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An application of the charge simulation method
to a free boundary problem

By Mayumi SHOJI

Abstract. We consider a free boundary problem of a circulating
flow around an equator of 2 celestial body. The flow is assumed to be
a stationary, two-dimensional and irrotational one.

Previously, we investigated the bifurcating solutions from a trivial
flow by the boundary element method regarding the same problem.[®
Then the numerical computation was successful only in simulating bifur-
cating solutions where the nonlinearity is of a limited extent.

Recently, better results are achieved in less CPU time by applying
the charge simulation method. This method, however, is not yet analyzed
mathematically, and leaves much room for improvement. In this paper,
we report of and discuss these matters.

§1. Introduction.

We consider a stationary free boundary problem for an irrotational
flow of a perfect fluid which is considered in [2].

Our purpose is a numerical simulation of bifurcating solutions of
this problem by use of the charge simulation method. The problem is
formulated as follows:

Problem. Find a closed Jordan curve v outside the unit circle I’
in R? and a stream function V such that the conditions (1.1)-(1.5) below
are satisfied:

1.1 AV=0 in 2,

(1.2) V=0 on [,

(1.83) V=a on %,

(1.4) %IVV(z—i—%—aK,:unknown constant on 7,
r

(1.5) 2= w,.

Here we have used the following notation:
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Figure 1

£2,: the doubly connected domain between [” and 7.

a, 0 and w,: prescribed positive constants.

r: the distance from the origin.

K;: the curvature of v, the sign of which is chosen to be positive
in case that 7 is convex.

|2,]: the area of 2.

REMARK. The circle I" represents the equator of the celestial body.
The conditions (1.2) and (1.8) imply that each of I and v is a stream-
line. The condition (1.4) is from Bernoulli’'s law in the presence of
surface tension. The constant o represents the coefficient of surface
tension. The parameter a is important in that it measures the magni-
tude of the flow speed. Indeed, since V is proportional to @, the speed
is large when « is large.

In this problem, the following (1) and (2) have been obtained ana-
lytically (see [4, 5, 6, 7]).
(1) For each a, there is a solution which is rotationary invariant;
i.e., if we put

7,=the circle of radius », with the origin as its center
(the radius r, is a positive root of z(ri—1)=w,),

Vo=Vir)=—2 _logr (1<r<r),
log 7,

then v=v, and V=1V, give a solution, and we call this a trivial solution.
This is a solution which is invariant under a natural action of the
orthogonal group 0(2).
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(2) If a=0, there is no solution other than the trivial one. But for
a>0, there is a solution different from the trivial solution. This non-
trivial solution is no longer O(2)-invariant, but it has a symmetry
corresponding to a certain subgroup of O(2). Such nontrivial solutions
bifurcate from the trivial solution, when the parameter a varies as a
control parameter and passes one of bifurcation points {a,}. These a,
(n=1,2, -++) are written explicitly as

2 172
an=<g&——1}%—)%> r,log 1, where R,=(t+r;")/(rt—ry").

The bifurcating solutions emanating from a, are written in the polar
coordinates as

¥ ={{r,+¢ cos(nd)+0(e), §); 0<0<2x},

where ¢ is a small positive number.

The nontrivial solutions are solutions which bifurcate from the trivial
solution. To compute the above non-trivial bifurcating solutions, we
have only to get zero-points of a certain mapping H which we deseribe
below: First we reformulate the problem in terms of function spaces
and abstract symbols.

C**(S") (0<a<1): the Holder space, and the usual norm of this space
is denoted by || llsser

Xore={u e C*(SY); w(@)=u(—0)},

Y.. a closed Jordan curve which is represented in the polar coordinates

as (r,+u(d), 8) 0=6<2x) for a given u e X%,

2,: a doubly connected domain which is enclosed with v, and I,
V.. the solution of the following Dirichlet problem:

1.1y AV,=0 in 2,
1.2y V.=0 on I,
(1.8 V.=a on v,

Now we define a mapping F'=F\(a; «, +) in the following way:

Fla; u, & =T \(a; u, &), Fya; u, £),

(L.4y Fia;w, 9=(5V VL) toK.—¢—s,
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(1.5Y Fya;u, 5):%& n(fro+u(ﬁ))2d6—7c~w0.
0

