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§0. Introduction.

Let X be an algebraic surface defined over an algebraically closed field
of characteristic p. The surface X is called a unirational surface if there
exists a generically surjective rational mapping ¢ from the projective plane
P? to X, and the surface X is called a Zariski surface if there exists ¢
as above which is a purely inseparable rational mapping of degree p. A
non-singular projective surface X is called supersingular if the Picard
number p(X) is equal to the second Betti number B,(X). In characteristic
zero, a unirational surface is nothing but a rational surface. In positive
characteristic, however, the situation is different, and O. Zariski found in
this case examples of irrational unirational surfaces in 1958 (cf. Zariski
[34, p. 314]).

In this paper, we consider the following two questions in positive
characteristic, and give partial answers to them.

QUESTION 1 (Artin and Shioda). For a K3 surface X, is X unirational
if and only if X is supersingular ?

QUESTION 2 (Shioda). Assume p+#2. Let E, and E, be two super-
singular elliptic curves. Is the Kummer surface Km(E, X E,) a Zariski
surface ?

As for Question 1, the “only if” part is proved in Shioda [27, Corol-
lary 2]. The “if ” part is still open, but two interesting partial answers
are known. Namely, Question 1 is affirmative for Kummer K3 surfaces
in characteristic p=38 (cf. Shioda [29, Theorem 1.1]), and for K3 surfaces
in characteristic p=2 (cf. Rudakov and Shafarevich [24, Corollary on
p. 151]). In this paper, we introduce the notion of a generalized Kummer
K3 surface (cf. Definition 2.1), and we show that in case p=7, Question 1
is also affirmative for them. We will also give a new proof of Shioda’s
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theorem for Kummer surfaces (cf. Section 4). The interesting point of
our new proof is that it does not contain any explicit computation in
birational geometry. To show the unirationality of supersingular general-
ized Kummer surfaces, we examine the structure of finite subgroups of
automorphism groups of abelian surfaces. We give the list of finite
subgroups which can give generalized Kummer surfaces (cf. Theorem 3.7).
In characteristic 0, some of them cannot appear (see Fujiki [5], and see
also Corollary 8.17). However, we show that every group G in the list
can appear for some characteristic p>0 (cf. Section 7). As for Question 2,
Professor T. Shioda communicated to the author that the question is
affirmative if p=3 (cf. Remark 4.3). We show here that Conjecture 2 is
affirmative if p¥*1 (mod 12). Moreover, even in case p=1 (mod 12), we
show that after a separable extension of degree s«(p—1)/2, the surface
becomes a Zariski surface. But the author does not know whether or not
Question 2 is affirmative in case p=1 (mod 12).

Finally we give a brief outline of our paper. In Section 1, we prepare
notations and lemmas which we use later. In Section 2, we give, in
characteristic p#2, a criterion for a minimal non-singular model of the
quotient surface A/G of an abelian surface A by a finite group G to be a
K3 surface (see also Katsura [13]). In Section 3, we give, in characteristic
p+2,3,5, the list of finite subgroups of automorphism groups of abelian
surfaces which can give generalized Kummer surfaces (cf. Theorem 3.7).
In Section 4, we give a new proof of above Shioda’s theorem for Kummer
surfaces. As a corollary, we give a weak answer to Question 2 (cf.
Corollary 4.2 (i)). In Section 5, we calculate the discriminants of Néron-
Severi groups of some generalized Kummer surfaces. Using the results,
we give a partial affirmative answer to Question 2. In Section 6, we show
that in case p=7, Qestion 1 is affirmative for generalized Kummer surfaces.
In Section 7, we give examples of generalized Kummer surfaces, and show
that any finite subgroups in the list in Theorem 3.7 can occur in the
examples of generalized Kummer surfaces.

The author would like to thank Professors F. Oort, Tadao Oda, and
A. Fujiki for useful advice and stimulating conversations. The author
would also like to thank Professor T. Shioda for useful advice, his stim-
ulating conversation and communicating these problems on unirational
surfaces.

§1. Notation and preliminaries.

Let k& be an algebraically closed field of characteristic p=0. Let X be
a projective variety of dimension n over k. Then, we use the following
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notations :

k(X): the function field of X,

Oy: the structure sheaf of X,

2% : the sheaf of germs of regular i-forms of X,
HYX,¥F): the i-th cohomology group of a coherent sheaf & on X,
1(9)22120( ) dlmkH (X, EE))

Z: the ring of rational integers,

Q: the field of rational numbers,

Q,: the l-adic number field for a prime ! different from p,
H{(X,Q,): -the i-th l-adic étale cohomology group of X,
Bi(X)=dimq,H(X,Q,): the i-th Betti number of X,

idy: the identity morphism of X.

Sometimes, a Cartier divisor and the associated invertible sheaf will be
identified. For a morphism f: X—Y from a variety X to a variety Y
and a subvariety Z of X, we denote by f|; the restriction of f to Z. For
a singular variety X, if a non-singular complete model X of X exists, then
we define the Kodaira dimension »(X) by #(X). As is well-known, if
dimX=1 or 2, then there exists a non-singular complete model X of X
even if the characteristic p is positive. Let G be a finite subgroup of the
group of automorphisms of X. We denote by X/G the quotient variety of
X by G. We denote by |G| the order of G. For an element g of G we
denote by <g) the subgroup of G generated by ¢g. For a non-singular
projective algebraic surface X, we use the following notations:

NS(X): the Néron-Severi group of X,
o(X): the Picard number of X,
p.(D): the vertual genus of a divisor D, i.e,,

Pa(D)=(D*+Kx-D)[2+1,

where Ky is a canonical divisor of X,
D~D’: linear equivalence for Cartier divisors D and D’.

For an abelian variety A, we use the following notations:

At the dual of A,
T,.: the translation by an element x of A,
¢r: the homomorphism from A to A’ defined by

x—> T¥LRL™? (xcA)

for an invertible sheaf L,
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K(L)=Ker ¢,

Aut,(A): the group of automorphisms of A as a variety,
Aut(A): the group of automorphisms of A as an abelian variety,
End(4): the endomorphism ring of 4,

End’(4)=End(4)R ,Q.

Now, we assume char. k=p>0 until the end of this section. We use the
notations :

F,: the finite field with p elements,
ap,: the local-local group scheme of rank p defined over k.

An abelian variety A of dimension n is called supersingular if A is
isogenous to E™ with a supersingular elliptic curve E (cf. Oort [21, Theo-
rem 4.2]). A curve C defined by some equations means the non-singular
complete model of the curve defined by these equations, unless otherwise
mentioned. A curve C is called supersingular if the Jacobian variety J(C)
of C is supersingular. As is well-known, an abelian surface A is super-
singular if and only if A is supersingular as a projective surface.

LEMMA 1.1 (Shioda [27, Lemma on p. 234]). Let X, Y be two mnon-
stngular complete algebraic varieties, and let f: X—Y be a generically
surjective rational mapping. Then,

By(X)—p(X)ZBy(Y)—p(Y).

LEMMA 1.2 (Deligne). Let E; (1=1,2,---,2n) be any supersingular
elliptic curves. Assume n=2. Then, E,X -+ X E, is isomorphic to E,.; X
eee XEzn-

For the proof, see Shioda [30, Theorem 3.5].

LEMMA 13. Let E be a supersingular elliptic curve, and let
¢ a,GEXE be an tmmersion such that (EXE)/e(a,) s mot isomorphic to
a product of two supersingular elliptic curves. Let 0 be an element of
Aut(EX E)e(a,)). Then, we can find a unique automorphism 6 of EXE
such that the following diagram commutes :

6
ExXE — EXE

(1.1) ‘[ - 171_

(Ex B)le(a,) ———— (EX E)/s(ay),




Generalized Kummer surfaces 5
where n is the canonical projection.

PROOF. Let F be the Frobenius morphism of EXE. We have
Ker F=a,Xa, By assumption, z(Ker(¥)) is the unique subgroup scheme
of (EX FE)/e(a,) which is isomorphic to a,. Therefore, § preserves n(Ker F)).
Hence, we have an automorphism 4’ of (E'X E')/Ker F such that the follow-
ing diagram commutes:

(EXE)lelay) — 0 5 (ExE)/e(a,)

Jz, lx,
’

(ExE)Ker F— Y (Ex E)/KerF,

where 7’ is the canonical projection. Since F=zx'or, we set §=(0")4?,
where (6’)%? is the rational mapping whose coefficients are the p-th roots
of those of ¢’. Then, § is an element of Aut(Ex E) such that the diagram
(1.1) commutes. q.e.d.

§2. Generalized Kummer surfaces.

Let A be an abelian surface defined over an algebraically closed field
k of characteristic p=0. Let G be a finite subgroup of Aut,(4). We
denote by w, a non-zero regular two-form on A4 which is unique up to
constant multiple. We denote the canonical projection from A to the
quotient surface A/G by

(2.1) T: A— AlG.
Since A/G is normal, the singular locus of A/G consists of isolated points.

DEFINITION 2.1. If A/G is birationally equivalent to a K3 surface, we

call the minimal non-singular model of 4/G a generalized Kummer surface.
We denote it by Km(A4, G).

DEFINITION 2.2. We call a reduced irreducible curve C on A a fized
curve of a group G (resp. a fixed curve of an element g of G different
Sfrom the identity) if there exists an element g of G different from the
identity which induces the identity mapping on C (resp. if g induces the
identity mapping on C).
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LEMMA 2.3. A fixzed curve by an element g of G different from the
wdentity 1s a non-singular elliptic curve.

. - PROOF. Let C be a fixed curve, and let g be an element of G different
from . the identity which induces the identity mapping on C. By a suitable
choice of the origin of A, we may assume that ¢ is an element of Aut(A).
Then, the curve C is a reduced part of an irreducible component of the
kernel of the homomorphism g—id,. Hence, C is a non-singular elliptic
curve. q.e.d.

