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Estimates for pseudo-differential operators
with exotic symbols

Dedicated to Professor Seiz6 Itd on the occasion of his 60th birthday

By Akihiko MIYACHI®

Abstract. We give some estimates of the operator norms of pseudo-
differential operators regarded as operators between h?, L?, and bmo
by means of certain Lipschitz norms of their symbols. We also give
some negative results, which show that our norm estimates are sharp
in a certain sense.

§1. Introduction.

The notations used in this paper will be explained in the latter half
of this section.

In this paper, we shall consider the pseudo-differential operator of the
following form :

alX, DIf(w) =@x) " eale, OF Q)8

where & denotes the Fourier transform. The function a(zx, &) is called the
symbol of the pseudo-differential operator a(X, D).
The following theorem is known.

THEOREM. Let 0=<6<1, 0<p<oo, and m=—n(1-0)|1/p—1/2|. If k
and k' are sufficiently large integers and if the inequalities

(1.1) . |0%dtala, £)) SC, (14 |gmrdtai-aB

hold for multi-indices a and B with |a|=<k and |B|<Kk’, then the pseudo-
differential operator a(X, D), originally defined on the Schwartz class
S(R™), can be extended to a bounded operator im h® (if p<1) or in L?
(if p>1).
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This theorem is due to A.P. Calderén and R. Vaillancourt [3], [4] (the
case p=2), C. Fefferman [9] (the case 1<p<oo; cf. also Wang-Li [26;
p. 194]), and to L. Paivarinta and E. Somersalo [20] (the case 0<p<1).

It is also known that the value of m mentioned in the theorem is the
critical one, i.e., it is known that if 6 and p are the same as in the
theorem and if m> —n(1—4)|1/p—1/2|, then there are symbols a(x, &) for
which the inequalities (1.1) hold for all multi-indices « and B but the
pseudo-differential operators a(X, D) are not bounded in A? (if p=<1) or in
L? (if p>1). See [13; p. 163] and [16; § 5].

The purpose of the present paper is to refine the above theorem and,
in particular, to give the critical values of k and &k’ in the theorem. More
precisely, our results are as follows. We introduce classes S7(x, x’), where
meR, 0=6<1, and x and «’ are positive real numbers; a symbol a(zx, &)
belongs to S3(x, ') if the inequalities (1.1) hold for multi-indices « and B
with |a|<x and |B|<«’ and if the derivatives 0%0%a(z, &) with |a| <k =|a|+1
and |B]<x" or with |a|<x and |B|<«&’=|B|+1 satisfy certain Lipschitz
conditions. (This class is a modification of Hormander’s class Sj; with
p=0; as for Hormander’s class, see [13] or [14; Chapt. 2].) Then we give
the numbers x, and k, which are critical in the following sense: Let
1<p<oo and m=—n(1—08)|1/p—1/2|; if £>«, and £’ >k, then the pseudo-
differential operators with symbols in S7?(«,«’) are bounded in L?, but if
k<Ko or k' <ky, then there are pseudo-differential operators with symbols
in S%(k, x’) which are not bounded in L?. We also give the numbers k,
and £, which are critical, in the sense similar to the above, for the h?—L?
(0<p<1)or h'—h' or bmo—bmo boundedness of pseudo-differential operators.
We also give some results for the h?—h? (0<p<1) boundedness. The
detailed statements of our results are given in Sections 3 and 5 (cf. the
paragraph below).

The contents of the following sections are as follows. In Section 2,
we introduce certain Lipschitz classes on the product space R"X R™ and
give some properties of them; these are preliminaries to the subsequent
sections. In Section 3, we introduce the classes S7(x,x’) and state the
positive parts of our results, i.e. we state such theorems as “if £>#, and
&’ >r), then the pseudo-differential operators with symbols in S7(x,x’) are
bounded in ---”. Section 4 is devoted to the proofs of the theorems of
Section 3. In Section 5, we give the negative parts of our results, from
which one can see that most of the results in Section 3 are sharp in a
sense ; in particular, we show such results as “if x <, or #" <#g; then there
are pseudo-differential operators with symbols in S7(x,x’) which are not
bounded in ---”
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REMARK. (i) The results of the present paper are generalizations of
those of the same author’s paper [18], where only the case =0 is treated.
(ii) It is the most interesting problem to consider the case x=k, and
' =k, In order to obtain positive result (boundedness of pseudo-differential
operators) in this case, it is convenient to introduce some modification of
our class ST(ko, £o). Muramatu [19] and Sugimoto [23] have already obtained

some such results.
Notations. The following notations are used throughout this paper.

We fix a Euclidean space R™; the letter n always denotes the dimension
of this space.

If x=(x,--+,2,) and §=(§,---,§&,) are elements of R", then z&=37_,2,¢,,
|| =(xx)"?, and <x)>=(1+|z|})"2

A multi-index a=(a;,*,a,) is an m-tuple of nonnegative integers. If
a=(ay,*,a,) is a multi-index, then the length |a|, the monomial z* in
2=(z,, -+, 2,), and the differential operator 9¢ are defined as follows:

la|=a,+ -+ +ay,,
z":z‘}’l e zzn s
0°f(x) =05 f(x) =(00x,)*1 -+- (B]0x,) “"f(x) ,

where x=(x,, -, x,).
If we R", then the difference operators 4(u) and 4*u) are defined by

A(w) f(x) =d(w) f(x)=fx+u)—f(x)

and
L) f(x) = L5(u) f(2) =f(x+2u) — 2f(x+u) + f(x) ,

where f denotes a function on R™.
The Fourier transform and the inverse Fourier transform are denoted by
& and &' respectively. We shall use these transforms only on R™ or
R*xR". If fis a function on R"™ and ¢ is a function on R"< R", their
transforms are defined as follows:

Fre=\ e, tcRrr,
Ff(2)=2r)""(Ff)—2), zeR",
Fyl€, 77)=SS e "t g(x, yydody , (6, 7)€ R*<R",

R xR™

Fg(z, w)=2r) ™Fg)(—2z, —w), (z,w)sR*<R".
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We shall explain the function (or distribution) spaces considered in this

paper. For 0<p<oco, we denote by L? the set of those measurable func-
tions f on R™ for which

Ilflle=<Slf(x)|”dx>”p<oo .

We denote by L~ and by | ||~ the set of all essentially bounded measurable
functions on R™ and the essential supremum norm respectively. For 0<p<1,
we denote by h? the set of those tempered distributions f on R® for which
S*'eL? and we set [[fll,p=I/*".»; here f*! is defined by

S* Y x)=sup |t "Y' )*f(x)|, x=R",
0<t<1

where ¢ is a fixed function in Cy(R"™) such that Sgb(x)dxio and * denotes

the convolution (cf. Goldberg [11]). For 0<p=1, we denote by H? the set
of those tempered distributions f on R™ for which f*<L?, and we set
| flzp=1f*|l.2: here f* is defined by

Sf*(x)=sup |t "ot )xfx)|, x=R",
0<t< 00

where ¢ is the same as above (cf. Fefferman-Stein [10]). We denote by
bmo the set of those measurable functions f on R"™ such that

1
1flsmo= s 5 |0 —Felde+ supor{ 1 F@lda<oo,

Q]

where @Q ranges over the cubes in R”, |Q| denotes the Lebesgue measure

of @, and fQ=|Q|"S f(x)dx (cf. Goldberg [11]). We denote by S(R") and
q

by S(R"x R"™ the spaces of rapidly decreasing smooth functions on R™
and on R*X R" respectively. Other function spaces will be explained in
due course.
If aeS(R**XR"), we define the operator a(X,D)*, which is the dual of
a(X, D), by

a(X, D)*g(y) = Sg(x)K(x, Sy
where

K(z, 2)=(20) "\e"“a(a, §)d§ .