Here £ is a real variable which represents the unknown constant in
(1.4) and &, is a constant given by &=(1/2)(a/r, log 1)’ —g/r,+0o/r,. Next
we define H as follows:

H=H(e; N, v, §)=(H,, Hy, Hy): RXX**XR— X""*XRXR,

Hisin v, &)= %Fi(an%—x; g cos(nd)+ev, &) for &+0,
(=1 2) D,F(a,+x; 0, 0)(cos(nd) +v(0))+ D F(a,+2; 0, 0)¢
1=1,2

for &=0,
Hye; M v, 8= S:ﬂv(ﬁ)cos(nﬁ)dﬁ,

where D, or D, means the Fréchet derivative with respect to u or ¢,
respectively.
Then it is easy to see that

i) H(e; 0,0, 0)=(0, 0, 0).
ii) For some small ¢>0, H(e; N, v, £=(0, 0, 0) if and only if {a, 7., V.}
is a bifurcating solution for u(f)=c¢ cos(nf)+ev(6), a=a,+x.

We can show that H is a smooth mapping defined on some neighborhood
of the origin in RXX**x R into X'"*"*x BRx R. Hence the existence
of the zero point (A, v, & of H(e; -, +, -)=0 for a given ¢ is ensured by
the implicit function theorem.®*%!

Now the fact ii) above is the basis for the following computations.

§2. Computation by the Charge Simulation Method.

In this section we will give our computational scheme. As described
in §1, the solutions {a, 7., V,} bifurcating from a, are such as v,=
{(ry+u(8), 6)| u(0) =¢ cos(nd) +ev(8), cos(nd) Lv(F), 0=<6<2r}. We will chase
these bifurcating solutions one afer another along the a,-branch, re-
garding ¢ as a control-parameter. Namely if ¢ is given, a bifurcating
solution {a, 7., V.} is correspondingly determined by a=a,+x, 4=
¢ cos(nf)+ev(@) with a zero point (A, v, &) of H(g;n, v, £)=0. Each step
to obtain the solution for a given & is composed of the following proe-
esses.
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(I) Take an initial approximation v, which we except to be close to
the required boundary.

(II) For a given 7,, solve (1.1)-(1.3)".

(IIT) Modify the 7, so that the conditions (1.4)-(1.5) are satisfied. From
the fact described in §1, this is equivalent to find a zero point of a
mapping H.

Here we iterate (II) and (III) until the change of v, becomes smaller
than a prescribed small value.

The most important character of the present paper is that we
introduce the charge simulation method in solving the process (II). To
explain this method, we choose N points y, (=1,---, N) which are located
outside 7, as shown below. Let y,=(p;, ¢,) (4=1,2, -+, N) be their

Vi

Figure 2

representations in the polar coordinates. For z=(, ¢)e2,, let G, ¢)
(k=1, .-+, N) be the Green functions for —A in the outside of the
unit cirele with y, as its singular point, respectively. It is given ex-
plicitly as

GG, 9) =~ log LUl _
o 2z Iyl le—wzl’

where y* is the reflection of y with respect to I'. Then we adopt V,
of the following form as an approximate solution for V, of (1.1)~(1.3):

@) TG omeZaGl s  (@eR k=1, -, N).

Such V, automatically satisfies the equation AV,=0 in 2, and the
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boundary condition V,|r,=0 for any choice of {a;}. The boundary con-
dition on v, determines {a;}. Namely, we choose N collocation points
;= ), =12, -+-, N, on 7, (see Figure 2). Then {a,} is determined
so that V, satisfies V.lr,=a at these N points z;, i.e., {a;} is the solu-
tion of

(2.2) a g, .G 0)=0a (j=1, -+, N).