The main purpose of this section is to prox}é the following theorem.

THEOREM 2.4. Assume that k is of characteristic p+2. A relatively
minimal model of the quotient surface A/G is a K3 surface if and only
if G satisfies the following four conditions:

(i) G has no fixed curves,

(ii) there exists an element of G which has some isolated fixed points,
(iii) all the singular points of A/G are rational double points,

(iv) for any element g of G, g*w,=w, holds.

If G satisfies these four conditions, we say that G satisfies Conditip_n (K).

DEFINITION 2.5. Let X be an algebraic surface with isolated singular
points P; (i=1,---,m). Let ¢:X—X be a resolution of X. The resolution
is said to be minimal if ¢ '(P,)’s (i=1,---,n) contain no exceptional curves
of the first kind. ' "

LEMMA 2.6. Suppose that G has some fixed curves. Then, x(A/G) s
equal to — oo,

PROOF. To begin with, we consider the following commutative diagram :

5 A 4
(2.2) f[ l”
S Y L AlG,

where:z is the canonical projection, ¢ :S—A/G is the minimal resolution
of singularities, % is a birational morphism composed of suitable blowing-
ups with center at the isolated points such that the induced mapping f
becomes a morphism. Since £(A4)=0 and = is separable, we have x(A4/G)=<0.
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Suppose £(A/G)=0. Then, there exists a non-zero regular 12-ple two-form
@s on S such that

(2.3) R*o8%=f*s .

Since G has a fixed curve, = has a ramification locus of codimension 1.
Since the singular points of A/G are isolated, f has also the ramification
locus of codimension 1. Therefore, the image h(R) of the ramification
locus R of f is of codimension 1. On the other hand, R is contained in
the zero divisor of f*@s. Therefore, by (2.3), the support of R is contained
in the exceptional divisor of the morphism %, that is, h(R) consists of
isolated points, a contradiction. Hence, we conclude x(A/G)=—00.A q.e.d.

LEMMA 2.7. Suppose £(A/G)=0. Then, the minimal resolution S of
AlG s the minimal non-singular model of AlG.

PROOF. By Lemma 2.6, we may assume that G has no fixed curves.
Suppose that S is not a minimal model. Then, we have the following
diagram :

S A
SN
X A6,

where ¢ is the minimal resolution, X is the minimal model of S, and f is
the contraction of exceptional curves. Since x£(X)=0, K2 is trivial (cf.
Bombieri and Mumford [4, Theorem 1]). Hence, there exists a non-zero
regular 12-ple two-form @y which never vanishes on X. We set

(2.5) ads=f*ox .

Then, the support of the zero divisor of @s consists of the exceptional
curves of f, and contains all of them. On the other hand, since ¢ is
birational, there exists a non-zero 12-ple rational two-form & on A/G such
that

(26) ‘DS:SD*CT) .

Since the singularities of A/G are isolated, @ is regular except at the
singular points. Since = is a finite morphism, z*@ has no zero divisors.
Therefore, @ has no zero points except at the singular points. Hence by
(2.6), we see that @s has no zero points except on the exceptional curves
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of the morphism ¢. Thus, we conclude that the support of the exceptional
divisor of f is contained in the support of the exceptional divisor of ¢, a
contradiction to the minimality of the resolution ¢ :S—A/G. q.e.d.

LEMMA 2.8. Suppose that A/G has some singular points which are
not rational double points. Then, x(A/G) is equal to — oo,

PROOF. Suppose x(A/G)=0. By Lemma 2.6, G has no fixed curves.
Let P be a singular point of A/G which is not a rational double point.
Let f:S—A/G be a minimal resolution, and let Z be a fundamental cycle
corresponding to the singular point P (cf. Artin [1, p. 132]). Since S is the
minimal model of A/G by Lemma 2.7, we see that K®? is trivial. There-
fore, we have

(2.7) 2p(Z)—1)=Ks-Z+Z*=27%.
Again by Artin [1, Theorem 3], we have
(2.8) 0.(Z)=0,

where the equality holds if and only if P is a rational singular points.
First, suppose that P is not a rational singular point. Then, we have

(2.9) p.(Z)=1.

Therefore, by (2.7), we have Z?>=0, which contradicts the fact that the
intersection matrix of the exceptional curves is negative definite. Hence,
P is rational, that is, p,(Z)=0. Therefore, we have Z*=—2 by (2.7).
Since —Z? is equal to the multiplicity of the rational singular point P
(cf. Artin [1, Corollary 6]), P is a rational double point. q.e.d.

LEMMA 2.9. Suppose that A|/G has some singular points. Then, any
non-singular model of A/G 1is meither abelian, hyperelliptic, nor quasi-
hyperelliptic.

PROOF. Suppose that A/G is birationally equivalent to an abelian
surface, a hyperelliptic surface or a quasi-hyperelliptic surface. Then, we
have £(A4/G)=0. Therefore, by Lemma 2.7, the minimal resolution S of
A/G is a minimal model. Since A/G has at least one singular point, S
contains a curve whose self-intersection number is negative. It is impos-
sible if S is an abelian surface, a hyperelliptic surface or a quasi-hyper-
elliptic surface. q.e.d.
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PROOF OF THEOREM 2.4. Suppose that the minimal non-singular model
of A/G is a K3 surface. Then, Condition (i) holds by Lemma 2.6. Suppose
that Condition (ii) does not hold. Then, the canonical projection

(2.10) m:A— AlG
is an étale morphism. Therefore, we have
(2.11) 0=x(O4)=deg(r) x(Os) ,

which contradicts the fact that A/G is a K3 surface. Condition (iii) holds
by Lemma 2.8. Since w, is the pull-back by = of a non-zero regular two-
form on A/G, we see that Condition (iv) also holds. Conversely, suppose
that Conditions (1), (ii), (iii) and (iv) hold. We have the following diagram :

S A
212 \ J/Tf

AlG,

where ¢ : S—A/G is the minimal resolution of A/G. By Condition (iv),
there exists a non-zero rational two-form o on A/G such that z*w is a
non-zero regular two-form w,. Since n is étale except at a finite number
of points on A, and w, has neither zero nor pole, p*w has neither zero nor
pole except on the exceptional curves of ¢. Let {E};-,.. » be all the excep-
tional curves of ¢. Then, there exist integers n; (¢=1,---,m) such that

(2.13) Ks~(the divisor of ¢*w)= %1 n.E; .
By Condition (iii), we have

(2.14) Pa(E;)=0 and Ei=-2 (i=1,--+,m)
(cf. Artin [1, p. 135]). Hence, we have

(2.15) Ks- E;=0 (i=1,-,m).

By (2.13), we have

(2.16) % n(BE)=0 (j=1,---,m).

Since the intersection matrix of the exceptional curves is negative definite,
we conclude
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(2.17) n:=0 (i=1,---,m),

that is, the canonical bundle of S is trivial. Hence, we have £(S)=0. By
Conditions (i) and (ii), A/G has some singular points. Hence, by Lemma 2.9,
S is neither an abelian surface, a hyperelliptic surface nor a quasi-hyper-
elliptic surface. By the assumption p#2, we conclude that S is a K3
surface. q.e.d. '

REMARK 2.10. There exists an example of (A4,G) with an abelian
surface A and GCAut,(4) which satisfies Conditions (i), (ii) and (iv) such
that a relatively minimal model of A/G is not a K3 surface. For example,
in characteristic p=3, we consider the elliptic curve E defined by the
equation

Y=x*—u.
We consider the automorphism defined by
o : x'—>x-|—1,.yk———>y.

We set A=EXE and G=<oXo). Then, (4,G) satisfies Conditions (i), (ii)
and (iv), but does not satisfy Condition (iii). In fact, it is not difficult to
prove that A/G is a rational surface by the similar method to the proof
of rationality in Katsura [12, p. 534]. However, we will show in Section 8
that in case p=7, Condition (iii) follows from the other conditions (cf.
Theorem 3.12).

Finally, we .give a criterion of rationality for the later use.

THEOREM 2.11. Let A be an abelian surface defined over an algebra-
scally closed field k of characteristic p=0. Let G be a finite subgroup of
Aut,(A). Suppose that G has mo fized curves. If A/G has at least one
singular point other thanm rational double points, them A/G is a rational
surface.

PROOF. By Lemma 2.8, we have £(A/G)=—oo. Therefore, A/G- is
birationally equivalent to a ruled surface. We consider the following
diagram :

(2.18) \ i 0



Generalized Kummer surfaces 11

where ¢ is a resolution of singularities of A/G, ¢ is the rational mapping
such that ¢=¢ 'or, and 6 :S—C gives the structure of ruled surface. Since
fo¢ gives a non-trivial morphism from an abelian surface to a curve, the
genus of C is smaller than or equal to one. Suppose that the genus of C
is equal to one. Then, by a suitable choice of the origin of C, we can
assume that fo¢ is a homomorphism. The reduced part (§o¢) (P)ea of
(Bo¢p)*(P) consists of a finite number of elliptic curves for any point P of
C. Since the fixed points of G are finite in number, (§o¢) (P),.q does not
contain them for a general point P of C. Therefore, G acts freely on
(6°¢) *(P).ea. Hence, the quotient scheme of (fo¢)'(P),eq by G is an elliptic
curve, and is isomorphic to #7'(P). This contradicts the fact that §7*(P)
is isomorphic to a rational curve for a general point P of C. Therefore,
C is a rational curve. Hence, S is a rational surface. q.e.d.

Let A be a supersingular abelian surface in characteristic two. Let ¢
be the inversion of A. Since the singularity of A/<{) is elliptic (cf.
Katsura [12, Theorem A]), we have a new proof of the following fact.

