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Volterra integro-differential equations of
parabolic type of higher order in ¢

Dedicated to Professor Seizd It6 on his sixtieth birthday
By Hiroki TANABE

1. Introduction.

This paper is concerned with the initial-boundary value problem of the
parabolic integro-differential equation of higher order in ¢:

l
2 Az, D.)D;u(w, t)

- S:B(x, t.s, Dulz, s)ds+f(z,1)  92x(0, T] (1.1)
Bj(z, D;)u(x,t)=0, ji=1,--,m 02x (0, T] (1.2)
(D{u)(x,O)‘——uj, 7=0,1,---,1—1 a. (1.3)

Here A,(x,t,D,), j=1,--+,1, and B(z,t,s, D,) are linear differential opera-
tors in # with coefficients defined in 2 [0, T] and 2x{(t,s): 0<s=<t=<T}
respectively, and A(z,t, D;)=1. {B,(x,D,)}7-; is a system of linear differ-
ential operators with coefficients defined on 92 which do not contain deriva-
tives in ¢ and are independent of t. The operator in the left side of (1.1)
is assumed to be parabolic in the sense of Petrowsky.

In case I=1, when the boundary conditions depend on ¢, the problem
(1.1)-(1.3) was solved by J. Priiss [4] in L?(Q), 1<p<oo, as an application
of his general result on abstract equations.

We plan to solve the problem (1.1)-(1.8) in L?(2), 1<p<o, by con-
structing the fundamental solution W(t,s) as in [4]:

l
3 A (O)D Wit )= S”B(t, Wi, s)do, (1.4)
DiW(t, s)=0 at t=s for j=0,-,1—2 (1.5)
D;"'W(t,s)=I at t=s, (1.6)
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where A, ,(t)=A,_,(x,t,D.) for k=1,---,1—1, At)=1, A,(¢) is the realiza-
tion of A,(x,t, D,) in L?(2) under the boundary conditions B,(z, D,)uls=0,
j=1,---,m, and B(t,s)=B(x,t,s, D;). B(t,s) has the same order as A,(t),
and the integral of the right side of (1.4) should be understood as an im-
proper integral :

t ¢
\ Bt ) Wi, s)do=lim | B(t, o) W(o, 1o
Once the fundamental solution Wi{¢, s) is constructed, the unique solution
of the problem (1.1)-(1.3) can be represented as

w(t)= :2: u,y(8) + S: Wit 5)f(s)ds (1.7)

Jj

Jj
u,() = %uj+ S:S‘W(t, )B(z, 5) % u,deds (1.8)

t i goFf
—S W(t, s) Zj S—A,_j+k(s)ujds for 5=0,---,1—2
0 =0 k!

u-4(8)= W(t; 0)w;-y (1.9)

provided that w;eD(A4,)=D(A,(t) for j=0,:-+,1—2, u,.,€ L?(2), and f(¢) is
a Holder continuous function with values in L?(£2).

We shall begin with the construction of the fundamental solution
U(t, s) to the equation without the integral term:

5 A ODfu(t)=f(t). (1.10)

In [3] J.E. Lagnese treated the equation (1.10) when A, , are independent
of t. He reduced the equation to a system of first order in ¢, while we
follow another method which is a direct extension of that used in the
construction of the fundamental solution (or evolution operator) of para-
bolic evolution equations of first order in ¢ (Section 5.2 of [7]). In this
argument an essential role is played by the weighted elliptic estimates of
S. Agmon and L. Nirenberg [1]. Finally following the method of J. Priiss
[4] we construct the fundamental solution to the original integro-differential
equation.

2. Assumptions and Theorems.

Let 2 be a bounded domain in R*, n>1, with boundary 02. We put
D,=(D,, -+, D,), D;=d/dx;, D,=3d/ot, D3=D;*--- D;" for a multi-integer a=
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(ay, -+, an), ;=0, and |a|=a;+ - +a,. We are interested in operators
l
Wz, t, D, D)= kz_o Az, t, D) D¥ and Bl(z,t,s, D) (2.1)

where A,(x,t,D,) is a linear differential operator in x with coefficients
defined in £ x[0, T, and B(x, t,s, D;) is a linear differential operator in «
with coefficients defined in 2 x 4, where 1={(t,s) : 0<s<t<T} is the closure
of 4={(t,s): 0=s<t=T}.

Let s; be the order of A; It is assumed that

8, =2m, s,§2mj/l, 7=1,.-,1—1

for some integer m=1 and that m and [ are related by the condition
2m/l=d, an even integer. The order of B is assumed to be 2m.