Observe that, if ae S(R"X R"), then the operators a(X,D) and a(X, D)*
are well defined on S(R™) and we have
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Sg(m)a(X, D)f(zx)dx= Sa(X, D)*g(y) f(y)dy

for all f and ¢ in S(R™).

If s is a real number, [s] denotes the integer satisfying [s]=s<[s]+1.
We fix a function 8 in Cg(R™ such that 6(¢)=1 if |£]<1, and 6(&)=0 if
|€]=2. For j=0,1,2,--, we define 6, and 0} by 6,=6, 6,(£)=0(£/2)—0(&/2/")
for 7=1,2,8,-+,00=0,+06,, and 6;=0;_,+0,+6;,, for j=1,2,8,---.

Finally, we shall use the letter C to denote a constant, which may be
different in each occasion.

§ 2. Lipschitz classes.

In the previous paper [18], the author introduced certain Lipschitz
classes on the product space R"X R In this section, we shall give some
generalizations of those classes.

Let w, p, and ¢ be positive functions on R*X R". We say the, triplet
(w, p, o) is slowly varying if there exist positive constants a, b, and ¢ such
that the inequalities 1l/a=w(z’, ¥ ) w(x,y)=<a, 1/b=p(x’,y’) o(x, y)<b, and
1/e<a(x’,y")o(x,y)<c hold for all those =z, 2’, y, and y’ satisfying |2’ —z|
<o(z,y) and |y —y|Zo(x,y). '

We now introduce the generalized Lipschitz classes on R®x R™.

DEFINITION 2.1. Let 2 and g be positive numbers and let (w,p,o)
be a slowly varying triplet of positive functions. Let [ and m be the
nonnegative integers satisfying [<A=l+1 and m<pg=<m+1. Then

A4, ¢ ; w, p, o) denotes the set of those functions f on R™<X R™ which have
the following estimates :

(i) if |e|=l and [B|=m, then 8595 f(x,y) is a continuous function and
10208 f(x, y)| < Aw(z, Yoz, ¥) ' “o(z, y) P ;

(ii) if |a|=l, |8|=m, ue R", and |u|<p(z, y)/2, then
| 42(w)0%05 f (2, y)| < Aw(zx, y)o(x, y) *olx, y)'#'lul?t;

(iii) if |a|=!, |Bl=m, ve R", and |v|<a(x,y)/2, then
| 42(0)0208 f(, y)| < Aw(x, y)o(x, y) ' oz, y)~“|v|* ™ :

(iv) if lal=l, |8l=m, usR", lu|=p(z,y)/2, vER", and |[v|<o(,y)/2, then
. | 42(u) 43(v)0%08 f(z, )| < Aw(x, y)p(x, y) oz, y) *|ul*v|* ™.
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In the above, A denotes a constant which does not depend on «, 8, @, ¥, u,
and v. The smallest such constant A is denoted by |/l p;w.e.ne We set
I Fllaca, ps w.o.0=0° if f does not belong to A(, x;w,p, o). If w(x,y)=px,y)
=o(x,y)=1 (constant functions), then A(2, p; w, p,0) and £ llsi. p; w0, aTe
denoted by A(2, #) and | fll 41, ., respectively.

We also recall the definition of the Lipschitz classes on R".

DEFINITION 2.2. Let A>0 and let I be the nonnegative integer satis-
fying 1<A<l+1. Then A(2) denotes the set of those functions f on R"
which have the following estimates:

(i) if |a|=l, then 98%f(x) is a continuous function and |0%f(x)| <A ;

(ii) if |a|=l and we R™ with |u|<1/2, then |42(u)o%f(x)|<A|u|*"

Here A is a constant which does not depend on «, #, and u. The smallest
such constant A is denoted by |/ 4c-

It is easy to see that A(4, g;w,p,0) with the norm | 4. 4 w.0.0»o and
A(2) with the norm || || 4z, are Banach spaces. We shall give some properties
of these spaces in the propositions below. In those propositions, 1 and g will
denote positive numbers, and (w,p, o), (wy, p,, 0.), etc. will denote slowly
varying triplets of positive functions.

PROPOSITION 2.1. The map (f,g9)—fg 1s continuous from A(2)x A(1)
to A(2).

PROPOSITION 2.2. A tempered distribution f on R"XR"™ belongs to
AA, p) if and only if there exists a constant A such that

|F 0,00 F S, D)z, y)| = A2~ 7274+

for all (x,y)eR"XR" and all monnegative integers j and k. If |fI
denotes the infimum of the above comstant A, then f—|f| is a norm in
AR, p) which is equivalent to the norm || | 4. w>-

PROPOSITION 2.3. For complex numbers z and w, and for f€ S (R*X R"),
we define <D,><D"f(x,y)eS'(R*"X R") by

(D> DY f(w, y) =F K L&, 7)) .

If Rez<i and Rew <p, then the operator f—<D.><{D,>"f(x,y) s bounded
Jrom A2, p) to A(A—Rez, p—Rew) with the operator norm not exceeding
CA+|Imz)""*(1+|Imw|)"*', where C is a constant depending only on n,
2, p, Rez, and Rew. This constant C is bounded if Rez and Rew range
on compact sets.
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PROPOSITION 2.4. If a and B are multi-indices with |a| <2 and [B|<g,
then the operator f—d20ff(x, y) is bounded from A2, p) to AQA—lal, p—1B|).

PROPOSITION 2.5. Let 2o, 4y, o, and p, be positive numbers. If 0<t<1,
A=(1—t)Ag+ta, and p=(1—1t)po+tu, then, for functions f on R"XR", we
have

1 I acx. > S CUS N acag. )™ WS ety ) 5

where C is a constant depending only on m, Ay, A, o, t, ond .

PROPOSITION 2.6. The map (f, g)—fg is continuous from A(A, p ; w,, p:, 61)
X A2, ;Ws, 02, 05) to A, pr;w, p,0), where w(x,y)=w(x, y)ws(, y), o(z, y) =
min{p,(x, ¥), p=(, ¥)}, and o(x, y)=min{o\(x, y), ox(x, Y)}.

PROPOSITION 2.7. Let {¢;} be a partition of unity on R"XR"™ which
has the following properties: (i) As (x,y) ranges over R"XR", the
cardinality of the set {j|supp@,;>(x,y)} is bounded; (ii) The set {¢,} is
bounded in the Banach space A2, p;1,p,0). Then, a function f on R*xX R*

belongs to A, p;w,p,0) if and only if {fp,} is a bounded subset of
A4, p;w, p,0), and the norm

“f“ZSl}p”f¢j”A(2,,u;w.p,a)
18 equivalent to the norm | flsa. u;w.p.0r

PROPOSITION 2.8. Let w,, po, g0, and B be positive numbers. Suppose
f is a function on R*XR™ such that the inequalities 1/BSw(x, y)/w,<B,

1/B=p(x, ¥)/po=B, and 1/B=c(x,y)/ss=B hold for all (x,y)ssuppf. Then
it holds that

C_lnf”/i(i,p;w,p,a)é ”f”A(Z.p; wg. Pg.0¢)
§C”f”/1(1.p; w.0,0)
where C is a constant depending only on m, A, pu, w, p, g, and B.

PROPOSITION 2.9. If w, po, and o, are positive numbers, then

Hf”A(l.;A; wo,po,ao):wal||f||/i(2.p) ’

uzhere f denotes a function on R"XR" and the function f is defined by
flx,y) :f(Pox, aoy).

