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A single point blow-up for solutions of
semilinear parabolic systems

Dedicated to Professor Seizd Itd on his sixtieth birthday

By Avner FRIEDMAN and Yoshikazu GIGA

Introduction.
It is well known that solutions of the semi-linear heat equation
U— Uz =f(u)  (—a<x<a,t<0),
(0.1) u(+a,t)=0 (t>0),
u(x, 0)=¢(x) (—a<zx<a)

may blow-up in finite time; see [4] and the references given there. As
for the precise nature of the blow-up, Weissler [6] proved (under some
very restrictive assumptions on ¢ and f) that the solution blows up at the
single point x=0. More recently Friedman and McLeod [3] established a
single point blow-up under fairly general assumptions on ¢, f. In partic-
ular, in the symmetric case where ¢(x)=¢(—=x), it suffices to assume on
¢ that
¢’ (£)=0 if 0<z<a,

$(0)>0, #(a)=0.

0.2)

As for f it is required to satisfy some convexity type conditions; for in-
stance, one may take

flw)=u+2)?  with 220, p>1, or
(0.3)
flu)y=e**, ©>0.
In this paper we consider a parabolic system

(0.4) Uy — Uz =S (V) (—a<z<a, t>0),
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0.5) V=V =9 (u) (—a<z<a, t>0)
with initial and boundary conditions
u=v=0 on x==a, t>0,
0.6)
u(x, 0)=¢(x), v(z, 0)=¢(x) (—a<x<a)

with f, g positive, increasing and superlinear and @, ¢ as in (0.2). We
shall establish a single-point blow-up for both % and ». The method is
based on extension of the method of [3] for one equation.

In §1 we establish some general properties of the solution (w,v). In
§ 2 we prove a single point blow-up provided

0.7) u=Cw'+1), v=Cu'"+1)

for some C>0, y>0. The condition (0.7) is established, in §3, for some
specific examples, such as

flu)=Ae*, g(v)=Be#
and
fw)=Au+2)?, gw)=Bw+p?®.
Finally in §4 we extend most of the results to systems
Ue— Uz =S (u, V),
Vi—Vzz=9(u,v) .

Systems of nonlinear parabolic equations with blow-up are described
in [1], [6] and in some of the references given in these papers.

§1. Preliminaries.

Consider the system

(1.1) Uy — Uz =S (V) (—a<z<a, t>0),
(1.2) V— BV =g(u) (—a<zx<a, t>0)
with
u(*a,t)=0 (t>0),
(1.3)
u(x, 0) =¢(x) (—a<zx<a),
v(*a,t)=0 (t>0),
(1.4)

v(x, 0) =¢(x) (—a,<ac<d),
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where a>0, 3>0, and assume :
dx)=¢(—2), ¢@)=0, ¢&C—a,a],
¢’ (x)=0 if 0<2<a, #(a)=0

(1.5)
P@)=¢(—2), ¢@)=0, ¢elCl—a,a],
' (®) =0 if 0<z<a, ¢(a)=0,
16) f,9eC{(RY), f(§)>0, g(s)>0 if $>0:
1.6

f(s)>0, g'(s)>0 if §>0.

Hw=w,—aw,,,
Q,={(x,t); —a<x<a, 0<t<o}.

Then there exists a unique classical solution of (1.1)-(1.4) in some @, and
=0, v=0 by the maximum principle. Let T=supt, for all ¢, as above.
We claim

(1.7) sup u—> 00 if 6—-T.
Q¢

Indeed, otherwise we deduce from (1.2), (1.4) that also » remain bounded
in Q7. Applying standard parabolic estimates to (1.1), (1.3) and to (1.2),
(1.4) we can then continue the solution u,v into Qr,. for some ¢>0, which
is a contradiction.

Similarly one can show that

(1.8) sup v —> o if 6—-T.

We call T the blow-up time.

