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Rational points on the modular curves X, (p")

By Fumiyuki MoMOSE

(Communicated by Y. Thara)

Let N=1 be an integer and X, (N) be the modular curve defined
over @ which corresponds to the modular group I'y(N). The fundamental

involution w, of X, (N) is represented by the matrix <(])\7 _(1)> Let

X7(N) denote the quotient X, (N)/{1, wy}. All the Q-rational points on
X,(N) were determined [14] [5, 6, 7, 8] [15]. In this paper, we discuss
the Q-rational points on Xi(p”) for prime numbers p and integers r=2.
When =2, X (p?) is isomorphic to the modular curve X.,.(p) cf. §1,
[18] [16]. The author [16] discussed the @Q-rational points on X:(p).
The same idea as in [16] can be applied to the modular curves Xi(p")
for =2 with genus gf(p")>0. For such a modular curve X,(p"), the
set of the @Q-rational points consists of only cusps [14] [7, 8] [15]. On
the other hand, there are Q-rational points of X7 (p") which are repre-
sented by elliptic eurves with complex multiplication. We call them
the C.M. points. Let #n(p, r) denote the number of the Q-rational
points on Xj(p”) which are neither the cusps nor the C. M. points. We
make use of quotients (#{0}) of the jacobian varieties J7(p") of Xi(p")
whose Mordell-Weil groups are of finite order. Let J(»") be the jacobian
variety of the modular curve X,(p"). Then the quotient J;(p")=
Jo@") /(A +w,)J(p7) becomes naturally a quotient of Jf(p™*) cf. §1 (1.2).
Then our main result is as follows.

THEOREM (0.1). Let p be a prime number and r=2 be an integer
with 9P >0. Then n(p, r)=0 for p=2, 3, 7, 11, and p=17 with
¥y (p)@)< oo

For the prime numbers p, 17<p <300, except for p=151, 199, 227 and
277, it is known that #J;(p)(@)< e [12] p. 40, [24] Table 5 pp. 135-141.
For p=>5 and 138, we do not know whether the Mordell-Weil groups of
J5(125) and J;(169) are finite or not (ef. [2]). The proof of main theorem
above is essentially same as in [16]. One of the key steps is as follows.
Let #5(p") be the normalization of the projective j-line Z5(1)=P} in
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the function field of X, (p"). Let ¥ be a non cuspidal @Q-rational point
on Xi(p") with gf(»")>0, and z, '=w,(x) be the sections of the fibre
of X,(p") at y. Then %, ' are not defined over @ [14] {7, 8] [15], so
they are defined over a quadratic field k. Let ~ be a prime of k lying
over the rational prime p.

THEOREM (0.2). Under the notation as above, xQk(~) and ' Xr(*)
are the sections of the smooth part Z5(p7)=°" of Z(p").

The first two sections are preparations of the last section. In the
first section, we give a review of the results on the modular curves
Z(p"). In the second section, we prepare lemmas on elliptic curves.
In the last section, we prove main theorem ete., and also give some
related results.

Notation. For a prime number g, Z,, @, and Q" denote respectively
the ring of g-adic integers, the ¢-adic completion of @ and the maximal
unramified extension of @,. Let K be a finite extension of @, Q, or Q;",
and A be an abelian variety defined over K. Then &7 denotes the ring
of integers of K, and A,,, denotes the Néron model of 4 over the base
. Further (A,5K®I7q)° is the connected component of the unit section
of the special fibre 4,, K@Fq. For a quasi-finite flat group scheme G /%,
& denotes the connected component of the unit section. For a sub-
scheme Y of a modular curve /Z, Y* denotes the open subscheme of
Y obtained by excluding the supersingular points on YXF, for a fixed
prime number p.

§1. Modular curves X,(p").

Let p be a prime number, »=1 be an integer and X,(p") be the
modular curve /Q corresponding to the modular group I'\(p”). Then
X,(p7) is the coarse moduli space /@ of the generalized elliptic curves
E with a cyclic subgroup A of order p* [3]. The fundamental involu-
tion w,- of X,(p") is defined by the functor

(E, A)——(E/A, E,-/A),
where E .=ker(p™: E—FE). Let Xj(p") denote the quotient X (p")/<{w,).
For the following pairs (p, r) (r=2), X (p") are not projective line:
P r
2 6

v
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/) 7

3 =4

1.0) 5 =3
7T =3

p=11 =2,

We know the following result.

TueoreM (1.1) ([14] [7, 8] [16]). The rational points on X,(p") must
be the cusps for any pair (p, r) in (1.0).

There exists a covering of XJ(p™™) to X7 (p”), which is induced by the
morphism of X, (p™™) to X (p") defined by

(I, Ay (EJA, ArafA,) ,

where A,: is the unique cyclic subgroup of A of order p’. Let X,(p%)=
Xep car(p®) be the modular curve /@ which corresponds to the modular

group
a b
Fs(p‘):{< d)eSLz(Z) [ b=c=0mod p’.
¢

Then X,(p") is the coarse moduli space /Q of the generalized elliptic
curves F with independent eyeclic subgroups C, and C, of order p*. The
fundamental involution w=w(p?") of X,(p*) is defined by

(E, Cp Cz)}—’(E’ Cz; C1)

Let X2(p)= X, (p") be the quotient X, (p")/{w), which corresponds to
the modular group ( I'.(p?), <1 —0 > There exists a canonical isomor-
phism (/Q) of X, (p*) (xresp. Xi(p*)) to X (p*) (resp. X7(p*) defined by

(E, A)——(E[A,:, AlA,:, E,iJA,e).

For even integers »=2, we will make use of this isomorphism.

Let J(p7), Ji(p") be the jacobian varieties of X,(p") and XF(p"),
respectively. Further, let J,=J,,., Ji=J;, be respectively the “new
part” of J(p") and Ji(p") (, i.e., under the canonical identification of the

space of holomorphic cusp forms of weight 2 belonging. to I'y(p”)

(resp. <Fo(p’), <(1))"_ (1)>>) with the cotangent space of J,(p™) (resp. J§(p"),

the cotangent space of J, (resp. J;) corresponds to the subspace spanned
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by the new forms of level p~ ([1] [22] Chapter 7). Using the decom-
position of the cotangent space of J,(p") by the action of w,., we see
that Ji(p") is isogenous over @ to one of the following abelian varieties:

II Jroo2x I1 Je—o2x 11 JF if 7 is even,

1=i<r 1<i<r 1<iZT
(1 2) odd even even
I Jrooex I Je-o2x [ Ji it r is odd.
1<i<r 1=i<r isigr
even odd odd

Let Jo(p°) be the quotient Jy(p*)/(1+w,s)J,(p*), where w,s is the auto-
morphism of J(p°) induced by the involution w,s of X, (p°). Let T be
the subring of the ring of endomorphisms of J,(p*) generated by Hecke
operators T, for p/m and w,, and .# be the ideal of T generated
by 1+1—7T, and 14w, for prime numbers [=p. Put J(p°)=
Jo D) Nzr F T (0?) a0 T(D°) iy =To(D)( Moz (m, Z))T(p°) for integers
m=z=1. For p<7 and p=13, X,(p)=~P* and for the other prime numbers
p, Xy(p)#P'. Let 0 and « be the Q-rational cusps of X, (p°) which are
represented respectively by (G,x Z/p°Z, Z/p°Z) and (G,, t,s), where
tys=Spec Z[ X]/(X**—1). Then we know the following result.