We shall omit the proofs of these propositions. (See the remark below.)
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REMARK 2.1. The space 4(4) is sometimes denoted by BZ%., which is
one of the Besov spaces Bj, Our space A(A, y;w,p,0o) is a modification
of the space A(2)=B%.. The theory of Besov spaces are well developped :
see Bergh-Lofstrom [1; Chapter 6] and the references cited there. One can
prove the above propositions by only slightly modifying the methods found
in the theory of Besov spaces. Even if the reader is not familiar with the
theory of Besov spaces, the remarks (I)~(IV) below will be sufficient to
help him prove the propositions by himself. _
(I) As for a direct proof of Proposition 2.2, consult Bergh-Lofstrom [1;
§ 6.2] or Grevholm [12; §2].

(II) If 2zz2’>0 and pg=p'>0, then A4, u;w,p,0)CAR, ' ; w,p,0) With
continuous embedding ; this is easy to check.

(III) If 0<e=1/2, then in Definition 2.1 we can replace the assumptions
[l Zp(x,y)/2 and |v|<o(x, y)/2 by |u|Zep(x, y) and |v| Zeo(x, y), respectively,
without affecting the result (i.e, if we carry out this replacement, then
the set A(4, p;w,p,0). defined by the new definition is the same as the
original set and the norm | |l 4u. 4; w.0..» defined by the new definition is
equivalent to the original norm); this is easy to check.

(IV) If 2 is not a positive integer, then in Definition 2.1 we can replace
the operators 4%(u) and 4Z(w)di(v) by 4d.(u) and 4.(u)di(v), respectively,
without affecting the result; similar fact holds if g is not a positive
integer. As for a direct proof this fact, consult Zygmund [27; Proof of
Theorem (8.4) of Chapter II and the accompanying footnote].

The following lemmas will -be used in Section 4.

LEMMA 2.1. Let >0and R=1. Suppose fe A(y) and suppfC{y | |y| =R}.
Then the following hold.
(i) For every £>0, we have

[<2>#*F 7 f(2) | Lo S CR™ | f | aces -
(ii) For every ¢>0 and every ve R* with |v|<10/R, we have
<2y #2d,(0)F ' f(2) | L2= CR 0] | | s> -
In the above, C. denotes a constant which depends only on n, p, and e.

PROOF. We set A=|flaq, and k=F"'f. First we shall prove (i).
We have [f(y)|<Ayr(y) and |4£(w)o°f(y)| S Alul*""“'pr(y) if |a|<p=|al+1
and |u|=1/2, where y, denotes the defining function of the set {y||y|=7}.
Hence, by Plancherel’s theorem, we obtain
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(2.1) Ikl e <CAR"®

and
(e~ —1)2°k(2)| . 2=CAlul*~'*'R"®

if |a|<p=|a|+1 and |u|=<1/2. From this latter estimate, we can easily
deduce that

<20 #~*k(2) | L2coi-1<121 525y S C.A27F R™

for all positive integers j. Summing up the above inequalities over j and
taking (2.1) into account, we obtain the desired result. Next, we shall
prove (ii). Let ve R" with |v|<10/R and set f,(y)=(¢®**—1)f(y). Then, by
using Proposition 2.1, we can prove that || f,ll4,,<CAl|v|R. Since &F'f,(2)
=4,(v)F f(z), the desired result now follows from (i). This completes
the proof of Lemma 2.1.

LEMMA 2.2. Let 0<i<1, >0, and R=1. Suppose feA(i,p) and
supp flz, - )C{yeR"| ly| <R} for all x=R" Define the function K on
R*xR" by K(z, )= "Xf(z, -)). Then, tf ¢>0, ucR", |u|=<10, ve R"*, and
[v]| £10/R, we have

sup || <> *~*(K(x+u, z+v) — Kz, ) 2= CR(|ul*+ 0| R fll acx. > 5
where C, is a constant depending only on n, A, p, and e.

PROOF. Let A=|flliaz. ., and let ¢, u, and v satisfy the assumptions
mentioned in the lemma. It is easy to see that |f(z+4wu, -)ls.,n=A and
I fle+u, )—f(x, )i <Clul*A with C depending only on =, 2, and z (not
on « nor u). (The latter inequality follows from the assertion in (IV) in
Remark 2.1.) Hence, by Lemma 2.1, we have

<> **(K(x+u, z+v)—K(@+u,2)l 2 <C.R""|v|A
and
[<2># (K (z4u, 2) — K(x, 2)) | .2 < C.R"*|u|*A .

Combining these inequalities, we obtain the desired inequality.

§ 3. Boundedness of pseudo-differential operators.
We define the class ST(x, #’) as follows.

DEFINITION 3.1. Let meR, 0=<6<1, £>0, and £'>0. Then the class
S3(x,£') is defined by S7(x, ' )=Alx, k" ; w,p,0) with w(x, §)=<&™, o(x, &)
=<¢&>7% and o(x, £)=2"¢&>°. The norm in this space is denoted by || llm.s.«. <
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We shall use the following notation. Let (Y, Z) be a couple of function
(or distribution) spaces over R" Suppose nonnegative functions (norms,
seminorms, etc.) | Ily and | |z are defined on Y and Z respectively. Then
we shall write as ¥3(x, £')C_L(Y, Z) if there exists a constant C depending
only on n, m, 8, &, £, Y, and Z for which the inequality

la(X, D) flz=Clalln.s ..l fly

holds for all ae S(R*X R") and all fe S(R®)NY. Similarly, we shall write
as T3k, '))*CL(Y, Z) if the inequality

la(X, D)*fllz=Cllaln, sl flly

holds with C, a, and f being the same as above.
Our results on the boundedness of pseudo-differential operators in A?
and L? are given in the following two theorems.

THEOREM 3.1. Let 0=<6<1 and m(n,d, p)=—n(1—3a)|1/p—1/2|.
(1) If 0<p=1, m=m(n,d,p), £>n/2+né(1/p—1)/(1—0¢), and &' >n[p, then
Uk, £')TL(A?, h?).
(1) If0<p<1, m=m(n,d,p), £ >n/2, and £’ >n/p, then T3k, &)L (R?, L?).
(2) If1<p=2, m=mn,d,p), k>n/2, and £’ >n/p, then Uik, &) L(L?, L?).
B) If2<p<oo,m=mn,d,p), £>nlp,and &' >n/2, then T3 (x, £’)CL(L?, L?).
4) If m=—n(1-0)/2, >0, and £ >n/2, then ¥k, &)L (bmo, bmo).

THEOREM 8.2. Let 0 and m(n,d,p) be the same as in Theorem 3.1.

(1) If0<p=1, m=m(n,d,p), £>n/p—n,and &’ >n(l/p—1/2), then (Ti(x, £’))*
. L(h?, h?).

2) If 1<p=2, m=mn,d,p), c>n—n/p, and £ >n/2, then ¥i(k, £))*C
L(L?, LP).

(8) If 2<p<co, m=m(n,d,p), £>n/2, and £’ >n—nlp, then T3k, c'))*C
L(L?, LP).

4) If m=—n(1-0)/2, £>n/2, and £’ >n, then T «, £'))*C.L(bmo, bmo).

If §=0, we can improve parts of these theorems. In order to give the
improvement, we introduce a function space as follows.

DEFINITION 3.2. For locally integrable functions f on R", we define
the function N(f) on R"™ by

N =sup— fwldy.

lx-ylsr
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For 0<p=1, we denote by X? the set of those locally integrable functions
fon R for which N(f) belong to L?. We define || f|lx» by | fllxa=[N(f)|o.

The following two theorems improve parts of Theorems 3.1 and 3.2.

THEOREM 3.3. If the assumptions of (1) of Theorem 3.1 are satisfied
with =0, then ¥k, £’)CL(R?, XP).

THEOREM 3.4. If the assumptions of (1) of Theorem 3.2 are satisfied
with 6=0, then (T§(x, &"))*C.L(RP, X7).

In Section 5, we shall give some negative results, which will show
that Theorems 8.1~3.4 are sharp in a sense.
Proofs of the theorems will be given in the next section.

