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Cauchy problem for Fuchsian hyperbolic operators, II.

Dedicated to Prof. S. It on his 60th birthday

By Antonio BOVE, Jeff E. LEWIS, Cesare PARENTI
and Hidetoshi TAHARA

In our previous paper [2], we have discussed the Cauchy problem for
a class of Fuchsian hyperbolic operators in distribution spaces, and estab-
lished the existence, uniqueness and propagation results of C*-singularities
of distribution solutions, by constructing a right and a left parametrix
(see also Uryu [8]).

The aim of this paper is to show that the discussion in [2] can be
applied to a somewhat wider class of Fuchsian hyperbolic operators. The
result here is a generalization of results in [2].

§1. Statement of main results.
Let us consider the Cauchy problem :

P(t: x’ Dt, D.r)u:f(t; x) k]
A (1.1)
D’Zu|t=0:gj(x); j:()’ 1)'”:m_k—1
for a class of differential operators P(t,z, D,, D,)(=P) with “regular sin-
gularities” on {t=0} of the form
P=t'Dy'+ 3> t?9 “q; .(t, 2)D{DZ, (1.2)
Jjtlal=m
i<m
where (t, x)=(t, x;, -, 2,) €[0, TIXR" (T>0), keZ, (={0,1,2,---})), meN
(:{1;2:3,'“'}); a:(ah”.;an)EZ:} !a]:al+ A +am p(j:a)EZ+ (J+|a'§m
and j<m), a; .(t,x)eC>([0, TIXR") (j+|a|=m and j<m),

1 a8 e (1 3 Nm /1§ \m
Di=—"=5; @nd D"(«/?I ax1> <ff1 390,,)'

In addition, we impose the following conditions on P:

(A-1) O0=k=m.
(A-2) p(j,a)eZ, (j+|al=m and j<m) satisfy
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p(j, a)=k+v|al, when j+|a|=m and j<m,
p(j,0)=k—m+j+(w+1)|a], when j+|al<m
for some veZ,.

(A-3) All the roots A(t,x,&) (i=1,---,m) of
Mt (@) =0

Jjt+laj=m
j<m

are real, simple and bounded on {(t,x,&) [0, TIX R*"X R" ; |&|=1}.

Then, P is a generalization of Fuchsian hyperbolic operators treated, in
[2] (in fact, the operators in [2] correspond to the case v=0). The indicial
polynomial C(z,{) of P is defined by

C,0)=CC—1 - C—m+1D)+an.(2)({—1) -+ ({—m+2)

+ st amp(2)(E—1) - (E—m+E+1),
where

1 J . .
. (x)_\ (cA=5) s00(0,2), when p(, 0, -+, ) =k—m-+3,
(5=
0, when p(7,(0,---,0)>k—m-+7.

To make (1.1) meaningful, at least at a formal» power series level, we
impose the following Fuchs condition on P:

(A-4) C(x,8)+0 for any = R" and {c{ieZ;iz=m—k}.

Problem (1.1), even for more general operators P, has been solved by
several authors. Baouendi-Goulaouic [1] solved (1.1) in analytic function
spaces, Tahara [4] in hyperfunction spaces, Tahara [5] in C* function spaces,
Bove-Lewis-Parenti [2] in distribution spaces (when yv=0), and Uryu [7],
Tahara [6] in Gevrey function spaces. See also Uryu [8]. In particular, we
should recall here the following :

THEOREM 0 (Tahara [5]). Assume that (A-1)~(A-4) hold. Then, for
any ft, x)eC=([0, TIXR") and any g;(z)eC>(R") (5=0,1,---,m—k—1)
there exists a unique u(t, x)€C=([0, T1x R™) which solves (1.1). Moreover,
the domain D(t, x°) defined by

D(tO) xO): {(t; (.U) = [0; T] X R" ) 'xo— fX/'| <2maxTV(t0—t)} (13)

(where Amax=supf{|A:(t, z, &) ;1=1,---,m, (, x) [0, TIXR" and [£|=1}) s a
dependence domain of (t, 2°)= (0, TIX R". In other words, if f(t,2)=0 on
D(ty, 2°) and g;(x)=0 on D(t, 2)N\{t=0} (j=0,1,---,m—k—1), then the
unique solution u(t, x) also satisfies u(t, x)=0 on D(t,; x°).
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In [2], we have constructed a right and a left parametrix for the case
y=0, and obtained existence, uniqueness and propagation results of C~-sin-
gularities of distribution solutions of the Cauchy problem (1.1).

In this paper, we want to generalize some results in [2] to the general
case v=0.

Now, let us give our results. The existence and uniqueness result is
stated as follows. Let 9’(R™) be the locally convex space of all distri-
butions on R™ with strong topology, and let C=([0, T'], D’(R")) be the space
of all infinitely differentiable functions on [0, 7] with values in 9'(R").
Then, we have

THEOREM 1. Assume that (A-1)~(A-4) hold. Then, for any f(t,x)E
Cc=([0, T, D(R™) and any g,(x)e D (R™) (§=0,1, -+, m—k—1) there exists
a unique u(t, x)eC=([0, T], D' (R™) which solves (1.1). Moreover, the do-
main D(t, x°) s a dependence domain of (t, x°)(0, T]1x R".

The propagation result of C™-singularities is stated as follows. Fol-
lowing [2], we say that f(¢, x)eC>([0, T], D'(R")) is a regular distribution
if

WF(f|z>o)f\{(t; x; T, 5) l t>0; EZO}:Q .

For a regular distribution f(t, ), we define the boundary wave front set
OWF(f) (CT*R™\0) over {t=0} in the following way : we say that a point
(x,&)e T*R™\0 does not belong to aWF'(f), if and only if there exists a
classical pseudo-differential operator B(z, D,), elliptic near (z, &), such that
(Bf)(t, 2)€C=([0,e]x R") for some ¢>0. Let veZ, be as in (A-2), let
Ai(t, x, ) (1=1,---,m) be as in (A-3), and let (2°(¢, s, y, n), £€°(t, s, ¥, 7)) be
the solution of the Hamiltonian equations:

d ) ) . (1) . )
A — bV, 20,69, B v, 2, 69,

(1.4)
zP-s=vy, 5“)[:=s:77

(where t,s<[0, T'] and (y, p) € T*R"~0). Then, the following theorem holds.

THEOREM 2. Assume that (A-1)~(A-4) hold and let f(t, x) be a regular
distribution. Then, the unique solution w(t,z) in Theorem 1 is also a
regular distribution and the following inclusions hold.

(1) dWF(w)Cad WF(f)Umgl WF(g,) .
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@) WE(uls)Cl(t, @, 7, &) | £>0, (4, @, 7, &) € WE(f)}
vy {(t, 7, Aty 3, 6), 8) [ £0,35,2€(0,1), 3w, ) THR™,
r=xP(, 8,9, 71), E§=ED(t, s, 9, ),
(5,9, 5°44(5, 9, 7), m) € WF ()}
vy { (t, @, 24t , &), €) | £>0, 3(y, n) € T*R™0,
x=x(t, 0,9, 7), =69, 0,y, n),
() SAWF()V" U WF(g,)} .

In view of Theorem 0 quoted above, we note that to obtain Theorems 1
and 2 it is sufficient to treat the Cauchy problem (1.1) in C=([0, T'], D'(R™))
modulo C*([0, T1x R™).

The proof is done by constructing a right and a left parametrix for a
reduced system modulo C*([0, T]x R"). This construction and the prepa-
rations needed form the core of this paper.

For simplicity, we may assume from now on that

a;, .t 2)eB>([0, TIXR") (j+]a|=m and j<m) (1.5)

holds (in fact, to get rid of this condition we have only to apply a cut-off
argument). Here, B=([0, T]x R™) means the space of all functions a(t, x)
eC>([0, T]x R™) such that every derivative DiDZa(t, x) is bounded on
[0, TITX R™.

§2. Reduction to a first-order system.

In this section, we shall reduce (1.1) to a suitable first-order mXm
system of pseudo-differential equations. The method of reduction here is
quite different from that used in [2]. The method of reduction proposed
here has the advantage in that we need nothing in proving the equivalence
between (1.1) and the reduced system, while in [2] a deep result of Hanges
[8] was used.