THEOREM (1.3) (Mazur [12]). For p=17 or p=11, the natural
morphism Jy(p)— J(p) induces an isomorphism of the cuspidal subgroup
C={cl((0)—(==))> of order n=num((p—1)/12) to the Mordell-Weil group
of J7(p), and Jy(p) is an optimal quotient of Jy(p). Further the natural
morphisms Jo(p)(Q)o:— J5 (0)(Q)ro: — Jo(P)Q) are isomorphisms.

(1.4) For the pairs (p,s)=(2,5), (8,3) and (7, 2), X,(p°) are elliptic
curves with finite Mordell-Weil groups of order 4, 3 and 2 ([24] Table 1
pp. 81-113), respectively, and J,(p*)=J;(p*)=J,(p*). For (p, s)=(13, 2),
:fo(169)(7) is an optimal quotient of J;(169) with finite Mordell-Weil group
[2] §3. We do not know whether J;(125) has a quotient (+{0}) with
finite Mordell-Weil group (see loe.cit.).

We will make use of the following morphisms for »=2. Let z=x,,
be the natural morphism of X, (p") to X (p®) defined by (E, A)—(E, A,s)
for an integer s, 1=<s=<r—1. Let f=f,., be the morphism of X (p")
to Jy(p°) defined by flz)=cl((w,sx(x))—(zw,-(x))), i.e.,

£ (B, ) Cl((B| Ay, Eyel Aye)—(EJA, (E,o+ A)/A).

Then f induces a morphism f¥=f of X (p") to J;(p*), which is defined
by the following diagram:
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X(p") > X (p7)
S l G lf*

can.

Jo(p*) —> 5 (p°).

We will make use of f and f* in the following cases:

P r s

2 =6 5

3 =4 3

5 =4 3

(1.5) 7 =8 2
11 =22 1

13 =3 2

pz=17T =2 1

For a triple (p, r, s) as above, let f= f be the morphism of X (p") to
Jy(p*) (for p=£5, 13), 0(125)@ and J, «(169);, induced by f=f,,. Let
Zp"), Z5(p") and Z(p’) be respectively the normalizations of the
projective j-line 2Z{1)=P} in X,(p"), X,(»") and X7(p"). Further put
(P =2/ w,ry.  Then 257 (p")®Z[1/p] is smooth over Z[1/p],
since 2Z23(p")QZ[1/p] is smooth [3] VI §6 and the fundamental involution
w,QF, (for p+#2) has at most finitely many fixed points. Denote also
by m=m, . the natural morphism of 25(p") to Z(p*), and by £ f (resp.
f*) the morphisms of the smooth part 2Z5(p” )P0t (pesp. %"“(p )smocthy
to the Néron models J,(p*),, and Jy(p%),, (for p=5, 13), ,](125)(5 sz and
Jo(169) /7 (resp. J5(p°),2).

(1.6) Let 0= < 1 ), ) :< (1) ) be the Q-rational cuspidal sections of 25(p")
represented by the pairs (G, x Z/p"Z, Z/p"Z) and (G, 1), respectively.
Let (¢, 7) be a pair of integers ¢ and i satisfying the following condi-
tions: 1=t=r-1, (4, p)=1 and 1<i<p™* —1 for m(t)=min{t, r—t}. Let
£={, be a primitive p"-th root of unity. For each pair (¢, 1) as above, let
( ;}) be the cuspidal section of .25(p") represented by (@, < Zip™*Z, {(&, 1))
(over Z[1/p]), where {({%, 1)) is the subgroup of G, X Z[p™*Z generated
by the section ({% 1). These cuspidal sections ( ) are Q({,mw)-rational
and are conjugate over @ (for the fixed integer #). The fundamental
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involution w,» exchanges 0 with o, and (&) with Q_t) for an integer
j eongruent to —i~*mod p™*. Let x,,,=m,,; , be the natural morphism of

%ﬁ(p’+ ") to Z5(p7): (B, A)—(E, A,). Then .., is isomorphic along o and
(;J@z [1/p]. The ramification indices of x,,, at 0 and at <;t>®Z[1/p]
for 1st<r—1areall p. Further z,,, sends 0 to 0, (;&) (for 1<t<r—-1)

3 %
to (p‘)’ and o and <p'> to oo,
(1.7) The irreducible components of Z;(p")QF, are all defined over F,,
and they interseet each other at the supersingular points on Z5(p"QF,
[3] VI §6. Let E, and E, (resp. E, for 1=<¢{=r—1) be the irreducible

components of Z(p")QXF, such that 0QF, € K, and «QF,c E, <resp.
<;t>®Fp € Et>. For a subscheme Y of a modular curve X /Z, Y* denotes

the open subscheme Y\{supersingular points on Y®F,} of Y. The fol-
lowing facts are induced by the construction of the fine moduli stack
Aan [8] V, and they will be explained below. The irreducible com-
ponents E} and E} are smooth over F,. Further E (vesp. E}!) is the
coarse moduli space /F, of the isomorphism classes of the generalized
elliptic curves E with a cyclic subgroup scheme A which is isomorphie
to Z/p"Z (resp. p,) for the étale topology. When p=2, E} and E},
are also smooth over F,. For an integer ¢, 1=5i<r/2, the multiplicity
of E} is p"~p—1). The fundamental involution w,- exchanges E; with
E,. .. When r=2t is even, w,- fixes E,. Let n,==, ., be the natural
morphism of Z5(p") to Z5(p™™): (F, A)— (£, Ay—1). Then n(E,)=FE, for
the integers 4, 0<i<r—1, and #. (¥, =FE,_,. The restriction of =, to
EMn El—E!, is an isomorphism and its restriction to Ef: B} —E} is
radicial of degree p. When p=2, its restriction to E}! : E} —E!, is
also an isomorphism and its restriction to Ef: Ef— E} (for r=38) is
radicial of degree 2. Further we know the following facts. Let 77
be the fine moduli stack which corresponds to the finite adélic modular
group

I'yp7)= {(: 2) € GL(Z) | ¢=0 mod p’},

where 2:13_11 Z/nZ [3]. Let E be a semistable elliptic curve over a

scheme S Wzth a cyclic subgroup A4 of rank(/S) p™. Let z be an object
of _#7r,,n(S) represented by the pair (E, A). Then if x®F, define a
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section of E} for 1=¢<r—1, then A admits the following exact
sequence

0——> pt,i— A—— Zjp" " Z ——0.

Now we here explain the statements as above. For a primitive p”-th
root {={,- of unity and {: Z/p"Z— 1t~ be the homomorphism /Z[{] which
sends 1 to £ over Q). For a cyclic subgroup A of Z/p"Z, define the
finite flat group scheme R(A) (/Z[{]) by “push out” in the following
diagram [3] V:

A —(ZjpZy— (ZIp"Z)]A

e oo

AQu, — R(A) — (Z/p"Z)]A.

