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§1. Introduction.

We are concerned with an evolution equation

du(t)

(1.1) it

+ Au(t)=0 (t=0)

in a Hilbert space X which is unstable in the sense that the operator norm
le*4|x.x grows exponentially as t—oo. Then its stable modification has
been considered by many authors (Sakawa and Matsushita [18], Nambu [14],
Triggiani [24, 25], Suzuki and Yamamoto [19, 20, 21]). We can refer also
to Nakagiri and Yamamoto [13] for functional differential equations. In
terms of the operator theory, this stable system is stated as follows. That
is, for given bounded linear operators S: X—RY and T: R"—X, a new
system called the feedback one, of the form
du(t)

(1.2) —d—t—-{—Au(t)= TSu(t) (t=0).

This system is constructed to be stable so that
(1.3) et 4TSy y<Ce (t=0)

for some positive constants C and w.

From the viewpoint of control theory, (1.2) is interpreted as follows:
Some observation signal Sw observed at the time t is fed back to the
original system (1.1) promptly in the form 7T'Su.

In this paper, from the practical point of view, we propose a modified
feedback system (1.2),, where it takes some constant time A=0 to feed Su
back to the system (1.1):
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+ Au(t)=TSu(t—h) (t=0)

du(t)
(1.2), dt

u(t)=p(t) (—h=t<0).

Here the observation signal Su gained at the time ¢ is actually fed
back to (1.1) at the time t+nh.

Our purpose is to give some consideration to the set of A for which
we can construct 7' so that the resulting system (1.2), is “stable”.

This paper is composed of six sections. In § 2, we will, in some simple
case, decide the set of & stated above, and in §3 we prove them. In
particular, we shall see that there is a case where no stable system as
(1.2), exists. In §4 we state some abstract results on the set of % and in
§5 and § 6, we prove them.

§2. Stabilization of simple unstable mode.

We formulate our problem in a manner similar to the one in Suzuki
and Yamamoto [19].

Let X be a Hilbert space over R with an inner product ( , )y and let
— A be a generator of a (C,) semigroup {e ‘4},., in X.

Let us call an evolution equation (2.1) a “free system” :

du(t)
dt

We suppose that (2.1) is unstable and construct its stable modification in
the following sense. Let S: X—R"Y and T: R¥— X be bounded linear opera-
tors. We consider the equation

du(t)
dt

(2.1) +Au(t)=0 (t=0).

(2.2), + Au(t)=TSu(t—h) (£=0)

with, as an initial condition,
(2.3). u(s)=o(s) (—h=<5<0), u(0)=g,,

where ¢(s)eL*(—h,0): X) and ¢,€X. Henceforth we denote by
L¥(—h,0); X) the Banach space of X-valued square integrable functions
defined in (—#, 0).

Here TS is a bounded linear operator on X of finite rank. The system
(2.2), is called a “ feedback system (with time-delay)” of (2.1). In view of
their roles in practical devices, S and T may be called a “sensor” and a
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“controller”, respectively, and the pair <7, S) is called a “feedback” (Suzuki
and Yamamoto [19]).
We define a Banach space M by

(2.4) M{P(X)=MP=L"((—h,0); X)QX

with a norm

(2.5) 12l uo= (1" Iote)13ds) " +1gils

(6=(p(3), po) € M5V) .

There exists a unique mild solution u=wu(t) to (2.2), with the initial con-
dition (2.3)n: (u(s), u(0))=(p(s), po) € M§> (Nakagiri [10]). Here u=u(t)e
C([0, ©)—X) is said to be a mild solution to (2.2), with (2.3),, if w=wu(t)
satisfies

t

u(t):e'“goo-l-goe «OABy(s—h)ds  (¢20),
and u(t)=¢(t) (—h=<t<0), u(0)=¢,. Then, as is shown in Borisovic and
Turbabin [2] or Nakagiri [11], the mappings S,(¢) (¢=0) defined by

(2.6) Salt) 1 M§P ———> M§»
) U]
g=(0(s), o) —> (u(t+s), u(t))
are a (C,) semigroup in M.

Below we simply say a “solution” for a mild one. We introduce

DEFINITION 2.1 (cf. [19]). Let =0 be given. A feedback <T,S) is
said to be “(feedback) stabilizable (in X) with respect to {e *4, h}’ if the
estimate

(2.7 I Sa(@)l ‘,,(ZIL)_.M(Z);)_S_ Ce™* (t=0)
holds for some positive constants C and e.

REMARK 2.1. We have the estimate (2.7) if and only if there exist
some positive constants C’ and ¢ such that the estimate

(2.8) lu®lx=C'e gl g (£20)

holds for each solution u to (2.2), with (2.3),.
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We are seeking to construct a stabilizable feedback <T,S)> for a given
h=0, in the case where (2.1) is unstable;

inf{Rei; A€d(A4)}<0.

Here o(A) denotes the spectrum of A.

To this end, we introduce the following notions for the sensor S and
the controller 7T according to Suzuki and Yamamoto [19]. See also Fattorini
[4] and Sakawa [16,17]. Let YCX be a closed linear subspace.

DEFINITION 2.2. A sensor S:X—R" is said to be “Y-observable” (in
X) with respect to e *4 if the conditions a€Y and Se *a=0 (0=t<co)
imply a=0.

