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§1. Introduction.

Let (M, g) be an m dimensional connected compact Riemannian manifold
(m=38). Let C(M,g) (resp. P(M,g)) be the group of conformal (resp.
projective) transformations of (4, g), which is endowed with compact-open
topology. We write C(M, g), (resp. (M, g),) for the identity connected
component of C(M,g) (resp. P(M,g)). We know that both C(M,g), and
P(M, g), are finite dimensional Lie transformation groups on M. It is well
known that if C(M, g), is not compact, then (}, g) is conformally equivalent
to the standard sphere ([4]). On the other hand, the following has been a
conjecture for a long time:

(1.1) CONJECTURE. If P(M,g), is mot compact, then (M,g) 1is pro-
jectively equivalent to either the stamdard sphere or the standard projective
space.

In this paper we shall prove a partial result on the above conjecture.
To explain our result, let X be a C* vector field on M. For z=M, we
define the order of{X; z) of X at x as follows: Let (#',---,2™) be a local
coordinate system of M around x and X=23 a’d/dx’ the local expression of
X. We set

o(X : v)=1inf{the order of zero of o' at x}.

Let p(X, g) be the Lie algebra of infinitesimal projective transformations
of (M,g). Then p(M,g) is naturally identified with the Lie algebra of
P(M, g),. Moreover we know o(X; £)=2 for any Xep(M, g), X+0, and any
xe M. We shall prove

(1.2) THEOREM. If there exists a wector field X n p(M, g) with
o(X, x)=2 for some point x in M, then the compact connected Riemannion
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manifold (M, g) is projectively equivalent to either the standard sphere or
the standard projective space.

We remark that if P(M,g), is compact; then o(X;z)<1 for any
Xep(M, g) and any x=M. Thus we believe that our result is a substantial
evidence supporting Conjecture 1.1 to be true. In this paper, we shall freely
use the results proved in [38], [1], [2] and [5], although we recall all the
definitions and the results which are needed in this paper.

§2. Projective spaces and projective groups.

Let P™(R) be a real projective space of dimension m with homogeneous
coordinate system [£°:&':---:€™]. The group of the projective transfor-
mations of P™(R), denoted by L, is GL(m-1; R) modulo its center: the
obvious action of GL(m+1; R) on RBR™*' induces the action of I, on the
projective space P™{R). We consider R™ as an open subset of P™(R) by
the identification

2.1) (-, v eR"— v - 0™ 1]€e PYR).

Let o be the origin of R*CP™(R). Let L, be the isotropy subgroup of L
at o so that P™(R)=L/L, Write ! for the Lie algebra of L and I, for the
Lie subalgebra of ! corresponding to I,. Then [ is naturally identified with
silm-+1: R). Set

g_I:KgiO)esI(m%—l R): ueRm}
(l@) I R): acR|
OIB esilm+1; R); ac f
0= |(r5)esttm+1; R); vc 7).
Then we have
I:Qq@go%\'gu
(2.2) L=8,Dg:,

[8:,8,1Cais;.

Here we set g,=0 if 1 =—1, 0, 1. We need a slightly different description
of I. Let (R™* be the dual space of R™; an element of (R™* will be a
row vector. Set

"=R™"Egl(m : R)YS(R™)*.
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Then I’ is a Lie algebra with the following bracket operation : if u,vE R™,
&, p=(R™* and A, Begl(m; R), then
[u, v]=0, [& 7]=0,
[44} u]: Au s [S: A]:{:A b
{*4: B]:AB—BA; [/LL, E}:@LE;EHIns

where I,, denotes the identity matrix of degree m. Define a mapping
=1 by

1 |
| S S, W 0 ‘
(@ ABY=( L)+ ML : ()
' 0 !A—( S Tr A, '
‘ m-+1 ,

Then ¢ is a Lie algebra isomorphism. By this isomorphism ¢, we identify
[ with U/, that is, g..=R™, g;=gl(m ; R) and g,=(R™)".