§4. Proofs of the theorems in Section 3.

Throughout this section, let m(n, d, p) be the same as in Theorem 3.1.
In order to prove the theorems in Section 3, we use the following
theorems and lemma.

THEOREM A. If 0=6<1, £>n/2, and £’ >n/2, then Tk, &) L(L? L?.

In the case =0, this theorem is due to Cordes [8; Theorem D] (see
also [18]). In the case 0<d<1, it is a consequence of a stronger theorem
of Muramatu [19].

THEOREM B. If 0=<6<1, m<—n(1—48)/2, £>0, and &' >n/2, then
Uk, k') L(L2, LY.

PROOF. Suppose &, m, «, and £’ satisfy the assumptions of the theorem.
Let ac S(R*xX R"). We use the following notations. Set A=|alm. 5. ¢,

aj(x) & =alz, 5)0;(5) ’
ajz, §)=a,2 %z, 27%¢),

T=a(X, D), and T;=a,X, D). Let K(z, -) and K,(x, -) be the inverse Fourier
transforms of a(x, -) and a,(x, -) respectively. Then it holds that T=37.,T,

T,f(205) = SK,-(ac, c—y) f2 y)dy

(the left hand side should be interpreted as (T,f)(2 /%)),
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supp a,(z, -)C{&]| |&| 21+74-9)
and

a0 ace, iy SCA2™ .

(The last inequality can be obtained by the use of Propositions 2.7~2.9.)
Now take >0 such that £’ —e>n/2. Schwarz’s inequality gives

IT,f2 )| < Ke— > K (@, s— ) 2l <o — 9>~ (27 y) ] 2 .
From this it follows that ||(T,f)(277%-)||,2 does not. exceed the product of

sup[<z—y* K (x, 2—y)ll.2
and

By Lemma 2.1, the first factor is majorized by C.A2/™+4rd®  The second
factor is equal to C.|f(277%-)| 2. Thus we have

ITf e < CAI™+ =P £ 15,

Summing up these estimates over 5=0,1,2,---, we obtain | Tf||.2<CA|f| 2
since m+(1—0)n/2<0. This completes the proof of Theorem B.

LEMMA 4.1. Let 0<p<2 and. M>n(1/p—1/2).
(i) For every measurable function f on R", the inequality

[£1Lp = Cli<ad ¥ f(w) ]l 12

holds with a constant C depending only on w, p, and M.

(ii) Let (E, p) be a measure space and f be a measurable function on
EXR". Suppose there exist positive numbers s and B and a measurable
map ¢: E—R" such that |¢(u)|§s and

<z— ¢(u ”fu, F%: (RH)SB
for all wueE. Then

<CBu(E),

LPCz1>28)

I s, 2
where C 1s a constant depending only on n, p, and M.‘

PROOF. Proof of (i). Set ¢q=(1/p—1/2)~*. Then Hoélder’s inequality
gives

Il eo = 1<a> = [l all <> ¥ f (@) | o= Cll <2 " f(@) | 12 .
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Proof of (ii). Minkowski’s inequality gives

“SE<Z"¢(“)>M|f(u, 2)ldp(w)

=\ 1= g 1w, 2120w < Bu(E)

If |z]>2s, then <z—g(u)>=<2>—|g(u)|=<>/2 (since |¢(u)|<s). Combining
these inequalities, we have

i 1w, 2ldptw

<Bu(E).

L2(1zi>28)

This and the inequality in (i) give the desired result.

We shall give some propositions, which will contain the essential part
of the proofs of the theorems in Section 3.

PROPOSITION 4.1. If 0<46<1, 0<p<1, m=m(n,d,p), £>n/2, and £ >
n/p+1, then Tk, k') L(R?, LP).

PROOF. Suppose 4, p, m, £, and «" satisfy the assumptions of the prop-
osition. Let aeS(R*XR"). In this proof the constant C depends only on
n, p, 0, £, £, and the parameters indicated as suffixes. We set N=[n/p—n]
+1 and M=[n(1/p—1/2)]+1. We define A4, a,, a,, T, T,, K, and K, in the
same way as in the proof of Theorem B.

We recall the atomic decomposition theorem for A?, which is due to
Goldberg [11; Lemma 5]. A function f on R"™ is called an A? atom if
there exists a ball B of radius =1 such that suppfCB, | fl.~<r""?, and

Sf(x)x“dxzo for |a|Z[n/p—n], or if there exists a ball B of radius »>1

such that suppfCB and |fll.=<7r""?. The atomic decomposition theorem
for h? asserts that every f in kP can be decomposed as f=3X>7,4,f;,, where
2; are complex numbers such that 3;[2,/?=C|f %7 and f; are h” atoms.
(This theorem also holds for p=1.)

By virtue of this atomic decomposition theorem, it is sufficient to show
that |Tf||.»<CA for all h? atoms f. In the present case, it is sufficient
to consider the h? atoms which are supported in the balls centered at the
origin. Thus, we shall prove the estimate | Tf||.»<CA for all those f such

that suppfC{z | |z|=Zr} and | fll.~-=7""'? with some >0 and Sf(x)x“dsv:()

for |a|Z[n/p—n]=N—1 if »<1 (if »>1, there are no moment conditions).

By Theorem A or B, we see that the operator 7' is bounded in L* with
operator norm not exceeding CA. Hence, using Holder’s inequality, we
have
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I TA(@) ) L pcizigory = Cr™ M2 V2 Tf || 2
<CAr=2 | f]
<CA.
In the rest of the proof, we shall prove the estimate
I Tf ()l Lpazi>ern =CA .
In order to do this, we shall prove the following two estimates:
(4.1) I T,0 @) Lrczisen, < CA@7r) TP,
(4.2) I T, (@) Lpcizisern SCA@IP)Y WP+ if r<1.

If we have proved these estimates, then we can deduce the desired estimate
as follows:

1T (@) |2 pcrzisers < i 1T, £ () Errzsom

< 3 (CA@Ir)N-nMp+m)P 4 3N (CA(20y) ™MPH+m)P

2Jrs1 20r>1

=(CA)?,

where the first inequality is legitimate since p <1, the second inequality is
due to (4.1) and (4.2), and the last inequality holds since N—n/p+n>0 and
—n/p+n<0.

Before we prove (4.1) and (4.2), we shall prove that

(43) | <o— > ¥ DER (, 5—y) | 12 S CpARH-D8 enmrem

for any multi-index B, where the function DK is defined by DK ,(x,z2)=
0%K,(z,z). (Note that C;s is independent of y and j.) In order to prove
this, observe, by integration by parts, that

(—i2) 9K (a, 2) = (2) o081 (i6) 0, (z, £)10;(278)de
(Note that 6;(2°€)=1 on the support of the integrand.) Setting z=x—y in
the above equality, we obtain
(—i(w—y) DER (&, 2—y)=Ta.5.,0y.,(%) ,

where T, ;. ; is the pseudo-differential operator with the symbol a,, s, ,(z, §)
=0§[(1€)%a,(x, £)] and g,,; is the inverse Fourier transform of the function
E—e %¥9)(27%¢). Using Plancherel’s theorem, we have |g, )l 2<C2/4-9n2
On the other hand, by Propositions 2.6~2.9 and 2.4, we have |a,.3,;ll0,0.x. - x
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SCyA2/-DF+m if || <M ; hence, since £'—M>n/2, using Theorem A, we
see that the operators T, ; with |a|<M are bounded in L? with operator
norms not exceeding CpA2/*~®'#*™  Thus we have

”(x_y)aDng(x’ x_y) ”L:ZcgCﬂAzj((l—d)(lﬁl+"12)+M)

if |a|=<M, which implies (4.3).
Now we shall prove (4.1) and (4.2). It holds that

(4.4) T,f(Z'f"x)zg s Kiw, w—u)fe )y,

1y!