Henceforth Z denotes the closure of ZCX in X.

DEFINITION 2.3. A controller 7: R¥—X is said to be “Y-controllable”
(in X) with respect to e 4 if ZDY, where Z=U,;Z with

th{S:e-"-sM Tf(s)ds ; fe L0, T)N}.

t
Here we note that v(t)= S e V4T (s)ds is a solution of dv/dt+ Av=
0
Tf(t) (t=0) with 2(0)=0.
In this section, we restrict our consideration to the operator A satis-
fying the following Assumptions 2.1 and 2.2.

ASSUMPTION 2.1. The operator A is self-adjoint in X with a compact
resolvent.

Then, o(A) consists entirely of isolated eigenvalues 1; (2=1, 2, ---) with
finite multiplicities.

ASSUMPTION 2.2. The first eigenvalue 2, is simple and
(2.9) A<0< A <A< reeee —> 00 ,

It follows from Assumptions 2.1 and 2.2 that —A generates an analytic
semigroup {e ‘4}..o in X (Tanabe [22], for example).
Here we consider the sensor S and the controller T given by

(2.10) S: X — R
u U]

w ——> (u, 9x

for some g X, and
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(2.11) T:R X
v U]

n———>f

for some fe X, respectively. Henceforth we set n,=dim Ker(i;,—A4), fix
an orthogonal basis of Ker(1;—A), and denote it by {¢ij}icjsn,. Here we
note m;=1 by Assumption 2.2. Let X, be the one-dimensional linear sub-
space spanned by ¢, and let P be the orthogonal projection on X,

Now we state our results in this section.

THEOREM 2.1. Let S be Xg-observable with respect to e 4. Then there
exists an f€X, such that the feedback <T,S> is stabilizable with respect
to {e”*4, h} if and only if

(2.12) 0=h<1/|24.

PROPOSITION 2.1. Let X® be the linear subspace spanned by ¢, and
o (k>1). Let us assume that S is X®-observable with respect to e .
Then, if

1 1
(2.13) 0Sh<— |2| Tl +\/ 22 p
there exists an fe X® such that the feedback (T, S> 18 stabilizable with
respect to {e ‘4, h}.

REMARK 2.2. If the time-delay h=0 is greater than or equal to 1/[4,],
we cannot stabilize the free system (2.1) by choosing any T with R(T)
=TRCX, However, when the range space of T is taken in larger class,
it is possible to stabilize the free system for a time-delay A=1/|4,|. Namely,
from Proposition 2.1, for given h<2/|1,|, we can stabilize (2.1) provided
that S is X“-observable with any k>1. Furthermore we can prove the
following :

Let X*™ be the linear subspace spanned by ¢u, ¢un and @m (E>m>1).
Let us assume that S 18 X*™_-observable with respect to e **. Then, if

1 1 1 A2 +AR
, < - 2 A T
@1 0Sh<r—mro |+«/ + +12 24/ FSTEn

there exists an fe X*™ such that the feedback <T,S) is stabilizable with
respect to {e "4, h}.
We note that (2.13) implies (2.14).

REMARK 2.3. If 4,=0, then Theorem 2.1 holds true by replacing (2.12)
by 0=<h<oo.
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§3. Proof of Theorem 2.1 and Proposition 2.1.

For the proof of Theorem 2.1 and Proposition 2.1, we recall some
known facts.

LEMMA 3.1. The sensor S: X—R given by (2.10) is Xp-observable with
respect to e ** if and only if

(3.1) (Pu, 9)x#0.

This lemma is a special case of Proposition 2 in [19].

The following lemma is well-known and can be proved by using As-
sumption 2.2 and the fact {¢i}iciisjsn, 1S an orthonormal basis in X.
(Assumption 2.1. See also Kato [8, p. 277], for instance.)

LEMMA 3.2. Under Assumptions 2.1 and 2.2 in § 2, the estimate
(3.2) [(1—P)e | x.x<Cie 2 (t=0)
holds for some C,>0.

Now we proceed to
PROOF OF THEOREM 2.1. Since T: R— X, is expressed by

(3.8) T(n)=nlapy) (WER)

with some ae R, the feedback system (2.2), may be written as

(3.4), d’l;it) + Au(t)=(u(t—h), g)xaen
with
(3.5), u(s)=p(s) (—h<s<0), u(0)=4¢,

(3= (p(s), @) € M) .