For such approximate funection V., we consider the process (III).
So we substitute V, for V, appearing in the mapping H. Here we
note that the equality |V V., [2=|(8/or) V.[*+1(8/r66) V. =la 3 a.(8/67)GL*+
la 3 @, (0/rd0)G4* holds true, where (9/dr)G, and (9/36)G, are written
concretely, and therefore, |V V.| can be written concretely. In order
to find a zero point of a discretized version of H, we prepare an
approximate function space Xy. We divide the circle S* into N ares
of equal size, and put 40=xn/N and 6;=2(j—1)-46 for j=1,2, ---, N.
Let X, be the set of all functions defined on S’ which is constant on
each of the subintervals [¢,—40, 8;+46) (=1,2, --+, N). The element
» of Xy may be denoted by {v, v, * -, vy}, Where v; is the value of v
taken on [§;—46, §;+40). We discretize the mapping by using the
funetion space X, for v.
And we take account of (2.2), where x;=({;, ¢;) (7=1,2, ---, N) are set
as {;=nr,+ecos(nb;)+ev; ¢;=0;, Then we naturally get to the next
nonlinear equations HY=0 for the discretized version of H=0:

HY=H%(e; a, N, v, &=(HYF, HY, HY, HY)
(a=(0y, a -, ay) € R*, V=V, Vg * ", vy) € Xuy Ny g €R),

HD= (3 a6 09-1)0ta) (=12 o, N),

N _1 1 _2___9_ O y —
EY=H Tt ety —Lroki—a-g) (=12 N)

w1 Ty .
E = (S E0-n-a)
(H, = 5 0,2 sin(n(0,-+ 40)) —sin(n(0,— 40),

where {;=1r,+¢ cos(nd;)+¢ev;.
t; and K; are defined by

O\'+ a'n>tj: !V Vu<r’ 0)! ‘(r,ﬁ)=(7j,05)7
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G20 L
TG
C;': Cj+1—Cj—1 CI"': Cj+1_“2Cj+<:j_1 .

4.40 ! 446"

We note that (W +au)t)'=VV.(r, OF 0.0, =10/0r) V.P+10/r50) V.=
vt a,) 35 a, (0/or)G L+ v+ a,) D) @, (0/rd6)G, > and Gu(r, )= —1/4x) x
log(r*+ p;—2rp, cos(6—6,)/(r*0i +1—2rp, cos(f§—6,)), and hence, we can
write t; (=1, -+, N) concretely. The case of ¢=0 is also written
explicitly. In this way, we solve (II) and (III) at the same time.

Now that a zero point of HY is an approximate solution of the
bifurcating solution, we can find the approximate solution by the fol-
lowing Newton method: For a given ¢, we start with initial values
of (o, +°, N0, &) which are suitably chosen, and solve

am+1_am7
m+1_vm
DH"Y(e; a™, v™, A", £")- N =—H"(g; a™, v", \", &™),
Em—!—l_sm
where DH?Y stands for the Jacobian matrix of HY and its elements
are described below.
We iterate this step until [(@™*, v™*, A", &) —(a™, v™, A", £&™)| becomes
smaller than a prescribed small value. Then we adopt (@™, o™, A, gn+t)
as the solution for the given s.

In the next step, we make ¢ a little larger. That is, we repeat
the same procesure for ¢-+de¢ where d¢ is a small increment. We thus
want to continue to get the other bifurcating solution from the same
branch. In our computations, the solution for ¢ is used as the initial
approximation in the next computation for e4-de.

We show DHY concretely:

T oHY o0HY oHy o0H;
o ov 08 on
oHY oHY oHY o0HY

v | O0a 0 0¢ on

DH"= oHY oHY oHY oHY
o ov o0& on

oHY oHY o0HY oHY

L Ja ov o0& on
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B P 0 7
Cu C. . C.
; 0
TR
- Cu i Gy I Cy
i—1: ’

00 C i 0 0

00 ¢, 0 0
Cun=0a-G(7; 0;):0;, where a=x+a,, §; is Cronecker’s delta,
(Ca=0-3 a2-Gy(¥,, 0,05,

0V,
(014):;:2]“1 aka(7j, 6,)—1,

(Coin= *laztj—-a-Gk(ij g,
& on

L (0 i 0.)45,
(sz)jk _—8—<a t_? {Zz a; avkanGi<7w 0_1) 3yk

2 ”‘QZ‘*Gi(“/a', 6;) '———Bj"‘+l_5j’k‘1}

T VLN 440
oK ; OK; 0;4:1—0;40, OK; 0;4.,—20:,+0;._
_|_0-{ Z.9.. + J o Zokt1” Ykl 7 Y4kt 4T 95k 1}>,
v, ° ov 4-46 vy 4-46°

(024)a' = —%at?:
&

<03€>,-=%§vj,

(CZ,),-:%(sin(n(ﬁ+A6’))—sin(n(0—d€))).
This gives a complete description of our iteration scheme.