$3. Projective structures.

Let M be a C* manifold of dimension m. Let =,:PHM)—M be the
bundle of the k-th frames of M. It is a principal bundle with the structure
group G*(m). Remark that GX(m)=GL(m ; R) and =,: P"(M)—M is the usual
frame bundle of M. We also remark G'(m)CG*(m) in the natural fashion.
Let zi:PYM)—PYM) be the natural projection. If f:M—M is a diffeo
morphism of M, then f induces the bundle isomorphism f, : P*(M)—P*(M)
with m,ofim=sfom,. Write @ for the canonical form of P*M) (for the
definition, see p. 224 of [3]). Since O is (q_,Dgy)-valued, we set O=(09+(0)).
We remark f50°=6° and f}0i=06. Write §=(6") for the canonical form
of the frame bundle PY(M). Then we have

(3.1 (z))*8'=0".
With respect to the inclusion R™C P™(R) descrited in (2.1), we have

the mapping

6 € Ly —> 7o) =G(m) .

Since this mapping is injective, we consider L, as a subgroup of G(in).
Moreover we have
(3.2 GL(m ; B)=G"(m)C L, C G m).

The Lie subalgebra of [, corresponding to GL(im:FK; with respect to
‘nclusion (3.2) is exactly g, in (2.2).
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A principal subbundle P of P*) with structure group L, (CG*(m)) is
called a projective structure on M. A diffeomorphism f:M—M is called
an automorphism of P if fu,(P)=P. We write Aut(M;P) for the group
of the automorphisms of P. A projective Cartan connection on P is, by
definition, a 1-form w on P with values in the Lie algebra [ of L satisfy-
ing the following conditions:

(8.3) w(A¥)=A for every A<,

where A* is the fundamental vector field on P corresponding to 4 ;
(3.4) (R)*o=Ad(e Do,

where Ad(s) denotes the adjoint representation of L, on [;

(3.5) o(X)=0 for every nonzero tangent vector X of P.

Let P* be the principal bundle over M obtained by enlarging the structure
group of P to L, that is

Pr=P x L.

Lo

Then P is a subbundle of P! and a projective Cartan connection o in P
can be uniquely extended to a principal L connection form on P*, which is
denoted by w’. According to the decomposition I=g_Pg,Pg; in (2.2), we set

o=w_PBwPo;, and o' =0 De,Do;.

The curvature form £ of the projective Cartan connection w is defined by
1
RQ=dw+ g[w, »].

According to the decomposition I=g_Pg,Pg;=R"Dglim ; R)P(R™*, we set
Q=0_.D2D ‘Ql
=(2HD2HD(L)).

Using the canonical form @=(0)PH(O)), we have the decomposition as
follows :

0'= 53 K\07 n6*,

(3.6) Q=5 S KON,

Qi:% > Kijk@j/\@k;
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where Kj, K. and K,; are functions on P (see Proposition 2 of [3]).
We know that there exists a unique projective Cartan connection
wr=w_Pw,Dw, with the following properties:

w1 =(0) and w,=(0)),
3.7) > Qi=0,
2 ;u = 0 .
K
We call this unique projective Cartan connection wy the normal projective

Cartan connection of the projective structure P. From the uniqueness, we
have

(3:8) f(*Z)wP:a)P

for each fe Aut(M: P). Each f Aut(M; P) extends uniguely to the bundle
automorphism f{,, of P*. Then we have

(3.9) (fe) or=wp.

It is known that there exists a unique g,-valued 2-form @; on P'(M)
such that @H*@i=0% In view of (3.1) and (3.6), there exist the functions
H}, on PY(M) such that Kju=H}-7i. In particular (£%) uniquely deter-
mines the tensor fleld Wp on M of type (1,3). We call W, the projective
curvature tensor of Weyl. We know if W,=0, then the projective structure
P is flat ([3]). We remark here

Ha’ikl'f(n:Hjikz
for each fe Aut(M;P). Or equivalently we have
3.10) F*We=Ws

for each fe Aut(M ; P).
From (3.3) and (3.5), we know that for each v=R"=g_,, there exists
uniquely a vector field B(v) on P satisfying

O_,(Bw)=v, O(B)=0 and o(B)}}=0.