Operating P and I—P on both hand sides, we see that the functions wu,(t)
=Pu(t) and u,(t)=(— P)u(t) solve

duo(t)
dt

(3.6) + PAuy(t)=(uot—h), g)xapu+(u(t—h), g)rap, (=0)
with

(3.7, uo(8) = Pop(s) (—h=<s<0), u(0)=Po,,
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and

(3.8) —d%(t)——!—(l—P)Aul(t)ZO (t=0)

with

(3.9) w(8)=(1—Pp(s) (—h=s<0), u(0)=(1—P)g,

respectively. Now we get by Lemma 3.2,

(3.10) luy(t) | x < Cre™ 2! | (1 — P) ol x
<Ce gl MO
Since we can write uy(t)=x(t)p, with some real-valued function x(t), the
equation (3.6), with (3.7), is equivalent to
da(t)

(3.6)n —d—t—+2196(t)Zx(ch)aﬁ-Hul(t—h), 9)xat
with
(8.7 x(s)=(¢(s), eu)x (—h<s<0), =(0)=(¢s ¢u)x,

where we set
(8.11) B=(pu, 9x -
Since S is X,-observable, we have by Lemma 3.1,
(3.12) B+0.
Let us consider an equation in p
(3.13) g+ —afe =0
Then, in order to construct T such that <7, S) is stabilizable in (3.4),, we
have only to choose a so that there exists an >0 such that
(3.14) Re p< —¢

for each root g of (3.13). In fact, let us construct a semigroup Si(t) for
a one-dimensional differential-difference equation

dx(t)
dt

as in (2.6). Then, as can be shown along the line of Proposition 4.1 in

(3.15), + 2x(t)=2(t—h)aB,
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Travis and Webb [23] (cf. Nakagiri and Yamamoto [13]), it follows from
(3.14) that

(3.16) [ Sx(2) ||M§’”(maM§”)(m§Cze_52‘

for some positive constants C, and e. Here the Banach space M{™(R)=
L*(—h,0); RY®QR is defined in a manner similar to (2.4) and (2.5). By
Duhamel’s principle (Nakagiri [11], cf. Hale [5]), the solution z=zx(t) to
(3.6);, with (8.7), is represented in the form

t
(3.17) (x(t+s), 2(t) = Salt)g + SoSn(t—r)(O, (uy(z—h), g)xa)dz

(—h=s<0,t=0).

Here for ¢=(¢(s), o) € M$®, we set ¢(s)=(p(s), ou)x (—h=5<0), ¢o= (00, ou)x
and §=(¢(s), ) € M{P(R). Applying the estimates (3.10) and (3.16) in (3.17),
we get

(3.18) lluo(t) | x = Cslac(t)] éC;e‘estllgbllMgh)(X) (t=0)
for some positive C;, C, and ¢. By combining (3.18) with (3.10), we have
(3.19) ||u(t)leéCe'”llgE]IMgh)cx) (t=0)

for some positive e. This means that <7, S> is stabilizable.

Now we return to the choice of « in (3.13). The condition (3.14) holds
for each root ¢ of (3.13) if and only if we have

(3.20.1) |4 lh<1
and
(3.20.2) ||k < —aBh < VU= ,h)+ A2Rh?

(Hayes [6] and, Bellman and Cooke [1, p. 444]). Here for a#0, we define
a function U(a) by the root v of v=atanv in (0,7) and we set U(0)=x=/2.
Let h<1/|4,]. Since #0, we can choose a satisfying (3.20.2). Thus
we see the “if” part of this theorem.
Conversely we assume h=1/|;|. Then there exists some root g, of
(3.13) with nonnegative real part, no matter what we choose as a. Putting

epoz(Pu (t=0)
u(t)=
om (—r=t<0),
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we see that u(t) satisfies (3.4), and that }im lu(t)|x#0. Namely the feed-

back <(T,S) is not stabilizable for any controller 7': R—X, This proves
the “only if” part.

Next we proceed to
PROOF OF PROPOSITION 2.1. We can express T by

T: R X®
U] (0]
(7]1; 772) > naQu+ 0B0un

with some «, e R. Since S is X“*’-observable, we get (¢., 9)x#0 and
(0w, 9)x#0 by Proposition 2 in [19] (cf. Remark 4.3 below). Therefore we
may assume that

(o1, x=(0w, 9)x=1

without loss of generality. Let P, denote the orthogonal projection on
X®_  Decomposing (2.2), into the equations on P,X and (I—P,)X similarly,
we have only to show the existence of some «, B such that each solution
to (3.21), decays exponentially as t—oco to prove the proposition:

d [ =) -2, 0 x(t) a a\/x(t—h)
(3'21)h % = + .
y(t) 0 —/\y@®)/ \B  B/\ylt—h)
This will be accomplished if we choose a, 8 so that each root g of the
characteristic equation (3.22) for (3.21), has negative real part:

_'21 0 a [41
(3.22) Dy(y; a, ﬁ):det<g—< >_e-#h< ))
0 —4 B B

=0.

Due to Datko [3], the following fact holds true: For given a, R,
consider the equation (3.22) and assume that

(3.23) each root p of Doy ; a, B)=0 has megative real part.
We set
(3.24) hoa, B)=inf {h=0; There exists some root p of

Dy(p; a, B)=0 on the imaginary awxis.}.

Then we have hya, B)>0 and, for an arbitrary h in 0<h <h|a, B), each
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root of Di(y; a, B)=0 has negative real part.

Here we apply this fact. As is easily shown, we have (3.23) if and
only if the conditions

(3.25.1) — 4= Ayt a+58<0
and

(3.25.2) A=A B—2A,a>0
hold. We put

3.26 —+ —+——.
(5.26) =TT Y

Thus, all we have to do is to show the existence a, S R satisfying (3.25)
and ho(a, f)=7n—e for each ¢>0. In fact, we prove

PROPOSITION 3.1. Let a, B R satisfy

(3.27.1) a+p=— V1%
and
(3.27.2) (A= Aa+AVAEFE> — 2.