§3. Experimental results.

We show our results in Figures 8-5. Similarly to our previous
work [2], we again restricted ourselves to branches only from ¢, and
from a,, and we put ,=2 and g=1. In [2] the computations are re-
stricted to a rather small region of ¢ and ¢. According to the present
method (the charge simulation method), we can perform computations
for a wider region of (a, o), especially for small ¢ and ¢. The solutions
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which were obtained in [2] are also computed by the present scheme
anew. Then we notice that they are the same. In Figures 3-b we
present solutions which are obtained newly by the present scheme.

Qay

Figure 3 1:0=5

II: 6=0.07
G a, a as
0.08 /
0.07 /
0.063
0.6003 ¢

Figure 4
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3
1
i

‘e
[
i

il) ¢=0.08
a=0.563

Figure 5

Figure 8 shows the a,-branch, Figure 4 is for the relation of ¢ to a,,
@, and a;, and Figure 5 shows the bifurcating solutions of the a,-branch
when ¢ takes various values. The arrows in these figures indicate
velosity vectors, and their length is proportional to flow speed. As
one can see from Figure 4, there are intersections of bifurcation sets
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for small ¢. This occurs only when the surface tension is small. The
method in [2] does not work in the case where ¢ is so small that the
intersection takes place. Here is our advantage to employ the charge
simulation method, by which we can analyze the case of small o.
When ¢ is very close to the value at which the intersection in Figure
4 occurs, the secondary bifurcations do take place.

The number of dents in the shape of bifurcating solutions changes
from one to two or three, according as the order of a,, a, a, changes
depending on the value ¢. We believe that this is a consequence of
the existence of secondary bifurcations. Our purpose is to realize the
global bifurcation diagram by simulation. Or we want to see the
mechanism of secondary bifurcations, because only their existence is
known analytically. But, in order to do this, however, a highly accurate
simulation is required. Actually, when ¢ is 0.07, a, is 0.6003 and q, is
0.5966, the difficulty in implementing our calculation was considerable
since non-trivial solutions exist extremely densely around there.

In the next section, we will mention accuracy of our numeriecal
treatments and error estimation about the charge simulation method.

S§$4. Examination and conclusion.

In this section we examine the precision of the charge simulation
method (hereafter we write this as the CSM). At first, for simplicity,
we consider a Dirichlet problem in the fixed domain with v=v, Let
I', 7, and 2, be as before, and let V' be a solution of AV=0 in 2,,
Vir=0 and V|,,=1. The discretization is made in the same way with
§2. And we adopt the following V as an approximate function for

V:
P, 0)=3,a;-Gi(r, 0)  for a=(r, 6)e 2,

where G,(r, 6)= —-L log L+ 0°—2rpcos(f—0;
4dr " rp*+1—2rp cos(6—06,)

6;=(2j—2)- 46, 40:-1%, Opn=0, 0>

The boundary condition V{,ozl implies the following linear equations.
4.1 M-a=1,

where
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g1 g2 9n (241 1
M: gN 91 ot ‘(?N—l , a= 6.(2 B I: :!- N

g: 95 1 Xy 1

1 75+ 0" —27,0 cos §;
:G/r’ez—-—-lo 0 9 '1.
9;= 6" 6) ix r20*+1—2r,0 cos 0;

This matrix M is cyclic, so o can be given exactly as

1
Zgj,

a1:a2: L] :aN:

and V is given by
P, ) =2 Gsl1, 0)

g

Now we put an error function e(r, 8) as
e(r, )= V(r, 6)— V(r, ).

