, y)=I, then there is {(t.,7.)}7 C[t, (4t"*)*]X B,(x, 4t'?), t,=t,
70=Y, and U(tm, 7n)=4"l, and this leads to the contradiction. Hence,
u(t, y)<l,, Thus, the proof is complete when d(z, y) <t'™

If d(x,y)>t"", choose n such that n—lgd(i;f—)z<n and &, ---,&,

with &=z, &=y and d(.f,,,&,,H)gd(f%’@g(t/n)‘”. Then wlkt/n, &)<

Low((k—1)t/n, &_:) and so:

ult, y) <liu(0, ©) < eXp((M +1) log lo>u(0, %), QED.

(5.10) THEOREM. There is a C€ (0, o) such that
d
[0 F@)~femPdasor 5 (Vf)(apda
By, ri2) k=1 By,

for all § € RY, 7€ (0. 1) and € C™(R). Here fum=p-ctl  fiw)dy.
s, a(&.ri2

Proor. Given £€ R"Y and r€ (0,1], define

Ben(p g)= 3 SBM'” (Vig)(2)'dm, ¢ C=(RY).

k=1
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Then &®" is a closable Dirichlet form whose closure we again denote
by Euen, Denote by {P¢"; t>0} the symmetric Markov semigroup deter-
mined by £%@”. Then {P¢";t>0} is conservative and the associated
transition probability function (¢, x, dy) dominates ps .. (t, z, dy)dy. In
particular, there is an ¢>0 such that

T ptén 2, ,d 2 5____ r d
Any e .riny(Y)DE (1% @ y)—Bd(e,r/2)X”"“' 12(Y)dy

for all x€ By(§,7/2),6€ RV and r€(0,1]
Now let f€ Dom(€“"). Then for x € By(&, r/2):

P&, ( £ Plen 2 e
R L L e I

: 2
zm Ld(s,r/z) (f(y) =Se.rm)'dy.

(f(y) =[PE"f 1)) *dy

Hence
j (f(y)—f(e.r,z,mygg [P (f—[PE"f 1(w) (@) da
By(£,rl2) By(&,r)
<[, o, @) —[PE" N))da
:28;23‘5'”( pnf, BEnf)<2r'€en(f,f).  QE.D.

(5.11) PROPOSITION. There are C'<oo and v<oco such that

1By, )| < ax, y)\
Buw. )| =C exp(” ¢ )

for all te(0,0) and x,y € R".
PrOOF. For t=2d(x, y), since By(x,t)C By, t/2), by (5.1) we have

_JBd(yv t) <C.
| Ba(x, t)| —

Suppose that t<2d(z,y). Set n=1+[log(2d(z, y)/t)/log2]. Then
nt<2" 't <2d(x, y)<2"t. Therefore
| Ba(w, )| = K~'27"| Ba(x, 2't)| Z K| By(y, 2"'t) |exp(—np-log 2)
=K' Ba(y, t)lexp(—(ﬂ.log 2) Zvd(ﬁtv,_y)ﬁ)
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This proves our assertion. Q.E.D.

PRrOOF OF THEOREM 4.14. Because of semigroup property and the argu-
ment in the proof of Corollary (2.19), it is sufficient to prove that

Vi - Vi, oD(2t, 3, )| SCt| By(z, 4)] exp<_d<7%}>)

for all t€(0,1] and z, y € R".
Set f(2)=f.,(2)="p(t,2,y). Then by Theorem (2.18)

[Viper - Vi o282, y) [= (Vi - - Vi 2P f ) () | S CEE Py (fF) () [
However, by (5.3), Remark 5.4 and Proposition (5.11),

*Py(f*) ()
:LNdz°p(t, x, 2)p(t, 2, y)*
M _d(z,2)*_ 2d(z, y)*
§SnNdz|Bd(x, 77| Bz, t1/2)|zexp< Mt Mt )

< ¢ [ 4
=1Bi(x, )] SRN “IBie

1, £17)] p<_d;leztf)2>

1 _2d(z,y)2
% lB.z(z,t"z)leXp< )

C S 2. 3 2
<——~ | dep@M*, =z, 2) (M, z,
= TBiw, 7] Jav 2'p( 2)"p( Y)

pBM*, x, y)

C
= le(x )|

d(x
tl/z p< 3M3 )

This proves our assertion. Q.E.D.

A. The Lie algebra Lie(W,, ---, W,)

The purpose of this appendix is to prove Theorem (3.5). Before
beginning, we introduce some notion.