We call B(v) the standard horizontal vector fields corresponding to v.

$4. Development.

In this section we fix a C® manifold M of dimension m and a projective
structure P on M. We write wp=0_,—60,+w; for the normal projective
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Cartan connection of P. As explained in the previous section, the Cartan
connection wp naturally defines-the principal L-connection wp>=0",+60;+w;
on Pt=P >< L.

Fix xeM and p=P with m(p)=2. Let I be an open interval of R
with a=l. Let ¢:1—MW be a regular C~ curve with c¢(a)=x. Let ¢*(t;a,»)
be the horizontal lift of ¢(¢) through p in P* with respect to the principal
L-connection o>, that is

(4.1) (dt *(ts ap)> 0 and c¢*a;a,p)=p

Now choose any C™ curve p:I—L such that p(a)=e and ¢*(t;a,p)-p()=P
for any tel. Set &(t;a,p)=p(t)-o=P™(R). Then &(t;a,p) is a C” curve
in P™(R) whose definition is independent of the particular choice of the
curve p(t). The curve &(t;a,p) is called the development of the curve c(t)
at t=a with initial point p. Take bel and geP such that m(q)=c(b).
There exists uniquely =< L, such that g=c*(b;a,p)-p(b)-z. Then c¢*(¢;b,q)
=c*(t;a,p)p®) -7 and ¢*(;b, @ - pd) - p(t)reP. Hence we have

(4.2) e(t;b,q)=z""p) "2 a,p).

In particular we know that the curve &(f;b,q) is contained in a straight
line in P™R) if and only if &(t;a,p) is. Keeping this fact in mind, we
call the regular curve c(t) a straight line of P if the development &(¢;a, »)
is contained in a straight line through o in P™(R). Moreover if ¢(t;a,q)
is a straight line with affine parameter t for some g==x;'(x), then we call
the curve c(t) a straight line with projective parameter.

In the rest of this paper, we sometimes write ¢*(t) (resp. ¢(f)) for
c*(t;a, p) (resp. &(t;a, p)) if there is no danger of confusion.

(4.3) LEMMA. The development &(t) is a regular curve in P™(R).

PROOF. Since mf{c*(t)-p(t))=mr:(c*(t))=c(t) and c() is a regular curve,
we have

0-6. (L") p(t»):@:l(%(c*(t)-p(t‘))).
On the other hand, we have

%(mtmm:(%c*@))p(t) I (p(t) ldo(t)>

“(t)o(t) .

Hence
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Oi@'ﬂ(%e*(?ﬁ) 'P(ﬂ)+@Ll<<‘o(t)_lﬂ—g(tjl>jmpcn> )

:Ad(p(t)"’)9'—1(%0*@))—!—(%‘3 g.;-component of p(t)“ggiﬂ> )

=the g.,-component of p(f)™* d‘o (t) .

Clearly we have

dé(t)
dt

dazg(t)
Cdt

=06= p(t) =0

= o) 2 o1, (=g,pa)

dp(t)

& the g.,-component of p(t)™’ =0,

Hence we have dé(t)/dt=+0. q.e.d.

(4.4) LEMMA. Let f be in Aut(M; P) with f(x)=2x. Let o, be the unique
element of L, such that fo(p)=p-o;. Then the curve o,-é(t;a,p) is the
development of the curve fle(t)) at t=a with cla)=7p.

PROOF. Let f; be the bundle isomorphism of P induced by fe.
From (3.9), we have (f(»)*0r=wpr. Hence fi,(c*({t))-o;' is the horizontal
lift of f(c(f)) through p. Then we have

féz)(C*(t)) : 0?1 tOgt P(t) :fzz)(C*(t)) . P(t) :f(m(C*(t) : P(t)) eP.