Because ¥ and V are harmonic in 2,, e(r, 6) is also harmonic in 2.
Therefore |e(r, §)| has its maximum value on the boundary, and e(r, 8)|,=
0 is satisfied automatically. So we may estimate e(r, ) only on the
boundary v,: e(r, 0)l,,=e(r, 6)=1> Gi(r,, 6)/>, 9;—1.

We can see that e(r, ) vanishes at =6, (§=1,2, ---, N) and has its
extremum at 6=(6;+60;.)/2 (=1,2, -++, N) because it is symmetric.
We put the extremum as e¢,(p), then it is writen as

2 2
log Ti 0 — 21,0 cos(d;+ 46)
2o e e orep cos(8,4 40) .
P 2 *
log T4 0 —2r,0 cos(d;)
2. log ri0*+1—2r,0 cos(d;)

e,(0)=

We regard e¢,(0) as a function of & (=2r,-46) and p, and examine the
asymptotic behavior by plotting its graph (see Figure 6). Then we
see ¢,(0)—0 as p—oo if h is fixed, and ¢,(0)—0 as h—0 (i.e. N-— )

if o is fixed.
In fact,
2 75+ 0" — 27,0 cos 6
So log 7'20 Z-fl—Zf:p coS 0d0
e(0)-5-5 o o0 2 —1=0 for every p,

ko S 73+ 00— 27,0 cos f
o 120 +1—2r,0 cos 8
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and

< ) +1 <T°>cos(0 + 46)

2ilog <-1_ ( >cos(0,—+416)
ex(0)= <>+_ (“%w@) -
log
= AL~ (n)cosw ;
1
.{;yw—bo for any h.
2310g<é%>

From Figure 6, we may roughly regard as —logle,(0)|=0&"-(0/r,)).

On the other hand, we check on the condition number of matrix
M. Generally in M-a=23, let @ be a+4a if M— M+ 4M and g— 8+ 48,
then we get the following relation.

4] 2 40, [148]]
ol = pl4M] ( i sl )
]

where p=||M|-|M| is what is called the condition number of M.
Because M is symmetric and cyclie, its eigenvalues », (k=1,2, ---, N)
and its condition number p are given as

4.2)

§<:::ZZ::::§:4 -
—10+ 8 30 -
3
~— X
§ —20- 16 % 20 4 32
= 2
2
—30 64 10 16
. 32 /8
Y
—40
15 2 25 3 15 2 25 3
plry o/

Figure 6 Figure 7
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N ) N .
M= g0 =2, g5 cos( -1k —1)46) k=1, ---, N),
g= 3=
where @,=e?%% j=1/ 1,

=MaX N M (if N is even).
min A, Axjes

Similarly to e.(p), regarding ¢ as a function of 2 and p, we examine
the asymptotic behavior by plotting its graph (see Figure 7). Then
contrary to e,(p), we may roughly regard as —log g=0(-(0/r,)™).
Namely the better the approximation of the series is, the worse the
matrix condition is.

Next we consider the case where v is a circle v, which is slightly
translated from 7, i.e., v,={u, v)] w—p2+v*=7r3, 0<B<r,—1} and
Qs={(u, v)| 1<u*+2*, (u—pB)*+v*<ri}. We note that 2, in z-plane is
mapped over D,={(g, v)| (1+8p)*<&+v*<ri} in {-plane by the following
conformal mapping:

{=01+8p) z;p ,  where z=u+iv, {=&+1p, i=1"—1,

pz+1

fovnd = 28 .
f(2), VY r—1— g+ (r—1—pr—45) "

By this mapping, I' and v, are mapped over two coneentric circles
{€l=1+pp} and {{{|=r} respectively, and D, is an annular domain
similarly to £2,. Considering in {-plane, we see that it is the best to
take collocation and singular points as before. Namely we put them
on the points which are located with equal distance in concentric cirele.
Therefore we can get their optimal positions in z-plane by the inverse
mapping from {-plane. We show the example for the case of 8=0.5
in Figure 8.