In addition to (2.1) there are m linear differential boundary operators
{B,(z, D,)}7~; of respective orders m;<2m—1 which do not contain D, and
are independent of t. '

We denote by A%(x,t, D,) the sum of terms of A,(x,t, D,) which are
of order dj, and put

!
W(z, ¢, D;, D)= 3 Al.slw, ¢, D)L

Similarly B (x, D,) is the sum of terms of B;(x, D,) which are of order m,.
We assume

(A1) Wz, t, D,, D,) is parabolic in the sense of Petrowsky, i.e. for all
real m-vectors £+0, all (x,¢t)e2x[0, T] and all complex numbers 2 with
Re 220, W(x, t, 1€, 2) +0.

(A.2) At any point. (x,t) of 092x[0, T] let v be the normal to 92 at
2 and & be parallel to 02 at x or £=0. Let 1 be any complex number
with Re 2=0. Then if (& 2)#0, the polynomials in s: B} (x, £+sv), 1<7<m,
are linearly independent modulo the polynomial TIi-(s—s#(&, 1)) where
sf(&, 1) are the roots of k(x, t, 9(6+sv), A) with positive imaginary part.

(A.3) £ is a bounded domain of class C*™. The coefficients of A4,
j=1,---,1, and their derivatives in t of order up to [ are continuous in
2x%[0, T]. The coefficients of B are continuous in £xJ and uniformly
Holder continuous in (¢,s) in 2% 4. The coefficients of B; are of class
Cc™ ™ on 9R for j=1,---, m.

Let W7?(Q), 1<p<co, be the usual Sobolev space with the norm
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ul,p=( 2 { IDeul?dz)”.

The norm of L?(2) is denoted by | [, We denote by W?*™?(Q2,{B,}) the
totality of functions in W®™?(Q) which satisfy the boundary conditions
Bu=0, 1=j<m. We use the notations B(L?, L?), B(L?, W??) to denote
the set of all bounded linear operators from L?(2) to L?(2), W7?(Q) re-
spectively.

The operators A,(t), j=0,-+,1, are defined as follows: A,t)=I, A,(t)u
=A;(x,t, D;)u for ue W 2(Q) if j=1,---,1—1, and A (t)u=A,(x,t, D)u
for ue W ?(Q2; {B;}). Similarly, the operator B(t,s) is defined by B(t, s)u
=B(x,t,s, D;)u for ue W™ ?(Q).

We try to solve the problem (1.1)-(1.8) in LP(2), 1<p< o, and formu-
late the problem as

l t
> A (O)D} ult)= SOB(t, Suls)ds+1t), 0<t<T, 2.2)
(DI w)(0)=wu;, J=0,--+,1—1. (2.3)
For the sake of simplicity we put
l
A(t; DL) = kgo Az-k(t)Df.

DEFINITION. An operator valued function W(¢, s), (¢, s)ed, is called
the fundamental solution of (2.2), (2.3) if it satisfies the following equation
and initial conditions

A(t, D)W(2, 5)= S‘B(t, )\ Wio, 8o (t,s)ed, 2.4)
DIW(t,8)=0  at t=s for j=0,--,1—2, (2.5)
DIWt, s)=]  at t=s. (2.6)

We state the main results of this paper.

THEOREM 1. Under the assumptions (A.1)-(A.3) the fundamental
solution W(t,s) of the problem (2.2), (2.3) exists and is uuique. To be
precise the initial conditions (2.5), (2.6) are satisfied in the following
sense :

lim D} W(t, s)=0 7=0,-,1-2 (2.7)

t-s-~0

in the strong operator topology of B(LP, Wet-1-9-Lp)
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lim D;"'W(t, s)=1 (2.8)

t-s—0
i the strong operator topology of B(L?, L?), and
lim D} W(t, s)=0 7=0,---,1-2 (2.9)

t-8-0

wn the weak operator topology of B(LP, Wet-1-1.27)
Furthermore, the following estimates hold for j+dk<2m :

||D£z Wiz, s)“B(Lp,Wj'p)§C(t_s)l_]_’Pj/d ) (2.10)
where C 1s a constant independent of t, s.

THEOREM 2. For any e, -+, e € W™ ?(2,{B,}), w,.,€L*(Q), and for
any Holder continuous function f(t) with values in L*(Q), the unique
solution of (2.2), (2.3) is given by (1.7)-(1.9). The integral in the right
side of (2.2) exists in the improper semse:

S:B(t, s)u(s)ds= lim S‘B(t, s)u(s)ds .