Then (3.25) holds and we have
(3.28) sup {hola, ) ; a, B satisfy (3.27)}=y

PROOF OF PROPOSITION 3.1. First we easily see that (3.25) holds.
Next we prove (3.28). We put

To calculate hq(a, f) in (3.24), let a real number » satisfy (3.30) for a given
h>0;

(3.30) Dy(~/=17; a, B)=0

Then, by eliminating & in ReDy(v/=17; a, 8)=0 and Im D,(~=17; a, B)
=0, we see that » is a real root of

(3.31) (2427 +ar' + (A2 + 2123 — Aja* — AiaP)r’ + (A3 Aka’ —a') =0

For this r, we can give h by
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— VEF P QA2 —a(A+ )r
(@— VA2 + ) —alid, ’

from (3.30). Conversely, for the h given by (3.32), the equation (3.30) has
a real root. Therefore we get

(3.32) h=J(r; a)E——i—tan"

(3.33) hola, B)=max {{minJ(r; a); r s a real root of (3.31)},0}.

Now the equation obtained by substituting a= — 4,4, in (3.31) has three
A
distinct roots 0, + VLD Y
theorem on the continuity of roots of an algebraic equation (Knopp
[9, p.122], for instance), we see that if a-+4,4,>0 is sufficiently small, then
the equation (3.31) in r has six distinet roots r;(a) (1=<7<6) such that

+~/—1 and 0 is a 4-fold root. Therefore, by a

(3.34) rs(a), ra)&E R,
(335  lim 7a)=0 (sjs9),
and
. A,,M* —3 . . ,___— lek —_—
(3.36) ,1‘1}?11 % rs(a)= \/m v—1 , “"1}1}113)@ re(a)= \/m v=1.

Then we have

supfho(a, B) ; @, B satisfy (3.27)}= sup, hola, —VA+2i—a)
a>-414,

> hmsup hola, — V22+22—a)

al -2y

=limsup min {ReJ(r;(a); @)}, by (3.33) and (3.34)

al-242, 1sjs4
= lim RedJ(r;a) , by (3.35)

al—212,
7=0

:”-

This proves Proposition 3.1, which implies Proposition 2.1.

§4. General results for stabilizability.

In this section, we state some abstract results for more general cases.
Namely, for —A, we make hypotheses similar to those in [19]. We
recall that —A is a generator of a (C,) semigroup in X.
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ASSUMPTION 4.1. The operator e *4 is compact for ¢>0.

ASSUMPTION 4.2. The spectrum of A4, o(A4), is divided into two sub-
sets 3, and ;. Furthermore X, consists entirely of isolated eigenvalues
2; (1£4<1) with finite multiplicities m; and the relation

4.1) II?zas')L{ Re2;=0< xlenzii Re
holds true.

We put
(4.2) p= = -4
and
4.3) X,=PX,

where I’ is a Jordan curve surrounding 2, and, at the same time, separates
2o and X,

ASSUMPTION 4.3. The estimate
(4.4) I(1—=P)e | x.x=Cie™"t* (t=0)
holds for some positive constants C, and «,.

Here we note that — A considered in § 2 satisfies Assumptions 4.1-4.3.
Let -* denote the adjoint operator. We introduce

DEFINITION 4.1. Let V and W be subsets of X, and let S: X—R" and
T: R¥—>X be the sensor and the controller, respectively. Then we define
the sets D(S, V) and D(T, W) in [0, o) by

(4.5) D(S, V)={h=0; There exists some bounded linear
operator T: R¥—V such that <T,S) 1s
stabilizable with respect to {e '4, h}.}

and

(4.6) D(T, W)={h=0; There exists some bounded linear operator
S: X—RY with R(S*)CW such that <T,S> s
stabilizable with respect to {e ', h}.},

respectively.
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In other words, h belonging to D(S, V) or D(T, W) is an “admissible”
delay in the sense that we can stabilize the free system (2.1) by an appro-
priate T or S. For example, Theorem 2.1 and Proposition 2.1 in §2 can
be stated in terms of this notation. That is,

THEOREM 2.1. Let S be X,-observable with respect to e *4. Then we

have
1
D(S, X)) = [o, #> .
|44

PROPOSITION 2.1. Let S be X®-observable with respect to e **. Then

we have
k) 1
D(S, X )D[ IZI Mlir\/ )

Here we recall that the subspaces X; and X are defined in § 2.
Our main results in this section are stated as follows:

THEOREM 4.1. The sets D(S, V) and D(T, W) are open in [0, o).

THEOREM 4.2. Let VDX, The set D(S, V) is not empty if and only
if S is X,-observable with respect to e *4. Then D(S, V) is an open set
containing 0, the origin.

We set
(4.7) X=1-P)X

and let Xt denote the orthogonal complement of X,, that is, Xi={¢geX;
(g, ©)x=0 for each p< X,}.

THEOREM 4.3. Let WD Xt{. The set D(T, W) 1s mot empty if and
only if PT 1is Xycontrollable with respect to e *4. Then D(T, W) is an
open set containing 0.

REMARK 4.1. When the time-delay h is negligible, these theorems are
nothing but Theorems 1 and 2 of [19].