LEMMA 1.1. There holds :
(1.9) u, <0, v,<0 if 0<x<a, O0<t<T.
PrROOF. Differentiating (1.1), (1.2) in « and setting U=u,, V=v,, we

get
HU=f'(vV,

HyV=g'(w)U

(1.10)

and U(0,t)=0 (since wu(x,t)=u(—2x,t)). Further, Ula,t)=u,(a,t)<0 by the
maximum principle, and Uz, 0)=¢'(x)<0 if 0<xz<a. V satisfies similar
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initial and boundary conditions.
Consider first the case where

U(z, 0) <0, V(xz,0)<0 if 0<z<a,
(1.11)
U.(0,0)<0, V4(0,0)<0.

We claim that
(1.12) U0, V=0 in QrN{z>0}.
Indeed, otherwise there exists a largest ¢ such that
U=<0, V=0 in Q,
and ¢<T; by (1.11) we also have that ¢>0. From (1.10) we deduce that
U—alU,.=0 in Q,N{x >0}

and by the maximum principle it then follows that U(x,s)<0 if 0<x<a
and U,(0,0)<0. Noting that U(a,0)<0, we now conclude by continuity
that U<0 in Q,.. for some ¢>0. Similarly V<0 in Q,,. and we there-
fore get a contradiction to the definition of .

To complete the proof of (1.12) we approximate ¢(x), ¢(x) by functions
é.(x), ¢,(x) for which (1.11) holds and apply the above result. Finally,
(1.9) follows from (1.12) and the maximum principle.

A point x€(—a,a) is called a blow-up point of w if there is a sequence
(%m, tm) such that

tn T T, xn—2x and u(xy,tn)—oo as m—oo,

where T is the blow-up time. The set of blow-up points of u are called
the blow-up set for wu.

THEOREM 1.2. Suppose u and v solve (1.1), (1.2) with (1.3)-(1.6). Then
the blow-up sets for u and v coincide with some interval [—p, p).

PROOF. From Lemma 1.1 it follows that the blow-up sets for » and v
coincide with some intervals [—a,, a,] and [—b,, b,] respectively, i.e., if
—a;£€<Za, then

lim sup u(x, t) =0,
zf
-7
and if |£|>a, then
lim Eup u(e, t) <oo,
t—T

and similarly for v.
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Suppose now that
(1.13) a,<b, .

Integrating (1.1) over {a,+2<x<a—2,0<t<T} we get

S“ @, T)dx—Sa #(x, O)doc—l-aSTuI(al—{—l, t)dt
ay+4 a 0

1+4

- aS:uz(a— 2, t)dt= S Sﬂzf(u)dxdt
where

R;={a,+1<x<a—2,0<t<T}.

Integrating the last relation with respect to 4,0,<2<4, and noting that

4
\, welar+ 2, Ddz=ula, 5, ) —ul+3, 1),
]

o
S;ux(a—,i, HdA= —ula—d,, t)+ula—do, 1),
0

we conclude that
S‘S fw)dzdtdi=C,
dgJR)
which implies that
\,, fwdzdr=c.
91

Since f(v)=cv (¢>0) if v>1, and since v,<0, we deduce that
T(ra

(1.14) S S (@, t)dedt <C..
0 Ja;+dy

In view of (1.13) we may choose 4, such that 46,<b,—a,. Let a,+406,
<&<b,. We represent v(§,s) in S;={a,+5,+4A<x<a,0<t<s} by means of
Green’s function G; (see [2]):

‘a

V&, 5)= SSSXG;g(u)dxdt-l—S @vdet-f-S Gipdz

a8 ) % 10<t<s) dov ay+dy+a

and integrate both sides with respect to 2, §,<4<24,. Recalling (1.14) and
noting that |g(u)|=<C and that |G;|<C, |0G,;/ov|<C on the domain of inte-
gration we deduce that

v(§,8)=C
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with C independent of s. Taking s—T we get a contradiction since &<b,.
Thus (1.13) cannot hold and similarly b,<a, cannot hold.

In the next section we shall establish, under some conditions, that p=0,
namely the blow-up set for w and v consists of a single point.

§2. A single point blow-up.

We assume that, for some M>1,

pfw) =vf’(v) if v>M, where p>1,
(2.1)
qo(u)<ug’(u) if w>M, where ¢>1

and that the solution (u,v) satisfies the estimates:

u=<Cwr+1)
(2.2) 1
v=<C(u'7+1) where C>0, y>0 and p>7y, q>7.
Set
(2.3) J=u,+ex?(A+u)+?,
(2.4) K=v,+ex®(B+0v)'*,  §=y4.