Given «, e A, with |a+B|<l, set (o, f)=(ay, -+, @z By -+, B,) if
a=(a, -+, a;) and B=(By, ---,B,). Let z=(z,; a€ A) denote the standard

}. For a € A,

coordinate system on E=R* and set g:span{ 9 ;
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define L, R.€Hom(d;d) so that

0 if |a|+]81>1
L2 z{ if <l
v | g I lal+IBlS
and
R =1, % .
625 az,,

Also, for a€ A, define W.=W, if a=(k) and W.=[W,, W] if a=k, p).
(A.1) LEMMA. If a=(k, p) for some 1=<k<d and B€ A, then

(A.2) Wa(0)=L,W,(0) — B, W,(0).
Also, for all ae A, :
(A.3) Wa:Wa(0)+ﬁeJZ 2sLsW,(0).

In particular, G=Lie(W,, - --, W) =span{W. a€ A}, We G-W(0) e is

1
an isomorphism, and G= P G,.
A=1

PrROOF. (A.2) and (A.3) are proved by an easy induction on |a|; and,
given (A.2) and (A.3), the rest is obvious. Q.E.D.

For a>0, define SaeHom(E; E) so that S.z.=a"z, ac A. Clearly
the S, € Hom(Q; G) in Theorem (3.5) is presicely S.|,. Next, define u¢
G—W'c G to be the inverse of We G—W(0)€G. Then, by (A.3), one
sees that

(A.4) (S,)WH=Wsax,
(A.5) LEMMA. Define @(u)=exp(W*)(0), u€G. Then ®€C=(G; E) and

A

(A.6) S,00=0.8,,  a>0.

Next, set G=0(G). Then G is a {exp(W); We Q} invariant, embedded
submanifold ofA E. Finally, let =:E—G denote orthogonal projection.
Then S,or=moS,, a>0, and r|s 18 a diffeomorphism from G onto G.

Proor. Obviously @ € C=(G; E), and (A.6) is an immediate consequence
of (A4). In addition, since, b): Lemma (A.1) G is nilpotent, the invari-
ance of G under {exp(W); W € G} is a consequence of the Baker-Campbell-
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Hausdorff formula. To prove that G is an embedded submanifold of E,
it suffices to check @ is a proper immersion; and this, as well as the
fact that =|; is diffeomorphic onto &G, will follow once we show that
H=ro@ is a diffeomorphism from G onto itself.

First note that, since G is {S,; a>0}-invariant and S,or=noS,, a>0,
S,0F=8,05. In particular, to show that 5 is a diffeomorphism of &
onto itself, it suffices to check that the Jacobian of 5 does not vanish
at 0. But |F(u)—u|<|@(u)—u| and there is a C< oo such that |®(u)—u)|
<Clul® for |u|<1. Hence

(A7) |&(u) —u|<|O(u) —u|<Clul’, |u|<1,
from which the required result is immediate. Q.E.D.

We next define ¥=(r|s)">. Noting that ¥'=0-.5F"', we conclude
from (A.7) that |¥(u)—u|<Clul? |u|<1, for some C<co. Next, given
w,v€ G, set uxv=n(exp(Ws @) (v))).

(A.8) LEMMA. (@, X) is a milpotent Lie group with 0 as its identity.
Moreover, if W=(z|s)xW, WEG, then W is right G-invariant. In par-
ticular, Lie(W,, ---, W,) is the Lie algebra of right G-invariant vector

fields on G.

Proor. Clearly (G, x) is a Lie group. To prove that W is right
G-invariant, let v€ G be given and define R, (u)—uXwv, w€G. Then, for
feC=(4):

(R (0L =L F(m(e7(0)) X0l oo = A (e (W ()
=W (@ (w))for=W(v)f. Q.E.D.
(A.9) LEMMA. For all u€ g, u™'=—u.
ProoF. What we must show is that
(A.10) r(exp(— W)(0) = —z(exp(W)(0)), Weg&.

To prove (A.10), think of W as a mapping from R into itself and define
W™ (2) =W (W™ V(2)), n=1, where W®(z)=z. Then, by (A.3):

exp(W)(0)= X, —L_[W=(0) = W=(0)]

Thus, what we must show is that
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(A11) z((— W)™ (0)—(— W)™ 2(0)) = —x(W™(0) —W™(0)), 1<m<l
for all Weg.

To prove (A.11), let (e, ---,e) be an orthogonal basis in R*; and,
for a=(ay, -+, @) € A set e.=ea,®- - -Re., and define
C —{ek if a=k
T aRes—esRe. if a=(k, p).

Next, let A: I — Gla (RY)®" be the isometry given by A< aaz )zea, a€ .

m=1

Then, by (A.2), A(W,(0))=C,, and, by (A.3):

(A12)  AW™O)—-W"D0)= ¥ = @ 0enCa®: - Q@Cum

lall+-Fla™| st

if W= Y. a,W. In particular,

aéty
(= W)™ (0) — (= W)™=2(0) = (—1)"[W™(0) —W™"(0)];

and so (A.11) is obvious for odd m and reduces to proving that
(A.13) (W™ (0)—W™1(0))=0
when m is even. In view of (A.12), (A.13) is equivalent to
(A.14) (D(at, -+, am™), Cs) =0
for ', ---,a", BE A, with |g|=|a'|+---+]|a™|, where