Let &, be the finite moduli space which represents the following
functor: for a scheme S /Z[{], &.(S) is the set of the isomorphism
classes of the generalized elliptic curves E /S with an isomorphism
a: Ey~R(A)xS. Then &, is an open subspace of _#% ,~(= M}, which

is a scheme if p"=3 [3] V, VII p. 300). Let G be the schematic closure
of g(Z{p"Zx{0}) in R(A). Consider the following canonical morphisms

¥

Ty

h h h
M[‘(pr) MI’O(pT) MFO(pT_l)'

Then + sends (K, a) to (F, a(GxS)). Set A,={0}xZ/p"Z and A,=
{1, p*) for 1=i=r. Then for (E, a)c _#Z/(S), (GXS)Ng(4,)=p,: and

a (G xS) admits the following exact sequence
0—pt,i—a (GXS)— Z[p"*Z—0.

Now assume r=2. The subgroup of I'\(p"™') consisting of the auto-
morphisms which fixes &7, is I'y(p”), so that x, induces an isomorphism
of E* onto E',. When p=2, by the same way as above, we see that
7, induces an isomorphism of E!, onto E! ..

REMARK (1.8). The non cuspidal F,-rational point on E} (resp. E})
is represented by an elliptic curve E /F, with the subgroup A=(F,) =
ker(F": E—E*"=FE) (resp. A=ker(V": E*"=F —FE)), where F is the
Frobenius map and V is the Verschiebung.

Let N=1 be an integer and J,(N) be the jacobian variety of X (N).
Let B be an abelian subvariety of J(N) defined over @, A=J,(N)/B be
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the (optimal) quotient and a: J(N)— A be the natural morphism. Let
N’ (resp. N”) be the product of all the prime divisors g of N with
¢*¥ N (resp. ¢*|N). Let g: X—Y be a morphism of schemes and x be
a section of X. Denote by Cot,(g): Cot,, Y —Cot, X the morphism of
the cotangent spaces along = and g¢g(x). The morphism g is a formal
T Py N T
immersion along « if g*(Py ,m)=C%. Where 7%, and P, are the
completions of the local rings by the maximal ideals my, and my ..
A criterion of the formal immersion is seen in E. G. A. IV 17.44. This
tells us that g is a formal immersion along % if and only if the follow-
ing conditions are satisfied: (1) (P o10)/ My o00)) = Tx.o/Mx ., and (ii) Cot,(g)
is a surjective morphism.

PrOPOSITION (1.9) Mazur [14] §8). Under the notation as above, let
q be a prime number not dividing 2N". Then Cot(a@F,): Cot, (A, QF,) —
Coty(Jo(N),,QF,) is surjective, where 0 are the unit sections of group
schemes A, ,QF, and J(N) QF,.

Let %(N)eSpecZ be the minimal model of X,(N), ¢ be a prime
number not dividing N” and R= W(F’,,) be the ring of integers of Q.
Denote by ¢ the duality of Grothendieck [14] §2:

¢: Coty Jy(N) g0 —— H(ZHAN)QZ[1/N"], 2)

where Q is the sheaf of regular differentials [3] p. 162. Let z be a
section: Spec B — Z(N)*=°® and b be the morphism of X (N) to J(N)
defined by zr—cl((?)—(x)). Denote also by b the morphism of
ZN@™ QR to J(N)z which is induced by the universal property
of the Néron model.

PROPOSITION (1.10) (Mazur [14] §2 Lemma (2.1)). Under the nota-
tion as above, the following diagram 1is commutative up to sign:

Cot. (b)

Cot, ZHN)RR Coty J(N)/z

a, ~/¢

\ HY(Z(N)RR, Q)
dg

W= Z anqn_—
q

where q=q, is the local parameter along x.
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LEMMA (1.11) ([16] (3.6)). Let p be a prime number ~coa/bgqf'uemf to
1mod8, and ¢ be the matural morphism of Jyp)z to Jy(0)z. Then

there exists a form @ € ¢*(Cot, Jf,(p),zz) (C H(Z(0)RZ,, V) whose value
at the cuspidal section 0= 1> is a unit of Z,.

ProrosITION (1.12) ([16] (2.5)). Let p=17 or p=11 be a prime
number and f=fo. Z(PHRZ[1/p]— Jo(P)zm, be the morphism for a
triple (p, v, s)=(p, 2, 1) defined before. Then f®z, is a formal immer-
ston along any cuspidal section of Z5(PRZ, for ¢+2, p.

LeEMMA (1.13). Let (p, s)=(2, 5), (8.8) or (7, 2) be a pair as in (1.4).
The natural morphism of Z5(p°)*=°® to the Néron model J(p°),z 15 an
open TIMMersion.

ProorF. The modular curves X,(p®) for (p,s) as above are elliptic
curves. We can easily see this lemma, using the minimal models [24]
Table 1 pp. 81-113. The details for p=2 and 3 will be explained in
$3. L1

PROPOSITION (1.14). Under the notation as above, let (p, 7, s) be a
triple as in (1.5). Let q be a prime number and f =fm be Ehe mor-
phism of ZHp'y™" to J(p*)s (for p+#5,13), J125)wz or Jo(169)m /2
defined before. Then fRZ, is a formal immersion along the cuspidal
sections for the following cuspidal sections:

(i) For q#2, along 0:<(1)>, oo:<(1)>, <;> and (pf_1>.
(ii) For p=17 or p=11, and q=p, along 0 and oo.

(iiil) For p=17, p=1mod 8, and ¢=2, along 0 and oo.
(iv) For p=2,8 and 7, and ¢=2, along 0 and <.

(v) For p=q=2, along (%) and <2}_1>.

Proor. Fgr the simpligity, we here denote by J,(125) and J,(169)
the quotients J,(125), and J,(169),,. For a triple (p, 7, s) and a rational
prime ¢ as in the. statement.of the above proposition, the cuspidal
sections 0, oo, <;> and f_1> are contained in the smooth part
P (/Zy) (1.7). The fundamental involution w,- exchanges 0
with oo, and (;’)) with (p2‘1> for an integer j congruent to —17* mod p.
Therefore it suffices to consider the sections «~ and Ci=< pf_l). Denote
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by ¢, g, the local parameters along the cuspidal sections « and C, of
ZHp"QR for R=W(F,), respectively. Further denote by g, q;z and
q: the local parameters along the cuspidal sections 0, o and (;’)) of

25 )QR, respectively. Let u=u,, be the morphism of 27(p*)™°® to
Ju(p%),z defined by

w: 2D — J (D7) 2 T2
z——>cl((z)—(0))

The morphism f=f,, is defined by the following diagram:

%( pr)smooth f

lwpsﬁ X ﬂwpr C
D7) K (PR s J(92),2 X T (D7) 2 ——> T (0% 2 s T () 12

(2, 2) F—>(cl((2,)—(0), cl((2)—(0))) (&, Yr—a+y

Then Cotc(f)=C0t0(uw,,s7r)—CotC(u7rwpr) for any cuspidal section C:
Spec R —Z5(p")*™"". For q#p, by (1.12), it suffices to consider for
r=3. Then for ¢g=#» and r=3,

(W,sT)*(g5) =g X (2 unit)

X s . along oo,
(mrw,)*(gs) =(¢)*""° % (a unit)

(wps)*(g0) =¢, X (2 unit)

’ r—1 . along C, if s=1,
(rw,r)*(g)=(g:)"" " x (a unit)

(Wps)*(5) =¢, X (2 unit)

, s . along C, if s=2,
(rw,)*(g5)=(g.)*"° X (a unit)

where j is an integer congruent to —4i*mod p. Therefore Cot.(/)QR
and Cotai(f)®R are surjective for g=p (cf. (1.9), (1.10). (1.11), 1.12)).
For g=p, (1.7) shows that Cot.(uzw,)QF, and Cote (unw,»QF, are
0-maps, and Cot..(uw,n)QF, and Cotg,(uw,:m)QF, are not 0-maps (see
loc.cit.). Thus Cot., (f)QR and Cots, (/)RR are surjective for g=p. ]

§2. Elliptic curves.