Put

L=(~/=1)™™*P, 2.1)
and define a differential operator L, with a parameter s R by

Low=t"L(t'v) ,
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L= (t8,+8)(td,+s—1) - (ta,+s—m+1‘p
+ X (W=D ermkeig (¢ ) DS (2.2)

j+lalsm
j<m

X (t0,+8)(t0,+s—1) -+ (td,+s—j+1).

Recall that condition (A-4) guarantees the following fact: the Taylor
coefficients {g,(x)}7=0 of the solution wu(t,x) (~35Leg(x)t/[3!) of (1.1) are
uniquely determined by the Taylor coefficients (in t¢) of f(t,x) and the
Cauchy data g,(z) (7=0,1, -, m—k—1). Therefore, for any s Z,, s=m—F,
we can express u(t, x) in the form

s-1 J
ult, ©)= 5 0,(0) -+t 2) (2.3)
j= :

and therefore only wu,(t, ) remains to be determined. Since within the
space C=([0, T], D'(R™)) the equation Pu=f is obviously equivalent to
Lu=(+/—1)™™*f, we can rewrite (1.1) as an equation with respect to
us(t, ) and obtain

Lu,=f; (2.4)

for some known fi(t, x)=C=([0, T], D'(R")).
Hence, in order to transform (2.4) into a first-order system we intro-
duce the unknown functions

w =1+t A" u,,
wo= 1+ A)™%(td, +s)u, , (2.

Do
Ot
=

lumz (t0,+8)(t0,Fs—1) -+ (td,+s—(m—2))u.,

where A1=OPSL(R:) is a pseudo-differential operator with symbol i(§) <
C*(R}) such that 2(£)=1/2 on R} and A(£)=|&| for |&|=1. Then, the rela-
tion

(t0,+s—g+Du;=@+1D)(m—Ht AL+t +A) e+ (1 w4

holds for j=1,:-, m—1 and (2.4) is rewritten into the form

m-1
(to,+s—m=+1)up=— Z)o ki) A+t )+ 1i(2)
~
where

kt)=(v=D"7 X tPoomkoig. (¢, 2)DI1+t1A4) ™ 0 (2.6)

laism=-j

Therefore, (2.4) is equivalent to the following first-order system
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(t8,43) i =K(t) 1+t D+ M) i+ f (2.7)

under the relations (2.5) (when (2.4)=(2.7)) and u,=(1+¢t**'4)" ™'y, (when
(2.7Y=(2.4)), where

0 1 U 0
0 1 Ug . .
K(t)= , a=l |, f=
0 1 : 0
_ko(t); _kl(t): tty —km—l(t) Um fs
and
0 m—1
M= .. co+n T2 et
m—1 . 0

Thus, we have reduced (1.1) to an equivalent first-order m X m system (2.7).
Now, let us make clear the structure of (2.7). Put

Bt 2, 8= 2 4, 2)(VETOAO ™, 28)
(62 8= B aav=10w0 " E () |
b T (WTI e b 20 (29)

X (7 H2(E) L+t 1A(8) ™

for j=0,1,---,m—1, and denote by h;(t) (=h,(, x, D.)), s;(¢) (=s;(¢, 2, Dy))
the corresponding pseudo-differential operators. Since p(j, a)=k+v|al
(=k+j—m+(v+1)|a]) holds for |a|=m—j (by (A-2)), we have

kj(t)tb+1A:tu+1hj(t)A “"S](t)

for 7=0,1,---, m—1. Therefore, (2.7) can be expressed in the form
(t6t+s)ii=t"“A(t)ﬁ+B(t)ﬁ—|—f, (2.10)
where
0 4
0 A
At)= (2.11)
0 A

—ho(t)4, _hl(t)A’ tt —hom-,(8)1
and

(2.12)

0
B(t)_M(t)+K(t)—<so(t), si(t), -, sm_,(t)> '
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The following lemma holds.

LEMMA 1. A(t)eOPSL(R:; mXxm), that s, A(t) (=A(t, xz, D,)) is an
mXm matriz of classical first-order pseudo-differential operators on R®
(depending smoothly on t<[0, T]). In addition, we have

det(I,—a,(A)(¢, x, 'S)):Cm+1+ lfxv.la:maj,a(t, 2)(v—T18)° (2.13)
i<m
for any {C, te[0, T] and (z, &) e T*R™\0.

The proof is clear from (2.8) and (2.11). Hence, by (2.13) and (A-3)
we can find a smooth invertible mXm matrix Ut x, &), (¢ x, &)e
[0, TIx T*R™\0, positively homogeneous of degree zero in &, such that

‘\/-_—1 /zl(t: X, E) 0

U'(t, o, §)a,(A)(E, z, E) UL, , &)= - (2.14)

0 V=T 20t 2, €)
for any (¢, x, &) [0, T]x T*R"\0, where A, are the roots in (A-3). Thus,
the structure of A(t) is clear.

To explain the structure of B(t) (=B(t, x, D,)), let us introduce some
classes S??, Y79 and 579 of symbols and corresponding pseudo-differential
operators.

Let p,gqeR and rN. By S?? we denote the space of all functions
a(t, x, &) e C=([0, T]x R"x R™) such that for any Q&ER", j Z., multi-indices
a,3€Z" and >0, there is a C>0 for which the inequality

|04053%a(t, @, &)| gcw-'ﬂ'(w ﬁ)

holds for any (¢, x)<[0, T]x 2 and |&|=4.

By $¢ we denote the space of all functions ¢(x, £, 2) € C*(R*XS* X R.)
for which there is a sequence (¢_;);.0, @_;(%, £)eC(R*xS™"), such that

o(x, &, 2)~ 2 ¢-, £')2%77 as z—+w (2.15)
jz

holds in the following sense: for any Q&ER" M,keZ,, acZ? and any
family 6,,---, 8, of smooth vector fields on S™7!, there is a C>0 such that

Gy--- 0n3?3§[¢—j<2”s0-j2""] <C(1+ |z])q-M—k

holds for any 2€Q, £ S ! and 2z R,.
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By X2¢ we denote the space of all functions a(¢, x, £) € C=([0, T]X R* X R")
for which there exist d(x, &’,2)e$? and 6>0 such that

alt, », §) =17 " d(x, £/I§1, tIE]")

holds for any (¢, )=[0, TIXR" and [¢|=a.
By 27¢ we denote the space of all functions a(¢, v, §)=S;¢ for which
there exists a sequence (a,);50, @;€27%"/, such that

a~ 2 a;
Jjz0

holds in the following sense: for any M=1 we have

<a— > a,>eS£"”"’.
i<

When r=1, these classes S?? X?%? and Sre coincide with S?9, 37
and 57 respectively, introduced in [2). Since all the properties stated in
§ 2 of [2] carry over (with slight modifications) to the general case x+=1,
we omit the details of basic properties of S?9, 322 and Sre. We may also
omit the details of the corresponding classes OPS?? OPX?? and OPS2? of
pseudo-differential operators. However, for the reader’s convenience, we
recall from [2] the definition of partially regularizing operator as any
operator of the form:

Rf(t. »)=\r(t, v, )/t )y, f(t,2)=C(0, T), ER),

<

with a smooth kernel »(¢, z, ) €C=([0, T]x R* X R").
By using 379 we can explain the structure of B(t) (=B(f, x.D.)) in
(2.12).

LEMMA 2. B(t, x, DI)EOPSS'+"1(me), that s, B(t,x, D,) is an mXm

matrie of pseudo-differential operators belonging to OPS°2,.

PROOF. Since A(&)=|&| for |£|=1, we can easily see the following :
(tH12E) 1+ 12(8) " e TS ;
g ermokoiga(] g rI(g)) T g Bl T pa ke
C Y0P artmok-j-Gbial - for j4 |g| Sm ;
£ im-k=j a1 (£))(1 4 ¢ FIA(E)) ™ @ I FIHI T b ke e kL

Cz‘?f%j.a)+m-le—j—('.+l)!al fOr ]_{_'a[ <m i
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Since p(4, a)=k—m~+j+(v+1)|al holds for any (j,a) (by (A-2)), we have
28f§jﬁ)+m—k—j—(u+l)lalCZA"%_OI .