LEMMA 2.1. Suppose that w and v solve (1.1), (1.2) with (1.3)-(1.6)
and suppose that (2.1), (2.2) hold. Then for any large constants A>0,
B>0 there exist 6. ¢ positive and small such that, for 0<z<a, 0<t<T,

(2.5) H,J—f (v)K—bJ=<0,
(2.6) HyK—g'(u)J—bK=0

where b, b are bounded functions in Qr., for any T’ smaller than the
blow-up time T.

PROOF. Set

Gu)=(A+w)'*?,  F)=(B+v)"*.
Then

H,J=f" (0)v,+ex’G (w) f(v) —dacxG’ (w)u, — dacG(u) — acx®G" (u)us .

Substituting v,, u, from (2.3), (2.4), we get
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H,J—f'(v)K—bJ < —ex®F (v) f'(v) +ex’G’ (w) f(v)
+4a?2*G (w)G(u) —4asG(u) =R

2.7)
since G"(u)=0.

On the set {v=M} we have, by (2.2),
(2.8) u=C(M™+1).

Dropping the first term in R we then get

R=Ze[2 G (w) (M) —2aG(u)]+eG(u)[4aex’G’ (u) —2al)
<e(A+u)[C,—2a(A+u)]+eG(u)eC,—2a]

where C,=C(M) and C, depends only on A and on the constants C, M in
(2.8). Choosing A=A(M) such that C,—2aA <0 and then choosing e=<e,(M)

where ¢(M)C,—2a<0, we get R=0. Thus (2.7) implies (2.5) on the set
fv=M3}.

Consider next the case where v> M. Then, by (2.2),
2.9) G ()= (1+5)(A+u)"<(1+5)< +vr+1> C% < (1+8)(3v7)°C?

since we may always increase the constant C in (2.2), if necessary. Drop-
ping the last term in R, we have

(2.10) R —ex®(S,+S,)
where
S, =F@)f' (v)—G" (u)f(v),

Se=—4acxG (u)G(u) .
By (2.1), (2.9),

siz[p T —6'w [ fw)

= f(v)[p(B-+v)’—(14+8)(3C)%v7]

=) p— (143601 ) B+
= f(0)0(B+v)°

for any 0<#<p—1 provided ¢ is sufficiently small (independently of B).
Since, by (2.1), f(v)=cv? if v> M, where ¢>0, we conclude that
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(2.11) S,=c6v?(B+v)° .
Next, as in (2.9),
—S,=daex(140)(A+u)*?
<daecx(1+4)(3v7)+2oC1+2d
=[4ax(3C)+*]eriyra+d

Comparing with (2.11) and recalling, by (2.2), that p>y(1+6) if & isTsmall
enough, we obtain

S;1+8,>0

provided ¢ is small enough, depending on M. In view of (2.10), we again
conclude that R=<0 and thus (2.5) holds also on the set {v=M}.
The proof of (2.6) is similar.

COROLLARY 2.2. Under the assumptions of Lemma 2.1,

(2.12) J<0, K<0 if 0<zx<a, 0<t<T.

PrROOF. By Lemma 2.1, for any 7>0,
uz(x, 7) <0 if 0O<zx=a;
further, from the proof of that lemma, also
Uz2(0,7) >0, uzla,t)=—c<0 if p=t<T.
Hence, if ¢ is very small (depending on A) then
J(x, 9) <0 if 0<z<a,
J(a, t)<0 if p=<t<T.

Clearly also J(0,t)=0 if »<¢<T. The same holds for K. Using (2.5), (2.6)
we can now proceed to argue as in Lemma 1.1 (with U, V replaced by
J, K) in order to establish the assertion (2.12).

THEOREM 2.3. Suppose that u and v solves (1.1), (1.2) with (1.3)-(1.6).
If the conditions (2.1), (2.2) are satisfied, then there is a single blow-up

point.