REMARK 4.2. In Theorem 4.2, if the inclusion V2OX, is not assumed,
the set D(S, V) may possibly be empty even if S is X,-observable. So is
D(T, W) in Theorem 4.3.

However we can show the “only if” parts of these theorems with-
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out these assumptions.

REMARK 4.3. As are shown in Propositions 2 and 8 in [19] etc., the
Xy-observability of S and the Xj-controllability of PT are equivalent to the
following rank conditions (4.8) and (4.9), respectively.

Let {¢p;;; 1=<j<n;} be a basis of Ker(i;—A) and let S be expressed in
the form

S: X RY
U] ]

u —> ((, gz =, (U, gn)x)

with some g,eX (1< k§N). Then S is Xy-observable if and only if the
condition

(4.8) rank M,=n;

holds true for 1=Zi=<l, where M; 18 an NXmn; matriz given by M,=

((QDij; gk)X)lsksN,lsjsn,—-

Throughout this paper, 2 denotes the complex conjugate of a complex
number 2.

Let {p#;:1=<j<n.} be a basis of Ker(i1;—A*) and let T be expressed in
the form
T:RY X
] )
(91, ==+ 5 ) > DI

with some ¢, € X (1<k<N). Here we note dim Ker(1;— A)=dim Ker(2,— A4*)
=mn, (Kato [8], for example).
Then PT is Xy-controllable if and only if the condition

(4.9) rank L;=mn;

holds true for 1=4<l, where L, is an NXmn; matrizx given by L,=

((qs, SD;kj )X)lskszv,lsjsni~

§5. Proof of Theorem 4.1.
We treat the differential-difference equation

du(t)

(5.1)n i

+Au(t)=TSu(t—h) (t=0)

with
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(5.2), u(s)=p(s) (—h=5<0), u(0)=¢,,

from the point of view of the semigroup theory. Let S,(t) (¢=0) be the
semigroup described in § 2.

Henceforth, let .L(Y, Z) denote the space of all bounded linear operators
on a Banach space Y to a Banach space Z.

NQW we proceed to
PROOF OF THEOREM 4.1. We set

(5.3) D(S, T)={h=0; The feedback <T,S) is
stabilizable with respect to {e **, h}.}

for given Se L(X, RY) and Te _L(R", X). Since we have

(5.4) D(S; V):UTEI(RN.X),.‘R(T)CVD(S; T)
and
(5.5) (T, W)= USGI(X.RN).R(S-)CWD(S, T) »

Theorem 4.1 follows from

PROPOSITION 5.1. For given Se.L(X, RY) and Te L(R,X), the set
D(S, T) is open in [0, o).

PROOF OF PROPOSITION 5.1. Let h,eD(S, T). Without loss of gener-
ality, we may assume h,>0. Then we have

(5.6) ISn, @) o wro=Ce™  (t=0)

for some positive constants C and e. We have only to show that for some
positive constants C’ and &', the estimate

5.7) IS Oy SCe™  (20)

holds if |ho—h| is sufficiently small. To this end, we estimate solutions to
(5.1), by using Duhamel’s principle and Gronwall’s inequality. It is done
as follows: Since T is linear, we can express it in the form

(5.8) T: RY X
U] U]
(771, Tty 7]1v) [ Zf:xmq;z

by some ¢, X (1<k<N). We rewrite (5.1), by
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du(t)

(5.9) it

+ Au(t)=TSu(t —ho) + T'S(u(t — k) —u(t — h)) (t=0).

Then the solution u=wu(t) to (5.1), with (5.2), may be written in the form
(5.10). (Proposition 5.4 in Nakagiri [11]. cf. Borisovic and Turbabin [2].
This formula is nothing but an integral representation of solutions.)

(5.10) (u(t+9), u(t))ZSho(t)gﬁ—S:Sho(t—S)((O, TSf(s)))ds (t=0),
where we set
(5.11) f(8)=u(s—ho)—u(s—h)

and ¢=(p(9), po) € MP=L*(—h, 0); X\)QX. Here we regard ¢(f)<
LX(—h,0); X) as the element of L*(—h,0); X), by setting ¢(6)=0 for
—ho=0=—h if h<h, and restricting ¢(0) in (—h, 0) if A= h,.

We estimate u(t) in the case of h<h,.

For the estimate of ||u(t)|ly, we set

0 1/2
max |1u(0)||x+<g ||<p(t9)||§-d0> for ho=t=2h,,
0sfst t-2hy
(5.12) N(t)=
max [[u(@)|x for t>2h,.
t-2hysfst
Henceforth C; (1=1,2,---,10) denote some positive constants bounded as
|ho—h|—0.
Then, since by (5.10) and (5.6), the estimate

t
(5.13) (@) xécle’”||¢||mgho>+ Socle‘“"”ll TSl x-xIf(s) xds
holds true for t=0, we get for t>h,,

t
(5.1 NOSCoe g lagro+Ca e 17 (6) s
In fact, by (5.13), having
max  [u(O)SCee g lugot | G I (s) s
max(0.t-2hp)s0:¢ 2 0

for t>h, and

0 1/2
(., 1e@13d8) " < plugro < ool gl
_-lo .

for ho<t<2h, we see (5.14) by the definition (5.12) of N(¢f). Here we have
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LEMMA 5.1. Let |hy—h| be sufficiently small. Then we have
h
(5.15) Sooe'“"”ﬂf(s) lxds < Cae—S[“SZ’“JI(Z"o) .