If r<1, then we also have
7,72 2)=\(R 2, o —y)— Po) 2 )iy,

where P(y) denotes any polynomial in y of degree not exceeding N—1; if
we take as P(y) Maclaurin’s series of the function y— K,(x, x—y) up to the
terms of degree N—1, then we have

— )8
(4.5) T]vf(Z“f"ac)zggw<1 N(l—t)”"lﬁEND'SKj(m, x—ty) (——g)—f(Z""’y)dtdy .

!
Iy 15270, B

Now we can easily derive (4.1) and (4.2) from (4.3), (4.4), (4.5), and the
estimate | flli~<7""? with the aid of Lemma 4.1. This completes the
proof of Proposition 4.1.

PROPOSITION 4.2. If 0, p, and m satisfy the same assumptions as in
Proposition 4.1 and if k>(n/p+n+4)o/(1—0)+3n/2+8 and «'>n/p+2,
then U3k, £’)CL(R?, hP).

Before we go to the proof of this proposition, we recall some properties
of h? and H?. In this paragraph, we assume 0<p=<1. First, if supp<Ff
c{&]1£]<2} and feL? then feh” and | fl.»<C|lfl.». This can be shown
as follows: if supp FfC{€]|&| <2}, then

(4.6) sup | fle—y)| SCM(] f17) ()"

for all »>0 and all x€ R", where M denotes the Hardy-Littlewood maximal
function and C is a constant depending only on n and » (as for this
inequality, see Triebel [24 ; § 1.3.1]) ; if further feL? and if we take r<p,
then the right hand side of (4.6) belongs to L? and so is the left hand
side and hence a fortior: f belongs to h?. Secondly, there exist a finite
number of functions m; (j=1,:--, H) on R™ which are homogeneous of
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degree zero and smooth away from the origin and have the following
property : f belongs to L*\H? if and only if all m,(D)f, where j=1,---, H,
belong to L*NL?, and there exists a constant C such that

CHUSlur= é‘,‘ lm;(D)f Il Lo <CIl fllur

for all those f. This fact is due to Fefferman and Stein [10] (cf. also
Coifman-Dahlberg [5]). Thirdly, if b is a smooth function on R" such that
|09b(8)| = C,<&>~'" for all a, then the operator b(D) is bounded in A?. This
fact is due to Goldberg [11; Theorem 4]. Combining the above facts, we
obtain the following characterization of h?: Define functions b; (j=0,1,
-+, H) on R* by b,=0 and b;,=(1—8)m; for j=1,.--, H; then f belongs to
L*Nk? if and only if all by(D)f, where =0, 1,---, H, belong to L*\L?, and
there exists a constant C such that

CF o= 2 10/D)f 129 SCI S s

for all those f.
Now we go to the proof of Proposition 4.2.

PROOF OF PROPOSITION 4.2. Suppose 4§, p, m, «, and &’ satisfy the as-
sumptions mentioned in the proposition. Let aeS(R"X R"). By virtue of
the characterization of h? as given above, it is sufficient to estimate the
h?—L? operator norms of the operators b,(D)a(X, D) for j=0,1,---,H. It
holds that b,(D)a(X, D) is equal to the pseudo-differential operator ¢,(X, D)
whose symbol ¢;(x, &) satisfies

e@, ) =@x) {6+ pato-+y, Slavdy
and
leilm s 6.0 SClalm, s, et b1,
where s=(t'+n+3)d/(1—08)+n+3 (cf. [14;: Chapt. 2, §2]). Hence Prop-

osition 4.1 gives the desired estimate for c¢;(X, D)=b,(D)a(X, D). This
completes the proof.

PROPOSITION 4.3. If p, k, and &' satisfy the same assumptions as in
Proposition 4.1 and 1f m=m(n,0,p), then ¥y(x, ' )CL(h?, X?).

We can prove this proposition by slightly modifying the proof of Prop-
osition 4.1. In fact, we can easily prove that, if =0, the estimates in
the proof of Proposition 4.1 remain true if we replace Tf and T,f by
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N(Tf) and N(T,f) respectively. In order to see this, we need only the
following two properties of the maximal function N(f). First, there exists
a constant C depending only on n such that |N(f)ll2<C| fl2; this follows
from the Hardy-Littlewood maximal theorem (see e.g. [22; Chapt. II, § 3]).
Secondly, for M>0, y= R", and fe L}, we have

e— YN (x) S2Y N —p () (=) ;

this follows from the fact that |x—x’| <1 implies <x><2<¢(x’>. We shall
omit the details of the proof of Proposition 4.3.

PROPOSITION 4.4. If 0<6<1,1>p>n/(n+1), m=m(n,d,p), e>n/p—mn,
and &' >n(l/p—1/2), then ¥k, &)*CL(R?, hP).

PROOF. We shall prove a modified form of this proposition; i.e., we
shall prove that the proposition holds if .L(h?, k?) is replaced by L(k?, L?).
This is sufficient to prove the original proposition as we shall see now.
Let b,(D) be the operators as given before the proof of Proposition 4.2. In
order to show the hP?—h? estimate for a(X, D)*, it is sufficient to show the
h?—L? estimate for b;(D)a(X, D)*. It holds that b,(D)a(X, D)*=c;X, D)*
with ¢,(x, &)=a(x, £)b,(—¢) and that this symbol satisfies |li¢;llm s.6.0=
Clallm. 5. (this latter fact follows from Proposition 2.6). Combining these
facts, we see that, if the modified Proposition 4.4 (i.e.,, the one with
L (h?, h?) replaced by .L(h?, L?)) holds, then the original Proposition 4.4
holds as well.

Now, we shall prove the modified Proposition 4.4. Suppose 6, p, m, &,
and «’ satisfy the assumptions of the proposition; without loss of generality,
we may and shall assume £<1. Let ac S(R"XR"). We use the same
notations as in the proof of Theorem B. We also set T*=a(X, D)* and
T¥=a,X,D)*. It holds that T*=37,7% and

4.7) T?‘g(2'”y)=Sg(2"'5x)lf,~(x, r—y)dx

(the left hand side should be interpreted as (T'%g)(277°y)). In this proof,
the constant C depends only on =, p, d, &, £/, and the parameters indicated
as suffixes.

By the same reasoning as in the proof of Proposition 4.1, it is sufficient
to show the estimate [T*g|.»<CA for all those g such that suppgcC

{o||x|<r}and |g|.=<r""? with some r>( and Sg(x)dx:O if r<1 @if r>1,

the integral of g need not vanish).
By Theorem B, we see that the operator 7 is bounded in L? with
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operator norm not exceeding CA. Hence, the same is true for T*. Thus,

using Holder’s inequality in the same way as in the proof of Proposition
4.1, we obtain

IT*g W)l Lrayisen=CA .
In the rest of the proof, we shall prove the estimate
IT*g(W Loy i>er <CA .
We can deduce this estimate from the following two estimates:
(4.8) IT¥9 W) Locyisen S CARIr) /P4,
(4.9) ITF9W) Lrciyisor SCAQRIr) v2*me if 20r<1.

(The deduction is the same as in the proof of Proposition 4.1.)
First we shall prove (4.8). Since suppd,(x, -)C{&]|é|<2/%"2*} and
13,0 4ce.ern =CA2'™ we can use Lemma 2.1 to obtain

(4.10) I <e—y>* K ,(x, x—y) ”LgéceAz;‘(mm-a)n/z)

(C. independent of x and j). We take ¢ so small that " —e>n(l/p—1/2).
Then we can derive (4.8) from (4.7), (4.10), and the estimate |g|i==r""?
with the aid of Lemma 4.1.