In this section, we prepare some lemmas on elliptic curves and
finite flat group schemes. Throughout this section, K denotes a finite
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extension of Q¥ of degree ex, and R=¢7; is the ring of integers of
K. For an elliptic curve E with a finite subgroup A defined over K,
A,, denotes the schematic closure of A in the Néron model E,,. Then
A, is a quasi finite flat subgroup scheme [20] §2. The finite flat group
schemes of type (p, - -, p) over Z, are classified in [19] [20]. Let v be
the valuation of K such that »(KX*)=Z. Let G be a finite flat group
scheme of rank p over R=¢, then G=~Spec R[X]/(X*—0X) for de R
with 0=<v(0)<ex. If v(0)=0 (resp. v(6)=ex), then G=(Z/pZ); (resp.
G=p,z) (see loc.cit.).

TuEoREM (2.1) ([20] §3 (3.8.2), [19]). Let Spec R[X]/(X?—0,X) be
finite flat group schemes of rank p over R. Let g be a homomorphism
of G, to G, such that gRQK: G,QK—G,RQK 1is an isomorphism. Then
2(8,)=v(0,) mod (p—1). Further

(1) If ex<p—1, then g is an isomorphism.

(i) If ex=p—1 and g is not an isomorphism, then G, =(Z]pZ),» and
Gz = Upir-

LEMMA (2.2). Let E be a semistable elliptic curve with « cyclic
subgroup A of order p* defined over K for r=2. Letx be the R-section
of Z5(p") such that QK is represented by the pair (B, A). Then

(i) If x®F, is a section of E?, then K contains a primitive p™®-
th root Cme of umity for m(i)=min{i, r—1}.

Gi) If 2QF, is a supersingular point, then ex=p+1.

Proor. If x®ﬁp is a section of E?, then A admits the following
exact sequence (1.7):

0 Mot /x A (Z[p"*Z);x—0.

Since A is eyelic, K contains {»w. Now assume that *QF, is a super-
singular point. Let ¥ be the R-section of 25(p)=2%(p") such that y&QK
is represented by the semistable elliptic curve F =FE/A, with the
independent cyclic subgroups C,=A4,:/A, and C,=E,[4, of order p. The
schematic closure C, of C; in the Néron model F, are finite flat group
schemes, and C,.=Spec R[X]/(X?—4§,X) for §,€ R with 1=v(3;)<ex—1.
Consider the following morphisms of finite flat group schemes

00— C1/R —_ (E/R>p — (E/R>p/(CI/R) —0 (exact).
U b
Cz/R C
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Then fRK:C,— E,/C,~CRK is an isomorphism. Then
C=Spec R[X]/(X?—6X)

for 0e R with 1<v(8)<ex—1 and v(5)=v(5,) mod (p—1). If v(6)=2(3,),
then f is an isomorphism and C,,NC,,={0}. For any supersingular
elliptic curve H/F,, H,~Spec F,[X]/(X**) as schemes, so that (Ep)p#
CuzPCyr Therefore v(5)#v(d,) and ex=p+1. O

Let m be the maximal ideal of R and E be an elliptic curve with
a cyclic subgroup A defined over K. Then E has semistable reduction
over a finite extension of K. If the modular invariant JEN=0,
1728 mod m, then there exists a semistable elliptic curve F with a
cyclic subgroup B defined over K such that (E, A)=(F, B) over a
quadratic extension of K. If p=5 and j(&)=0modm (resp. J(E)=
1728 mod m), then there exists a semistable elliptic curve F with a
cyclic subgroup B defined over a finite extension K’ of K of degree
1 or 3 (resp. of degree 1 or 2) such that (E, A)~(F, B) over the
quadratic extension of K.

COROLLARY (2.3). Under the motation as Lemma (2.2), put =1
if j@)#0, 1728 modm, ¢'=3 if j®)=0 mod m and ¢ =2 if jlx)=1728
mod m. Then

(1) If «®F, is a section of E!, then ece =p™ (p—1) if 1<i<
r—1.

i) If x@ﬁp 18 a supersingular point and p=5, then exe =Zp+1.

$3. Rational points on X} (p").

In this section, we will prove Theorem (0.1) and give other results.
Let (p, r) be a pair in (1.0). Let y be a non cuspidal Q-rational point
on X (p"), and %, z’=w,(¥) be the sections of the fibre X(p7), at v.
Then » and ' are not defined over @ (1.1). They are defined over a
quadratic field k, and #'=2° for 1#¢ < Gal(k/Q). There is an elliptic
curve E with a cyclic subgroup A of order p” such that E and A are
defined over %k and that the pairs (B, A) and (E/A, E,-/A) represent
respectively x and 2’ [3] VI (3.2). Further the pair (&°, A°) is isomor-
phic /C to (E/A, E,-/A). Denote also by z, 2’ (resp. ¥) the &, (resp. Z)-
sections of 25(p") (resp. 25" (p")) with generic fibres z and 2’ (resp. ¥).
Let # be a prime of k lying over the rational prime p and e, be the
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ramification index of p in k. When »=2¢ is even, the modular curves
Z(p*) and 277 (p*) are isomorphic respectively to Z5(p') and 22*(p%).
Let ' be the corresponding (to %) @Q-rational point on X2(p*). Then
there exists an elliptic curve E’ defined over @ with independent eyclic
subgroups C; and C, of order p' such that the set {C, C,} is Q-rational
and that the pair (&, {C,, C,}) represents ¥ (see loc.cit.).

LEMMA (8.1). Let (p, r) be a pair in (1.0), and z, ', y and e, be
as above. If e,=2, then xQr(#)=2'Qk(~) is a section of E, if r=2¢
is even, and it is o supersingular point if r is odd (1.7). If xRx(#)
18 @ section of E% for am integer i1#v/2, then the rational prime p
splits in k.

Proor. First note that o' =w, (x)=12" for 1s=0 ¢ Gal(k/Q) and that
the irreducible components F, are all F,-rational (1.7). If ¢,=2, then
2Rk #) =2"Qk( %) =2’ Rk(#), so that 2Rk(#) =2'Xk(#) is a section of
E, if r=2¢ is even, and it is a supersingular point if # is odd. Now
assume that #&®x(~) is a section of E} for an integer 7+#7/2. Then
2QRr( ) #2' Qr(#) =2°RK(~). If the rational prime p remains prime in
k, then 2°Qk(~)=xXk(~)® becomes a section of (E)?=E!. Here
(2®r(~£)*® and (EH™ are the images of 2Xk(#) and E} under the
Frobenius map F: Z(p"\QF,— Z,(p")QF,. But «’Qt(4)=2"Qk(») is
a section of E}! E}. Therefore p splits in L. O

Now we prove the following theorem.