The proof of this lemma is given in Appendix I.
Now, assuming that |h,—#| is sufficiently small, we apply (5.15) in the
second term at the right hand side in (5.14), so that we get

t
(5.16) NOZCe1ollugo+C.{| 217 (s) s
0
for t>h,.

Next, using (5.10), we estimate |f(t)|y. Henceforth, for (0(8), ¢
e M, we set p,=R(¢(6), ¢,). Then we have

F@)=RShy(t—ho)(1—Spy(ho—h)) g

—\ RSt ho— 51— Si ha— RO, TSF(s)))ds

+\ 7 RS (t—h—s)(0, TSf@)ds  for t>h.

Thus, noting (5.6), (5.8) and the boundedness of S and T, we get

s

(5.17) IF @)llx=Coe™ g1l ugro>

(t-hg
+ CS e~ ISf ()l aw mAX (1~ Snyho— WO, 42) lugrords

+ 058

64| TSF(s) | xds

]

<Ce ™ 7] I .11(2"0)

+Gs T06(|ho— RIS (3) [ xds

+ Cs

t-hg
{7
0

t-n
g i e 0f(s)lxds  for t>h,.
Jt-hy

Here we put

(5.18) o(|ke—h|)= max ||(1—Say(ho— (0, g)lgo> -

Then, since Sno(t) is a (C,) semigroup, we have
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(5.19) lim o(|hy—HR|)=0

-»]7,0

Moreover we get for ¢>h,,
(5.20) G, e PIfE)ads S CN() [ho= I,
~o

if |ho—h|<1. Although the proof of (5.20) is ‘easy, it is given in Append1x 11,
for completeness. Therefore, by (5.17) and (5.20), we obtain

(5.2) £ S Cre™ g lagro+ CN(O) o~ I
+Colhe—hD) | e IF(s) s

for t>h, By applying (5.15) in the third term at the right hand side in
(5.21) provided that [h,—h| is sufficiently small, the estimate

(5.22) LF O S Cae™ 16 L ugror-+ CN(E) o —
t
+Cgé(lho—h|)8h o9 £(5)] xds
0

follows for t>h,.
By Gronwall's inequality in (5.22), we see

(5.23) et f(t)l] x < CyeCsdCthomhD- ") gl o>+ CeN(t)e™ | ho— R |
—|—S: eCedho=h0t=0C25(1 —h|)e* N(s)|ho—h|Y’ds for ¢t > h,.
0

Then we substitute (5.23) into the second term at the right hand side of
(5.16) and change the order of integration, so that we get

(5.24) exp{(s— Csd(|ho— h|))t}N(t)
< (Ci+ (= h)CiCa) Gl >

+CCulha—hp | expl(e—Cud|ho—RI))s}N(s)ds
0
Here we also use
S exD(Cid(lh—h1)(s —ho))ds < (6= o) exp(Cid | o= hI)(t—ho))

Again we apply Gronwall’s inequality in (5.24) to arrive at
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exp{(e— Cs0(|ho— h|))t}N(2)
S (CiH(E—h) CCH)l © ”M?Z”o)'l' C.Cslho—h| 12gC4Cglho=nit/%

o Sc e~0408”’°_’””23(c4+ (s—ho)CiCo)dsll @ “M(zh“)
o
S Co141) 1§l agrr+eC0 0 M *Cy(14+8)* |l agrod -

Therefore, if we take h such that |h,—h| is sufficiently small, we see by
(5.19)

(5.25) Nt)=Cpe g ”Mg"o) <Cupe | all u{®

for some ¢ >0. The estimate (5.25) implies (5.7).
In the case of h>h, we proceed similarly and so omit its proof.

§6. Proof of Theorems 4.2 and 4.3.

We show these theorems by an argument similar to the proof of
Theorems 1 and 2 in [19].

PROOF OF THEOREM 4.2. Firstly we suppose that S is Xj-observable.
Then, by Theorem 1 in [19], there exists some bounded linear operator
T: R"->X,CV such that the feedback <T,S) is stabilizable with respect
to {¢7%4,0}. That is, we see that

(6.1) 0€D(S, X,) .

Since D(S, X,)C D(S, V), the set D(S, V) is not empty.
Conversely we suppose that D(S, V) is not empty, namely, that there
exists =0 such that

(6.2) ’ heD(S, V).

Then there exists some bounded linear operator 7': R¥—V such that the
feedback <7, S> is stabilizable with respect to {74, h}. We have to show
that S is Xy,-observable. To this end, we assume that

(6.3) aeX, and Se ‘4a=0 (t=0)
and put

e g (t=0)
(6.4) u(t)=

0 (—h=t<0).
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Then, since a belongs to X,C9(A4), we can view u=u(t) as the solution to
the feedback system (2.2),; that is,

J dZit) +Au(t)=0=TSu(t—h) (t=0)
lua):o —h=t<0
u(0)=a .