COROLLARY 2.12 (Shioda [26] and Katsura [12]). Let A be a super-
singular abelian surface in characteristic two. Then, A/ 1s a rational
surface. :

§3. The structure of groups.

Let k& be an algebraically closed field of characteristic p=0. Let A be
an abelian surface defined over k. We denote by w, a non-zero regular
two-form on A. We investigate the structure of subgroups of the group
Aut,(A) of automorphisms of A. Let G be a finite subgroup of Aut,(4).
Let g be an element of G. We have the induced homomorphism

g* :»HI(A’ Ql) - HI(A; Ql) .

Let f(X) be the characteristic polynomial of g*. It is a polynomial of
degree four which has, rational integral coefficients. Let w,, w., s w, be
eigen-values of ¢g*. Since we have the canonical isomorphism

(3.1) Hi(A, Ql)g/\ HI(A’ Qt) ’
the eigen-values of g* on H*A, Q,) are given by

(3.2) W, (1=Zay,,a;=4; apnFa, if m#n).

i

We denote by @, (resp. 4) the graph of ¢ (resp. the diagonal) in A X A.



12 Toshiyuki KATSURA

Then, by the Lefschetz fixed point formula, we have
(3.3) S =(1-w)1-w)(1-w)1—w)=4-0,.

In case the order of ¢ is not divisible by p, 4-9, is equal to the number
of fixed points of g¢.

LEMMA 3.1 (Harder and Narasimhan). Let G be a finite subgroup of
the group of automorphisms of a projective variety X over k. Let | be a
prime number which 1is prime to both p and the order of G. Then,
H{(X|G, Q,) is isomorphic to the subspace HYX, Q)¢ of G-invariants in
H 1(X, Qz) .

(3.4) H{(X/G,Q,)=H(X,Q)°.

For the proof, see Harder and Narasimhan [6, Proposition 3.2]. The
following two lemmas are well-known.

LEMMA 3.2. The mnatural representation of End(4) wn H'Y(A,Q)) is
Saithful.

LEMMA 3.3. An element g of Aut,(A) induces the identity on H'(A, Q)
if and only if g is a translation of A.

LEMMA 3.4. Under the notations as above, an element g of G different
SJrom the identity either acts freely on A or has a fixed curve if and only

if f(1)=0.

PROOF. Suppose that ¢ has a fixed curve E. By Lemma 2.3, E is an
elliptic curve. Let h: EGA be the natural immersion. Then, we have a
surjective homomorphism

h* : H'(A, Q) — H\(E, Q).

Since g* acts on HY(E,Q,) as the identity, we see that at least one of
eigen-values of g* on H' (A4, @Q,) is equal to 1. Therefore, we have f(1)=0.
The other parts of this lemma follow from (3.3). q.e.d.

LEMMA 8.5. Let g be an element of order two of Aut,(A). Assume
that <g> satisfies Conditions (i) and (ii) in Theorem 2.4. Then, g is the
inversion ¢ of A with a suitable choice of the origin of A.

PROOF. Let P be a fixed point of g. We choose P as the origin of A.
Then, ¢ is an element of End(A4). Since the order of g is equal to two, the
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eigen-values w,, w,, wy, o, of g* on H'(4,Q,) are equal to 1 or —1. By Con-
ditions (i) and (ii) and Lemma 3.4, we have (1—))(1—w.)(1—ws)(l1—wy)+*0.
Hence, we have w;,=—1 for i=1,2,3,4. Since ¢* on H'(A4,Q,) is given by
the matrix

[ —
__1 ’
0 —1
we conclude g*=c*. Hence, by Lemma 3.2, we have g=¢. q.e.d.

LEMMA 3.6. Assume char.k=p+2,3. Let G be a finite subgroup of
Aut,(A) which satisfies Condition (K). Let g be an element of G which
has no fixed points. Then, g is a translation of A.

PROOF. Let w,, w,, ws;, w,; be eigen-values of g* on H'(A4,Q,). Suppose
that there exists an element g™ of {g)> which has a fixed point, and which
is not the identity. Since G satisfies Condition (K), <{g") satisfies Condition
(i) in Theorem 2.4. Therefore, by Lemma 3.4, we have

1—o)(1l—o)(1l—oh)(1—wi)+0.
Hence, we have
(1_0)1)(1_wz)(l—(l)a)(l‘—ﬂ)4)¢0;

which contradicts the assumption on g. Therefore, the group <g> acts
freely on A. We set S=A/{g>. We consider the canonical projection

T A—> Al{g>=S,

which is an étale morphism. By Condition (K), we have g*w,=w,. There-
fore, there exists a rational two-form ws on S such that n*ws=w,. Since
r is étale, ws has neither zeros nor poles. Therefore, we see that K; is
trivial. Since (degn)y(Os)=x(O4)=0, S is an abelian surface by the
assumption p#2,3 (cf. Bombieri and Mumford [4, Section 3]). By Lemma
3.1, we have H'(4,Q)*=H'S, Q). Since dimg,{H'(S,Q,)}=4, the group
{g> acts trivially on H'(A4,Q,). Hence, by Lemma 3.3, g is a translation.
g.e.d.

From here on, until the end of this section we assume that char. k=
p+2,3,5, unless otherwise mentioned. Let G be a finite subgroup of
Aut,(A4) which satisfies Condition (K). We set

N={geG | g has no fixed points}U{id,}.
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Then, by Lemma 3.6, N consists of translations of 4, and it is easy to see
that N is a normal subgroup of G. To examine the quotient surface A4/G,
we can consider (4/N, G/N) instead of (4, G). Therefore, we add one more
condition :

Condition (F). Any element of G has some fixed points on A.

We note that under Conditions (K) and (F), any subgroup H of G also
satisfies Conditions (K) and (F). Now, we state the main theorem in this
section.

THEOREM 38.7. Let k be an algebraically closed field of characterisite

p. Assume p+2,3,5. Let A be an abelian surface over k and let G be a
Sinite subgroup of Aut,(4) which satisfies Conditions (K) and (F). Then,
G 1s 1somorphic to one of the following groups:

(i) ecyclic group of order 2, 3, 4, 5, 6, 8, 10 or 12,

(ii) binary dihedral group <2,2,n> with n=2,3,4,5 or 6,

(iii) binary tetrahedral group <2,38,3),

(iv) binary octahedral group <2,3,4),

(v) binary icosahedral group <2,3,5).

REMARK 3.8. Let A be an abelian surface over k, and let G be a
finite subgroup of Aut,(A4). Theorem 3.7 shows that if A/G is birationally
equivalent to a K3 surface, then G is isomorphic to an extension of a group
in Theorem 3.7 by a finite group consisted of translations of 4. We will
show in Section 7 that all groups in Theorem 3.7 can occur (in case p=0,
see Corollary 3.17, and Fujiki [5]).

To prove Theorem 3.7, we need some lemmas.

LEMMA 3.9. Let A be an abelian surface over k and let G be a finite
subgroup of Aut,(A) which has mo fized curves and satisfies Condition
(F). Let m: A—A/G be the canonical projection and let P be a point of
A. If the stabilizer of G at P is not trivial, then =n(P) is a singular point
of AlG.

PROOF. This follows from the fact that the branch locus of = through
a non-singular point is of codimension one. q.e.d.

LEMMA 8.10. Let A and G be as in Lemma 3.9. Let g be an element
of order n (n=2) of G. Then, any eigen-value of g* on H'(A, Q) is equal
to one of primitive n-th roots of unity.
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PROOF. Suppose that one of eigen-values of g* on H'(A,Q)), say {, is
not equal to any primitive m-th root of unity. Since (g*)" is the identity,
there exists a divisor m of % such that m<n and {"=1. We consider the
subgroup <g™ of G. By Lemma 3.4 and our choice of m, the subgroup
{g™ has a fixed curve or does not satisfy Condition (F'). A contradiction.
q.e.d.

The following lemma is essentially known.

LEMMA 3.11. Let A and G be as in Lemma 3.9. Then, the order of
any element g of G is equal to 1, 2, 3, 4, 5, 6, 8, 10 or 12.

PROOF. Let n be the order of g. By Lemma 3.2, the order of ¢* on
HYA4,Q,) is also equal to n. By Lemma 3.10, any eigen-value of g* is a
zero of a cyclotomic polynomial @,(X) whose zeros consist of primitive
n-th roots of unity. Since the characteristic polynomial of g* on H'(A, @)
is of degree four, we have deg @,(X)=<4. Hence, we have n=1,2,3,4,5,6,
8,10 or 12. q.e.d.

THEOREM 3.12. Assume that char.k=p+#2,3,5. Let A be an abeltan
surface over k and let G be a finite subgroup of Aut,(A) which satisfies
Condition (F). Then, A|G 1is birationally equivalent to a K3 surface if
and only if g*w,=w,4 for any element g of G.

PROOF. The “only if” part follows from Theorem 2.4. Assume that
g*w,=w, for any element g of G. Suppose that an element g of G dif-
ferent from the identity has a fixed curve E. We may assume that FE is
an abelian subvariety of A. Then, g induces an automorphism of the
elliptic curve A/E which has at least one fixed point. Therefore, the order
of g is equal to 2, 3, 4 or 6. Therefore, the order of ¢ is prime to p by
our assumption. Let P be a point on E. Since g is the identity on E, by a
suitable choice of the local coordinate (s,t) of A at P the action of g at P

is given by
s—>s
* .
g { t—> ¢t

with an element ¢ of k& which is different from 0 and 1, which contradicts
the assumption g*w,=w,. Hence, G has no fixed curves. By Lemma 3.11,
the order of any element of the stabilizer of G at P is prime to p. Hence,
by Pinkham [23], we conclude that Condition (iii) in Theorem 2.4 follows
from the assumption g*w,=w, for any element g of G. Hence, the result
follows from Theorem 2.4. q.e.d.
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LEMMA 3.13. Let A be an abelian surface and let G be a finite sub-
group of Aut,(A) which satisfies Conditions (K) and (F). Let g be an
element of G, and let a; (1=1,---,m) be fixed pionts of the automorphism
9. Let n:A—A[{g> be the canonical projection. Then, the local rings
Orap (1=1,-++,m) are tsomorphic to each other.