£~+0 Je

In what follows we denote by C constants which depend only on the
assumptions (A.1), (A.2), (A.3) and p.

3. Fundamental solution of the equation without
the integral term.

In this section we construct the fundamental solution of the equation
without the integral term:

A(t, D)u(t)=f(t) 0<tsT 3.1)
(Diw)(0)=u;  j=0,--+,1—1. (3.2)

By definition the fundamental solution U(t, s) to (3.1), (3.2) is the bounded
operator valued function defined in 4 satisfying

A(t, D,)U(t, s)=0 (t,s)ed (3.3)
Di U(t,s)=0 at t=s for 5j=0,--+,1—2, (3.4)
D;'U(t, s)=1 at t=s, (3.5)
Di{ U, s)=0 at t=s for j=0,---,1—2 (3.6)

D U@, s)=(—1)"1T at t=s. (3.7)
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Moreover, we will show that for j+dk=2m
I Dt U(t, 8)ll s wh 7, =Clt—s)t -+ *0¢ (3.8)
I D% Ut $)ll g w? 2, <C(t—s)t 1+ (3.9
w-lim Df U(¢, s):W—tlim D; U(t, s)=0, k=0,---,1—-2, (8.10)

t-8—~0 -8=0

in B(L?, Wt-1-0?2)  where w-lim means the convergence in the weak
operator topology.

For t[0, T] and a complex number A let A(t, 2) be the operator de-
fined by

D(A(¢, 2))=W*?(2,{B,}), ‘
(A, Duw) () =Wz, t, D, Dulz)  for ue W™?(2,{B,}).

According to S. Agmon and L. Nirenberg [1] (see also J.E. Lagnese [3])
we have the following lemma.

LEMMA 3.1. There exists a constant A, such that if Re1=0 and |A|
>4, the operator A(t, 2) is ome-to-one from W*™?(2,{B,}) onto L*(2) for
each t[0, T]. The following estimate holds for we W*™?(2,{B,}):

2m X
% [2|em=2 |yl , < CIA(, Dull, . (3.11)
J= .
The proof that A(¢ A) is onto is not given in [1]; however, we can
verify it by an analogous method to that of Section 3.8 of [7].
Replacing the unknown function % by e *u for some positive constant
k if necessary we may and will assume that there exists an angle 4,

(7/2, =] such that the conclusion of Lemma 3.1 holds for Ae ¥={2: |arg 1] <6}
U{0}. Hence the bounded inverse A(t, 1)~! exists for A2, and

S 1A, D7F1,,5C1 A, (3.12)

for any feL?(2). Furthermore, it is not difficult to show that A(¢, A)™
is I times continuously differentiable in ¢ for each fixed A2 and

3 [2(em P4 DE Alt, D)7 F 1, SCUS,, k=1, m. 3.13)
pe
For >0, s€[0, T] we put

Ufe, 8)= 5\ e Als, )7'd2, (3.14)
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where I” is a smooth contour running in I\{0} from cce % to coe®o. In
view of (3.12), (3.13)

A(s, D) Uz, 5)=0 >0, s€[0, T] (8.15)
ID:D;Us(z, 8)ll g ?.w? 2, < Crt 71 7k7904 (3.16)
for 1<, 7+dk<2m. In particular
1Dt Uz, $)l 5P . <Cct 1% |=0,--+,1 (3.17)
ID:Uz, )l per? wit-v-2:2,<C  k=0,---,1—1. (3.18)

Hence, we get for k=0,:--,1—2

1in§ D:Uyz,8)=0  in B(L?, L?), " (3.19)
w-lim DtUyz,8)=0  in B(LP, Wet-1-0.p) (3.20)

Next we show
lim DUz, 8)=1 (3.21)

in the strong operator topology of B(L?, L?). Since D 'Uy(z, s) is uniformly
bounded in B(L?, L?), it suffices to show that for each uwe W™?(2; {B,})