Hence, by combining these with the facts: b 3'+°1~f 0.0 =599 and So-3 E;PICEA o0

(if S depends smoothly on t[0, T']), we can obtain B(¢, x, D) e300 (m X m).
Q.E.D.

§3. Decoupling of the reduced system.

By the reduction in § 2, we may discuss the following singular hyper-
bolic system instead of (1.1) from now on:

Pow=((td,+s)[n—t""A(¢, x, D) — B(t, x, D,))v=yg, (3.1)

where s€Z,,

'\/_—1 xl(t: a;: DI) 0

A(t) xz, Dz): EOPSéI(Rn.me)

0 V=TI Aa(t, @, D) (3.2)

(depending smoothly on t<[0, T')), B(t, x, D,) OPS'Bf,(me), and they may
be assumed to be proper. Our hypothesis of (A-3) is stated as follows:
A:(t, z, &) (i=1,---,m) are real valued smooth functions on [0, T']x T*R"\0,
positively homogeneous of degree 1 in &, such that A,(¢, x, £)# 2,(¢, «, &) for
any (t, x,&)<[0, TIX T*R™\0 and 1<1#j7<m.

The purpose of this section is to prove the following result.

THEOREM 3. Let &, be as above. Then, there exist proper operators
Q, BeOPY% % (mXxXm) which satisfy the following conditions.

(1) Q is imvertible in OPS°2(mXm) modulo o partially regularizing
operator.

(2) For any wER", there is a 6>0 such that the symbol b(t, z, &) of
B is diagonal on {(t,x, &) ; x€w and t|E|VCP=5).
(8) Put

Po=(td,+8)Ln—t""'Alt, @, D) — B(¢, x, D) . (3.3)
Then, we have

PR—QP,=a partially regularizing operator. (3.4)

Let us first prove a weaker result.
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PROPOSITION 1. There exist proper operators Q, BEZ,,H(’me) which
satisfy (1), (2) in Theorem 3 and

PR—QP,0PS 5(mxm), (3.5)
where S5 = NS4,

PROOF. To obtain this, it is sufficient to find Q@ and B at the level of
formal symbolic calculus in 3% (m X m).
Put

alt, z, §)=Alt, x, £/1€]) (3.6)

(where A(t, x, &) is the symbol of A(¢, 2, D,) in (8.1)). Since a(t, z, &)<
WR™: m><m) depends smoothly on t€[0, T], we can easily see that
alt, z, £)e 3% (mx m) with the asymptotic expansion :

alt, , $)~J_=EO a;(t, x, ),
a,t, x, §)=18177""Pa,(t, &/ 1€, tIE]*P) e X0 (m X m) (3.7)
a2, &, 2)= <7 (01a)(0, 3, €)' = S/ mxm)
Let b(t, ¢, &) be the symbol of B(t,z, D,). Since B(t, x, D,)e %% (mXxm),
we have an asymptotic expansion of the form
b~ %‘,obj, b;e X% (mXm),
bj(t,]x, €)= 8|71 *Db,(x, &/|€], t]&1"+D), (3.8)
1 bi(x, &, 2) €8 (mxm).

Denote by q(t, x, &), b(t, x, &)e V+1(m><m) the symbols of the unknown
operators Q(t z, D,), B(t, x, J)EEHI(me), and let their asymptotic ex-
pansions (in 3°%(m X m)) be as follows:

qr E q;, ¢;EIVh(mXm),
a;(t, @, §) =877 *Pq,(x, §/|€], t]§[V*)
4w, &, 2)e$ (mxm), j=0;
~2b;, b;ell(mxm),

j=o0

(2, @, €)= 817/ b(w, §]|&, tIEV)

b.(t
by(x, &, 2) e $mxm), 5=0.
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To obtain Proposition 1 it is sufficient to find (matrix) functions g,, b ;€8
(=0) which satisfy the following conditions :

(i) @z, &,2) is invertible on R*XS*'x R,. A

(ii) For any wE€R" there is a >0 such that b,(z,&’,2) (j=0) are
diagonal on {(x,¢&’,2);x<€w and z=4).

(iii) By putting

B, =0+ )Lt Alt, 2, D) —( 2 ,0t,2, D)), (39)

J

we have for any M=0
M M ~ A
@ Z 0ty 2, 0)—~( Z a7, D)) Prw cOPSU (mxm) . (3.10)
=0 =0

Our next step will consist in obtaining (3.10) through a family of
recursive differential equations involving the symbols q; and b,. To this
purpose, it is essential that the following relations hold:

tH-I[A(t; X, DJ:)) qj(t) x, D;)]EOPSE.{I(MX m) ) jZOJ 1; tt. (3'11)

It is not difficult to verify that (3.11) is satisfied if denoting by §,(z, &', 2)
~ 3ol -x(x, £')277* the asymptotic expansion of §;€$7, we have

(70,0: ms (70,—1: tt —__QO,-LZOJ
‘ (3.12)
q‘j,oz(’jj\ﬂlz e :(7]‘,_.,:0 fOI‘ ng .

Under conditions (3.12), relations (3.10) (M=0,1,2,---) can be expressed
by the following recursive family of differential equations:

10:q0(t, 2, &) —t ! |&|[ao(z, &), qult, z, &)]
—bolt, @, €)qu(t, , &)+ qult, @, £)b(t, z, £)=0,
0. (t, ®, &) — " &|[a(, £), qu(t, 2, £)] (3.13)
—bo(t, @, E)qu(t, @, )+ qu(t, =, £)b(t, z, &)
+qlt, , E)EM(t; x, 5):¢'M(t: z, &),
M=1,2,8,--,

where a2, E):a(O_, x, &) (in (3.6)), and ¢ y(t, x, &) € F°%X(m X m) is a function
determined by qo, boe T2G(mX M), -+, -1, bsr1€ X0 m X m).

By putting z=t|&|V**" relations (3.13) can be reexpressed in the
form
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20.00(x, &, 2) — 2" [anl, §°), Go(x, €', 2)] R
—bo(z, &, 2)0o(x, &', 2) +4o(x, &', 2)b(x, &, 2)=0,
20,4 y(z, &, 2)—z"alx, &), Gulz, &, 2)] R (3.14)
_Bo(x; &, 2)qulx, &, Z)+(7M(Am, &, z)i)o(x; &,2)
+du(@, &, 2)bu(, &, 2)=u(w, &, 2),
M=1,23,---,

where §y(x, &', 2)€$”(mXm) is given by the relation :
SbM(t, x, E): |El~_nll(:+1)‘r/;y(x, E/]Sl; tleil/(uH)) )

To conclude, we have reduced the problem to finding g, It)je$"(m><m)
(7=0) which solve (3.14). As a consequence, Proposition 1 follows from
Lemmas 3 and 4 given below.

LEMMA 3. Let a4z, &) and by(x, &', 2) be as above. Then, there exist
q(w, &', 2), b(z, &, 2)e$(mxm) with q(x,&,2)~2;.0-;x, &)z, bz, &, 2)
~X b, &)277 (as z—+o0) such that the following conditions are
satisfied :

(1) qlx, &, 2) is invertible on R*XS™ 'X R,.

(i1) qo®, &)=1In q(x,&)=--=q.(2,&)=0 and all the diagonal
terms of q-;(x, &) (j=v+1) vanish.

(ili) For any w€R™ there is a 6>0 such that b(x, &, 2) is diagonal
on {(x,&,2);x€w and 2=6}.

(iv) b_j(=, &) (5=0) are diagonal on R"xS"%

(v) The following equation s satisfied :

20.q9(x, &, 2)— 2" " [aix, &), q(x, &, 2)]

B (3.15)
—bo(z, &', 2)q(x, &', 2) +a(x, &', 2)b(w, &, 2)=0.

PROOF. It is easy to check that the formal power series X ;,0q-;(x, £')277
and 3.0 (%, &)z’ satisfying equation (3.15) are uniquely determined
provided conditions (ii) and (iv) hold. Therefore, we can construct ¢*(zx, &', z),
b(x, &,2)€$%(mxm) such that ¢*~3,..q-,27%, 5~E,zob_,-z‘f, b(x, &, 2) is
diagonal, and

20.0* — 2" [ao, ¢*1—bog* +q*be S~ (m X m) .