Next we shall prove (4.9). We assume 2/»<1. Then, since »r<2/r=<1,

we have Sg(x)dxzo and hence
(4.11) T}“!J(Z""’y):S| it g2 %) (K (x, x—y)— K (0, —y))da.

Using Lemma 2.2, we obtain, for & with |z| <2,
(4.12) 1<y (K (@, x—y) — K0, —y)) | .2 S C A2I™+A=OmiD((2507)* +27r)

(C. independent of x and j). We take ¢ so small that " —e>n(1/p—1/2).
Then we can derive the estimate

1T g Locry>er = CAQRI7) P ((27%r) +277)

from (4.11), (4.12), and the estimate |g|.=<r"™? with the aid of Lemma
4.1. The above estimate implies (4.9) since £<1, 6<1, and 2/r=<1. This
completes the proof of Proposition 4.4.

PROPOSITION 4.5. If p, &, and &’ satisfy the same assumptions as in
Proposition 4.4 and if m=m(n,0,p), then ik, £’))*CL(h?, X?).
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We can prove this proposition by slightly modifying the proof of Prop-
osition 4.4. We shall omit the details. (Cf. the paragraph just below Prop-
osition 4.3.)

PROPOSITION 4.6. If 0<d<1, 0<p<l, m=m(n,d,p), £>[n/p—n]+],
and ' >n(l/p—1/2), then (TT(xk, & )*CTL(R?, hP).

PROOF. The proof of this proposition is very similar to that of Prop-
osition 4.4. We shall only point out the necessary modifications. Suppose
5, »p, m, £, and k' satisfy the assumptions in the proposition. Let
asS(R*X R"). We shall use the same notations as in the proofs of Theo-
rem B and Proposition 4.4. By the same reasoning as in the proofs of
Propositions 4.1 and 4.4, it is sufficient to show the estimate |T*gll.»<CA
for all those ¢ such that suppgC{z||z|<r} and |gll.«==+""? with some

r>0 and Sg(x)m“dwzo for |a|Z[n/p—mn] if r=1 (if r>1, there are no

moment conditions). We shall deduce the above estimate from the follow-
ing three estimates:

IIT*g(y)kuylszréCA s
I TYgW) Loy isery =CA(27r) M P*m
(4.13) I T?Q(Z/)”LP(1y|>2r)éCA(ij)N—"/pM if r=1,

where N=[n/p—n]+1. Among the above three estimates, the first and
the second ones can be proved by just the same reasoning as in the proof
of Proposition 4.4. The last one, (4.13), can be proved as follows. If r<1,
then we have

T¥g(27%y)= gg(Z""x)(Kj(x, x—y)—P(x))dz,

where P(x) is any polynomial in x of degree not exceeding N—1. If we
take as P(x) Maclaurin’s series of the function z—K ;(x, x—y) up to the
terms of degree N—1, then we have

(414)  TygE )
:Sgo«; 927%x) B C,sDiDEK [(tx, tw—y)a“ P (1—t)" dtdx ,

la+B1=N
1z1527%

where the function DiDEK; is defined by DiD4K,(x,2)=0%%K (z,2). Now,
by Propositions 2.6~2.9 and 2.4, we have

1(26)%9%0 (2, &) ace- a1, cn S Cg A27Mm+A=" 8D
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if |a|<k. From this and the fact that suppa,(x, -)C{&] |&] <2799+, we
obtain the estimate

(4.15) [ <z>* ~0%08K ;(x, 2) | 2= C,A2/m+a ~ 3N +n/2))

for a, f with |a+8|=N (we used Lemma 2.1). Now (4.13) follows from
(4.14), (4.15), and the estimate |lg||l,=<7"™? with the aid of Lemma 4.1.
This completes the proof of Proposition 4.6.

PROPOSITION 4.7. If p, k, and &’ satisfy the same assumptions as in
Proposition 4.6 and if m=m(n,0, p), then @y (x, &’))*C.L(h?, X?).

We shall omit the proof of this proposition ; it is a slight modification
of the proof of Proposition 4.6. (Cf. also the paragraph just below Prop-
osition 4.3.)

Now we go to the proofs of the theorems in Section 3. First, observe
that (3)’s and (4)’s of Theorems 3.1 and 3.2 can be derived from (1)’s and
(2)’s of the theorems by the use of the duality between L? and L?, where
1/p+1/q=1, or the duality between h' and bmo. (As for the latter duality,
see Goldberg [11].) Hence we omit the direct proofs of (3)'s and (4)’s of
Theorems 3.1 and 3.2.

PROOF OF (1) AND (2) OF THEOREM 3.1. The claim in (2) for the case
p=2 is the same as Theorem A. We shall prove the claims in (1’) and
(2) for 0<p<2. Let 0<p<2 and let m, «, and £’ be as mentioned in (1’)
or (2) of Theorem 3.1. Let ac€S(R"XR") and set A=|aln.s.,.. Take
real numbers 7, t, and B such that 0<r<p, 0<t<1, l/p=(1—t)/r+i/2,
k' +Bt>n/r+1, and £'—B(1—t)>n/2. (Observe that this is possible if we
choose r sufficiently small.) For complex numbers z, set

a.(x, §)=e D" (gy ™ f}) 05&a, jx, &),
=
where m’=m(n, d,r) and

az.j(wy §)=[<Dn>8(z_t)dj(2jax, 77)]7/:2‘.7'55 .

(As for the operator <D,>2“"", see Proposition 2.3.) Then, using the prop-
ositions in Section 2, we see that

“azum',ﬁ.x,x'-i-Bt.éCA if ReZZO
and

“aaz”oﬁ.x.xr—s(x—t)éCA if Rez=1.
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Hence, by Proposition 4.1 (the case 0<3<1) or 4.3 (the case §=0) and by
Theorem A, we have

”az(X, D)“)LT«LT§CA lf Re 2=0
and
IIaz(X, D)“LLL?éCA if Rez=1.

We now apply to the family {a.(X, D)} the interpolation theorem for
analytic families of operators (see [21] and [2; Section 3]) and conclude
that the operator norm of a,X,D) from h? (if p=<1) or L? (if 1<p<2)
to L? does not exceed CA. This proves the desired result since a.,(X, D)
=a(X, D).

PROOF OF (1) OF THEOREM 3.1. Suppose p, m, x, and £’ satisfy the
assumptions of (1) of Theorem 3.1. Let a=S(R"XR"). Take q, 7, t, m’,
B, and B’ such that 0<q<p, 1<r<2, 0<t<1, 1/p=01—t)/qg+t/r, m'=
n(1—06)(1/qg—1/7), £+ Bt>(n/q+n+4)/(1—6)+3n/243, k—B(1—t)>n/2, £+
B't>n/q+2, and &' —B'(1—t)>n/r. (Observe that this is possible if we
take ¢ sufficiently small and r sufficiently near to 1.) Set

a.(, §)=e* O™ B (a3, 8),
where
e, (2, ) =[CDYP XD 0y, ]yt poa 2

Then, using the propositions in Section 2, Proposition 4.2, and (2) of Theo-
rem 3.1, we see that

la.(X, D)|pe-rna=<CA if Rez=0
and
la.(X, D)l r,r<CA if Rez=1,

where A=|alln.sc.. We now apply to the family {a,(X, D)} the inter-
polation theorem for analytic families of operators and conclude that the
operator norm of a,X,D)=a(X,D) from h® to h? does not exceed CA.
This completes the proof.

The assertions (1) and (2) of Theorem 3.2 can be derived from Prop-
ositions 4.4, 4.5, 4.6, and 4.7 and from Theorem A by means of the inter-
polation. Since this argument is very similar to the proofs of (1), (1),
and (2) of Theorem 3.1, we shall omit the details.

