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§1. Introduction.

Let f(z) be a polynomial in C™** with f(0)=0. Suppose that f has an
isolated critical point at the origin 0. Then the algebraic knot associated
with f is the knot K,=S2"*'Nf"(0)CS?"*' for ¢>0 sufficiently small, where
S*! is the (2n+1)-sphere of radius ¢ centered at the origin. (As a general
reference for this and the following, see [9].) A polynomial f(z) is called
wetghted homogeneous if there exist positive rational numbers (w,, -+, Was1)
such that for every monomial cz;!---za% (c#0) of f(2), ii‘,i Z}‘l =1. We
call (wy, -, wny1) @ weight of f(z). For example, the Brieskorn type poly-
nomial f(z)=z;'4+ -+ +2z: (2,=2) is weighted homogeneous of weight
(@y, 5 Qnsa)-

Our main result of this paper is the following Theorem A, which con-
cerns the case n=2.

THEOREM A. Let f(z,, 2, 25) be a weighted homogeneous polynomial in
C*® which has an tsolated critical point at the origin. Suppose K, is a
homology 3-sphere. Then the knot (S°, K,) is of the same knot type as the
algebraic knot associated with a Brieskorm type polynomial.

Let 4(t)=4,(t) be the Alexander polynomial of the knot (S°, K;). Then
K, is a homology 3-sphere if and only if 4(1)==+1. Furthermore, by
[18,19] algebraic knots of Brieskorn type are classified by their Alexander
polynomials. Thus Theorem A shows that algebraic knots in S° defined by
weighted homogeneous polynomials with 4(1)==+1 are classified by their
Alexander polynomials.

In case n=1, Theorem A is also true (see [20, Lemma 2.1]). However,
in case =3, we shall show the following Example B.
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Example B. Let fu(2y, ", 204) =232+ 2125+ 23+ 203+ 22+ -+ +22,, and
a2y, o0 Zaa) =232+ 228+ 23+ 20+ 22+ - +22,, (n=38), both of which are
weighted homogeneous. Then 4, (t)=4, (t) and 4, (1)=4, (1)=1. However,
K, and K, are of distinct knot types.

Since algebraic knots of Brieskorn type are classified by their Alexander
polynomials, K, or K, is not of Brieskorn type. Thus Theorem A does
not hold for n=3.

As an application, we show that for every n=2 there exists an algebraic
knot in S**! whose Seifert matrix cannot be realized as a Seifert matrix
of any algebraic knot in S°.

§2. Proof of Theorem A.

Our proof is based on a result of Orlik and Wagreich [13].

Let f(2,, 2, 25) be a weighted homogeneous polynomial in C®* which has
an isolated critical point at the origin. Then by [18,14], (S’ K,) is of the
same knot type as the algebraic knot associated with one of the eight
classes of polynomials as follows:

2 2k 20 22 2025,

2+ 202,

2t 2eld 2z (a0 1)(agbs+ashy) ayas05=1) ,
2tz 22 22 ((ai— 1)(ashs+ashy)/as(aia.— 1) =1, a,>1) .

(1) 2z'+z’+z’,

(IT ) 204254 22° (@.>1),
(IIT) 2 42322+ 2:%2, (@.>1,a,>1),
(IV) 2 4220 +227° (a>1),

( )

( )

Note that there is an omission in the table of [13, Definition 38.1.1].
The complete table can be found in [14, p. 61].

Let h(z) be one of the eight polynomials above. Let (w,, w,, ws) be a
weight of h. For integers a,, a,, -+, a, let (ay, as, ---, a;) denote their greatest
common divisor and <a,, @,, --* , a,> their least common multiple. We set w;
=u;/v; ((Ug, v:)=1), d=<Luy, Us, s>, Q=0[Ws, ¢=(Us, Ug, Us), C1=1(Ug, Us)[C, Co=
(wy, ug)/c, and ¢;=(u,, uy)/c. Furthermore, we define 7y, 75, 7s€ N by u,=ceycqry,
Us=CC,Cs75, ANA U3=CCiCoY .

Now K,=h*0)NS° is a Seifert fibered 3-manifold. Orlik and Wagreich
[13] have calculated the Seifert invariants of K,, {—b; (g) ; ni(ay, B, nalas, ),
ng(as, Bs), nulay, B1)}, which are described as follows.
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a, My a; Ny
I 71 cc, 72 ceC,y
11 71 (ce,—1)/v, V37 1
111 71 (cei— Vo —3) /1505 VaY) 1
v 73 (c—1)/v, Vg 1
v v, 1 vy 1
VI1I 72 (c—1)/v, 7s (c—1)/v,
VIII 7s (c—v,—v9)/v,02 Vs 1
as Ny ay Ny
I 73 CCs 0
II 7s c 0
111 Va1 1 0
| IV Va3 1 0
Vv Vs 1 0
VII Va3 1 VY2 1
VI | v 1 V7 1
d_ b b

b=—2— .
19293 i2=1 a;

(9 and B; are determined by other formulas.)