To prove Lemma 3, we must get rid of the $ “(mXm)-part. Put
—9=20,9" — 2" [ay, ¢*]—bog* +¢*b, and let us consider the equation

20,0 —2" " ao, 0] —bop+pb=g (3.16)
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n {(x,&,2);2>0}. Since (3.16) is a non-degenerate ordinary differential
equation on {#>0}, by the same argument as in the proof of Lemma 3.1
in [2] we can obtain a solution ¢(x, &’,2)€C*(R"XS" X {z>0}: mXm) of
(8.16) such that ¢(x,&,2)~0 (as z—+ o) in the same sense as (2.15).
Therefore, by putting §=q¢*+¢ we have §(z, £’,2)eC?(R"XS" "X {z>0}:
mXm) with the same asymptotic expansion as ¢* such that

~
A

20.4—2" [0, §1—boG+Gb=0

on {(x,&’,2);2>0}.
Since the asymptotic expansion of § satisfies the condition (ii), for any
w@R™ there is a >0 such that

1
sup llmiq\(@: 5/.- Z)|<'§-

rew.§'esn !
220
Hence, we can choose a cut-off function y(x,2) so that by defining
q(x, &, 2)=y(x, 2) [+ (1—yx(x, 2))4(x, &', 2)

we have |I,—q(x, &,2)|<1/2 on R"XS"*'xR,. The matrix q(x, &, z)e
$°%(m X m) satisfies (1) and (ii). Moreover, by putting

b=b—q '(28.qg—2"*"[a0, q)—boq+qb)

we can conclude that b(x, &’,2)e$%(mxm) and satisfies (iii), (iv) and (v).
To prove (iii) and (iv) we use the remark that for the function f=
20,q—2" [ao, q1—bog+qb we have supp(f)C{(x, &', 2) ; y(, 2) #0}. Q.E.D.

LEMMA 4. Let ax, &), box, &, 2), qlx, &, 2) and b(x,&,z) be as in
Lemma 3. Let M=1 and let c(x, &,2)e$%(mXxXm) with c(x E 2)~
SieeC-;(x, )27 (as z—+o0). Then, there exist Q(x,&,2), B(x, &, z2)e
$*(mxm) with Qx, &, 2)~2,0Q-,(x, )2" 7, B(x, &, 2)~3 ;.08 -;(z, E )zM d
(as z— + o) such that the following conditions are satisfied :

(1) @z, &NV=Q_y(x, &)= -+ =Q_.(x, &)=0 and all the diagonal terms
of Q_;(x, &) (j=v+1) vanish.

(ii) Bl(w, &, 2) s diagonal on {(x, &', 2) ; x€w and 2=6} for any 0 ER"
with the same 6>0 as wn (iii) of Lemma 3.

(i) B_,(x, &) (j=0) are diagonal on R™XS™'.

(iv) The following equation 1is satisfied :

zazQ(x,‘ 5/1 z) —zhﬂ[ao(x; E’)) Q(x: 5’: z)]
—bo(x, &, 2)Q(zx, &, 2)+Q(x, &, 2)b(x, &, 2) (3.17)
+q(x, &, 2)B(x, &, 2)=c(x, £, 2) .
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PROOF. Since the coefficients Q_(z, &’), B_,(x, &) C*(R"XS™ ' ; m X m)
(7=0) are uniquely determined from (i), (iii) and (3.17) at a formal level,
we can conclude in the same way as in Lemma 3. Q.E.D.

Having proved Proposition 1, to prove Theorem 3, we must get rid of
the S2%(m X m)-part (note that operators with symbol in S%%5(m X m) are
not partially regularizing).

PROOF OF THEOREM 3. By Proposition 1 and its proof, we have con-
structed two operators @, B OP3%, (m x m) with symbols §(¢, z, £), b(¢, z, &)
which satisfy the following conditions :

(i) q(t, x, &) can be splitted as the form
G(t) x; &):(IO(t) x} E)—}—q,(ty fC, 5) (318)

for some invertible matrix q.(¢, «, &) € 2% (m X m) and ¢’(¢, x, &) ef’;}r‘(me)
C I HED Y g X ).

(ii) For any w € R™ there is a >0 such that b(t, x, &) is diagonal on
{(t, 2, &) ; x=w and t|&|Ve*P =g}

(iii) @ and B satisfy

P.O—0((td,+s),—t**'"A—B)=R< OPS 5 (m X m) . (3.19)

(iv) There is a cut-off function y(x, 2) such that the diagonal terms of
qo(t, %, &) do not vanish on the support of the function (1—y(zx, t|&|V>*P).

To get rid of the term R in (3.19), it will be sufficient to construct
two operators S€OPS;'(mXxm), VeOPSjmxm) with symbols s(t, z, &)
and v(t, 2, &) respectively such that the following conditions are satisfied :

(v) (@, x, &) is diagonal on [0, T]X R"X R™".

(vi) S and V satisfy

195 _[p+14, ]~ BS+SB+SV+QV
ot (3.20)
+(1—y(=, t| D" P)Re OPS;>(m X m) .

Here, we use the notation S? to denote the space of all functions ¢(t, , &)
eC>([0, TIx R*X R™) such that for any Q€R", M,jeZ, and a, = Z7,
there is a C>0 for which the inequality

|0i0%080(t, x, &)| SCtY(1+]&))?~'#

holds for any (¢, 2)€[0, T]X 2 and £ R™
If such operators S and V as above can be found, by defining



Fuchsian hyperbolic operators, II 141

Q=Q+(1—y(=, t|D,|V>*2)S,
B=B+(1—y(, t|D V")V,

we obtain the desired operators Q, BEOPAS;fl(mX m) as stated in Theorem 3.
To verify (1)~(3) in Theorem 3, we have only to use (i)~(iii), (v), (vi) and
the following inclusions (whose proof is left to the reader):

2, t|D|V*0)-OPSCOPS 7,

(1—x(z, t| D, |"**?))-OPS}3COPS},

x(z, t|D,|"“*?)-OPS¥COPS;5,

(1—y(z, t|D,|"**P))-OPS}COPSE .
The construction of S and V is done as follows. Put

[ s(t, @, §)~ 2 8-1-j10+0(t, %, €)

S~—l—j/(',+1)(t) x: 6) = S}I—j/('.d-l)(mx m) ’

(3.21)

i ’U(t) X, &)N 2 /v—j/(x«+1)(t; x, E) ’
jzo (3.22)

V_jiaen(t, @, §)€SFI TP (m X m),

and impose the following conditions:

(vii) All the diagonal terms of s_,_j+n(t, 2, &) (7=0) vanish.

(viil) v_jen(t, 2, &) (=0) are diagonal.

Under conditions (3.18), (3.21) and (3.22), the equation (3.20) modulo
OPS;U*P(mxm) is expressed in the form

—[tHA, , §), su(t, , O]+ qlt, x, Hudlt, @, &)
+(1_X(x» t[$|”("+l)))""(t; T, &)=0 modulo S;l/(wn(’mx m) .

(3.23)

Now, by using (iv) we can uniquely find s_,(¢, 2,£6)eS; (mXm) and
vo(t, x, &) e SYm X m) satisfying (vii), (viii) and equation (3.23) (for details,
see [2]).

Proceeding by induction on j, we can construct s_;_jj+1, €S, (m X m),
V_jjwsn€S7 ¢ P(m X m) for j=0. Thus, we can obtain s€S7'(mxm) and
ve SHmXm). Q.E.D.

§4. Construction of parametrices.

In this section, we construct a right and a left parametrix for the
system &P, defined in Theorem 3, under the assumption that s is sufficiently
large. To simplify notation, we drop the ~
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Let us state precisely our situation. The operator treated here is of
the following type:

Ps=(t0.+8)n—t" AL, », D,)—B(t, », D), (4.1)

where A is the matrix given by (3.2) with the condition (A-3), and
BeOPfol(me) with a symbol b(t, x, &) ~3,.0b,(t, 2, &), b€ X204 (m X m)
satisfying the following condition: for any w@&R™ there is a >0 such
that b(t, x,&) and b,(t, x, &) (j=0) are diagonal on {(¢, x,&); xr=w and
t|&|V*P=¢6}. In addition, we may assume that A and B are proper, and
that

bo(t, x, &) is bounded on [0, T]X R*X R™. (4.2)

In order to state our results, we need to define some symbol classes to
which the amplitudes of the parametrices will belong.