PROOF. We may assume that the origin o of A is a fixed point of g.
Then, the fixed points of the automorphism g are the points of Ker(g—id,).
Let a be one of them. Then, we have T,og=goT,. Therefore, T, induces
an isomorphism from O, to O... q.e.d.

LEMMA 8.14. Let A and G be as in Lemma 3.13. Let g be an element
of order m (n=2) of G, and let P be a fixed point of g. Let w:A—A[<g)
be the camonical projection. Then, the singularity at the point n(P) is of
type An_..

PROOF. By Katsura [15, Lemma 1.3], we can find a regular system of
parameters (u,v) of the local ring Op at P such that

g*u=Cu, g*v=_{v

with primitive roots {, {’ of unity. Using Lemma 3.9 for subgroups of
{g>, we see that both { and {’ are primitive n-th roots of unity. We
denote by mp the maximal ideal of Op. Since mp/m?% is naturally iso-

morphic to /2\H°(A, QY), we have {’={! by (iv) in Condition (K). Hence,
the singularity at the point =(P) is of type A4,_,. q.e.d.

Let G be a finite subgroup of Aut,(4) which satisfies Conditions (K)
and (F). Let g be an element of order n of G, and let f(X) be the charac-
teristic polynomial of g¢g* on H'(A4,Q,). Let n:A—A/<{¢> be the canonical
projection. Then, the singular points of A/<{g> are given by the image of
the set of points:

{Pe A| g™(P)=DP for some integer m}.

Using these notations, by (3.3), Lemmas 3.10, 3.11, 3.13 and 3.14, we have
the following table.
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Table.
0”‘;‘“‘ £(X) H*(A, Q) singularities of A/<g> |p(Km(4, {g>))
2 (X+1)* 6 A(16) =17
3 (X?+ X+1)? 4 Ay(9) >19
4 (X2+1)? 4 Ay(4), A4(6) >19
5 | X'+ X+ X2+ X+1 2 A,(5) 22
6 (X2— X+1)? 4 Ay(1), Ay(4), A(5) >19
8 Xi41 2 A:(1), Ay(1), A,(3) 22
10 | X'— X+ X*—X+1 2 A4(1), A,(2), A,(3) 22
12 X —X%+1 2 An(1), As(1), Ax(2), Ai(2) 22

In this table, by A,(a) we mean that singularities of type A, appear
a times. The following lemma is also essentially known.

LEMMA 3.15. Assume char.k=p=0. Let G be as above. Then, the
order of any element of G 1is equal to 1, 2, 3, 4 or 6.

PROOF. In case char. k=p=0, we have p(S)<20 for any K3 surface S
over k. Hence, this proposition follows from the above table. g.e.d.

LEMMA 3.16. Let k be an algebraically closed field of characteristic
p. Let G be as above. Assume that the order of G is prime to p if p is
positive. Then, the group G acts faithfully on H%A, 2Y).

PROOF. Let g be an element of order » of G. We may assume that
g fixes the origin o of A. Let O be the local ring of A at o, and let m
be the maximal ideal of ©. Suppose that the action g* of g on H(A, Q)
is trivial. Since H(A, 2}) is naturally isomorphic to m/m? g* acts trivially
on m/m®. Let (x,y) be a regular system of parameters of ©. We set

{ u=z+g*c+ -+ +(g*)" (),
v=y+g*y+ - +(g*)" (y) .

Then, we have u=nx (mod m? and v=ny (mod m?. Since n is prime to
p, we see that (u,v) is a regular system of parameters of (@ which is
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invariant under the action of <(g>. Hence, O®=(0 is regular, which con-
tradicts Lemma 3.9. q.e.d.

PROOF OF THEOREM 8.7. By Lemmas 3.11, 3.16 and (iv) in Condition
(K), we have an injective homomorphism :

G < SL(H"(A, 2))) .

Since the order of every element of G is equal to 1,2, 3, 4, 5, 6, 8, 10 or 12,
by the same method as in Pinkham [23], we conclude that G is isomorphic
to one of groups as in this theorem. q.e.d.

COROLLARY 3.17. Under the same assumption as in Theorem 3.7,
assume, moreover, p=0. Then, the group G 1s isomorphic to one of the
Sollowing groups:

(1) cyclic group of order 2, 3, 4 or 6,
(i1) binary dihedral group <2,2,2) or <2,2,3),
(iii) binary tetrahedral group <2,3,3).

PROOF. This follows from Theorem 3.7 and Lemma 3.15. qg.e.d.

REMARK 3.18. In char. k=0, all groups in Corollary 3.17 can occur (cf.
Fujiki [5], and see also examples in a later section).

Here, we give some known examples of generalized Kummer surfaces
which are used in later sections.

Example 1. G=Z|2.
Assume p#2. Let ¢ be the inversion of an abelian surface A. We
set G=<>. Km(4, G) is called a Kummer surface, and is denoted by Km(A4).

Example 2. G=Z/3.
Assume p+#2,3. We consider the non-singular complete models of
elliptic curves E; (j=1,2) defined by

E;: yi=x}—-1 (j=1,2).
We set A=FE, X FE,. We consider the automorphism defined by

. { xy wx,, Y Y1,
g .

Lo wzxZ ’ Y Y2,

where o is a primitive cube root of unity. We set G=<o>. Then, we get
a generalized Kummer surface Km(A4, G) (cf. Ueno [32, Example 16.13]). If
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k=C (the complex number field), then Km(A, G) is not isomorphic to Km(A)
(cf. Shioda and Inose [31, Lemma 5.1], and Inose [11, Theorem 0]).

Example 3. G=Z/4.
Assume p#2. We consider the non-singular complete elliptic curves E|
(j=1, 2) defined by

E; : yi=x5—1 (j=1,2).
We set A=FE,xE, We consider the automorphism defined by

{ L1 > — %1, Y >,
T .
Lo—> — %2, Yo > 1Yz,

where ¢ is a primitive fourth root of unity. We set G=<z>. Then, we
get a generalized Kummer surface Km(A4, G) (cf. Ueno [32, Example 16.14]).

We give one more example of G=Z/3.

Example 4. G=Z|3.

Assume p+#2,3. Let E be an arbitrary elliptic curve. Let ¢ (resp. id)
be the inversion (resp. the identity) of E. We consider the automorphism
g of A=EXE defined by

0
g:(,d ‘) . EXE—> EXE.
1

14

We set G=<¢g>. Then, Km(A,G) is a generalized Kummer surface with
G=Z/3.

We will give other examples in Section 7.

§4. A proof of Shioda’s theorem.

Let & be an algebraically closed field of characteristic p=3. Let A be
an abelian surface defined over k%, and let ¢ be the inversion of A. We
consider the Kummer surface Km(A4). In [29], Shioda proved the following
theorem.

THEOREM 4.1 (Shioda). Km(A) s unirational if and only if A s a
supersingular abelian surface.

The “only if” part is an easier part. Shioda proved it by the calcu-
lation of the Picard number of Km(4). We will give a general lemma at
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the end of this section by which we can also prove this part. As for the
“if” part, Shioda gave a proof which contains a tricky computation in
birational geometry (for details, see Shioda [29, Theorem 1.1]). We give
here a new proof of this part. As a corollary to our method, we get an
estimate of the minimal degree of generically surjective rational mappings
from P? to Km(A4). For this purpose, we recall first a construction of a
family of supersingular curves of genus two due to Moret-Bailly [18].
Let E be a supersingular elliptic curve. We have a natural immersion

apXa, > EXE.

We denote by 7' the tangent space of E'XE at the origin, and by S the
projective line P(T) obtained from 7. We set

Ks=a,Xa, xS and (EXE)s=EXEXS.

We consider the subgroup scheme H of Ks=8pec Osla, Bl/(a®, f?) defined by
the equation Ya— XB=0, where (X, Y) is a homogeneous coordinate of S.
We set X =(EXE)s/H. Then, we have the following diagram:

0 H ExE)s—L % 0 (exact),
(4.1)
pr: N q
EXE S= p

where II is the canonical projection, where pr, and pr, are projections, and
where ¢ is the induced morphism. Moret-Bailly constructed a non-singular
complete surface D in X such that q|,: D—P'is a family of supersingular
(not necessarily irreducible) curves of genus two. We set D'=I1"Y(D). D’
is a reduced irreducible algebraic surface. Then, by the construction, we
have the following facts:

(4.2) I|p. :D'—D is a purely inseparable morphism of degree p,

(4.3) D (resp. D’) is invariant under the action of the inversion
of the abelian scheme ¢: X —S (resp. pr,: (EXE)s—S),

(4.4) the morphism pr,|, : D’—>EXE is surjective and of degree
(p—1)/2.

For the proofs of these facts, see Moret-Bailly [18, 2.3 on p. 131, and
2.5 on p. 133].
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Now, we give a proof of the “if” part of Theorem 4.1. For any
abelian surface A, we have a purely inseparable isogeny of degree p from
ExXE to A (cf. Oort [22, Corollary 7]). Therefore, as is shown in Shioda
[28, Proposition 8], Km(A4) is dominated by Km(EX E) and it is sufficient
to prove the result for EXE. We have a commutative diagram :

(4.5) ) . f U
an D > D pr,
EXE F ExXE,

where I is the Frobenius mapping, and /7’ is the canonical projection. We
set

(4.6) f=I|p., g=(priell’)|, and h=pr|p. .