D(at, -+, a™)= tgmca,m@- -+ QC x(m

and /1, is the permutation group on {1,--.,m}. To prove (A.14), we
use induction on |a| to show that C, is a linear combination of terms
¢,—(—1)'"'e;, where p=(py, - -+, p;) is a permutation of a=(«a, ---, ;) and
p=(ps -+, o). Since m is even, it follows that D(a’, ---, &™) is a linear
combination of terms e,+(—1)"le; where p=(0*", ---, 0*™) for some
rell, and p* is some permutation of a* for each 1<pg<m. Hence, when
m is even, the left hand side of (A.14) is a linear combination of terms

(eo+(—1)"e; e,—(—1)"e,),
each of which is clearly 0. Q.E.D.

We are at least ready to complete the proof of Theorem (3.5). First
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note that, by (A.2), (A.3), and the fact that G= E{’Egl, the W is diver-
2=1

gence free for all WeG. Hence, Lebesgue measure is left G-invariant.
At the same time, since u~'=u, it Lebesgue measure is also invariant
under G-inversion, and so it is G-invariant. Thus, it remains to check
that Z(.)=%-U(-) (a.s.,9), where U(-) satisfies (3.6). To this end, ob-
serve that, since W], is a tangent field to G for all We g, Z(-) e
C([0, ); G) (a.s., W). Thus, if U(-)=r0Z(-), then Z(-)=¥U(-) (a.s., W)
and, (3.6) follows immediately from (3.4) with z=0.

B. Some elementary properties of control metrics

Let {Y,, ---, Y, }cC=(RY; R¥) be a set of vector fields with the prop-
erties

i) max max
1k<d 1SN

A <o
cy(rY,RY)

oy’
ii) Lie(Y1, "',Yd>(y):RN, yeRN.

Given y € RY and h € H, define Y(-, y; h) € C([0, oo); RY) by
d T .
Y(T,y:W=y+ L | VYt v: h)istidt,  T20.

The following lemma summarizes some facts from basic control theory.

(B.1) LEMMA. For all y,y’ € RY there is an h € H such that Y(1,y; h)=y’.
Moreover, for each y€RY and 6>0, {Y(1,y; h); |hl|la<d} is a neighbor-
hood of .

For hcH and 0<s<t<oco, let hy, €H be defined by hun=1x.ah.
Given Y,y € RY, define

d(y, y) =inf{lhpule YL, y;h)=y'}.

(B.2) LEMMA. d 18 a metric on RY and the topology determined by d s
the same as the Euclidean topology. Moreover, for y,y’ € RY there exists
an h e H such that Y(1,y, h)=y’ and

d(Y(t, y; h), Y(s,y; b)) =(t—8)d(y, y’), 0=s<t<l.

Proor. The only assertions in the first part which requires comment
is the triangle inequality for d. To prove the triangle inequality as well
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as the second part, we note that for any 7>0:

d(y, v )=T"inf{|heo,rillz: Y(T, y; h)=y'}
and that the infimum on the right is achieved.
Now let y,y’ and y” be distinct elements of RY. Set s=d(y, ¥),
t=d(y’,y”) and choose h’/,h” € H so that Y(s,y;h')=vy’, Y(t,v; h")=vy",
[ Rlo.alla=d(y, y)*?, and ||k{.qllz=d(y’, y”)"*. Define h€ H so that

h(T) :kfg',](f) +X[,’s+g](f)k”(T_S), 7-'20
Clearly Y(t+s, y; h)=y", and so

Ay, ") S (E+39)" hpo,egmll =
= (+8)"*(Ilhfo,a1ll 2+ 1 R0l 3)
=d(y, y)+dy". y").

That is, d satisfies the triangle inequality.

To prove the second part, let ¥y and y’ be distinct elements of R"
and choose he€ H so that Y(1,y;h)=y’ and |hpullz=d(y,y’). Set y,=
Y(t,y; h). Given 0<s<t<l1, it is clear that (t—s)"*|hp.llz=d(¥., ¥:). On
the other hand, if (¢t—s)"*|\ kg, alla>d(y,, ¥.), then we could find an A’ € H
such that 7/l e =Rlpane.a [1hlola<llhp.olz and Y(1,y; h/)=y’. But
this would mean that d(y, v’)<|hloulla<lbpula=d(y,y’). In other
words,

(B.3) A(Ye Yo) = —8)"| byl e, 0=<s<t<1.
In particular, by the triangle inequality:

(=) hs ool e =A(Ye, ) ZA (Y, Y) —A(Ys, Y) =" Rpo,all 1 — 8" o, o1l -
Since |lhgali= gl —heo.ally it follows easily from this that

Sl/z” h[o,t]" H —_-tll?” h[o,s]” He
and so
sd(y, ¥") =l hgo,all 5.

Plugging this into (B.3), one gets the required result. Q.E.D.
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