Let p,ge R and reN. By HS?? we denote the space of all functions
alp, t, z, £)eC>((0, 11x[0, TTX R*X R™) such that for any QER", j,leZ,,
a, BeZ" and ¢, 6>0, there is a C>0 for which

o630 0350800, 1, , €)1 <CIEl 2 (¢ g7 )

holds for any (p, t, ) (0, 11X [0, T]X 2 and |&|=4.

By H$? we denote the space of all functions ¢(p, 2, &', 2) C>((0, 1] X
R*xS"*'x R,) such that for any 2€R", l,keZ,, acZ?, ¢>0 and any
family 6,,---, 8, of smooth vector fields on S™7!, there is a C>0 for which

16, ++ 0,0°(00,)'0%0%0(p, x, &', 2)| SC(1+z])**

holds for any p=(0,1], x€®, £=S™"! and zeR,.
By HY?? we denote the space of all functions alp, t, x, &) €C=((0, 1]1x
[0, T1x R*x R™) for which there exist d(p, x, £, z) € H$? and 6>0 such that

alo, t, x, §)=1617"""a(p, x, &/1€l, tI1€]"")

holds for any (0, t, )= (0, 11X [0, T]X R™ and |&]=4.
By H3?? we denote the space of all functions alp,t, x, &)= HS?? for
which there exists a sequence (a;);z,, ¢;=HE??"7, such that

a~ X a;
jzo

holds in the following sense: for any M=1 we have

(a— > aJ-)eHS’;"’”’.
Jj<M
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When £=1, the above classes were already defined in [2] to which we refer
for some basic properties.

Now, let us state our construction of a right parametrix for &, in
(4.1). Let o,(t,s, z, £)eC=([0, T]X[0, T]X R™x R"\0) be the solution of

atsoj(t; S, x} S):tLZ](t; CC, szaj(t; S; x: E)) ]
(4.3)
Pile=s=2-§

(7=1,---,m). Then, ¢,(t, s, @, &) is real valued and positively homogeneous
of degree 1 in &. Put

ilo, t, @, 8)=p,(t, ot, %, 8), J=1,--,m (4.4)

for any pel0, 1], put

PREBCIE I
0
1€ L. 2,8)
g9 tn) = - (4.5)

2
ei(,bm(p.t,z'.é)

and for any Ilpt,x, 5)EH2‘2;,°1(m><m) define the operator E(h):
C>([0, T, & (R™))"—C=([0, T], D'(R™))™ by

1 -
B )= ev et =on(o, 1, 2, €) Flot, €)dpde
0 Re
for f(t, x)eC=([0, T'], & (R™)™
The following result holds.

THEOREM 4. Let P, be the operator in (4.1) and assume that s is
sufficiently large. Then, there exists a matriz h(p,t, x, &)erSfl(me)
such that

P,E(h)—1id : C=([0, T], &' (R")™—C=([0, T]x R™™.

The following lemma will play an important role in the proof of this
theorem.

LEMMA 5. Let ¢(p, t, x, &) denote any of the ¢’s in (4.4). Then, we
have the following :

(1) ¢lo, t, @, )€ HE} with the [asymptotic expansion ¢(p,t, x, &)~
Ekzoﬂlf'(k)(!); t} w} E); (/)(k)EH 3—}1 (]Cg()) S'LLC]'L tha/t
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PO=g-&,
PP= o =¢™=0 (if v=1),

(w1 (1- PHI)
=

§0 =2 0o, 0, 3, EIIENIEN MDD (k=u+2).

gy A0, m, §/IEN @[V,

(2) For any cut-off function y(z,z), we have
e—iz-ex(x’ t]flll(”“))ew(p't'r’f)EHSS’& .

PROOF. To obtain (1), it is sufficient to show that ¢(p, t, z, &) has the
form

oo, t,x, 8)=x-6+ (—(—_‘jﬁ)t”“l(O, %, &)+t (p, t, @, §) (4.6)
for some @(p, t, x, &)= C=([0, 1]Xx[0, T]X R™x R*\0). This can be verified as
follows. Let ¢(t, s, @, &)~ ;2004 ;(2, £)t's’ be the Taylor expansion in (¢, s)
of ¢(t,s,x,&. Then, by (4.3) we have

' LA, ¢, V.0, s, x, §)~ T ta;;t''s

1,520

xEN 2 ai,,-t”j . (47)
7,720
Moreover, by putting t=s in the first relation in (4.7) we have
AL, x, &)~ 2 g, (4.8)

i,j20

Therefore, by comparing the coefficients in (4.7) and (4.8) we have

a;;=0  for 1=<i=<y and 720,
aO.OZx's,

E ai,j=0 for l;l,

ifj=L

> ias;=400, %, ).

t+j=v+1

Hence, we obtain

J%"’:-’”'e,
a;;=0 for 1=<i4+j5=v,

_ 20,8 o 20,2, 8)
1a»+1,0‘— (U+1) y Oy 1= _“al,u'_o,ao}‘__{_l—— (D+1) .
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This implies (4.6), because ¢(p,t, x, §)=o¢(t, pt. x, §).
By (1), we have

g, t|g[e D)o et O e HE,
“ (4.9)
0([0: t; x, é)z(ﬁb_ x'5_¢(y+l))(P; t; x, 5) EHEE%‘:‘?—Z .

Therefore, (i6)*/k! € HS*&*?* with an asymptotic expansion (i6)*/k! ~3;.05,
P e HIHG+P¥7 (520). Since y05° € HY 4 for any k, j=0, it follows from
(4.9) that ye*“™6{¥ e HI%}4r7. Hence, (2) is a consequence of the following
relations :

e_iz.gxei‘;, :Xew(w-l)ew

gD (16)*
B TR

~3 ( > xew‘”“’eg“). Q.E.D.

r=0 \k+j=r

To prove Theorem 4, let us first show the following weaker result.

PROPOSITION 2. Let P, be as in (4.1) and assume that s is sufficiently
large. Then, there exists a matrix hip,t, x, &) HY):"(mXm) such that:

PE)—(@d+E(q) : C([0, T], &/(R"))"—>C=([0, TIx R™)"
for a suitable matriz q(p, t, x, &) € HS ) (mX m)= N geHS 24 (m X m).

PROOF. Let h(p, t, x, &) HE%(mXm) be such that h(l, ¢ x,&)=1I,.
Then, using Lemma 5 and proceeding as in the proof of Theorem 4.1 in
[2], we obtain

PE(h)—1d=R,+E((td,+s—pd,—1)h—p(h)) (4.10)

for some partially regularizing operator R, and a matrix p(h) e HS 00 (m X m)
(depending on k) satisfying the following condition: if h(p, ¢, a,&)e
H2%\(mXm) for some leZ, with an asymptotic expansion h(p,t, x, &)~
Sl b, @,8), R €HYN (mXm) (5=20), then we have p(h)e
HY% (mXm) and p(h) is expressed in the form
p(h)(p, t, , &) =bo(t, 2, E) hilp, t, 2, &)
+ A7 (p, x, /1], 1N P)y(w, tIE]VH)DY (8, , &)
X Ao, , &[], tIE[V*P)hy(o, t, x, &)

+2'(R)(o, 8, %, )
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for some p’(]z)EHfﬁlfl(me), where by=b,(t, x, &), by=0b(t, x, ), x(x,2)
and A*(p, x, &', 2) are as follows:

bém). ' 0 0 . bei-»
b= . b=

0 ’ 'bgm.m) b§*” .' 0

(where b§“” is the (4, j)-component of by=by(t, , &), x(z,2) is a cut-off
function satisfying y(x, t|€[Y“*P)by(¢, x, £)=by(t, x, &), and

ej:iz”'“(l4,11"+1)11(0,.1:,6’)/(14+1)

A*(p, x, &', 2)=

0

0 eiiz”"'l(l—p”+’)1m(0,z,5’)/(-,+1)