1_1151 DUz, s)u=u. (3.22)
As is easily seen

D Uz, s)u= Srzl-lekA(s, 2 uda

2r7

Srl‘le“{Z’A(s, D u—wdA+u

2r1

= —1~S A% A(s, ) Al u— A(s, Duldi+u
2r1 Jr

_ _LS e A(s, NS Ay () RudAu
2 Jr £=0
It is easy to show that the first term of the last member of the above
equalities tends to 0 as —0, and hence (3.22) follows.
The fundamental solution U(t,s) of (3.1), (38.2) is constructed in the
following manner :
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U(t, s)=U,(t—s, s)+Z(t, s) (3.23)
Z(t, )= S:Uo(t—r, 2)R(z, 8)dz (3.24)
R(t, s)— S:Rl(t, O)R(z, s)dz=Ry(t, 3) (3.25)

Ri(t, s)=—A(t, D) Uyt —s, s)
= 3 (Arl9)— A aO)D; Uit —s, 5). (3.26)

If 1=1, Uft—s, s)=exp(—(t—s)A(s)), and hence the above construction of
the fundamental solution is nothing but a direct extension of the argument
of Section 5.2 of [7]. Therefore we only sketch the proof.

In view of (3.16), (3.17), (3.10), (3.20), (3.21) the conclusions (3.3)-(3.10)
follow from the following estimates:

I Dt Z(t, 8)ll ser? w? P, < C(t —s)' 77/ (3.27)

||Df;’ Z(t, s)llg? wi p)éc(t_s)l_k_j/d (3.28)

for j+dk=2m.
The following inequalities are easily seen:

| R(¢, 8)llp? P =C (t,s)ed (3.29)
|R(t, )~ R(z, s)uw,msc{ i_’ +(t—7) log 28 IEED
—8 t—r

for 0<s<z<t<T
[ A(&)(Us(t—s, s)— Ust—s, )Hlls?.’,=C (¢, s)ed (3.31)
(D4 D,)' D¢ Ust—s, )l ae?. 7= Clt—s)' " (3.32)

(t,s)ed, <1, kLI
In the proof of (3.30) we use
”DfHUo(t_S, S)”B(Lp,wd(l—k),p)éc(t_s)'z-

Expressing as

D} Z(t, 5) = StD:’ Ut —7, 7)(R(z, $)—R(t, $))de

~t
+ \S(D,+D_.)Df“’ Ult—1, 2)dzR(t, 8)+ Di'Uy(t—s, s)R(¢, 5)
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and making use of (3.17), (8.29), (3.30), (3.32), we can easily establish (3.27)
for 1<5<I. In order to show (3.27) with 7=0 we first note

StAz(t) Uft—z, t)dr=I— éll A (O)(—=Dy)* Ut —s, t) (3.33)

which follows from A(t, —D.)U,(t—z,t)=0. The desired estimate is a con-
sequence of

A2, 5)= S'AAt)( Uyt —z, 7)— Ust—7, 1) R(z, s)dz
+ S:At(t) Ult—z, t)(R(z, ) — R(t, 8))dr (3.34)

+ SlA,(t) Uyt—z, )deR(t, 5) |

and (3.29), (3.30), (3.31), (3.33), (3.18) as well as the well-known elliptic
estimates.

Following the argument of [6; p. 529] we can show
(D, +D,)'R(t, 8)|| pc? . L?,=C, (t,s)ed for ¢=l. (3.35)

The inequality (3.28) with k=0 is nothing other than (3.27) with k=0.
For 0<k<1 (3.28) is a consequence of

. E /e \(t i ]
D2t 9= 3 ( i )SSD, Ut—z, )(D.+D,)'R(z, s)dr

+{ DUt =, (R (e, 9)— R, 8))de (3.36)
—Dfﬁl Uo(t_S; S)R(t) S) s

and (3.18), (3.29), (3.30), (3.35).

PROPOSITION 3.1. For any g, -+, u-:€ W™ (2, {B,}), w,-.,€ L?(2), and
any Holder continuous function f(t) with values in LP(2), the unique
solution of the initial value problem (3.1), (3.2) is given by

u(t)= ’20 u,-(t)+S:U(t, 5)f(s)ds (3.37)
t/ ¢ j gk .
u;(t)= Wi S Ut,s) X A, ju(s)uds, 7=0,--+,1—2 (3.38)
2! 0 k=0 k!

wi(t)=U(t, 0)u,_, . (3.39)
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PROOF. It can be shown with the aid of a direct calculation and the
argument of Section 5.2 of [7] that the function u(f) given by (3.37)-(3.39)
is a solution of (3.1), (3.2). If p=2, the uniqueness follows from M.S.
Agranovié and M. I. Visik [2] or H. Tanabe [5].