PROOF OF THEOREM 3.3. This theorem can be derived from Proposition
4.3 and Theorem A by means of the interpolation. The argument is similar
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to the proof of (1") and (2) of Theorem 3.1. The only difference is that
we must deal with the nonlinear operator f— N(f); this point can be got
around in the following way. Set 6=0 and construct the family {a,} in
the same way as in the proof of (1’) and (2) of Theorem 3.1. Let
{$. | x= R"} be a family of functions in C5(R") such that supp ¢.C{y| |y| <7}
and l¢.ll.~-=<7r;" for some r, satisfying 0<r,=<1. Define the operator 7', by

T, f(w) =S¢I<x —y)a.(X, D) fy)dy .

Then N(a,(X, D)f)(x)=sup|T,f(z)|, where the supremum is taken over all
those families {@,} satisfying the above conditions. Applying the inter-
polation theorem for analytic families of operators to the family {7},
which is a family of linear operators, we can derive Theorem 3.3 from
Proposition 4.3 and Theorem A. This completes the proof.

PROOF OF THEOREM 3.4. If p, m, r, and £’ satisfy the assumptions
of (2) of Theorem 3.2 . with 6=0, then we have

IN(@(X, D)*g) Lo =Cllaln.o.ccllgleo

for all ae S(R*"X R") and all g S(R" ; this follows from (2) of Theorem
3.2 and the Hardy-Littlewood maximal theorem. From this fact and Prop-
osition 4.7, we can derive Theorem 3.4 by means of the interpolation. The
way to use the interpolation is similar to that in the proofs of (1), (1'),
and (2) of Theorem 3.1 and in the proof of Theorem 3.3; we shall omit
the details.

§5. Negative results.

In this section, we give some negative results, which will show that
the results in Section 3 are sharp in a sense.

We define m(n;d,p) in the same way as in Theorem 3.1. We extend
the definition of H? as follows: if 1<p<co, we set H?=L? and | |u»
=| [z». For acS(R"XR"), we define |a(X, D)|gr-.» as the supremum of
la(X, D)fllzo/| fllx» for all those fe S(RYNH?, f+0.

In order to prove the results in this section, we shall frequently use
the lemmas given below. The idea of the first lemma is due to Coifman
and Meyer [6: p. 31]. )

LEMMA 5.1. Suppose that 0<6<1,0<p<oco,meR, >0, £#'>0, B>0,
and that the inequality
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“a(X; D) ||HP—~LZ7§B”a”m.5,Ic,/c'

holds for all ac S(R*"X R"). Then the following hold.

(i) If beS(R*XR") and there exists s>1 for which suppb(z,-)C
{€]s/10=|£| <108} for all zeR", or if beS(R*XR" and suppb(z, -)C
{&] |£] =10} for all x= R", then

16(X, D) g2 S CBIlIbllmiciosy.0.x. 5 »

where C is a constant depending only on m, m, 6, &, and «’.
(ii) The inequality

”a(X) D) “HP—LPéCeB“a”m/(l—B)—s.o.x,w

holds for all e>0 and all ac S(R*X R"), where C. is a constant depending
only on ¢, m, m, 8, p, £, and &’

PROOF. Proof of (i). Suppose that s>1 and supp b(x, -)C{&] s/10<[£] <10s}
for all x= R" or that s=1 and suppb(z, -)C{&| |£|<10s}. Set t=s"'"® By
Propositions 2.8 and 2.9, we have

16(2, &)l mici-s5.0, x5 = b2, 5)"/1(;,:'; M1
= "b(t"x; t_af) ”A(/c.lc';tm,t'a,ta)

= ”b(taxy t_55) ”m,(’.x‘x' .
Hence, from the assumption of the lemma, we have
16(t°X, t°D) | g p SCBIb(@, &) | mrc1-3.0. 5.5 -

On the other hand, the H?—L? operator norm of b(¢’X,¢°D) is equal to
that of b(X, D). (This can be seen easily from the fact that the operation
Sf=u™?f(u-), where u>0, does not change the norms in H? and L?.) Hence
the above inequality implies the desired result.

Proof of (ii). Set a,(z,&)=al(zx, £)6,(§). By (i), it holds that

”aj(X; D) ”HP-.LPéCB“ame/u-ﬁ).o,x.x' .
On the other hand, by Propositions 2.8, 2.9, and 2.7, we have
lasllmici-sy. 0., 60 = @1l ace, gr;25mi1=85 1.1
=2_jenarj||A(;:,;v,zf(’"/(l"’)“sl1,1)

=27 aj” miC1-8)-¢,0, &, &

§C£2-j5”a’“ml(l-5)—s,0,lc,K' .
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Hence
”aj(X, D) “Hp-—va§CsBz-j! lallmic-s-¢.0.6, 50 «

From this, follows the desired inequality. This completes the proof of
Lemma 5.1.

LEMMA 5.2. Let 0<a<1 and let b and ¢ be real numbers. Let K be
the inverse Fourier transform of the function

(1—-06(8/2))1¢]°(log|é[) exp(i]€]*) .
Then K is smooth in R™\{0} and, if b<n—na/2, we have

]K(x)lNAIxI(b-n+na/2)/(l-a)(log|x|—l)c as w__>0’
where A 1s a positive constant depending only on n, a, b, and c.

As for a proof of this lemma, cf. Wainger [25; Part II] or [16; §5]
or [17; §3].

In the assertions (1)~(7) below, & denotes a real number such that
0<6<1. We shall write as ¥§(x, 0)EL(Y, Z) if the inclusion ¥F(x,x)C
L(Y,Z) (in the sense defined in Section 3) does not hold for any x'>0.
We shall also use the notations ¥P(co,&’), (TT(k, 0))*, and (FTF(wo,«"))¥,
together with the notation ¢.L(Y, Z), in the similar meaning.

Q) If 0<p=2, m=m(n,d,p), and £<n/2, then ¥i(x, c0)EL(H?, L?).
PROOF. Suppose p, m, and x satisfy the above assumptions and
™k, &) L(H?, L?) with some £'>0. If 0<d<1, then we use Lemma

5.1 to see that the inequality
(5.1) 16(X, D) 222 = Cllbllmcn,0. 93,0, . &

holds for all those be S(R*X R™ satisfying suppb(zx, -)C{¢|s/10=&] =10s}
with some s>1. If 6=0, the same is a fortior: true. For s>1, set

b, &)=0,(&/s)<E™™* P~rexp(— | x| — 1)
and
Si(x)=8""?F '6,(sx) .

It holds that {b,},>, is bounded in ST P(x,£’) and that the H?-norm of
f, does not depend on s. Hence (5.1) implies that the L?-norms of b,(X, D)f,
are bounded for s>1. On the other hand, we have
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by(X, D) f (@) =exp(— |wms"'?-"<2z>-"S<e>m<"'°'m-‘(olcs/s»st

=Cs™"* *exp(— |z|?

and hence |b,(X,D)fsll.p—cc as s—oo since x£<n/2. This contradiction
proves (1).

(2) Let 0<p=2. Then ¥y(co,n/p)EL(H?, L?) for any m< R.
PROOF. This can be seen from the following example:

a(x, §)=<x> ""Pexp(—ixé—I[£[) .
This belongs to S7(x, n/p) for all me R and all £>0. On the other hand,
a(X, D) is not bounded from H? to L? since we have
alX, D)f(z) = o>~ "17(2x) " \exp(— |e)FA(E)de
and hence a(X, D)f does not belong to L? for generic f.

8) If 0<p<l1, meR, and «<n/p—mn, then (¥TT(x, «))*EC_L(H?, L?).