Hence, by putting h(p, t, @, §)~Zj.oh;(0, t, x, &), hy€ HEY(mXm) (§20) we
are reduced to finding h;€ HY’/,(mXm) (j=0) which solve the following
transport equations:

(tat+s—pap_ l)hJ((o; t; X, S)—bG(t; x, 'é:)h](p; tr x, 5)
— A7 (p, x, &[|&], tIE[V )y (e, tIE|VHP)BG (8, 2, §)
X A* (o, x, &/|&], tIEIV D)0, t, 2, &) wn
—Flot 2 8), §=0,1,2,-, 1D
I,, when j=0,
Bjlo=1= .
0, when 7>0,

where f,=0 and f; is a matrix in HI%/,\(mXm) determined by
ho€ HY(m X m), -+, h;_y€ HEY T (m X m).
Put

kmma%azwwmmwm%amﬁm“mm
hylo, x, &, 2)€ H$(mXm) (5=0),
and put z=t|&|Y¢*®. Then, (4.11) can be rewritten as
(zaz+s_pap_1)ﬁj(p; x} E/) z)_ Bé(x) E,) z)ﬁ](p) x; EI) z)

— A (o, &, &, 2)y(x, )by (x, £, 2)A* (0, «, &', 2) (0, %, &', 2)
1 =Fip, x,&,2), j=0,1,2,-, (4.12)

~ I,, when =0,
hjlo=1= .
0, when 7>0,

where bi(x, &', 2) [resp. bl(z, &, z)]§$°(m><m) is such that bo(t, @, §)=
bo(a, E/|€], tI€[V*D) [resp. bi(t, x, &)=by(x, &/I&], t|&[V**P)], fo=0 and f; is a
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matrix in H$/(m X m) determined by Ao H$(mxm), -+, h;.1 € H$ " (m X m).
Hence, our problem is reduced to finding h,-eH$’(m>/ m) (j=0) which
solve (4.12). Thus, Proposition 2 is reduced to proving the following lemma.

LEMMA 6. Let k=0. Assume that s satisfies the following condition :
Re[bi(x, &, 2)+ A (o, x, &, 2)x(x, 2)bi(x, &', 2)A* (0, x, &', )] = (s— DIp

for any p€(0,1], xeR", &'€S™ ' and zeR,. Then, for any $(x,&,2)<
$¥mxm) and glo,x, &, 2)€ H$* (mXm) there exists a unique matriz
flo, a, &, z)e H$*(m X m) such that

(20.+5—pd,— 1) f(p, %, &', 2)—bi(w, &', 2) flo, , &', 2)
J — A (o, , &, 2)y(w, 2)b}(x, &, 2)A* (0, x, &', 2) f(p, x, £'. 2)
l =g(p, x, &', 2),

f|p=1:¢(90; &,2).

By putting C(z, &, 2)=0b)(z, &, 2)—(s—1)I, and C'(p, x, &, 2)=
A (o, =, &, 2)y(x, 2)b!(x, &, 2)A*(p, x, &, 2), we can obtain this lemma directly
from Lemma 4.3 in [2]. Thus, the proof of Proposition 2 is completed.
Q.E.D.
PROOF OF THEOREM 4. Let h(p, t, v, &) H 5.0 (m X m) and q(p, t, 2, &) e
HS?:5(mXxm) be as in Proposition 2. Let y(x,2) be a cut-off function and
put
qolp, t, 2, &) =x(x, tIE[V*P)q(p, t, , &)

Polo, t, 2, §) =1 —x(x, tIE[V"D))q(p, t, @, £) .

(4.13)

It is easy to check that E(q,) is a partially regularizing operator and that
polp, t, ¢, &) € HSHm X m) (the definition of HS7 is analogous to the definition
of S; given in the proof of Theorem 2, the only modification being the
usual p-behavior of the symbols). As a consequence, to obtain Theorem 4
it is sufficient to find 7(p, t, x, &) € HS}(m X m) such that

PE(r)—E(py) : C=([0, T], & (R")™—>C=([0, T]x R™)™. (4.14)

In fact, if such an reHS%mXm) is found, then we have (h—7r)e
HZ” (mXxm) (since HSFC HS?7) and therefore
P,E(h—r)—id : C=([0, T], &' (R™))"—> C=([0, T]x R™*)™.

Now let us find the matrix » in (4.14). Put L,=Lp,t, %, &, 0,)
: ) m), Bi,j:l;i,j(p; t: z, 5) (7') jzly tty, m): E/:I;/(‘O, t; &, 5) and 6”:
b ( ,t z, &) as follows:

,-\
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Li: <v$'li(t; x, vz¢i(p: t; xz, E))) a.‘c>

1
+ Z: F(agzl)(t: x; vz¢’i(P; t: Z, 5))ag¢L(p) t! Z, E) b)

lai=2 .
I;i‘j:bi,j(t; X, Vz¢j(p: t, z, §))

(where b, ;(t, x, £) is the (7, j)-component of b(¢, x, &),

b .
N 0 A
b'= and b= _

0 T b

bon.m

ij 0

Let y(x,2) be a cut-off function such that y(zx, t|£|Y**P)b, (¢, x, £)=b, ,(t, x, &)
holds for any 1=i#j=m. Let r(p,t, x, &) € HS%(m X m) such that r(1, ¢, z, &)
=0. Then, by a formal symbolic calculus as in the proof of (4.10) we
obtain :

PE(r)=E((to,+s—p0,—1)r)— E(M(p, t, x, &, 3.)r) + E(l(r))

modulo partially regularizing operators, where M=DM(p,t, x,&0,) is a
matrix of differential operators given by
Ll(p; t} CU, 5: az) 0
M: tu-H . .

0 Lo, t, ®, €, 0.) (4.15)

+b'(0. t, w, &)+ eI T Oy (a, tE]1OTO)D (0, ¢, w, £t HE,

and I(r) is a matrix having the following property : if re HS;¥(mXm) for
some keZ,, then [(r)e HS;*'(mXm). Hence, by putting r(o,t, x, &)~
Siar-ilo t, %, &), r_i(o, t, x, §)e HS;/(m X m) (7=0), we reduce our problem
to finding r_;€ HS;/(mXm) (§=0) which solve the following equations:

(taz+S_Pap_ 1)7‘—1'((0: t; x, &)—J‘l(p) t; X, G; 31)7'-1(‘0, t; X, S)Zp-;‘(P, t; X, E) b
/r"J'|P=1:07 .7:0) 1.'2.-“';

where poe HS}(m X m) is the same as in (4.13) and p_,€HS;’(mXm) is a
matrix determined by r,e HSYmXm), -+, 7_;.,€ HS;7*(mXm). The fol-
lowing lemma shows how the preceding equations can be solved.

LEMMA 7. Let M be as wn (4.15) and let k=0. Then, for any
g(p, t, 2, )€ HS;¥(m xXm) there exists a wunique matriz ¢(p,t, x, &)
HS;*(mXm) such that
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(tat+3—pao—1)§0(p; t: x, 5)—114(,0; t, x, 5: az)sp(‘o: t; x, 5):!}(9, t: x, 5) ’

olonz0. (4.16)

PROOF. Put p=e?, t=t,¢’, 220 and t,€[0, T]. Then (4.16) is rewritten
into the form

J (aa+s_1)@(z: tO) xz, 5)_]‘/[(6_27 tOez) xz, E: az)dj(z; t(b X, é)zg(e_z, tOeZ; X, 5) »
l ?|,.,=0 (4.17)

under the relation ¢(p,t, z, &)=@(—log p, pt, x, ). Since (4.17) is nothing
but the Cauchy problem for a symmetric hyperbolic system (in (2, x)) in
the direction dz, we can solve (4.17) and obtain a unique solution @(z, ¢, , §),
that is, we can obtain a unique solution ¢(p, t, x, )= C>((0,1]X[0, T]X R"
X R :mxm) of (4.16). In addition, by the energy inequality for the
symmetric hyperbolic system we can obtain the following: if ¢(p,t, , §)
and g(p, t, , &) belong to L*(R:;mXm) in x, then we have

HmmaSW§é§X%y“W4%€}g)%;

for any ¢>0 and (p, t, &)= (0, 11x[0, TJX R", where C is a suitable positive
constant and

(4.18)

llpto, t, =\ (o, ¢, 2, &)

Hence, by combining a cut-off argument with the energy inequality (4.18)
we can easily see that o(p,t, , £) € HS;*(m X m). Q.E.D.