The stabilizability of <T,S) implies the estimate
(6.5) lu@llx<Ce*lalxy  (=0).
On the other hand, in view of a= X, we have

(6.6) lu@)lx=Cslaly as t—oo.

Noting ¢>0, we obtain a=0. This means the X,-observability of S.

Next we proceed to

PROOF OF THE “IF’ PART OF THEOREM 4.3. We suppose that PT is
X,-controllable. Then by Theorem 2 in [19], there exists some bounded
linear operator S: X—R" with R(S*)CX{ such that the feedback <T,S>
is stabilizable with respect to {e™‘4,0}. This implies that 0=D(T, X7),
hence we see that D(T, W)DD(T, X1) is not empty.

In order to show the “only if” part, we consider the formal adjoint
system (6.7), of the feedback system (2.2),:

(6.7)s iﬁ—t)A—l—A*u(t):S*T*u(t—h) (t=0).

We prepare some lemmas. Noting that the Hilbert space X is reflex-
ive, we see from Phillips [15]

LEMMA 6.1. The adjoint operator —A* is also a gemnerator of a (Cy)

semigroup in X and the relation
(6.8) (e—LA)*:e—LA‘
holds.

We recall that S,.(t) is a (Cy) semjgroup given by (2.6). By Lemma
6.1, we can construct a (C,) semigroup S,(t) for (6.7), in M$™ by a similar
way for (2.2),; that is,
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(6.9) S.(t): MP ———> MM
w w
o= (p(8), o) —> (u(t+s), u(t)),

where wu(t) is the solution to (6.7), with u(s)=¢(s) (~—h§s<0) and u(0)= @,
Let G, and G, be the generators of S,(t) and S,(t), respectively. Then
we get

LEMMA 6.2. (i) The relation a(Gr)=a(G,) holds. That is, a complex
number A belongs to o(G,) if and only if 2, the complex conjugate, belongs
to o(G,). (i) We have the estimate

(6.10) ISuDlugo_ug<Ce  (t20)

for some positive constants C and ¢ if and only if

(6.11) I8 yg-wgo=Ce™  (£20)

for some positive constants C’' and ¢'.

PROOF OF LEMMA 6.2. The proof of (i) is given in Nakagiri [12],
Nakagiri and Yamamoto [13], in more general cases. However, for con-
venience, we prove (i) in Appendix III. As for (ii), recalling that e *4 is
compact for >0, we see by Schauder’s theorem ([26], for example) that
e ™" =(e"'4)* is also a compact operator in X. Then, as in Proposition 4.1
of Travis and Webb [23] (cf. Nakagiri and Yamamoto [13]), we can show that

(6.10)’ sup{Re 1; 2€0(G,)} <0
and
(6.11)’ sup{Re 1; 1€4a(G,)}<0

imply the estimates (6.10) and (6.11), respectively. Combining this fact
with Corollary 1 in Hille and Phillips [7, p. 457], we see that the estimates
(6.10) and (6.11) are equivalent to the relations (6.10)’ and (6.11)’, respec-
tively. Therefore the part (ii) follows from the part (i).

Now we recall

— ]‘ — -1
and
X,=PX.

We set
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X¥=P*X,

where P* is the adjoint operator of P. Then the following duality be-
tween the observability and the controllability holds (Suzuki and
Yamamoto [19]):

LEMMA 6.3. The operator PT:R—X, is Xycontrollable in X with
respect to e 4 if and only if (PT)*: X—RY is X§F-observable in X¥ with
respect to e “FA”,

Thus, in order to prove the “only if” part, we have only to show that
(6.12) Tre ' P4 =0 (0<t<oo) and acX¥ imply a=0.
In (6.12) we note that e *F47g=¢ *'q for ac X¥. We put

e (t=0)

(6.13) u(t):[
0 (—h=t<0).

Then, since a belongs to XFfC D(A*), we can view uw=u(t) as the solution
to the feedback system (6.7),:

! d’éf) L AR =0=S*T*u(t—h)  (t=0)
lu(t)zo —h<t<0
#w(0)=a.

The stabilizability of <T,S) and Lemma 6.2 (ii) imply the estimate
(6.14) lu@lx<Ce*"lally  (£20).

On the other hand, by a= X¥, we have

(6.15) lu)x=Claly  (as t—co).

By (6.14) and (6.15), we see a=0.

Appendix I.

PROOF OF LEMMA 5.1. By setting ¢ | h, in (5.14), we get

h
@L1) N(h) < Cie™ ol g1 uro+ G o0 1 (5) s
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Since u(s)=¢(s) (—h0§s<0), we have

o0 () ads S G 17 (5) s

0

0

0

'
Shollu(s— leds+ng lu(s—h)lxds  (by (5.11))
-af.,

) lads+ o § Nuts—1lLxds+\ s =)l xds )

=G\, lo@)lxds G Tu@lsds +G " o)
gzczha”(g" ||go(s)||f‘—ds)”2+cz(h.o—h) max [u(s)] x
~h, 0ssShg-h

(by ho>h and Schwarz's inequality)

§2czhtl)/2“95||1|1§Z’Lo)+cz(ho_h)N(ho)
(by the definition of N(t): (5.12)).
That is, we get

h .
(1.2) C:\ e 4021 (5) | xds S 2ChY? 6L pr+ Calha— W) N(o)
Substituting (I1.2) into (I.1), we obtain
(I.3) N(ho) < (Co+2C;h) |l ¢||M<Zho> + Colho— h)N(hy) .