PROOF. This can be seen from the following example. Let p and &
satisfy the above assumptions. Take a function ¢ on R” such that ¢ A(x),
¢ & An/p—mn), and suppdC{x||x|<1}. Set

a(x, §)=g(x)exp(—ixé —|§[%) .
This belongs to S7(x,«’) for all meR and all £">0. On the other hand,
the operator a(X, D)*, which is given by
alX, D)*g(y)=\g(a)g(w)dn(4m) " exp(— |y[*4)

is not bounded from H? to L® since the linear functional gHSg(x)ng(x)dx

is not bounded in H?. (This last fact can be seen from the duality between
H? and the Lipschitz space; see [7; Theorem B, p.593], [15], or [24;
Section 2.11].)

(4) The condition
]a?a(x) $)|§Ca<é>—n(1»6)/2—6lal for a,ll a

does mot imply that the operator a(X, D)* is bounded from H' to L'

PROOF. As for the case =0, see [18; Section 5]. We assume 0<d<1.
We shall give an example of a(x, &) which satisfies the above condition and
for which a(X, D)* is not bounded from H' to L'. The example is
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a(@, §) =y{w:>0}(1—0(8))|€]" """ exp(il€]'~?),

where y{x;>0} denotes the defining function of the set {xeR"|xz,>0}. It
is easy to check that this symbol satisfies the condition mentioned in (4).
The operator a(X, D)* is given by

a(X, D)*g(y) =S _J@EK@—ydz,

Z1

where K is the inverse Fourier transform of the function (1—8(&))|&| - "¢-9%
xexp(t|&]'~%). Take a function feCg(R"™) such that suppfC{z|z,>0} and

Sf(x)dwzl, and set g.(x)=r""(f(z/r)—f(—=z/r)) for »>0. Then {g,} is bounded
in H'. 1t holds that, as r tends to 0, the function

a(w, D)*g,(y) =r‘"Sf(x/r)K(x—y)dw

tends to K(—y) in the sense of distribution. Hence, if a(X, D)* is bounded
from H' to L', then it follows that {a(X, D)*g,} is bounded in L' and hence
that the distribution K is a bounded complex measure. But this last fact
does not hold since |K(x)|~A|x| ™ as x—0 (see Lemma 5.2). Hence a(X, D)*
is not bounded from H® to L!. This proves (4).

(5) If 1<p=2, m=m(n,d,p), and r<n—n/p, then WF(k, 0))*E¢
L(L?, L), :

PROOF. Suppose p and m satisfy the above assumptions, #>0, &' >0,
and (T3, £'))*C L(L?, L?). We shall deduce that x=n—mn/p. In order to
do this, we shall show the following two assertions. First, (¥'y'(x, £'))*C
L(L?, L?) for all m’<—n(l/p—1/2). This is clear if §=0; if 0<d<1, we
can deduce it by using Lemma 5.1. Secondly, if (¥% («, £"))*C.L(L?, L?),
then m’'+n/2<k. In order to show this, let 0<¢<1 and consider the
symbol

a(z, &)=(1—0(8€)&|™ ~exp(—|x|*—izé&+1i|&[°) .

The operator a(X, D)* is given by
a(X, D)*g()=g(@lexp(~ al)daK (),

where K denotes the inverse Fourier transform of the function
1—6(8)1&|™ *exp(¢|é]°). If a(X, D)* is bounded from L? to L?, then K
belongs to L? and hence

(5.2) _ —m' +r—n+ne/2>—n(l—c)p
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(we used Lemma 5.2). On the other hand, for all ¢ satisfying 0<ec<1,
the symbol a(x, &) belongs to ¥y'(x,x’). Hence, if (¥§'(k, ")*CL(L?, L?),
then (5.2) holds for all ¢ satisfying 0<c¢<1 and hence —m'+r—n/2=0.
This shows the second assertion. Combining the two assertions, we have
r=n—n/p. This proves (5).

6) If0<p=1l,meR, and ' <n(l/p—1/2), then (T3 (o, £))*E.L(H?, L?).

PROOF. This can be seen from the following counter example. Suppose
p, m, and &’ satisfy the above assumptions. Take positive numbers a and
b such that —b=m, —b+r'(a—1)=m—«’5, and b<na(l/p—1/2), and set

a(§)=(1—0(£))|¢| *exp(il€[*) .

This belongs to S3(x,«’) for all £>0 and yet a(D)*=a(—D) is not bounded
from H? to L”; as for the latter fact, see [16].

(7) If 1<p=2, meR, and &' <n/2, then (¥§ (o0, ))*TL(L?, L*).

PROOF. Suppose p and m satisfy the above assumptions, £#>0, £ >0,
and (T (x, £"))*C.L(L?, L?). We shall show «’=n/2. By duality and Lemma
5.1, it holds that :

(5.3) Uk, k)T L(L, L")

for all m'<m/(1—4d) and for r=p/(p—1). Consider now the following
functions : :
S(x)=(1+1t) " "exp(—|x|*/2(1+1t)),

a,(x, &) =0(x/t)exp(—ix€ — (1 —1t)|£]*/2),

where t is a large positive number. We have

a.(X, D) f(x)=0(x[t)(2r)" "’2Sexp( —&[P)dé
=2""20(x/[t) .
It is easy to see that
| fell pr~ A= P12+RIT as t—oo
and

”at(Xy D)f!llLT:Btn/r ’

where A and B ai’e positive constants depending only on » and ». As for
a,, it holds that
lacln o5 e =Ct” if t>1,
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where C is a positive constant depending only on n, m/, r, and &’ (this can
be shown by elementary calculations if x and x’ are integers; the general
case can be obtained with the aid of Proposition 2.5). From these esti-
mates and (5.3), we obtain ¢*"=O0(t* "**"'") as t— oo, which implies ¥’ =n/2.
This proves (7).

The following two examples show that Theorems 3.3 and 8.4 cannot be
directly generalized to the case 0<d<1.

(8) Let 0<6<1, 0<p<], m=m(n,d,p), and 0<e<né(l/p—1). Set
a(x, &)=a(&)=(1—-0(8))|&|"exp(i|&]'"?)

and

F=FHA—-0(8)I¢"P ")

Then as Sk, &’ for all k,£'>0 and feH?, and yet a(D)f is not locally
integrable.

PROOF. The fact that a=S%(x,«’) for all £,x">0 is easy to check.
Set f,=F"10,(6)|&]™? %) for j=1. Then f;(x)=2Y"P"™2-f(2/"1x) and
I filge=2"9"| fillz». Hence f=3X5.f, belongs to H?. On the other hand,
Lemma 5.2 shows that

la(D) f(x)|~Alx[~™? as x—0.
Hence, since ¢/6 —n/p<—mn,a(D)f is not locally integrable. This completes
the proof.
(9) Let 0<6<1, m=—n(1—-0)/2, and 1<b=2. Set

a(z, &)=a(&)=(1—0(¢))|&|"exp(i|£]'"%)
and

f=F ((1—6(&/4))(logl&])7") .
Then ac Sk, £’) for all k, &' >0 and fe H', and yet N(a(D)f) is not locally

wntegrable.
PROOF. The fact that a=S%(x,«’) for all £,#'>0 is easy to check.
We set f;=F"1(0,(¢)(log|&|)"*) for j=3. Then
I fill = 11F ~1(0,(27726) (log (27 %£1)) ~°) | s
=(J—2)""1IF (6:(8)(log 24 (5 —2) ' log|&]) ) | s
<Cj".

Hence f=3X7.,f; belongs to H' since b>1. On the other hand, Lemma 5.2
shows that
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la(D) f(x)|~Alz| "(log|2|™)™*  as x—0.
Hence, if |xz| is small, we have
Na(D)f)(@)z2 4RIzl |yl (ogly| ™) dy
=cA(b—1)""z| "(loglx| )",

where ¢ is a positive constant depending only on n. From this, we see
that N(a(D)f) is not locally integrable since b=<2. This completes the
proof.
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