Thus, the proof of Theorem 4 is completed and a right parametrix for
P, is constructed.

Next, let us construct a left parametrix for P,. Let ¢,(t, s, 2, &) be
the same as in (4.3) and define now :

oo, t, Y, ) =—¢,(pt,0,y,7), j=1,-,m.
Put:
'ei(¢1(p,t.y,7y?+.z-7;) 0

ei[(,"(,n.t,y,r,‘)-l'r-z]:

0

ei((,') mp. Ly, 1) +aen)

and for any h(p, t, ¥, n)eHASi’l(me) define the operator F(h):
c=(0, T], & (R™))"—C=([0, T], D' (R"))™ by the following oscillatory inte-
gral :
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1
Pl f)=3§ o, &y, s v ovenion, dpayay
JOJRy IRy
for f(t, x)eC>([0, T]. & (R"))™ Let I denote the Fourier integral operator
defined by
RO LY N dydy (4.19)

By

1), 2=,

Then we have the following result.

THEOREM 5. Let P, be the operator in (4.1) and assume that s is
sufficiently large. Then, there exists a matrixz h(o,t, x, &) € HY>%(m X m)

such that

FRP,—1: C=(0, T], & (R")—>C=([0, T]X R™)™.

Since the Fourier integral operator I defined by (4.19) is invertible
modulo partially regularizing operators, by Theorem 5 we can obtain a
left parametrix [7'F'(h) for &P, such that I'F(h)P,—id is a partially
regularizing operator.

The proof of Theorem 5 is quite parallel to that of Theorem 4. So,
we may omit the details (compare also with the proof of Theorem 4.2 in

(2)).

COROLLARY. Let P, be the operator in (4.1) and assume that s is
sufficiently large. Then, we have the following results.

(1) For any f@t, 2)eC=(0,T], &' (R™)™ there ewists a ult,z)<
c=(0, T, D' (R™)™ such that

Pau—feC=(0, TIx R™)™.

(2) If ut, x)eC>(0, T], &'(R™))™ satisfies LPaucsC>([0, TIx BR")™, then
we have u(t, x)C>(0, T]x R™)™.

PROOF. Let E and I'F be the right and the left parametrices con-
structed in Theorems 4 and 5. Then, (1) is obtained by putting uw=EYf,
and (2) follows from the relation u—I"'FPusC>(0, TIx R*)™. Q.E.D.

§5. Proof of Theorem 1.

By the reduction in (2.1)~(2.4), to prove Theorem 1 it is sufficient to
show the following result.



Fuchsian hyperbolic operators, II 151

THEOREM 6. Let L; be the operator in (2.2) and assume that s is
sufficiently large. Then, for any f(t, x)C=(0, T], D' (R")) there exists a
unique solution wu(t, x)eC=([0, T'], D' (R™) of Lsu=f. Moreover, if f(t, x)
=0 on Dlt, x°, then wu(t,x) also satisfies u(t, x)=0 on D(t, x° (where
D(ty, 2° s defined in (1.8)).

Let us recall a result in C* theory. For a compact subset K of R”
and a positive constant 1, we write

CUK, )={(t, ) [0, TIX R* ; min|e—y| < 2]]} . (5.1)
yE
Let Amax be the same as in (1.3). Then, we have

PROPOSITION 3 (Tahara [5]). Let L, be the operator in (2.2) and
assume that s is sufficiently large. Then, for any f(t, x)eC=(0, T]xX R")
satisfying supp(f)CC(K, 2) for some A=An..1* and some compact subset
K of R", there exists a unique solution u(t, x)=C=([0, T1X R") of Lu=f
with supp(u)CC(K, A).

The following holds:

PROPOSITION 4. Let L, be the operator in (2.2) and assume that s 1is
sufficiently large. Then, there is a positive constant A, such that:

(1) For any f(t,z)eC=([0, T], &'(R")) satisfying sing.supp(f)CC(K, 1)
Sor some A=2, and some compact subset K of R", there exists a u(t, x)<
C=([0, T], D'(R")) with sing.supp(u)CC(K, 2) and Lu—fC=(0, T]x R").

(2) If wu(t, z)eC=([0, T], & (R™)) satisfies LausC=([0, T]1X R"), then we
have u(t, x) € C=([0, T1X R").

The proof is a direct consequence of the reduction in § 2, Corollary in
§ 4 and the following lemma.

LEMMA 8. Let E(h) be the right parametrixz for P, constructed in
Theorem 4. Then, there is a positive constant A, such that: if f(t, x)e
C=([0, T], & (R™))™ and sing.supp(f)CC(K, ) for some A=2, and some
compact subset K of R", we have sing.supp(E(h ; f))CC(K, 2).

PROOF OF LEMMA 8. Let ¢(p, ¢, x, &) (=¢(t, pt, x, £)) denote any of the
¢;s in (4.4), let h(p, t, x, &) HS?Y,, and define the operator K by

Kt 0=\ { | eveesovoni e v 0 flot, idpdyds
Yy

S
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for f(t, x)eC=([0, T], &'(R™)). Since ¢l(t,s, x, &) is the solution of (4.3), we
have |Vep(t, s, x, &) —x| <2,|t—s| for some 2,>0. If we choose such a 2,
we can see that Vep(t,s, z,&)#y holds on {(,s,x,¢&,v);s=t, (¢, )& C(K, 1)
and (s,y)€C(K, 2)} (where 2=2,). Therefore, on {(p, t, x, £, %) ; (¢, x) £ C(K, 1)
and (ot, y) €C(K, 1)} we can define the operator

L: lv5¢(p: t; X, E) —yl _2<VE¢(.0; t: X, 6)—y: aE>

and obtain the relation

L(ei(gb(,o.t,z,f)—y-f)) — ei((,’)(p.t,x,e)-yvf)

Hence, by using the standard stationary-phase-method we can obtain the
following : sing.supp(Kf)CC(K, ). This proves Lemma 8. Q.E.D.

As a corollary of Propositions 8 and 4 we have

COROLLARY. Let L, be the operator in (2.2) and assume that s 1s
sufficiently large. Then, for any f(t,2)eC=([0,T], &' (R") satisfying
supp(f)CC(K, 2) for some A=max{An..T*, A} and some compact subset K
of R", there exists a unique solution u(t, z)eC=(0, T], &' (R")) of Lu=f
with supp(u)CC(K, 2).

PROOF. Let f(t,x)eC=([0, T'], &' (R™) be such that supp(f)CC(K, A).
Then, by Proposition 4 we have a v(t, x) €C=([0, T'], D'(R")) which satisfies
sing. supp(v)CC(K, 2) and Lo—feC=(0, T]Xx R"). Let U be an open neigh-
bourhood of K in R”, let ¢(t, x)=C>([0, T]X R") such that ¢(¢,z)=1 in a
neighbourhood of C(K,2) and that supp(p)CC(T, ), and put g=f— L,(pv).
Then, g(t, ) €C=([0, T1x R™) and supp(g)CC(U, 2). Therefore, by applying
Proposition 3 to Law=g we obtain a solution w(¢, ) C~([0, T]x R") of
Lav=g which satisfies supp(w)CC(T, ). Hence, by putting u=¢v+w we
obtain a solution u(t, x)eC=([0, T], &'(R™) of L,u=f such that supp(u)C
C(U, 2). Since the uniqueness of solution is clear (from Propositions 3 and
4) and since U (DK) is chosen arbitrarily, we can conclude that the unique
solution (¢, x) satisfies supp(u) CC(K, A). Q.E.D.

PROOF OF THEOREM 6. First, we prove the existence part. Let f(¢, x)
eC=([0, T], D'(R™). Let {p.(x)}iz, be a partition of unity on R", and put
Sfit, x)=¢i(x) f(t, ). Then, by applying the Corollary to L,u;=f; we can
find a solution w;(t, x)€C=([0, T], &'(R")) of L,u,=f;. Since Xi,u;(t, x) is
a locally finite sum, by putting u(t, z)=X2u(t, 2) we obtain a solution
u(t, ) C=([0, T], D' (R")) of Lu=f.