Let Iho—hl. be sufficiently small such that 1—Cy(he—h)>0. Then (I1.3) im-
plies (I.4):

Cy+2C,hi?
<2t elo
(I.4) N(h(,)“1 Colha—h)

Combining (I.4) with (1.2), we obtain

“95“‘11(2',’10)5 C; ”95“114(2’10) .

(L.5) (e 6)1 s <2 +C2 Uho— W) lageo

by which we see (5.15). This proves Lemma 5.1.

Appendix II.

PROOF OF (5.20). We recall that h,>h. Firstly let ¢t>2h, Noting
that 0<t—2h<s—h,<s—h<t for s€[t—h, t—h], we see that
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If()x<2 max [u(@)x=2N(t) (selt—ho t—h0]),
s-hgsfss-h

which implies (5.20) for t>2h,.
Secondly let hy<t<2h, Then we have

t-h t-h 1/2
0 eeopus—yads < tho—np(§ futs—nltds)”,
t-hg t-hy

by Schwarz’s inequality. Therefore, noting h,>h, we get

o e otuts—wlads h—hP(§ 7 ulids) "

~o

sth—np{((rueizds) ([ 1ueizds)”]

< lho— 1" {2ho)> max a1+ (]

lu(s)l3ds) |
<C7|ho—h|"*N(t) .

t-h
As for S e =P u(s—ho)l xds, we estimate similarly. Thus we see
t-hy

(5.20) for t>h,.

Appendix III.

PROOF OF (i) OF LEMMA 6.2. We recall that S,(t) (respectively, Sa(t)
is the (C,) semigroup defined by (2.6) (respectively, (6.9)) for (2.2), (respec-
tively, (6.7),). As are easily shown (Nakagiri [11], for example), the
generators G, and G, are given by (III.1) and (III.2), respectively :

(1) Gullp), po)= (2, — g+ TSp (1)

D(Gr)={(p(8), o) € M ; 0(0)=¢0,
o€ D(A) and ¢(s)e H((—h, 0) ; X)}

and

de(s)
ds

D( ~n):{(¢'(s)’ o) eM®; 0)=¢,,
do= D(A*) and ¢(s)s H'((—h, 0) ; X)}.

(I1L.2) Gal(g(s), g = (2L, — Avgo+ 5*T*g(— )
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Here HY((—h,0); X) is the Sobolev space W'*(—#h,0); X) on the interval
(—h,0). Let 7 denote the complex conjugate of a complex number 2.
Now we prepare

LEMMA III.1. Let an operator F; in X be defined by
(I11.3) Fip=—Ap+e " TSp—2Ap
DF)=D(A).
If 2€p(G,), the resolvent set of G,, them F; is a bijection. Furthermore
F¥, the adjoint of F,, is also a bijection.
PROOF OF LEMMA IIl.1. Let i€p(G,). Firstly, for each feX, we

have to show that there exists a ge D(F,) such that Fyg=f. Since ie
o(Gy), there exists a unique ¢=(¢p(s), po) € D(G,) such that

dop(s)
ds

L) G2 = (L0 —20(s), — Agut TSp(—h)—400)=(0, ).
Then g=¢, satisfies Fig=Ff.
In fact, from the first component of (III.4), we get, by ¢(0)=¢,,

(II1.5) o(s)=e®p,.
Substituting (III.5) into the second component of (III.4), we obtain
(I11.6) Fip=f.

Secondly, from the fact that G,—2 is an injection for 2€p(G,), we see
that F, is an injection. Thus we prove that F; is a bijection. Next we
see by the closed range theorem ([26], for example) that F¥ is also a
bijection.

We return to the proof of (i) of Lemma 6.2. Supposing that 1< p(G,),
we have to show that IEp(Gn). To this end, by the open mapping theorem
([26], for example), we have only to prove that the map G,—12 is a bijec-
tion in M$. First we prove that G,—12 is an injection. Let us assume
that

(Gh— I)((gb(S); ¢'0)) =0.

Then we see gb(s):e}sgbo, so that we have F¥¢,=0 in the same way as
(ITI1.6). Now, since 21€p(G,), we see by Lemma III.1 that F'¥ is a bijec-
tion. Hence we get ¢,=0.

Next we show that G,—1 is a surjection. Since F¥ is a bijection by
2€p(G,) and Lemma IIL.1, for each (¢(s), ¢o) € M§¥, we can define
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o) = e“(S:e-“gb(e)dH (F;k)—l{ g ingx T*S;he-i%b(o)dowo})
and

0

soo:(F;“)"’{—e-“S*T*S he*iﬂ¢(a)d0+¢o} .
Then we see that (¢(s), 0,) € D(G,) and

(Gr=D)((0(s), 0o) = ((s), o) -

This implies that G,—17 is a surjection. Thus we prove that o(G,) Co(G).
We can show o(G,)Dp(G,) similarly and so omit its proof. These prove
O(Gh):U(Gh)-
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