THEOREM (8.2). Let (p, r) be a pair in (1.0), and z, ' =%°, y and
¢, be as above. Then the rational prime p splits in k. Further 2Qk( )
and z'Qk(4) are the sections of EFUE} if p+2, and they are the
sections E}UEPUE! UE} if p=2.

Proor. If the modular invariant j(x)=0 (resp. 1728) mod , then
Fj@Y=0 (resp. 1728) mod 4. Put ¢'=1 if j(x)50, 1728 mod 4, ¢ =38 if
j@)=0mod ~ and p=5, and ¢ =2 if j(x)=1728 mod ~+ and p=5 cf. (2.8).

Case for p=11. Corollary (2.3), applied to the inequality e, <6<
p—1, shows that zQ@k(#) and 2’®k(+) are the sections of E]U E!.
Then by Lemma (3.1), the rational prime p splits in %.

Case for p=7. If j(x)=0, 1728 mod 4, then e, —e¢,<p—1. If
x&®k(~) is a supersingular point, then j(x)=1728 mod ~. Then e, <
4<p+1. If j(x)=0mod ~ and e’ =p—1, then ¢,=2 and r is even
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(8.1). Then e’ <6<p(p—1). Therefore Corollary (2.3) and Lemma
(8.1) give the result.

Let v be the normalized valuation of @, such that v(p)=1, and
regard k, as a subfield of Q,.

Case for p=>5 (r=38). The supersingular modular invariant in charac-
teristic 5 is 0. The same argument as for p=7 gives the result, except
for the case when j(xr)=7&)=0mod 4 and ¢,=2. For the remaining
cases, it suffices to discuss for r=38 and 4. We make use of the equa-
tions of X,(5) and X,(25) [4] IV. The modular curve X,(5) is defined by
the equation ‘

(3.2.1) J=(X*+10X+50/X

with the fundamental involution w#(X)=125/X [4] IV §3. The modular
curve X,(25) is defined by the equation

(3.2.2) J=9(V)/Y(Y*+5Y*+3-5Y*+5°Y+5°)

with w%(Y)=5/Y, where g(Y)=(Y"*+2-5Y°+11-5Y*+8-5°Y"+21-5°Y°+
202-5Y°+57-5°Y*+56-5°Y°+7-5°Y*+2:5°Y+5)° see loc. cit.

Case for r=3. Consider the following coverings

X,(125) (&, A)

/N SN

X(6)  X(25) (ElA, AulA)  (E[A, AlAy.

Let z,, 2, be the images of x under the above morphisms of X (125) to
X.(5) and X,(25), respectively. Then j(z,)=7(z,) and the set {z;, wy(z,)}
defines a @-rational point on X;7(5). The points 2, wy(z,) are defined by
X=a and X=125/a=a’ for a ck* and 10 ¢ Gal(k/Q) (3.2.1). Then the
valuation v(a)=3/2 and v(j(z,))=3/2 (see loc.cit.), since the rational prime
p=>5 ramifies in k. The point 2, is defined by Y=b for bek™ (3.2.2).
Using the equation (3.2.2) and the condition v(j(z,))>0, we see that
2(b)=1/2 and v(j(z,))=1/2. This contradicts that j(z.)=7(z,)-

Case for r=4. We make use of the modular curve X,(25). Let
z, 2 (=2° for 1+#0¢Gal(k/Q)) be the images of z and z’=x° under the
isomorphism of X (5% to X,(25): (E, A)—(E/A,, AlAy, ExlAy). Let w,
w' be the images of z and 2’ under the natural morphism of X,(25) to
X,25): (E, C, Cor(E, C). Then w'=w’. Since »(j(w))>0, using the
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equation (3.2.2), we see that w is defined by Y=aek* with v(a)=1/2.
Put a=1"5b for beQ, with v(3)=0. Then

1+ 5¢)?

jw)=v'5 b0 130 +1+1 5 d)

for ¢, de @, with v(¢)=0 and »(d)=0. Since v(j(w))>0, b*+3b*+1%£0
mod (1V'5). Let C be the curve defined by the equation

(3.2.3)
0= Y(Y*+5Y*+16Y*+25 Y +25)9(Z)— Z(Z*+ 522+ 152> +257+25)g(Y)
Y-Z

see loe.cit. _The pair (w, w") of points defines a point on C defined by
(Y, Z)=0"5b, =V 5b°. But the equation (3.2.3) gives the congruence
b*+30*+1=0mod (V' 5). Thus we get a contradiction.

Proof for p=8 and r=4. The same argument as for p=7 gives
the result, except for the case when j(x)=0mod 4. We first describe
the Q-rational points on X;7(3*) for ¢=2. The modular curve Xj(81)
is an elliptic curve and it is isogenous over @ to X, (27) [24] Table 5
pp. 135-141. Then X7 (81) has three Q-rational points [24] Table 1 pp.
81-113. Indeed, X (8*) (t=2) has three @Q-rational points. One of
them is a cusp and the others are C. M. points whose special fibres at
the rational prime 3 are the sections of (E,U E,)*/{wy:y. These C. M.
points are represented by elliptic curves E and F (/@) which are iso-
morphic over C to C/Z+2V —2 and C/Z+Z(1+1v —11)/2, respectively.
Let ¢, ¢ (resp. d, d) be the endomorphisms of E (resp. F) corresponding
to 1+17—2 and 1—1v =2 (resp. (1417 —11)/2 and (1—1”—11)/2) under
the isomorphism End E~Z[v —2] (resp. End F=~Z[(1+1/—11)/2]). Put
A=ker(c: E—~E), A=ker(c: E—E), B=ker(d: F—F) and B=
ker(d®: F— F). Then the C.M. points are represented by the pairs
(E, {A, A}) and (F, {B, B}).

Now consider the case for odd integers »=5. As was seen as
above, it suffices to discuss the case for »=5 and j(x)=0mod ~. We
make use of the minimal models of X,(27) over the basis Z, and
ZJ1v'—3], and the equation of X,(9). The modular curve X,(9) is defined
by the equation

3.2.4) 7=9(X)/X(X*+9X+27)
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with w(X)=27/X, where g(X)=(X*+4-3X*+2.27X*+28-3X+3)’ [4] IV
§2. Let z be the image of x under the morphism of X(3°) to X,(9)
defined by (&, A)+— (E/A,, Ay/A;). Then z is defined by X=a for ack™.
Since v(5(2))>0, using the equation (3.2.4), we see that v(a)=1/2, 1, 8/2, 2
or 5/2. Let 2,(27)—Spec Z[(1+1/=3)/2] be the minimal model of
X,(27)RQ( =3) ([24] Table 1 pp. 81-113).