Next let us prove the uniqueness part. Let u(t, x)eC>([0, T], D'(R"))
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such that L,u=0 in a neighbourhood of D(¢, 2°). Our aim is to show that

u(t, z)=0 holds in a neighbourhood of D(t, x°). To see this, it is sufficient
to prove that w(t, x)=0 holds on [0, e]X (D(t, 2°)N{t=0}) for some &>0,
because L, is a strictly hyperbolic operator on [¢, TIXR" Put K=
D(t,, ) N{t=0}. Choose a 6>0 and an open subset U of R™ such that
KEU and Lau=0 on [0,d]xU. Let ¢(x)eC7(U) such that ¢(x)=1 in a
neighbourhood of K, and put g=L,(pu). Then, g(t, z)C=([0,4d], &'(R™))
and g(¢, ©)=0 in a neighbourhood of {0}X K. Therefore, by applying the
Corollary to Lyv=g we obtain a solution v(¢, x) e C*([0, 6], £&'(R")) of Lyw=g
on [0,0]X R™ such that o(¢,2)=0 in a neighbourhood of {0}xK. Put
w=g¢pu—v; then we have w(t, x)eC=([0, 6], £&'(R")) and Law=0. Therefore,
by the uniqueness part of the Corollary we obtain w(t, x)=0 on [0, 6]X R™.
This immediately leads us to the fact that w(t, z)=0 holds on [0,e]X K for
sufficiently small ¢>0, because u(t, x)=w(¢, ) holds in a neighbourhood of
{0} X K. Q.E.D.

§6. Proof of Theorem 2.

We first note the following : since the boundedness of the dependence
domain is already established in Theorem 1, in the proof of Theorem 2 we
may assume that wu(t, x), f(¢, 2)eC(0, T], & (R") and g;(x)e&’(R")
(7=0,1, -+, m—k—1).

Let y(t)eC7(R) be such that y(¢)=1 in a neighbourhood of ¢=0, and
define the operator R: & (R™)—C=([0, T], 9'(R")) by

Ro(t, 2) =\, o= 81+ 11972 +)0(¢) de

for v(x)e&'(R™). Then, we have Re S0, Rv|,-o=v, 0i(Rv)|;=o=0 for =1,
OWF (Rv)=WF(v) and WF(Rv|5)=9

Let uf(t, x)EC""([O T], £ (R™) be the unique solution of (1.1) with data
fit, x)eC=(0, T], & (R") and g z)e& (R (5=0,1,---,m—k—1). Let
{g,(x)}5=o be the Taylor coefficients of w(t, x), that is, u(¢, z)~ 3 5.g,(x)ti/5!.
Then, for any s€Z,, s=m—k, we can express u(t, x) in the form

s-1

u(t, x)= § (Rg)(t, )+t us(t, x)

2
0 J!
for some wu(t, ) e C=([0, T'], D'(R")), and obtain the following relation
Lsus:fs

for some fi(¢t, x)=C=([0, T'], D' (R")) like in (2.4). In addition, we can see
the following :
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(1) u(t, x) [resp. f(¢, x)] is a regular distribution, if and only if wu,(t, )
[resp. fi(t, )] is a regular distribution.

(ii) When wu(t, ), us(t, x), f(¢, ©) and fs(t, ©) are regular distributions,
we have

OWF (W) COWF () VaWF(f)U"U WF(g,)
720
WF(u|t>0) - I’VF('L%I»O) )

OWF(F)COWF(FH)V U WF(g,),

WE (fles0) = WE (fsli>0) -

Hence, to obtain Theorem 2 it is sufficient to prove the following result.

THEOREM 7. Let L, be the operator in (2.2) and assume that s is
sufficiently large. Let u(t, z), f(t, x)C=([0, T], D' (R™)) such that Lu=f,
and assume that f(t, x) is a regular distribution. Then, u(t, x) is also @
regular distribution and the following inclusions hold :

(1) OWF(u)CoOWE(f).
2) WE(ulsd (¢, 2,7, 8) | >0, (¢, &, 7, 6) € WF(f)}

U G {(t) m} tvll(t) x} 5)) 5) | t>0) 38, : E (O) 1)) a(yi 7/") E T*Rn\o)
i=1
x=x"(t, 8,9, 7), =&V, s, 9, 7), (s, 4,85, 9, 7), P € WF(f)}

(b, @, 0 24(t, 0, €),6) [ £>0, 3(y, ) € T*R™O,

TCg

x=a(,0,y,7),=EC0,y,7), (y, n€doWF(f)},

where (2P, s, y, 1), EP(t, s, y, 1)) 1is the solution of (1.4).

Since the boundedness of the dependence domain is also valid for L,u
=f, in the proof of Theorem 7 we may assume that u(t, x), f({, x)e
C=([0, T], &’ (R"™)). Hence, by the reduction in (2.4)~(2.7), to obtain Theo-
rem 7 it is sufficient to prove the following proposition.

PROPOSITION 5. Let P be the operator in (4.1) and assume that s is
sufficiently large. Let u(t, z), f(t, 2)eC=(0, T], E(R™)™ be such that
Pau—feC=(0, TIX R™)™, and assume that f(t, x) 1s a regular distribution.
Then, u(t, x) 1s also a regular distribution and the following inclusions
hold :
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(1) OWF(u)CTIWE(f).
(2) WF(uls)C{(t, ®,7,8) [ £>0, ¢ 2,7, 6) € WE(f);

{(t 5, 04,06, 3, 8),8) |10, 35, 5 €(0,1), 3, 7)€ T*R™,
x=a(t, s, y,7), E=EC(, 8,4, 1), (5,9, 8" 4:(s, 4, 1), D) € WF(J”)Jl

{(t x, t*2:(t, @, €), &) | >0, I(y, n) € T*R™ 0,

FCS

=2t 0,y,7),§=E",0,y, 1), (y, ) EWF(f)} .

PROOF. Let E be the right parametrix for &, constructed in Theo-
rem 4. Then, by the same argument as in the proof of Theorem 5.1 in
[2] we can see the following: if f(t, x)eC>([0, T'], & (R"))™ is a regular
distribution, then Ef(t, x) is also a regular distribution and the following
inclusions hold :

(1) oWF(Ef)COWE(f).
(2) WF(Efls)C{(t, 2, 7,8) [1>0, (¢ @, 7, §) € WF(f))

U O {0, 00t 2,6,8) 160,35, <(0,1), 3w, e T*R™,
x=a"(t, s, 9, 1), E=EV(L, 8,9, 1), (8, Y, 8" A8, ¥, 1), r/)eWF(f)}

U Ut @, B2, 3, E), ) | £>0, 3(y, 5) e T*R™0,

i=1
w=x(t,0,y,7),§=570,y,7), (y, ) EOWF(f); .

Hence, to obtain Proposition 5 we have only to show that w(t, x), f(t, 2) e
Cc=([0, T'], &'(R™))™ and Pyu—feC>([0, T]X R™)™ imply

u—EfeC>(0, T]x R™)™. (6.1)

This is verified as follows. By Pau—feC=([0, TIx R"™ and PEf—fe
C>([0, T1x R*)™ we have

Pi(u—Ef)eC™([0, TIX R™)™. (6.2)

Since supp(u), supp(f)C[0, T]x K holds for some compact subset K of R,
by Lemma 8 we have

sing. supp(u—Ef)CC(K, A) (6.3)
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for some 4>0. Let L be a compact subset of R™ such that C(K, 2)C
[0, TIX L, and let ¢(x)=C7(R") such that ¢(x)=1 in a neighbourhood of L.
Then, by (6.2) and (6.3) we have P,p(u—Ef)=C=([0, T]x R™)™ and ¢(u— Ef)
eC=([0, T], &’(R™)™ Hence, by the part (2) of the Corollary in §4 we
obtain

pu—Ef)eC=([0, T]x R™)™. (6.4)
(6.3) and (6.4) immediately yield (6.1). Thus, (6.1) is verified. Q.E.D.
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