PROOF. We proceed as in [3]. From (2.12) we have
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U
. a— Y
(A+u)l+5 €
Integrating with respect to z, 0<x <&, we get
N 0 i
(A+u) (&, )= (A+u) %0, 1)+ gszgga_

It follows that
lim sup(A+u(&, t))° < oo if £&>0.
—s0

§-¢
i—~T

The same holds for wv.

§3. Sufficient conditions for (2.2).
The conditions in (2.1) hold for a large class of functions f, g, including
(8.1) flv)=Ae*, g(u)=Be**
with A, 4, B, p positive constants,
(with any p>1, ¢>1) and
(3.2) fw)=A+2)?, gu)=Bu+p)
with A>0, B>0, 2=0, p=0, p=g>1.

Thus in order to apply Theorem 2.3 we only need to find effective suffi-
cient conditions for (2.2) to hold. We shall consider here the two examples
(3.1) and (3.2) (with p=gq), restricting ourselves to

(3.3) a=8.

THEOREM 3.1. In case (3.1), (3.3), the condition (2.2) is satisfied and,
consequently, there is a single point blow-up for the initial-boundary
valve problem (1.1)-(1.5).

PROOF. Without loss of generality we may take A=pu=1; otherwise
we can work with Au and pv. Let J=Me*—e’. Then

H,J=(MA— B)e***— aMe*u? -+ ae®v?.
Since

Me*u,=e"v,+J ,
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we have

eav

for some function b and, therefore,

. 2V
HoJ—bJ,=(MA—B)e"*+ a( e’ — Me* Mezezu )’03

=(MA—DB)e**°+ ae® 2.
( e ae Me* v
thus

H,J—bJ,—cJ=(MA—B)e***>0

if M>B/A, where b, ¢ are suitable functions, bounded in Q,. for any
T'<T. Applying the maximum principle we easily deduce that J>0 if M
is large enough so that J(x,0)>0. Consequently »v<C(u+1) for some con-
stant C. Similarly u<C(v+1), and (2.2) follows with r=1.

We now turn to the case (3.2).

LEMMA 3.2. In case (3.2), (3.3), the second inequality of (2.2) holds
with y=@+1)/(g+1).

PROOF. Introduce the functions

(v+2)2*! (w4 p)e*t
=" ' = M—___.
h(v) PRI () ]
and set
(3.4) J=k(u)—h@).
Then
H,J=Ak"(w)(v+2)? —ak”(w)u? —Bh' (v)(u+ p)*+ah” (v)v:.
Since
E(wWu=h'(v)v,+J,,
we have
h()?
2 2
us W (wf vi +bJ,;

with some coefficient 5. Hence
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H,J—bJ,=(MA—B)(u+p)*(v+2a)°”

(v+2)%?

+a\:p(v +2)P7!

Since, by (3.4),

(427" _ (k)
p+1 q+1

the last expression in brackets is equal to

_ p+1 }
+xvl[ — 2 q].
(v+A)?Yp p; T

+J,

Thus

ﬁ_p—l—l) .

35) HAJ_EJI_.CJ:(MA—B)(u+#)q(v‘f‘l)p-l-alI(?)‘*’l)p-l(q 1)

for some coefficient ¢. Observing that p/¢>(p+1)/(¢+1) and choosing M>
B/A, we obtain

H,J—bJ,—cJ=0.

We now fix any small >0 and choose M such that Mu(x, n)=v(x, ).
Then, by the maximum principle, J=0 in Q;\Q,, i.e., k(u)=h(v), and the
second part of (2.2) follows.

It appears difficult to establish the first part of (2.2) in case p>q.

From Lemma 3.2 and Theorem 2.3 we get:

THEOREM 3.3. In case (3.2), (3.3) with p=q, there is a single point
blow-up for the initial-boundary problem (1.1)-(1.5).

§4. Generalizations.

In this section we extend most of the results of the previous sections
to the system

(4.1) U — Uz =f(u, v) (—a<x<a, t>0),
(4.2) v, —Bv..=g(u, v) (—a<x<a, t>0),

with the same initial-boundary conditions (1.3), (1.4), and with ¢, ¢ satis-
fying (1.5). We assume that
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f,9€C{(RY,
(4.3) Su,v)>0, g(u,v)>0 if u>0, v>0,
«20, f,20, ¢,20, ¢,20.