Note that z7'42z,2, is analytically equivalent to zf!'+z2+2% Thus the
class VI is thought of as a subclass of I.

Now suppose K, is a homology 3-sphere. Then there exist at least
three exceptional orbits and their multiplicities are pairwise relatively
prime (see [16, Satz 12]). Thus 2 must belong to the class I or the class
V or the class VIII. (Note that K, is not diffeomorphic to S* by [11].)
Thus it suffices to show that h belongs to neither the class V nor the
class VIII.
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Now suppose % is of class V. Then v, v, and v, are greater than or
equal to 2, and they are pairwise relatively prime. The weight (w;, w,, ws)
of h is given by

W= (@105 + 1)/ (@eas—as+1) ,
We= (005 + 1)/ (@103 —a,+1), and
W= (a,0.a5+ 1)/ (a@,0s—as+1) .

Since
W05+ 1=a, (a0 —a;+ 1)+ (@05 —a,+1)
=ay(a,as—a,+ 1)+ (a0, —ay+1)
=as5(a,a,— ay+ 1)+ (@, —as+1) ,
we have

(a3t 1, @t —as+1) = (0,05 + 1, 05— a,+ 1) = (a,a005+ 1, a0, —as+1) .
d 3. B:
VUV + 21-1)—1
Now consider the Brieskorn manifold (v, v,, v5), which is the algebraic
knot associated with the polynomial 2}'+z32+25%. Since v, v, and v; are
pairwise relatively prime, Y (v, v,, v5) is & homology 3-sphere (see [2]). Its
Seifert invariants are {—b";(0): (v, B1), (Vs B2), (vs, B3)}, Wwhere b'=

Thus c=d=u,=u,=wu;. This implies v,=¢q; (:=1,2,3) and b=

3 4
—1—+ > ﬁ Recall that the homology 3-sphere K, has Seifert invari-
V1V2V3 i=1 V;

ants {—b;(g); (vy, By, (vy Bo), (v, Bs)}. Now by the uniqueness of Seifert
fibered homology 3-sphere with given multiplicities vy, v,, and v, ([16, Satz
12]), we have

(1) B;=pi and b=b’ or
(2) ﬁL:Ul_ﬁ: and _b:_3+b,.
In the case (1), d=1. Since d=<uy, s, Us>, Wy=us=us=1. Now by the
definition of weights,
)/ w,+ 1/w,=1 »
asJw,+1/ws=1, and
1/w,+as/w;=1.

Since 1/w;=v:/u,=v,=2, this is a contradiction.
d+1
1 2V3

a contradiction. Thus % cannot belong to the class V.
Next suppose that h(z) is of class VIII. Since K, is a homology

+3. This implies d=—1. This is also

In the case (2), 3=b"+b=
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3-sphere, 7;=1. Furthermore, v,, v,, and v; are greater than or equal to 2,
and they are pairwise relatively prime. The weight of & is given by

w,=(a,a.—1)/(a.—1),
w,=(a,a.—1)/(a;—1), and
W= as(a,a:—1)/ay(a;—1) .

Since a,a,—1=a,(a;— 1)+ (a,—1)=as(a,—1)+(a,—1), we have (a,a,—1,a,—1)
=(aa,—1,a,—1). We write this value as r. Let r’'=(as(a,a,—1), as(a;,—1)).
Then
c=u=u=(ama,—1)/r and
d=us=cys=as(a,a,—1)/r".

Since 7;=1, uy=u,=u;. Thus d=u,; and ¢;,=d- (v:/u;)=v;. Using the same
argument as in the case that h is of class V, we see that d=1 or d=—1.
This is a contradiction. Thus % cannot belong to the class VIII, either.
This completes the proof.

REMARK. (1) In Theorem A, we cannot omit the condition that K, be
a homology 3-sphere. See Remark (1) in § 3.
(2) We do not know whether algebraic knots in S° with 4(1)=+1 are
classified by their Alexander polynomials. Note that there exists an
algebraic knot in S° which is a homology 3-sphere but not of Brieskorn
type. For example, consider the algebraic knot associated with the poly-
nomial f(z,, 2y, 25) =25 — 22125 — 4232, + 25 —2]+25. We see easily that K, is a
homology 3-sphere. Furthermore, since the resolution diagram of f~%(0) is
not star-shaped, K, is not a Seifert fibered 8-manifold (see [12, Theorem
5]). Of course f(zy, 2., z;) is not weighted homogeneous.

§3. Higher dimensional cases.

Let f(z) be a polynomial in C™** (f(0)=0) which has an isolated criti-
cal point at the origin. Then we denote by L, the Seifert matrix of the
algebraic knot (S***!, K;). (For the definition of Seifert matrices, see [15].)
Note that the congruence class of L, is a knot type invariant of (S*"*!, K,
(see [5, 8]).