Since f, h and F are surjective, the morphism g is also surjective. By
(4.3), the inversion of the abelian scheme ¢ : X —S induces the inversion
of the family ¢|p,: D—S of curves of genus two, and we have a commu-
tative diagram :

gl lg

ExE——>EXE,
where ¢ is the inversion of EXFE. Hence, we have a surjective morphism
(4.7) g : DI — (EXE)[<o> .
On the other hand, we have the morphism
(4.8) q: DK —>S

which is induced by ¢|,. Since a general fiber of ¢ is the non-singular
rational curve P!, we see that by S=P’, D/<z> is birationally equivalent
to the projective space P2. Hence, by (4.7), Km(Ex E) is unirational. q.e.d.

COROLLARY 4.2. Let A be a supersingular abelian surface defined
over k.
(i) If A s isomorphic to a product of two supersingular elliptic curves,
then there exists a separable covering X of Km(A) of degree
(p—1)/2 such that X 1s a Zariski surface.
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(ii) If A s mot isomorphic to a product of two supersingular elliptic
curves, then there exists a separable covering X of KXm(A) of degree
(p—1)/2 such that there exists a purely inseparable rational
mapping of degree p* from P? to X.

PROOF. We use the notations in (4.4), (4.5) and (4.6). Since F'is a
purely inseparable morphism of degree % by (4.1), (4.3) and (4.4) the
purely inseparable degree (resp. the separable degree) of ¢ is equal to p
(resp. (p—1)/2). Therefore, the purely inseparable degree (resp. the sepa-
rable degree) of g is also equal to p (resp. (p—1)/2). Hence, the results
follows from Lemma 1.2, the proof of Theorem 4.1 and Oort [22, Corol-
lary 7]. q.e.d.

REMARK 4.3. By Corollary 4.2 (i), we see that Km(EXFE) with a
supersingular elliptic curve E is a Zariski surface if p=3. Professor T.
Shioda communicated to the author that he had also a proof of this result
for p=3. His proof is based on the fact that Km(E X E) is isomorphic to
the Fermat surface of degree four if p=3 (mod 4) (cf. Shioda [25, Theo-
rem 38]). For further results, see Theorem 5.10.

The “only if " part of Theorem 4.1 also follows from the following
lemma.

LEMMA 4.4. Assume char. k=p=3. Let A be an abeltan surface
defined over k, and let G be a finite subgroup of Aut,(A) which satisfies
Conditions (K) and (F). Assume that the order |G| of G 1is prime to p.
Then, Km(A4, G) is supersingular if and only if A is supersingular.

PROOF. If A is supersingular, then by the general theory in Lemma
1.1 we see that Km(A4, G) is supersingular. We prove the “only if” part.
We have the following commutative diagram :

AN 3

(4.9) ”l l p
®

AlG<—Km(4,G),

where ¢ is the minimal resolution of singularities, 2 is a composition of
blowing-ups such that the mapping ¢ induced by = is a morphism. We
use the theory of formal Brauer group (cf. Artin and Mazur [3]). We have
morphisms k& and ¢ induced by h and ¢, respectively :



Generalized Kummer surfaces 23
, ho
Br(4) — Br(A) <— Br(Km(4, G)) .
Since h is a composition of blowing-ups, we see that h is an isomorphism
(cf. Artin and Mazur [3, p. 122]). Corresponding to the diagram (4.9), we
have a commutative diagram :

* -~
H*(A,O04) h H*A, Of)

o I

HYAIG, Ore) ——— HYKM(A, G), Oxmcarc) -

We denote by Tr the trace map from H*A,O,) to H*A/G, O,). Since
|G| is prime to p, we see that (1/|G|)Trox* is the identity mapping on
H*A|G, O4). Therefore, n* is injective. Since A/G has no other singular-
ities than rational double points, we have

O%(Okmca.6) =046 and R'ux(Oxmea.e)) =0.

Therefore, we see that ¢* is an isomorphism. Since & is a birational
morphism, A* is an isomorphism. Hence, ¢* is an isomorphism. Since
H*A, Q) (resp. H(Km(A, G), Oxmea.c)) is the tangent space of Br(4) (resp.
Br(Km(4, G)) (cf. Artin and Mazur [3, p. 109]), we see that $ is a non-trivial
homomorphism. Since Br(A) and Br(Km(4,G)) are formal groups of
dimension one, we conclude that the height of Br(4) is equal to the height
of Br(Km(A4,G)). Hence, Br(4) is isomorphic to Br(Km(4,3)). Now,
suppose that Km(A, G) is supersingular. Then, by Artin [2, p. 544], the
height of Br(Km(A4,G)) is equal to the infinity. Therefore, the height of
Br(A) is equal to the infinity. Hence, A is a supersingular abelian surface
(cf. Illusie [10, p. 652]). q.e.d.

§5. The discriminant of Néron-Severi groups and Zariski Kummer
surfaces.

In this section, we investigate the discriminants of Néron-Severi groups
of generalized Kummer surfaces, and we will show that a certain Kummer
surface is a Zariski surface (cf. Theorem 5.10).

Let E be a supersingular elliptic curve defined over an algebraically
closed field k¥ of characteristic p>0. We set B=End’(E) and O=End(E).
B is a quaternion division algebra over the field @ of rational numbers
with discriminant p, and O is a maximal order of B. We denote by ~ the
canonical involution of B. We set A=EXE. We consider a divisor
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X=Ex{o}+{o} X E.
This gives a principal polarization on A. We have a homomorphism
©Ox - A— A

defined by
x—> T¥*¥X—X for x€A.

Then, we have an injective homomorphism as abelian groups:

j : NS(A) —> End*(4) = My(B) .
U] w
L — gp}‘ogpL

By the homomorphism j, we often identify NS(4) with j(NS(4)). An
element g of Aut(A) induces an automorphism g* of NS(A4). The following
two lemmas are easily proved (cf. Ibukiyama, Katsura and Oort [8, Section
2], for instance).

LEMMA 5.1. The image of j is given by

(%)

v 0

For two dements Ly and Ly of NS(A), set j(L1)=<‘;1‘ g;) and j(L2)=<;f: fg:)
Then,

(5.1) (L1'L2)=a251+0{152“—7’1,82_7’2[81 .

a,EEZ;r,,BE@;r“——E}.

LEMMA 5.2. Let g be an element of Aut(A). Let g be given by (g’ 3)
in My(O). Then, the action g* on NS(A) ts given in My(B) by

a B\, (3 &\« B\(a b)
<r 5>'—><b er 5)<c d)
We denote by <%> the Legendre symbol. The following lemma is due
to Ibukiyama [7].
LEMMA 5.8 (Ibukiyama). Assume p+2. Let q be a prime number

such that —q=5 (mod 8) and <—Tq>:—1. We set

(5.2) B=Q+Qa+QB+Qap
with o*=—p, F=—q, af=—fa.
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Let a be an integer such that a*=—p (mod q). We set
(53) @=Zw1+Zw2+Zw3+Zw1
with o,=1, 0,=(1+p)/2, wy=a(1+p)/2, o,=(a+a)blq.

Then, B is a quaternion division algebra over @ with discriminant p, and
© is a maximal order of B. Moreover, in case p=3 (mod 4), B and O
are also given by the following form :

IBZQ-FQa—I-Qﬂ-i-Qa,B,
add=—p, ff=—1, af=—fa,
O=Z+Zp+Z(1+a)/2+ZB(1+a)/2.

(5.4)

LEMMA 5.4. (i) Under the notations in Example 2 in Section 3,
assume p=2 (mod 3). Then, B=End"(E) and O=End(E) are given by

(5.5) B=Q+Qa+QB+Qap
with o*=—p, Ff=—-3, af=—pa,
(5.6) O=Zw,+Zw,+Zw;+ Zw,

with =1, w,=a, 0;=(—14+p)/2, o,=(1+a)3+p)/6.
A basis of the imvariant subspace NS(A)¢ of NS(A) by G is given by

(10 {00 (0@ _ 0 2+ @, — 3@,
el“<o 0>’ e‘ﬁ(o 1)! ef*—<a 0>’ e*_<2+a)3-—3a)4 0 '>'

(i1) Under the motations in Example 3 in Section 3, assume p=3
(mod 4). Then, B=End"(E) and O=End(E) are given by the form in (5.4).
A basis of the invariant subspace NS(A)® of NS(A) by G is given by

a=(39) a=(§0), a=(0 ). w=(l )

PROOF. In both cases, elliptic curves E are supersingular and are
defined over F,. Therefore, the Frobenius morphism satisfies F?=—p. In
case (i), we set a=F and f=2¢-+1. Then, we get (5.2) and (5.3) with ¢=3
and a=1. Since End(F) is a maximal order of End%E'), we have O=End(E)
by Lemma 5.8. Since o=(—14+p)/2 is a unit of End(E), we see that

{o, —(14+p)a/2, —a(l+p)a/2, —(1+a)Ba/3}

is also a basis of End(E). This basis gives the basis in (5.6). In case (ii),
we set a=F and f=rz. Then, we get (5.4). Since End(E) is a maximal
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order of End(E), we have O=End(E) by Lemma 5.3. By Lemma 5.2, the
action of o* (resp. z*) on NS(A4) is given by

ab @® 0\/a b\/w 0

<c d>'_)<0 a)><c d><0 a)2>

ab —1 0\/a b\/1 ©

(resp. <c d>'_’< 0 'L'><c d><0 —i>)
for <g db>ej(NS(A)). By direct calculation, we can easily obtain a basis of
the invariant space NS(4)°. q.e.d.
For a quaternion division algebra B in (5.2) and its maximal order &

in (5.3), there exists a supersingular elliptic curve E such that End%E)=B

and End(E)=(O (cf. Waterhouse [33, Theorem 3.13]). In Example 4 in
Section 3, we take this elliptic curve E. Then, we have the following.