For any voe W™*2; {B,}) the functions U(¢, s)v, and

-1 (g—s)*
= k!

v(t;s)Z%

l
Vo S Ult,0) Avnl0)vodo

are both solutions of the initial value problem in L*fQ):
A(t, D)u(t)=0  s<t=T,
(Diu)(s)=0 for 5=0,---,1—2, (DL ') (8) =,
Hence, owing to the uniqueness we get
Utt, s)v_o:'v(t ;8). (3.40)

When v, is an arbitrary element of W*™?(2; {B,}), we see that (3.40) holds
by approximating v, by a sequence in W*™?(Q; {B))NW*™*; {B;}) in the
strong topology of W™ ?(Q). Differentiating both sides of (3.40) ! times
in s, we get

(—Dy) (UL, 8)Ai-4(8)ve) =0 (3.41)

MN

Il

k=0

Let u(t) be the solution of (3.1), (8.2) with u,= -+ =u,_,=0, f(t)=0.
With the aid of (3.41) and integration by parts we get

0= S: ké:o (—Dy)*(Ult, s)A,-4(s))u(s)ds

— —u(t)+ S: Utt, $)A(s, D)u(s)ds= —ult) .

Thus a solution of (3.1), (3.2) is unique, and the proof of Proposition 3.1 is
complete.

4. Proofs of Theorems.

In this section following the method of J. Priiss [4] we construct the
fundamental solution W(t,s) to

A(t, D)u(t) = S B, u(s)ds+f(t) 0<t=T (4.1)

t
0
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Diw)0)=u;  j=0,-,l-1. (4.2)

In what follows we simply write || | instead of | |lz.? L7,
Let K(t,s) be the operator defined by

B(t, 5)=K(t, 8) A(s) . | (4.3)

By the assumption (A.3) K(t,s) is a bounded operator valued function de-
fined in 4 which is uniformly Hélder continuous:

IK(t', s')—K(t, )| <C(t' —t|*+|s'—sl?), p>0. (4.4)

It would be natural to expect that W(t, s) is the solution of the integral
equation

Wi(t, s)=Ult, s)+ S‘ Utt, r)SrB(r, o) W(e, s)dodr . (4.5)
Putting V(¢ s)=A,(t)(W(t, s)— Ul(t, s)) and calculating formally we get

Vi, s)= S‘Al(t)g‘ Utt, 2)K(z, o0)dr Ay(0) W(s, s)do

- StAl(t)gt Utt, 2)Kl(z, 0)dr V(s, s)do+ Vi(t, s)
where

Vilt, 8)= S‘A,(t)g’ Ult, 1)K (z, 0)deAy(0) Ulo, 8)do . (4.6)
Hence letting V(¢,s) be the solution of the integral equation
Vit, 5)=Vit, s)+StP(t, o) V(s, 8)do (4.7)

where

Pt o) = A,(2) S‘ Utt, 2)K(z, o)dz , (4.8)
we define W(t,s) by
Wi, s)= Ult, )+ A,()"' VL, s) . (4.9)

Rigorously V(¢ s) is expressed as follows:
Vit )= S‘(P(t, o) — P(t, 8)) Auo) Ula, s)do+ P(t, s) StA,(a) Ulo, s)do. (4.10)

By virtue of (3.31), (3.16), (4.5), (3.33), (3.27) P(t, s) is expressed as follows:
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P(t, 5)= S:Al(tx Ut —7, 7)— Uit — 7, )K(z, s)de
+ S:Am Ut—z, (K(z, s)— K(2, 8))dz (4.11)

+ S:Al(t) Ult—rz, t)dcK(t, s)+ S:Al(t)Z(t, 2)K(z, )z .

It is easy to verify that each term of the right side of (4.11) is strongly
continuous and uniformly bounded in 4.
The following inequality is a simple consequence of (4.4):

| K(z, o) — K(t, ) — K(z, s) + K(t, s)| £C(t —7)*"*(c —5)*"
sSo<t=t. (4.12)

With the aid of (3.33) and (3.16) we can easily show

éClogt

(4.13)

StAl(t) Udt—r, t)dr— StAl(t) Uft—r, t)de

Hence making use of (3.31), (4.4), (3.16), (4.12), (4.13), (3.27) we get
| P(t, o) — P(t, s)|

gc{(a—s)w(t—s)ﬁ-l(a—s)+(t—a)P/2(a—'s)w+log t_j . ww
With the aid of (3.3) and integration by parts we get

S‘A,(a) Ulo, 8)do

l - .
=I- 3 A J(OD U 5)+ S‘ El A o)D" U0, )do . (4.15)
In view of (3.8) the right side of (4.15) is uniformly bounded, and so

NS‘AL(U) Uls, s)ds| <C. (4.16)

The inequality (3.8) with k=0, j=d(l—k) implies
I 4:(0) Ule, ) =Cl(a—5) . (4.17)

From (4.10), (4.14), (4.16), (4.17) it follows that V,(t,s) is strongly con-
tinuous and uniformly bounded in 4. Thus the integral equation (4.7) can
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be solved by successive approximation, and the solution V(t,s) is strongly
continuous and uniformly bounded in 4.