In this section we show Example B in § 1.

Let f(2,, 2;) =2%2,+ 2,25 and g(z,, z,) =232,+ 2,24, both of which are weighted
homogeneous and have isolated critical points at the origin (see [20, § 3]).
Furthermore we set
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Jaly, o0, 2o =f(2, 2) +23+ 23+ 28+ -+ +2:,, and
In(2y, *+* , Zas) =0(2,, 2)) 23423+ 25+ - 420, (n=3).
Using a result of Milnor and Orlik [10], we obtain
(E*+ 8+ 1) (E*+°+1)
@) @Erern ™

(t286_t143+1)(t26_t13+ 1)
="+ 1 —t+1)

Thus 4,,(1)=4,,(1)=1. As for their Seifert matrices, we have L, =
—en- Ly QARQA; and L, =—¢,- L,QA;RQA;; by Sakamoto [15], where ¢, =
(—1)m+D+D2 and A, is the (m—1) X (m—1) matrix given by

odd)
4, (t)=4, (t)=

(n: even).

1

-1 1 0
A= -1 1

0 .

11

Now let o(L,,) and o(L,,) be the signatures of the symmetrized matri-
ces L, +'L,, and L, ,+°'L,, respectively. Note that —(L,,+'L,,) (or
—(Ly,+*L,,)) is an intersection matrix of SAH1) (resp. g;'(1)) for every even
number n (for example see [15]). Thus one can apply a result of Steenbrink
[17], obtaining o(L, )=e,-144 and o(L,,)=¢,-136. Hence L,  is not congruent
to L, . This implies that K, and K, are of distinct knot types.

REMARK. (1) As we have seen, L,®@A4;80A4,; and L,QA;QA; are not

congruent. This implies that L, and L, are not congruent. Thus, if we
let f'(zy, 22, 25) =S(21, 22) + 25 and ¢'(zy, 25, 25) =9(2,, 2,) + 2%, then K, and K, are
of distinct knot types. Since 4,.(t)=4,(t), K, or K, is not of Brieskorn
type. (See the argument in §1 subsequent to Example B.) Note that
4,(1)=4,(1)=4. Thus in Theorem A, the condition that K, be a homology
3-sphere (i.e. 4,(1)==+1) cannot be omitted.
(2) By [9, Remark 87], the diffeomorphism type of K, (or K,) is
determined by 4, (—1) (resp. 4, (—1)) if = is odd and by o(L,,) (resp.
o(L,,)) if n is even. Thus if = is odd, both K, and K, are diffeomorphic
to the standard sphere S**!. However, if » is even, the homotopy spheres
K, and K, are not diffeomorphic to each other.

§4. Application to the problem of realizing Seifert matrices.

In this section, we consider what kind of matrices cannot be realized
as Seifert matrices of algebraic knots in S°. Refer to [6, Problem 1.5].



Knotted homology spheres 49

Example C. Let F,(z2y, -, 2a41) =f(2y, 22) + 25+ 25+ -+ +22,, and Go(z, -,
Zos) =9(21, 22) + 25+ 22+ -+ +22,, (n=2), where f and ¢ are the polynomials
as in §3. Then Ly, or Lg, cannot be realized as a Seifert matrix of any
algebraic knot in S°

PROOF. First note that Ly, = —¢,- L;Q@A; and Lg, = —¢,- L Q A, are not
congruent. This is because L,QA;QA;; and L,QA;QA,; are not congruent.

Suppose that K, and K, are algebraic knots in S* with Seifert matrices
Lp, and Lg, respectively. Let 4,(f) be the Alexander polynomial of K,
(#=1,2). Since 4,(t)=det(tLr,—‘Lr,)=4r,(t) and 4y(t)=det(tLs —‘Ls,)=
4, (t), we have 4,(t)=4,(t)=(t?—t"+1)(¢*—t+1). Furthermore, 4,(1)=4,(1)
=1. Thus K, and K, are connected. Since algebraic knots of one component
in S? are classified by their Alexander polynomials ([4, 7]), K, and K, are of
the same knot type. Thus Ly, and Lg, must be congruent. This is a
contradiction.

REMARK. Let L be a Seifert matrix of an algebraic knot in S**! It

is a well-known fact that L has the following properties.

(1) det(tL+(—1)*-*L) is a product of cyclotomic polynomials ([3]).

(2) The trace of ‘L7'-L is equal to 1 ([1]).

(3) L is congruent to a lower triangular matrix with each diagonal entry
equal to &, ([5]).

In Example C, since L,®A;=Lp, and L,QAs=Ls,, they have all the
above properties (1), (2), and (3) for n=5, so that also for n=1. Neverthe-
less L;®A; or L,® A, cannot be realized as a Seifert matrix of any algebraic
knot in S°.
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