LEMMA 5.5. Under the notations in Example 4 in Section 3, let E be
an elliptic curve as above. Then, a basis of the invariant subspace NS(A)°®
18 given by

(=2 1 (=1 @, (0 @ (0@
e1_< 1 —2>’ ez_( W, —1>’ e3“<m3 03>’ e-*“<w4 0*>'
PROOF. The action g* on NS(A) is given by

ab 0 —1\/a b\/0 —1
<c d>'_)<1 —1><c d)(l —1>
for <? 3>ej(NS(A)). By direct calculation, we get easily a basis of the
invariant subspace NS(A4)¢. q.e.d.
LEMMA 5.6. In Example 2 (resp. Erample 3, resp. Example 4 with an

elliptic curve E as above) in Section 3, the discriminant of NS(A)° is
equal to —3p® (resp. —4p?, resp. —3ph).

PROOF. By Lemmas 5.1, 5.4 and 5.5, the intersection matrix of NS(A)¢
is given by

0 1 0 0
10 0 0
0 0 —2p 3p
0 0 3p —6p
01 0 0 6 3 0 0
1 0 0 0 . 3 (q+3)/2 0 a
(resp. 0 0—2p 0 » Tesp. | 0 p(l—g)2 —p ).
00 0 —2p 0 a —-p  2(a’—p)lg
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Computing the determinant, we get the result. g.e.d.

The following theorem is due to Ogus [20, Corollary 7.14] (see also
Shioda [30, Theorem 4.2]).

THEOREM 5.7 (Ogus). Assume char. k=p=3. Let X be a supersingu-
lar K3 surface. X s isomorphic to a Kummer surface Km(A) with an
abelian surface A which 1s isomorphic to a product of two supersingular
elliptic curves if and only if the discriminant of the Néron-Severi group
NS(X) 1s equal to —p_

Now, we examine the structure of generalized Kummer surfaces in
Examples 2, 3 and 4 in Section 3. Let ¢ (resp. g) be the automorphism of
order three in Example 2 (resp. Example 4) in Section 3. Then, by Table
in Section 3 (or by direct calculation), ¢ (resp. g) has nine fixed points. We
consider the blowing-up of A at these nine points:

o AA— A

Then, the automorphism g of A lifts to an automorphism ¢, (resp. g,) of
order three of A,. The automorphism g, (resp. ¢g,) has two fixed points on
each exceptional curve. We again blow-up these fixed points:

gbg : Ag_)Al.

Then, the automorphism o, (resp. g) of A, lifts to an automorphism o,
(resp. g,) of order three of A,. We consider the quotient surface A,=
A,/<a) (resp. A;=A,/<g>). Then, by a local calculation, we see that A;=
A,/{op (resp. A;=A,/{g,) is non-singular and contains nine exceptional
curves. We blow-down these nine exceptional curves. Then, we obtain
Km(A4, G) which is the minimal resolution of A4/G. Thus, we get the fol-

lowing commutative diagram :

A, > A

(5.7) ) l l
T T

At S km@a,0 —2 a6,

where ¢=¢,o¢,, * and # are the canonical projections, ¢ is the minimal
resolution of singularities, and h is the blowing-down as above.

Now, let = be the automorphism in Example 2 in Section 3. We have
z?=¢, where ¢ is the inversion of A. The automorphism ¢ has sixteen fixed
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points, and z acts on these sixteen fixed points. We blow-up these sixteen
fixed points :

S[)l . Al—)A.

Then, the automorphism r lifts to an automorphism z, of A, We set
ti=¢,. Then ¢ is a lifting of . We set Km(4)=A4,/<,>. This surface is
the Kummer surface of A, and the automorphism z, descends to an auto-
morphism z; of order two of Km(A4). It is easy to see that r; has eight
fixed points on Km(A4). We blow-up these eight points:

¢ ¢ X, — Km(4).

The automorphism z; lifts to an automorphism z, of X,. By a local calcu-
lation, we see that the quotient surface X,/<{r,> is a non-singular minimal
surface and is isomorphic to Km(A4,G). Thus, we have the following
commutative diagram :

&

A ——>A

.

(5.8) X, —— 5 Km(A) x
Kzl
@
Km(4, G) >~ AlG

where n, z, and #, are the canonical projections, and ¢ is the minimal
resolution of singularities.

The essential idea of the proof of the following lemma is due to Shioda
[80, Proposition 3.1].

LEMMA 5.8. In Ezxzample 2 (resp. Example 8, resp. Example 4) in
Section 3, assume that p=2 (mod 3) (resp. p=3 (mod 4), resp. E is a
supersingular elliptic curve as in Lemma 5.5). Then, the discriminant
of the Néron-Severt group NS(Km(4,G)) is equal to —p°

PROOF. First, we consider Example 2 (resp. Example 4) in Section 3.
Let G be a group generated by o, (resp. g,). By (5.7), we have the follow-
ing diagram:
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(5.9) NS(A4,) =NS(4)D L.
U o,
NS(4,)¢ =NS(A)°DL,

ﬁ*b

NS(4;) =NS(Km(4, G))DLs,

where L, and L, are subgroups generated by exceptional curves obtained
from blowing-ups. Since rank(NS(A)G@Lz):ranlf(NS(Km(A, G))DL,) =31,
#*(NS(4,)) has a finite index in NS(4,)¢ Since |G|=3, we have

(5.10) 3NS(4,)¢C7#*(NS(4,)C NS(4,)¢ .

It is easy to see that the discriminant of L, (resp. L;) is equal to (—1)%
=—1 (resp. (—1)*=—1). By Artin [2, (4.6) on p. 556], the discriminant of
NS(Km(A4, G)) is of the form —p* with a positive integer a. Therefore,
by (5.10) and Lemma 5.6, we have

(3)(— 17 (—3pY =3"(— 1~ p*)m?

with a positive integer m. Since p is a prime number such that p+#2,3,
we have n=3"® and a=1. Hence, the discriminant of NS(Km(4, G)) is equal
to —p2

Now, we consider Example 3. Let G, (resp. Gi, resp. G,) be a group
generated by r; (resp. r;, resp. z,). Since NS(A4,) is {,)>-invariant, we have
by (5.8)

(5.11)  P¥(INS(A))P LI =NS(A4) % DrF(NS(Km(A))¥1D2NS(4,)%",

and
(5.12) ¢F(NS(Km(A))°1)P L= NS(X,)?:DrF(NS(Km(4, G))) D2NS(X,)%,

where L, and L, are subgroups generated by exceptional curves obtained
from blowing-ups. Since G, preserves four exceptional curves and inter-
changes other twelve exceptional curves, the discriminant of LSt is equal
to (—1)'(—2)¥=2°. We see easily rankNS(4,)=14. We denote by

disc(NS(Km(A))°t) the discriminant of NS(Km(A4))¢:. Then, by (5.11),
Lemma 5.6 and the same argument above, we have

2%(—4p?%- 2% =24disc(NS(Km(4))°1)n?
with a positive integer =, that is,

(5.13) disc(NS(Km(A))%) = —2%p?/n*.
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Since L§*=L, and rank L,=8, we see that the discriminant of L¢* is equal
to (—1)°. Therefore, by (5.12), (5.13) and the same argument as above, we
have

(5.14) 24(— 22 2 ?)(— 1) =22 — p2)m?

with a positive integer m. Since p is a prime number such that p+2, we
have mn=2% and a=1. Hence, the discriminant of NS(Km(4, G)) is equal

to —p% q.e.d.

THEOREM 5.9. In Example 2 (resp. Example 3, resp. Example 4), the
generalized Kummer surface Km(A,G) s isomorphic to the Kummer
surface Km(A) if p=2 (mod 3) (resp. if p=3 (mod 4), resp. if E 1s a
supersingular elliptic curve as in Lemma 5.5).

PROOF. This follows from Theorem 5.7 and Lemma 5.8. g.e.d.

THEOREM 5.10. Let k be an algebraically closed field of characteristic
p=3. Let X be a supersingular abelian surface defined over k which is
isomorphic to a product of two supersingular elliptic curves. If p#*l
(mod 12), then the Kummer surface Km(X) is a Zariski surface.

PROOF. We assume p=2 (mod 3) (resp. p=3 (mod 4)). Let E, A and
G be as in Example 2 (resp. Example 3) in Section 3. Then, the elliptic
curve E is supersingular, and by Lemma 1.2, we have A=X. Therefore,
by Theorem 5.9, the generalized Kummer surface Km(4, G) is isomorphic
to the Kummer surface Km(X). By Katsura [14, Proposition 5.1], Km(4, G)
is birationally equivalent to the elliptic surface defined by

yr=4x*—t'(t—1)' (resp. y*=4x’—t*(t—1)°x).

By the base change by a purely inseparable morphism of degree p, this
surface is transformed into a rational surface (cf. Katsura [14, Proposition
5.2]). Hence, Km(X) is a Zariski surface. q.e.d.

§6. The unirationality.

Let k& be an algebraically closed field of characteristic p. In this
section, we prove the following theorem.

THEOREM 6.1. Assume char. k=p=7. Let Km(A4, G) be a generalized
Kummer surface. Then, the following three conditions are equivalent:
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(i) Km(4,G) s unirational,
(ii) Km(A4, G) is supersingular,
(iii) A 1s supersingular.

LEMMA 6.2. Assume char. k=p=7. Let G be a finite subgroup of
Aut,(A) which satisfies Conditions (K) and (F). Assume that |G| is divis-
ible by two, then G has a wunique element of order two. Moreover, the
element of order two is the inversion of A with a suitable choice of the
origin of A.

PROOF. Since |G| is divisible by two, G has an element of order two.
The uniqueness follows from the structure of groups in Theorem 3.7. By
Lemma 3.5, this element is the inversion of A with a suitable choice of
the origin of A. q.e.d.