27(27) N Z527) (=the minimal model
of X,(27) of type IV¥)
QF, E,
8 oo E, oo 3
E,
2
E, E
0 2
LK,
\ 2 2
!
\
i
\ 0
E, Z27) (of type IV)

v{(b)<0

/Nv(b)>0
E 0

[

F

LEMMA (3.2.5). Let z be a Q(/ —3)-rational section of Z527)
whose special fibre is the supersingular point. Denote also by z the

W(F,)[V —3]-section of the Nérom model =2/, (27=°" defined by z.
Then 2zQF, is a section of the irreducible component F see above.

PrOOF. The modular curve X,27)®RQ(1 —3) is defined by the
equation
ZP=Y*+4Y*+6Y~-3
Y=(¥3X*+3X+1-1)/(X+1)

with w(Y)=Y and wi(Z)=—Z [4] IV §2. Here the function X in (3.2.6)
is the same function in (8.2.4) see loc.cit. Blowing up along the super-

(3.2.6)
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singular point (Y, Z, 1" —38)=(0, 0, 0), we get the minimal model ?0(27).
The section z of X,(27) is defined by (X, Y, Z)=(a, b, ¢) for a,b, cec
Q:"("—3). By the condition v(j(2))>0, we get v(a)=1/2, 1, 3/2, 2 or
5/2 (3.2.4). Then by (3.2.6), v()=1. Further, if 2QF, is a section of
E\{supersingular point}, then »(b)<0. Therefore 2®F, is a section of
E.UF. But if 2QF, is a section of E, (c®), then w,(2)QF, becomes a
section of E,. Thus zQF, is a section of F. O

Let C be the schematic closure of the finite group el((0)—(==))>
in &. Then by the construction of & (see above), we see that C is
an étale subgroup of order 3 (cf. [24] Table 1 pp. 81-113). Let f=f,,
be the morphism of 25(8°)*° to J,(27),,=J;(27),, defined in §1. Then
Slw)=m el((0)—(e0)), for an integer m, 0=<m=<3, since J,27)(R) =
(el((0)—(e=))>. Let &, be the special fibre £ QF, and ° be the con-
nected component of £, of the unit section. Then & Ee=Z/3Z and
&,/ &5 is generated by cl((0)— (o)) ¢ (see the special fibre %, as above).
Then Lemma (8.2.5) shows that f(x) e &, so that m=0 and fle)=0 (the
unit section). Let E be an elliptic curve with a cyclic subgroup A4 of
order 3° such that the pair (¥, 4) represents z. Then (ElAy, EglA)=
(E[A, (Ey+ A)/A) over C. Therefore E is an elliptic eurve with complex
multiplication. Then for a Q-rational point ¥ on X7 (3%) and a section
x of the fibre X (8%), at y, we see easily that z®k(#) is a section of
E}UE?.

Proof for p=2 and r=6. The same argument as for p=T gives
the result, except for the case when j(®)=0mod 4. We first describe
the Q-rational points on XF(2") for ¢=8. The modular curve X (64) is
an elliptic curve and it is isogenous over @ to X,(32) [24] Table 5 pp.
135-141. There are at most four Q-rational points on X7 (64) [24] Table
1 pp. 81-113. Indeed, X;(64) has four Q-rational points. Two of them
are cusps and the others are C. M. points. These special fibres at the
rational prime 2 are sections of (B UE UE;UE)"/{w,y. We expain the
corresponding C. M. points on X7(2") for t=3. Let E be an elliptic
curve defined over Q which is isomorphic over C to C/Z+Z(1+1 —7)/2.
Let ¢, ¢ be the endomorphisms of E corresponding to (1+1"=7)/2 and
(1—v"=17)/2 under the isomorphism End E~Z [(1+1v"—7)/2]. Lete, @ be
generators of the ecyclic subgroups A =ker(¢: E—E) and A=
ker(¢’: £— E), respectively. Put B=<(e+2¢) and B=<(z+2").
Then the C.M. points on X7(2) (t=8) are represented by the pairs
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(E, {4, &) and (E, {B, B}).

Now consider the case for odd integers »=7. As noted as above,
it suffices to consider the case when »=7 and j(z)=0mod ~. We make
use of the equation of X;(8), X,(16) [4] IV and the minimal model of
X,(32) [24] Table 1 pp. 81-113. The modular curve X (16) is defined by
the equation

3.2.7) J=g(X)/ X(X+4)(X*+4X+8)(X+2)*

with wi(X)=8/X, where g(X)=(X*+2'X"+7-22X°+7-2°X°+69-2°X*+
18- 2 X%+ 11.-27X2+2°X+24° [4] IV §1. The modular curve X, (32) is
defined by the equation

(3.2.8) C: V’'=X°+6X*"+16X+16

with wi(X)=8(2X+4—Y)/X*? [4] IV §1. Here the function X in (3.2.8)
is the same function in (8.2.7). The lemma below shows that if
v(j(2))>0, then the rational prime 2 ramifies in k.

LEMMA (3.2.9). Let z be a Qi"-rational point on X(32). Then
v(j(2))=0.

PROOF. The point z is defined by (X, Y)=(a, b) for 0+a, bec@Q:".
Repeating the quadratic transformation, we get the minimal model

2%(32)~»Specz (8.2.7) (3.2.8) [24] Table 1 pp. 81-113:

C — Z5(32)  (of type 1*3)

QF,
E,
[oe)
E,
E v(a)>3
(3.2.10) N 2
=) 2
v(a)=0 2 )
v(a) >0 o /ST 0 (B 1) 20
a
E, f
Eq

Using the equation (3.2.7), we see that if v(j(z))>0, then v(a)=1 or 2.
Since x defines the W(F,)-section of the Néron model Z5(32)s o0tk
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v(a)#2 see (3.2.10). If v(a)=1, then by the equation (3.2.8), v(b)=2.
The point 2'=wy(2) is defined by (X, Y)=(8(2a+4—b)/a2, b') for b’ € Q:r
(3.2.8) and v(§(2"))>0. Then v(8(2a-+4—b)/a®)=2. Thus v(j(2))=0. 1

The lemma below makes complete the proof of Theorem (8.2) for p=2.

LEmmA (8.2.11). Let K be a quadratic extension of Q. Let z be
a K-rational point on X, (32) such that 2’ =w,(z2)=2° for 10 ¢ Gal(K/Q:).
Then v(§(2))=<0.

PRrROOF. Suppose v(j(2))>0. Then by Lemma (3.2.9), z is not defined
over Q;". Let 2, (resp. z,) be the image of z under the morphism of
X,(32) to X (8) (resp. X,(16)) defined by (E, A)—(EJA,, A/A,) (resp.
(E, A)—(E[A, A/A,). Then j(z)=35(z,) and wy(z,)=2?. The point z, is
defined by X=c¢ for ce K* (3.2.7). Let 7 be a prime element of .
Using the equation (3.2.7), we see -that v(c)=1/2, 1, 3/2, 2 or 5/2,
Further we get

If w(c)=1/2, then v(j(2,))=8+38/2 for n=2-v((¢c/7)*-16/7°).
If v(c)=1, then 2}¢/24+1 and v(j(z,))=4—2n for

—2.4( L
n=2 v(z +1).
If v(c)=3/2, then 4}¢*/8-¢/2+1 and v(j(2,)=2—n/2 for
—o.p{E 4L
n=2 12(8 + 2 +1>.
If v(c)=2, then 4}¢/4+1 and v(j(z,))=2—n/2 for
=9.9( L
n=2 v<4 +1>,
If w(e)=5/2, then v(j(z,)=1.