Then the assertions u,<0, v,<0 in Lemma 1.1 remain valid with minor
changes in the proof.
In order to extend the results of § 2 we assume that

(4.4) u=Cw+1), v=C(u+1)

for the solution, and that, for some M>1,

pf=ufu+of, if v>M, u>—(1—j;—1, where p>1,

(4.5)

pgsug,+tvg, if u>M, v>%—1.

LEMMA 4.1. Let J, K be defined by (2.3), (2.4) with 6=4. Then for
any large constants A>0, B>0 there exist 0, ¢ positive and small such
that

H, J—f,K—bJ=0,

HyK—g,J—bK <0,

where b, b are bounded functions in Qr., for any T <T.

PROOF. Proceeding as in Lemma 2.1, we have

H,J—fK—bJ =< —ex*(fuGu)+ 1, F (v) +ex’G (w)f
+4a2’G'(u)G(u) —4aeG(u)=R

where f,G(u) is a new term. On the set {v<M} we can establish that
R <0 precisely as before, provided we replace f(M) by A(C(M+1), M).
Consider next the case where v>M. Then (2.10) remains valid with

Si=fuGW) + 1o F(v) — G (u) f(u, v)

and with the same S, as before ; notice that f,G(u) is a new term.
We easily estimate

S,= fuu(A+u) +fv(B+v)—(146)(3C)%°F
and
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(A+u)"g<A+ ”;1 )52 —(%,—(v+l), c=a(M).

We may assume that B=1 and ¢/C°<1. Hence

Si2 (fuu+ )0+ 1G5 — (1+8)(EC)vf

v

)
)J(H—v)a, by (4.5) .
From (4.5) we also infer that

Sflu, v)Z0(w*+19)?2=z60v? if v>M,

where 6, 6’ are positive constants. Hence, if § is chosen small enough,
then

Si=0v?(14+v)°, 6>0.

Since the estimate of S, is precisely as in Lemma 2.1, we conclude that
R<0. The rest of the proof now proceeds as before.

THEOREM 4.2. Suppose that 4 and v solve (4.1), (4.2) with (1.3)-(1.5).
If the conditions (4.3)-(4.5) are satisfied, then there is a single blow-up
point.

This follows from Lemma 4.1 by the same arguments as in Theorem
2.3.

In order to establish the condition (4.4) we need a comparison lemma.

LEMMA 4.3. Let a=p=1 and assume that for some sufficiently small
>0,

(4.6) 9yt ey)zefly+1l,ey)  if y20
and

(4.7) ep<¢+e.

Then

(4.8) eU=v+te m Qr.

PROOF. Set w=v—e(u—1). Then



78 Avner FRIEDMAN and Yoshikazu GiGa

Hw=Hv—eHu=g(u, e(u—1)+w) —ef(u, es(u—1) +w)

=g(u, e(u—1))—ef(u, e(u—1))+éw

W~here ¢ is a function of (x,t). Denote by @ the open set {u>1} and by
0Q the parabolic boundary of Q. Then

Hw—¢w=0 in @,

by (4.6), and by (4.7) w=0 at any point of 3@ NdQ;. On I@NQ, we clearly
have =1 and thus w=v>0. By the maximum principle it then follows
that w=0 in @, i.e.,, eu<v+e. Outside § we also have eu<e<v+e.

The condition (4.6) is satisfied for a large class of functions, such as,

Slu, v)=W+a)?(Au+ Ap)™,

(4.9)

g(u, v)=(u+ B)*B,u+ Bw)™, m=1l, q=zp=1,
with
(4.10) a,=20, /=0, A,=0, A,=20, B,=0, B,=0

provided B,>0. Since (4.7) is always satisfied by taking ¢ small, we can
assert :

THEOREM 4.4. Comnsider (4.1), (4.2), (1.8), (1.4) with f, g given by (4.9),
(4.10) with m=1, p=q=1, A;>0, B,>0. If ¢, ¢ satisfy (1.5) then the
solution has a single point blow-up.
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