The following lemma is known. We give a proof for reader’s con-
venience.

LEMMA 6.3. Assume p=1 (mod 5). Let A be a supersingular abelian
surface. Then, there exists mo automorphism of order five which has
some fixed points on A.

PROOF*®. Let E be a supersingular elliptic curve. Then, A is isogenous
to EXE (cf. Oort [21, Theorem 4.2]). We set End"(E)=B. The algebra B
is a division algebra over @ which is ramified at p and c. End’(A4) is
isomorphic to M,(B). Suppose that there exists an element of order five
which has some fixed points. By a suitable choice of the origin of A, we
may assume that the element is contained in Aut(A4). Therefore, we have
an element ¢ of End"(4) such that End%(A4)D@Q(g) and ¢°=1. Since
dim,End’(4)=16 and dim,Q(g)=4, we see that Q(g) is a splitting field of
End’(4). We have a commutative diagram of Brauer groups:

Br(Q,) ——— Br(@,(g))

Inv,,[ T‘b

Br(®Q) — e Br(Q(g)) .

We have Br(Q,)=Q/Z and Br(Q,(9))=Q/Z, and the homomorphism ¢ is
given by the multiplication by the degree [@,(g9):@,] of the algebraic
extension Q,(g) of @, (for instance, see Mumford [19, p. 196]). Since p=1
mod 5, we see @,(g)=@Q, Therefore, 4 is an isomorphism. Since B is

*) The author thanks Professor Y. Morita for communicating the idea of this proof.
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ramified at p, we have Inv,(B)#0. Therefore, goInv,(B)#0. On the other
hand, since Q(g) is a splitting field of B, we have ¢(B)=0. Therefore, we
have ¢op(B)=0, a contradiction. q.e.d.

LEMMA 6.4. Assume p=0 or p=1 (mod 5). Let A be an abelian
surface over k. Then, there exists no automorphism g of order five of A
such that A/<g> 1is birationally equivalent to a K3 surface.

PROOF. In case p=0, this follows from Lemma 3.15. Assume p=1
(mod 5). Suppose that there exists an automorphism g of order five of 4
such that A/<{g> is birationally equivalent to a K38 surface. Then, by Table
in Section 3 and Lemma 4.4, A is a supersingular abelian surface. Hence,
this lemma follows from Lemma 6.3. g.e.d.

The following lemma is well-known.

LEMMA 6.5 (Skolem-Noether). Let A be a central simple algebra over
a field K, and let B a simple subalgebra of A. For any algebra-homo-
morphisms o and t from B to A, there exists an element t of A such that

7(b)=ta(b)t™! for any element b of B.

LEMMA 6.6. Let E be a supersingular elliptic curve. Let f be an
element of order three (resp. order five) of Aut(EXE). If there exists an
element g of order three (resp. order five) of Aut,(EXE) such that g has
only isolated fixed points and that (EXE)/{g> 1is wunirational, then
(EXE)Lf> is also unirational.

PROOF. By our assumption, we can find an element a of EXE such
that T,ogoTs' is contained in Aut(EXFE). Therefore, replacing g by
T.ogoT:!, we may assume that g is also contained in End(EXE). We set
B=Q(g). This is a simple algebra over @. We have two homomorphisms
g, = from Q(g) to End"(E X E) defined by

c:9g—>g,
r:9—>f.

By Lemma 6.5, we can find an element ¢ of End’(EXE) such that

(6.1) z(b)=ta(b)t™! for any element b of Q(g).

By a suitable choice of ¢, we may assume that ¢ is contained in End(E X F).
We set b=g. Then, by (6.1), we have
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Sfot=tog.
Hence, we have the morphism
t . (EXE)[<g> —> (EXE){f>

induced by ¢. Since (ExE)/<g> is unirational, we conclude that (ExE)/{f>
is unirational. q.e.d.

LEMMA 6.7. Let A be a supersingular abelian surface, and let f be
an element of order three (resp. order five) of Aut(A). Let E be any
supersingular elliptic curve. If there exists an element g of order three
(resp. order five) of Aut,(EXE) such that g has only isolated fixed points
and that (EXE)/{g> is unirational, then A/{f> is also unirational.

PROOF. We may assume that g is contained in End(EXE). If A is
isomorphic to a product of two supersingular elliptic curves, then we have
A=EXE by Lemma 1.2. Therefore, in this case, this lemma follows from
Lemma 6.6. If A is not isomorphic to a product of two supersingular
elliptic curves, then there exists an immersion, ¢:a,&EXE such that
A=(EXE)|e(a,) (cf. Oort [22, Corollary 7]). We identity A with (EX E)/e(a,)
by this isomorphism. Then, by Lemma 1.3, we can find an automorphism
f of ExXE such that the following diagram commutes :

ExE — 3 S EXE

P,k

A—m———» A,

where z is ~the canonical projection. Therefore, we have a morphism
7 (EXE)f>—Al{f> induced by =. By assumption and Lemma 6.6, the
surface (Ex E)/<f) is unirational. Hence, A/<{f) is also unirational. q.e.d.

LEMMA 6.8. Assume p+5 and p*1 (mod 5). Let C be the non-sin-
gular complete model of the curve defined by the equation :

y=2"—1.

Let J(C) be the Jacobian wvariety of C, and let g be the automorphism
of J(C) induced by the automorphism g’ of order five of the curve defined
by
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{ x—>Lx,

yr—>y,

where { is a primitive fifth root of wunity. Then, g is of order five and
J(C)/<g> is rational.

PROOF. We have a morphism
o C—J(C)

which commutes with the actions of our automorphisms g’, g of order five.
This morphism ¢ induces an isomorphism

p* 1 HAJ(C), Q) — H(C, Q) .

A basis of HC, 2%) is given by {dx/y, xdx/y}. Therefore, the action of g’
is given with respect to this basis by (g 22

at a fixed point is given by <8 gz> with respect to a suitable regular system

>. Therefore, the action of ¢

of parameters. Hence, J(C)/<g> has singularities which are not rational
double points. Hence, by Theorem 2.11, J(C)/<g> is rational. q.e.d.

PROOF OF THEOREM 6.1. By Shioda [27, Corollary 2], (i) implies (ii).
By Lemma 4.4, (ii) is equivalent to (iii). Now, suppose that (iii) holds. By
the argument of Section 3, we may assume that G satisfies Conditions (K)
and (F). Then, the structure of the group G is given as in Theorem 3.7.
Suppose that |G| is divisible by two. Then, there exists an element g of
order two of G. We have a morphism

Al<g> — AlG.

By Lemma 6.2 and Theorem 4.1, A/<g> is unirational. Therefore, A/G is
unirational. Suppose that |G| is divisible by three. Then, there exists an
element g of order three of G. By Theorems 4.1, 5.9 and Lemma 6.7,
A/<{g> is unirational. Therefore, A/G is unirational. Finally, suppose that
|G| is divisible by five. Then, by Lemmas 6.7 and 6.8, we see that A4/G is
unirational by the same argument as above. Hence, in any case in Theo-
rem 3.7, we conclude that Km(A,G) is unirational. Hence, (iii) implies
(i). q.e.d.

§7. Examples.

Let k& be an algebraically closed field of characteristic p. In Section 3,
we gave some examples of generalized Kummer surfaces. In this section,
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we give other examples and show that every group in Theorem 3.7 can
occur. In characteristic 0, every group in Corollary 3.17 can occur (see
also Fujiki [5]). In this section, we denote by E, E, and E, elliptic curves,
and by A an abelian surface. We denote by G a finite subgroup of Aut,(4)
which satisfies Conditions (K) and (F). Then, the minimal non-singular
model of A/G gives a generalized Kummer surface Km(A, G).

Example 5. G=Z]6.

We have the following well-known example. Assume p#2,3. Let K|
(j=1,2), A and » be as in Example 2 in Section 3. We consider the
automorphism defined by

{ml'—‘)"‘wxu Y=Y,
o :

2
L2 > —W%2, Y > Y.

We set G=<p>. Then, we have G=Z/6, and G satisfies Conditions (K) and
(F). Hence, we have a generalized Kummer surface Km(A4, G).

Let E be a supersingular elliptic curve, and let 7y :a,=Spec k[e]/(e?)S
EXE be an immersion. We set A=(EXFE)/r(a,), and denote by n: EXE—A
the canonical projection. Let g (resp. §) be an element of Aut(4) (resp.
Aut(ExX E)) such that gor=mnoj. Assume that p is prime to the orders of
g and §. Let a and B be eigen-values of §* on the cotangent space of EXE
at the origin. Then, it is obvious that the eigen-values of g, on the
tangent space of EXE are also given by a and B. Since gor=rog, the
subgroup scheme y(a,) is fixed by §. Hence, a non-zero tangent vector to
r(ap) is an eigen-vector of g,. We may assume that the tangent vector
corresponds to the eigen-value a.

LEMMA 7.1. Under the above mnotations and assumptions, the eigen-
values of g* on the cotangent space of A at the origin are given by a®
and B.

PROOF. We denote by O the local ring of EX E at the origin, and by
m the maximal ideal of ©. We have homomorphisms

r
(7.1) ap T apXa, & EXE.

By a suitable choice of a regular system of parameters (z, y) of O, by (7.1)
we have homomorphisms
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7,*
klel/(e?) <— k[x]/(2?)Qk[y]/ (y?) <— k[[x])IQK[[¥]]

as<— X {x®l<—4x
ey IQy<—y

with an element a of k, and the action of y(a,) on k[[z, y]] is given by
r—>x+as, yr—>y-+te

(cf. Katsura and Ueno [16, Appendix 2]). Then x—ay is invariant under
the action of y(a,). Since y(a,) is fixed by §, x—ay gives an eigen-vector
of §* on the cotangent space m/m® which corresponds to the eigen-value
B. Since (x—ay,y) gives a regular system of parameters of ©, we see
that (z—ay, y?) gives a regular system of parameters of A at the origin.
Since gor=roj, x—ay gives an eigen-vector of g* on the cotangent space
of A at the origin which corresponds to the eigen-value f. Since {x—ay, y?}
gives a basis of the cotangent space of A at the origin, we conclude that
the eigen-values of ¢g* are given by a” and 8. qg.e.d.