In all cases above, v(j(2,))#83. The modular curue X,(8) is defined by
the equation

(3.2.12) J=2Y( 24+ 87+ 2022+ 16 Z+ 1)/ Z(Z + 4)(Z +2)*

with wi(Z)=8/Z [4] IV §1. Then ¢z, is defined by Z=d for de K*.
Since wy(z,)=2{, d=8/d and v(d)=3/2. Then by the equation (3.2.12),
v(j(2,))=3. This contradicts that j(z,)=7(z,). R
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PROPOSITION (3.3). Let (p, ) be a pair as in (1.0), z and A4 be as
at the begimming of this section. Let f=f., be the morphism of
(P to the Néron model J(p%),z defined in §81. If 2Qk(#) is a
section of El}UEE, then f(x)Qk(~)=0 (=the unit section of J,(0°),2QF,).

Proor. The rational prime p splits in £ (3.1). If 2®x(#) is a
cusp, then xXr( 4 =0Q«&(#) or «@k(~4), and f(B)Xe(~£)=0. If 2@r(~)
is not a cusp, then 2X«&(~) is represented by an elliptic curve C /k(#)=F,
with the cyelie subgroup B=ker(F7: C—C=C*") or B=ker(V": C=C*"—-(C)
(1.8). Let x=m, , be the natural morphism of Z5(p") to 2Z5(p°): (£, A)—
(E, A,s) for a triple (p, r, ) as in (1.5). Then w,w(x)X&(~), 7w, ()QKr(~)
are represented by the pairs (C/B,s, C,s/B,) and (C/B, (C,s+ B)/B),
respectively. Using the Frobenius map or the Verschiebung, we see
that the pair (C/B,s, C,s/B,s) is isomorphic to (C/B, (C,s+ B)/B) see [16]
(8.3). Then w,w(@)QRk(~)=nw,(2)Rk(#) and fx)Qkr(4) =0. |

PROPOSITION (3.4). Let z and f be as in (3.3) above, and let f*, f
be the morphisms defined in §1 for a triple (p, r, s) in (1.b). For p+5,
if f@)Rk(#)=0, then flx)=0. If moreover the Mordell-Weil group of
J7(p*) 18 of finite order, then fT(y)=0 for y={x, w,- ()}

PRrOOF. The Q-rational section 7(x) of Jy(p°) (for p#5, 7) or J,(169),,
is of finite order (1.3) (1.4). For the simplicity, we here denote J,(169)
instead of J,(169).,. For p=#2, 5, f(x) generates a finite étale subgroup
of the Néron model J,(p*),z1:- The group of Q-rational points J,(32)(Q)
is generated by the class el((0)—(e)) of order 4 [24] Table 1 pp.
81-113. Further we know that el((0)—(=))QF, is also of order 4 see
loc.cit. (8.2.10). Therefore f(x) generates a finite étale subgroup of
Jyp%),z, (for p#5). Then the assumption F@)RF,=0 leads flz)=0. If
moreover the Mordell-Weil group of J;(p*) is of finite order, then f*(y)
generates a finite étale subgroup of Jy (), and f*(y)=0. i

PROPOSITION (3.5). Let x, ¥y and f* be as in (3.4) above. If p+#37
and fT(y)=0, then y is a C. M. point.

Proor. Let (E, A) be a pair which represents the point z.
Then w,n(x) and zw,(x) are represented by (E/A,, E,/4,) and
(Ela, (E,.+ A)/A), respectively. If X7(»°)=P', then J;y(p*)=J(p%) and
the assumption f*(y)=0 leads that w,w(x)=nw,{(x). Then E/A,~E/A
over C and A/A,s is a cyclic subgroup of order p =1, so that F is
an elliptic curve with complex multiplication. Now consider the case



Rational points on X5 (p7) 461

when X{(p°)#P'. The condition f*(y)=0 gives the linearly equivalence
relation below

(Tw,s(2)) + (7 (2)) ~ (W,s (%)) + (W TW e (2)) -

If n(@)=w,x(x) or w,sww,(x), then the same argument as above shows
that z is a C.M. point. In the other case, X,(p*) must have the
hyperelliptic involution v such that vz(x)=mw,(x). We know that if
Xs(p)# P!, then X/(p°) is not hyperelliptic, except for (p, s)=(37, 1)

[17] [18]. O
THEOREM (3.6). For the following pairs (p, ), n(p, r)=0:

p

2 =6
3 =4
7 =8
11 =2

p=17 =2 if p#3T7 and %J;(p)(Q)< co.

PrROOF. Let y be a non cuspidal Q-rational point on Xj(p") and
%, ' =w,-(x) be the sections of the fibre X, (p"), at y. For p=3, Theorem
(3.2) and Proposition (8.3) show that f(x)Qk(~) is the unit section of
Jo0%),2QF,. Then for any pair (p, ) (p=3) as above, Proposition (3.4)
and Proposition (3.5) show that  is a C. M. point. As was seen in the
proof of Theorem (3.2), X (2*)(Q) (t=38) consists of two cusps and two
C. M. points. There remains the case for X;(27) for odd integers »=7.

LeMMA (3.6.1). Let z, 2z, be Q-rational points on Xi(2). If
2QF,=2,QF, then z,=2. In particular, for « non cuspidal Q-
rational point z on X{(2%), 2QF, is not a cusp.

Proor. Let z, and z}=wy(x,) be the sections of the fibre X(27),,
at z; for 1=1,2. Then %, and z; are defined over @, and they are the
sections of E}UE!UEMUE! (3.1) (8.2). If 2,QF,=2QF,, then chang-
ing x, by i, if necessary, we may assume that 2,QF,=z,QF, Let
S=/:s be the morphism of Z5(2")™°® to J,(32),, defined in §1. Then
f@)QF,=f(x,)@F,, and f(x,) and f(x,) are contained in the finite étale
subgroup of order 4 generated by the class cl((0)—(c0)) [24] Table 1
pp. 81-113 (3.2.10). Therefore f(z,)=f(x,). Then applying Proposition
(1.14), we get x,=x,, hence z,=z,. N



462 Fumiyuki MOMOSE

Lemma (8.6.1) and Theorem (3.2) show that there are at most four Q-
rational points on XF(2!) for any odd integer »=7. Two of them are
the cusps {0, ~} and {(é), ( 2131 )} There is a Q-rational point on
X#(27) which is represented by elliptic curves with complex multiplica-
tion. Let E be an elliptic curve defined over @ which is isomorphic
over C to C/Z+Z(1+1 —=T7)/2. Let ¢, € be the endomorphisms of E
which correspond to (1+1”=7)/2 and (1—1”~7)/2 under the isomorphism
End E~Z[(1+1/=7)/2], respectively. Put A=ker(c: E—~E) and A=
ker(¢": E—E). Then (E/A, E,./JA)~(E, A) over C and the set {(E, 4),
(E, A)} represents the C.M. point on X7(27). The special fibre at the
rational prime 2 of this C. M. point is a section of (E,UE,)*/{w,». In
the rest of the proof, we will show that X{(27)(Q) consists of these
three points for any odd integer »=7. Suppose that there exists
another Q-rational point ¥ on X7 (2°) and let x, #’ =wy(x) be the sections
of the fibre X7(2"), at y. Then « and &' are defined over a quadratic
fleld £ in which the rational prime p=2 splits, and 2'=2° for 1+#c¢
Gal(k/Q) (1.1) (3.1) (8.2). Let ~ be a prime of k lying over the rational
prime 2. Then by (3.2) and (3.6.1), 2®«(#) and z'®«(#4) are the
sections of E}UE}. Let 2, 2 =wy(2) be the images of x and 2’ under
the morphism of X,2") to X,(32) defined by (E, A)—(E/A, As/A)-
Then 2’'=2° for 1#0¢ ¢ Gal(k/Q). These points z and 2’ are defined by
(X, Y)=(a, b) and (X, Y)=(82a-+4—b)/a? b) for O+a, b b’ ek with
a’=82a+4-b)/a* (8.2.7) (8.2.8). For a prime 7 of k, v, denotes the
normalized valuation of k.