As mentioned above, the precision of the CSM depends on the way
to take the collocation and singular points. In the case that £, is an
annular domain or is a region conformally equivalent to an annular
domain, we can easily find their optimal positions. And the approxi-
mation error can be reduced exponentially with respect to &i-(o/r,)™,
while the condition number is within the machine epsilon. In other
cases, we must rely on numerical experiments. Indeed, the effective
methods to find the optimal positions of collocation and singular points
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¢-plane «-- z-plane

= flg)= 2+p
C—f(Z)—(lJer)m+1

Goe— L 1og (BRI,
4z ]Uk| IX_UI):I
_ 1 A+ —rw)l 1 =
Go=—-11 =— L jog _lo=w]
i P @@ @D dm o Tl el
Figure 8

where v, -0f=(1+8p)* in {-plane,

in z-plane.

in general domain have not been found yet. Practically, they are chosen
by trial and error based on expriments for each problem. According
to the results established so far,”®! we know that it is better to take
collocation points more densely in a neighborhood where the curvature
is larger or the depth is smaller, and to take the singular points in
such a way that h;-(o;/r;)*=f; (=1,2, ---, N) are almost constant.
In view of these facts, we carried out our computations. However
in our case, we use iterative computations by the Newton method. So
we must take into account the following. That is, in (4.2), both of
[4M| and ||48] have values not so small in the case of iterative com-
putation. Therefore it needs to restrict g so small that ||4al| is not
so large to exceed a convergence region of the Newton method. Namely,
in this case, f; cannot be taken so small as in the case of a fixed domain.
Here [[4M]|l and |[48]| are influenced by the value of increment ¢ ap-
pearing in step. 2 of §2. In fact, if dc is taken smaller, then ||4M|]
and ||4B] are smaller. In consideration of these conditions for the
case of N=32, r,=2 and de=0.1, it turns out to be optimal to take 0
about from 2.5 to 2.8, and then the absolute error is about 107°. In
our experimental results, the errors were bounded in about 10~¢~10-3
in the neighborhood of the trivial solution for the above case, if
o is not so small. When ¢ is smaller, nonlinearity is stronger and
we must take oc smaller. Where the boundary v is far from the
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trivial position or is tortuous, it is very difficult to find optimal con-
dition. Moreover, whether it converges or not is sensitively affected
by the way to take values of {f;}. In our computations, collocation
and singular points are determined in the following way. The ¢-
coordinates of collocation points are fixed. We estimated the mean
square of errors on examination points at every step, and if necessary,
we changed only the distances of the singular points from the origin
and computed over again. Here the examination points are taken be-
tween collocation points. The results shown here are the case of which
the collocation points are x;=({;, 8,)=;, 2(j—1)x/N) and the singular
points are y,;=(0; 6,), where p; are taken so that p;/v;=f;=constant.
We examined by replacing both of these sets of points variously, but
we were not able to find remarkable improvements. However, we ex-
pect to improve these results including the error bounds in some way
or other. Though analysis of the CSM has many points to explore, we
think that our results are reliable to a certain extent because we can
estimate the approximation error numerically in the way above.

Finally, we make some comparisons of these results with those by
the BEM (Boundary Element Method).
(1) The number of iterations in the Newton method is about 4 or 5
in the BEM (the epsilon of convergence ¢ was taken as 107™), and is
about 3 to 4 in the CSM (¢=107%).
(2) As for the CPU time in the region of ill conditions, it takes for
the BEM about 10~20 times more than the CSM. The reason of this
is as follows. In the BEM, more than 80% of its CPU time is ex-
hausted in numerical integrations because of using linear elements.
(8) The accuracy of the CSM is better than that of the BEM. Be-
cause, by the BEM we could not simulate in the range where the
surface tension ¢ is small or the nonlinearity is remarkable. We think
that this is firstly because the numerical integration of singular functions
in the BEM is less accurate and secondary because we use a Quasi-
Newton method in the BEM, while a Newton method is used in the
CSM. We note that, for instance in the scheme in [2], the exact
Newton method cannot be used.
(4) In the CSM, it is useful that the derivative of solution is calculated
as a linear sum of derivatives of Green’s function. So we can easily
obtain the velocity vector inside the flow region.

In general, we might conclude that the charge simulation method
is powerful method to solve potential problems. We hope to analyze
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it mathematically elsewhere.
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