Example 6. G=Z|5, Z/10.
Assume p#2 and p=2 (mod 5). Let C be the non-singular complete
model of the curve of genus two defined by the equation

(7.2) y=x'—1.
Let ¢ be the automorphism of order five of C defined by

x»——)C;x;,
[
y—y,

where { is a primitive fifth root of unity. We denote again by ¢ the
automorphism of the Jacobian variety J(C) which is induced by . We
denote by ¢ the inversion of J(C). We may regard C as a divisor on J(C)
such that *(C)=C. We may assume that ¢ fixes the origin of J(C). Since
the action of ¢ on HC, Q%) is given by the matrix

Z o

0 ¢
with respect to a basis {dx/y, xdx/y} the eigen-values of ¢* on the cotangent
space of J(C) at the origin are given by { and {®. By our assumption, J(C)
is supersingular and is not isomorphic to a product of two supersingular

elliptic curves (cf. Ibukiyama, Katsura and Oort [8, Proposition 1.13]). Let
E be a supersingular elliptic curve. Then, by Oort [22, Corollary 7], there
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exists an immersion 7 : a,& EX E such that J(C)=(E< E)/y(a,). We identify
J(C) with (EXE)[r(a,) by this isomorphism. Let z:EXE-J(C) be the
canonical projection. Then, by Lemma 1.3, we have an automorphism ¢ of
order five of EXE such that mcd=cor. By Lemma 7.1, the eigen-values
of 4* on the cotangent space of EXFE at the origin are given by either
Y=g and &% or { and {¥?={ by the assumption p=2 (mod 5).

Suppose that the eigen-values of 6* are given by { and . Since =*(C)
satisfies Conditions (a) and (b) in Moret-Bailly [18, p. 126], by =*(C) we can
construct a family ¢: X —S of principally polarized supersingular abelian
surfaces as in (4.1). By our construction, the divisor n*(C) is preserved by
&. Therefore, by Katsura and Oort [17, Theorem 4.1], the automorphism &
induces an automorphism of order five of the family ¢: X —S. Since the
eigen-values of 6* on the cotangent space at the origin of EXFE are given
by { and ¢, ¢ preserves all directions at the origin of EXFE (cf. Katsura
and Oort [17, Section 3]). Therefore, the action of the automorphism on S
is trivial. This means that general fibres of ¢ : X’ —S have automorphisms
of order five which preserve the polarizations. Therefore, general fibres
are isomorphic to (J(C),C) with C defined by (7.2) (cf. Igusa [9, p. 645)).
Therefore, all fibres of ¢: ¥ —S are isomorphic to each other, which con-
tradicts the fact that this family with polarization D is not a constant
family (cf. Moret-Bailly [18, p. 131]). Hence, the eigen-values of &* are
given by ¢ and %

Since the cotangent space of EXE at the origin is naturally isomorphic
to HAEXE, 2%«z), the eigen-values of ¢* on H(EXE, Q%.z) are given by
{® and % Hence, ¢* preserves a non-zero regular two-form on ExXE. Now,
it is easy to see that the group <) satisfies Conditions (K) and (F'). Hence,
we have a generalized Kummer surfaces Km(EX E,G) with G=<s>=Z|5
by Theorem 2.4 if p+2 and p=2 (mod 5). By the similar methoed, if p=3
(mod 5), we have also a generalized Kummer surface Km(E < E,G) with
G=Z/5.

Now, assume either p#2 and p=2 (mod 5), or p=3 (mod 5). Let EXE
and G be as above. Let 7 be the inversion of EXE. We set G=<{g,7>. Then,
we have G=Z/10, and G satisfies Conditions (K) and (F). Hence, if either

p#2 and p=2 (mod 5), or p=3 (mod 5), we have a generalized Kummer
surface Km(A4, G) with G=Z/10.

Example 7. G=Z|8.

Assume p=3 (mod 8). Let F; (j=1,2) and r be as in Example 3 in
Section 3. Then, E/s are supersingular by the assumption p=3 (mod 8).
We consider the automorphism defined by
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g:(i‘(’i 5) . B\XE,—> E,XE,.
The eigen-values of §* on the cotangent space at the origin of E,XE, are
given by & and &, where & is a primitive eighth root of unity such that
&=1. Let ¢t be an eigen-vector of §, on the tangent space of E,xE, at
the origin which corresponds to the eigen-value £&. Let y be the immersion
of a, into FE;XE, which corresponds to the direction ¢. We set A=
(EyX Ey)[r(ep). Let n: E\X E,—A be the canonical projection. Then, by our
choice of ¢, we have an automorphism g of A such that mog=gor. By
Lemma 7.1, the eigen-values of ¢g* on the cotangent space of A are given
by £€?=& and £&. Therefore, g* preserves a non-zero regular two-form on
A. We set G=<g>. Then, G satisfies Conditions (K) and (F). Hence,
we have a generalized Kummer surface Km(4,G) with G=Z/8 if p=3
(mod 8).

Example 8. G=Z]12.
Assume p=5 (mod 12). Let E; and p be as in Example 5. We consider
the following automorphism of order twelve:

g:<i% 6’) . B\X B, —> E\XE,.

Then, by the similar method to the one in Example 7, we have a general-
ized Kummer surface Km(A4, G) with G=Z/12 if p=5 (mod 12).

Example 9. G={2,2,n) with 2=n=<6, <2,3,3), <(2,3,4> and (2, 3,5).

Assume char. k=p=7. We consider a family ¢: 22X —S with relative
polarization D of principally polarized supersingular abelian surfaces as in
Section 4. Under the notations in (4.1), we set A=FEXE. Then, by
Katsura and Oort [17, Theorem 4.1], the group of automorphisms of the
family ¢: X —S which preserves the relative polarization D is isomorphic
to a subgroup G of Aut,(ExE). Since G contains the inversion : of EXE,
we set. G=G/<>. Then, by Katsura and Oort [17, Lemma 7.2], G is
isomorphic to one of the following groups:

(73) (1) Zld 1=d=6), (2) D, (2=e=6), (3) A, 1) Si, () 4;.

By Katsura and Oort [17, Sections 6 and 7], we have methods to construct
concretely elements of G. The methods are similar to the methods in
Examples 6 and 7. Using Table III in Katsura and Oort [17, Section 7],
we can calculate eigen-values of each element of G on HYEXE, QL.z).
Hence, we can prove the following Lemma.
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LEMMA 7.2. A non-zero regular two-form on EXE s invariant un-

der G.

Since G is isomorphic to one of the groups in (7.3), we see that G is
isomorphic to one of groups in Theorem 3.7. Using Lemma 7.2 and the
construction of G, we see that G satisfies Conditions (K) and (F). Hence,
we have a generalized Kummer surface Km(EXE,G). For example, by
Katsura and Oort [17, Section 8, Table IV], we have the following :

(1) G=<2,3,5> appears if p="7,13,17,

(2) G=<2,3,4) appears if p=11,13,19,29,

(8) G=<2,3,3> appears if p=19,31,

(4) G=<2,2,6)> appears if and only if p#5 and p=5 (mod 12).

The other groups in Theorem 3.7 can be obtained as subgroups of these four
groups.

Example 10. G=<2,2,2>, <2,2,3>.

We give here a concrete example of a generalized Kummer surface
Km(4, G) with G=<2,2,2> (resp. G=<2,2,3>). This example was pointed
out by Professor Tadao Oda (see also Fujiki [5]). Assume p+#2,3 (resp.
p+2). Let E; (§=1,2), A and o (resp. r) be as in Example 2 (resp. Ex-
ample 3) in Section 3. Let ¢’ (resp. z’) be the automorphism of A defined by

’ ’ xl'—)x2: yl'__)_yz;
o’ (resp. ') :

o>y, YoH—>Y:.
We set G=<o,0d’) (resp. G=<{z,7’>). Then, the group G is isomorphic to
{2,2,2> (resp. <2,2,3>), and satisfies Conditions (K) and (F). Hence, we
have a generalized Kummer surface Km(A4,G) with G=<2,2,2> (resp.
G=<2,2,3>).

Example 11. G=<2,3,3).

The author learned the existence of the following concrete example by
Professor A. Fujiki (see also Fujiki [56]). Assume p#5. We consider a
non-singular complete model C of the curve defined by

yY=x(x?—1)(x®+1) .

The reduced group RA(C) of automorphisms of C is isomorphic to the
symmetric group S, of degree four (cf. Igusa [9, p. 645]). We consider two
automorphisms defined by
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{g T —x, y—>1y
g xr— (x+1)/(x—1), y—> 2+ 2Cy/(x—1).

Then, the images of g and ¢’ in RA(C) generate the alternating group A,
of degree four. We again denote by ¢ (resp. g’) the automorphism of the
Jacobian variety J(C) of C which is induced by ¢ (resp. g’). We set G=
{g,9’>. We may regard C as a divisor of J(C) such that *C=C with the
inversion ¢ of J(C). Then, G contains ¢ and G/<¢) is isomorphic to A..
Computing the actions of g and g’ on H%C, %), we see that a non-zero
regular two-form on J(C) is invariant under G. Hence, as before, we obtain
a generalized Kummer surface Km(4, G) with G=<2, 3, 3).

REMARK 7.3. Assume p=0. Using Examples 1,2, 3,4,5,10 and 11, we
get all examples of groups in Corollary 3.17 (see also Fujiki [5]).
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