Cram. For 742, v,(a)=0 and (v.(a), v-(a))=(3, 0) or (0, ), where
%’=2ﬁk.

Proor. Using the equation (3.2.7), we see that v,(a), v.(a”)=1v,(a)
are equal to 0, 1, 2 or 3. The sections 2®«x(# and 2’®k(~) are
contained in EF U E}. Then by (3.2.10), we see that (v,(a), v.(a))=(3, 0)
or (0,3). The class cl((0)—(c0)) generates a finite étale subgroup
scheme in the Néron model Jy(32),21s and J,(32)(Q)=<cl((0)—(=))) [24]
Table 1 pp. 81-113, (3.2.10). Applying (1.14), we see that z&Q«(») is
not a cusp for any prime »+2. Then by (3.2.7), vy(a):O for all »f2.

Ol

Changing z by «/, if necessary, we may assume that *Q«x(~) is a sec-
tion of E}. Then by the claim above, aZ,=", a’°7,=/" and aa’=
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+8. By the relations tnat a°=82a+4—b)/a* and (3.2.8), there are two
possibilities: (1) a=(—5+1"—7)/2 and (ii) a=(8+1741)/2. The first case
corresponds to the C. M. point. By our assumption, the rational point
9 corresponds to the second case. The section x is represented by a pair
(E, A) for an elliptic curve E with a cyclic subgroup A of order 27
defined over k=Q(/41). Put (F, B)=(E/A,, A/A,), and let A, X be the
characters of the idéle group k¥ induced by the Galois action of
Gal(k/k) on A(k) and E,/A(k), respectively. Then 2\ is the cyclotomic
character §=6, induced by the Galois action on (k). For each prime
z of k, let N /7;7, be the restrictions of » and X to [z (k3.

CraiM. Under the notation as above, n.=1 on (£%)* and A\,=1
for all primes #/t2.

Proor. For each prime » let 17 be the inertig. subgroup of .
Let o be the representation of the Galois action on F,(k). The subgroup
of 2-torsion points F, is decomposed into the direct sum A,/A,DE,/A,.
Then o(z)’=1 for /2 and rel,. The elliptic curve E is isogenous
over k£ to F, so that x;:l for 2J2. Since the modular invariant
j@)#0mod ~ and k=Q,, E and F have good reduction over a quadratic
extension K of Q. Let x, be the image of z under the morphism of
X, (29 to X,(29: (E, A)—(E/A,, AJA,). By our choice of x, z,Xk(+) is a
section of E*. Then the schematic closure B, _ of B in the Néron
model F,, is a finite étale group scheme of rank 2° (1.7). Then for
te(I.), n(r)=1 or 1+2° (mod 2). Therefore for v e (L) ye(r)=1. [

Now we make complete the proof for (p,r)=(2, 7). Let u=
32—51/41 and w =32+51/41 be the units of &,=Z[(1+1741)/2]. Then
Allu—1 or #||u'—1. Changing w by ', if necessary, we may assume
that #*||lu—1. For 1+¢ € Gal(k/Q), x°=w.(x) and (E°, A°)=(E/A, Es/A)
over a quadratic extension of & (, since j(x)0, 1728). Let A’ be
the character of k% induced by the Galois action on A°(k). Then
A =xg for a character ¢ of order 1 or 2. The conductor of z.=p|%
divides #° and p.(u)=1. Then under the identification of ﬁ’/i with Z7,
we get e (u)=nNu(u)=(u mod #7).  Therefore 1=X\(u)=Ne(u(u)=
{w mod ). This contradicts that ~°||lu—1. Thus we completed the
proof. [

Further we get the following results.

THEOREM (3.7). For p=17 and r=2,
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n(p, r)=dim Jy(p)—dim J,(p).
PROOF. Its proof is the same as that of Theorem (4.1) [16] §4. []

Let y be a non cuspidal Q-rational point on X;(p") represented by an
elliptic curve E/Q with a cyclic subgroup A of order p*. For a rational
prime ¢, if E has potentially good reduction at ¢, then we say that y
has potentially good reduction at ¢. If % is a C. M. point, then ¥ has
potentially good reduction at any rational prime q.

THEOREM (3.8). Let y be a non cuspidal Q-rational point without
C. M. on X{(p7). Then y has potentially good reduction at q for any
triple (p, r, q) below:

All primes q for the pairs (p, r) in Theorem (0.1), and

VY r q
13 =3 q+2, 13
p=17 -9 {all q if p=1mod8
o B q+2 otherwise.

PrOOF. By the existence of the canonical coverings of Xi(p™*?)
to X7 (p") §1, it suffices to show the theorem (3.8) for the pairs (p, r)=
(18, 3), (13, 4), and (p, 2), (p, 8) for p=17. Let y be a Q-rational point
on Xi(p") for a pair (p, ) as above, and x be a section of the fibre
X{(p"), at y. Then x is defined over a number field of degree <2.
Let f=7,, be the morphism of X,(p") to Jy(p) (p=17) or to J,(169),

(p=13) defined in §1. If z is a cusp, then x=0=(§)) or oo:((l)

(1.6). Then by (3.2), (3.3) and (3.4), we know that f(x) is the unit

section. Suppose that +Qk(»)=CXRk(~») for a eusp C and a prime 7of k.

Changing z by w,(x), if necessary, we may assume that Cz(;’") for

integers 7 and m,0 <m=<7/2 (1.6). Then Cis defined over Q({,»), where
{,m is a primitive p™th root of unity see loc.cit.. The class cl((C)— (o))
is of finite order [10] §3 (8.2), and it generates a finite étale subgroup
scheme of the Néron model Jy(p")zt, (2.1). First consider the case
when #/2p. The condition that f(z) is the unit section and the as-
sumption on » show that F(C) is also the unit section. For p=18,

r=4 and c'=(1gg), FC)=el((0)— (o)), which is of order 7. Thus

m=0 or 1. Then Proposition (1.14) applied to z, C and f leads that
2=C. If 7|p (p=17), then by (38.2), m=0. The rational prime 2 is of
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order =2 in Q(,), so that if #|2, then m=0. Then Proposition (1.14)
leads z=C. ]
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