Let W(t, s) be the operator valued function defined by (4.9). We intend
to show that W(t, s) is the desired fundamental solution.

t
LEMMA 4.1. The integral SB(t, o)Ul(o, s)do exists im the improper

sense, and strongly continuous and uniformly bounded in 4. Moreover
the following imequality holds for 0<s<z<T:

S‘B(t, o) Ulo, 8)do— S’B(r, o) Uls, 8)do

| (4.18)
<C{t—o)(t—p+ (t— (e s+ (1) +log |
PROOF. The assertion of the lemma follows from
S”B(t, o) Ulo, s)do= St(K(t, o) —K(t, ) Ay(0) Ulo, 8)do
+K(t, s) SlAL(a) Ulo, s)do,
and (4.4), (4.12), (4.16), (4.17).
We put
Qt, s)= S‘B(t, o) Wis, s)do . (4.19)

In view of Lemma 4.1 the integral on the right of (4.19) exists in the
improper sense, and

Qt, 5)= S:B(t, o) Ulo, s)do+ S‘K(t, ) V(o, 8)do .
Furthermore, by virtue of (4.18)
1Q(t, ) —Q(z, s)|

(4.20)
gC{(tvr)(t—s)””+(t—r)"’""(z'—s)””-F(t—r)"-l-log

t—s

T—S$
Noting that

t

4ty Vit o= lim |\ U, 91K (z, 0)de A0 Ulo, s)do

t
st+eJo

= lim S:“U(t, T)S’FB(T, o) Uls, s)dodz ,

e—~+0
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we see that

A1)V, 8) = St Utt, ) R:B(T, ) W(o, 8)dodz
y (4.21)
= S Utt, 7)Q(z, s)dr .

S

According to (3.16), (3.27), (3.31), (3.33), (4.20) the right members of the
following equalities exist:

t
8

A (D! S Utt, 2)Q(z, s)de
- S:Al-ku)(DﬁD.,)Df-* Ust—7, 2)Q(z, 8)de

- S:Al_ku)D,Df-* Ust—z, 2)(Q(z, ) —Q(t, ))dz (4.22)
+ A, (@)D Uyt —s, 8)Q(L, s)

+ S‘Al_k(t)pf 2t 0)Q, s, k=1, 1,

A(t) S’ Ult, 2)Q(z, s)dz -
§ (4.23)
= [ 40U, Qe 9 —att, s)is+ | 40 U, ndsat, ),
S‘Am Utt, 7)dr= S”Am( Ust—1,7)— Ult—z, t))de
$ § : (4.24)

+{ a0 Ue—z, e+ | Avyztt, 2y
Hence, recalling (4.21) we see that
A(t, D)(A(8) V(L 8))=QAt, s) (t,s)ed.
Dj(A,(t)'V(t, s))=0 at t=s for j=0,---,1—1.

Thus we conclude that W(t,s) is the fundamental solution of (2.2), (2.3),
and the proof of Theorem 1 is complete if the uniqueness of the solution

is shown.
It is not difficult to show that the function w(t) defined by (1.7)-(1.9)
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is the solution of (2.2), (2.8) if the hypothesis of Theorem 2 is satisfied.
If w is the solution with u,= -+ =u,.,=0, f(¢)=0, then in view of Prop-
osition 3.1 and (4.3)

A ut)= S:A,(t) S Ult, 2)K(z, 8)dz Ay(s)u(s)ds . (4.25)

It follows from (4.25) that A,(t)u(t)=0, which implies #(¢)=0. Thus the
solution of (2.2), (2.3) is unique, and the proofs of Theorems 1, 2 are com-
plete.

Note added. After submitting the manuscript the author noticed E.
Obrecht’s paper [8]. With the aid of his result it can be shown that (2.9)
and (3.10) of the present paper hold in the strong operator topology.
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