Thus the development of f(c{(f)) at = with the initial condition p is
os-p(t)-0=0,-8(1). g.e.d.

(4.5) LEMMA. Let ¢:J—I be a diffeomorphism with o(b)=a. Then we
have (cop)(t;b, p)=2t(p(t);a, p).

PROOF. We have (cop)*(t; b, p)=c*(p(t); o, p) and (cop)*p(ep(t)) € P. Since
¢le(t) ; a, py=ple(t))o, our assertion is true. g.e.d.

(4.6) PROPOSITION. Fix =M and pEP with m(p)=x. There exist an
open ball U of o in R"CP™R), an open meighbourhood V of x in M and
a diffeomorphism E:U—V satisfying the following conditions:

(1) Elo)=

(2) For the curve c(t)=E(tv), we have &(t;o, p)=tv.

(8) For anwy velU, ct)=E@v) is a straight line of P with affine
parameter such that ¢(o)=r.(B(v),).
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PROOF. For each ve R™=g_,, we write B(») for the standard horizontal
vector field corresponding to vw. Remark that for each seR, we have
" B(sv)=sB(v). Set F(v,t)=m,(exptB(v)-p). Thisis a C~-map which is defined
for [l <1, |t|<e. We remark that B(sv)=sB(v) implies F(sv,t)=F(v, st).
Set E(w)=F(v,1). Then E is a C”-map which is defined for |[v] <e/2.
Clearly E(o)=x. We shall calculate the differential of E at o. Take any
ve R™. Setting =zi(p)=«, we have

d 4
‘J{E(tv)‘mo—— _%F(tv; Dli=o

_a
~di F{v, t)]=

= ﬁz*(B(v)p)
= ﬂl'(ﬁé)*(B(v)p)

=a(f((73)«(B(v)p)))
(from (3.1))
=a(0,(B(v)p))

=a(v).

Thus if we identify T(M), with R™ by the frame a: R*~T(M),, we have
E,,=id. To prove (2), set r(t)={(exptB(v)-p)-exp(—tv) and q(f)=exptB(v)-p.
Then we have

d
10— Bl ex0(—10)— %o
Hence
(4.7) w}:( dgit) >=Ad(exp tvyv—v=0,

remarking g.; is abelian. Thus 7(¢) is a horizontal lift of the curve
7(q(t))=F(v, t)=E(tv) with »(0)=p. Hence ¢*(¢;0, p)=7() and p(t) =exp(tv).
Thus we have &(¢;0,p)=exptv-o=tv. The assertion (3} is clearly true.
g.e.d.
We call (U, E,V) the projective normal coordinate of P at z with
respect to p<(m) Yx).

§5. Projective equivalence of affine connections.

Let M be a C* manifold of dimension m. In this section we make
use of fact 3.2 in §3. Let V be an affine connection on M with zero
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torsion. Then ¥ naturally defines the bundle inclusion ¢g: P (M) P M)
(see Proposition 10 of [3]). We write P(V) for the L,subbundle of P*(3)
obtained by enlarging the structure group of ¢(PYM)) to L, Thus the
affine connection V naturally defines the projective structure P(V) on M.
Two affine connections V, and V, are called projectively equivalent if
P(V,)=P(V,). A diffeomorphism f:M—M is called a projective transfor-
mation of V if ¥ and f.V are projectively equivalent. The following facts
are proved in Proposition 12 of [3]:

(5.1) FACTS. (1) The correspondence Y— P(T) gives rise to the bijection
between the projectively equivalent classes of affine connections with zero
torsion on M and the projective structures on M.

(2) Let ¥, and 7, be affine connections with zero torsion on M. Then
the following three conditions are mutually equivalent :

(a8) Y, and Y, are projectively equivalent;

(b) Y, and Y, define the same geodesics if the parametrization s
disregarded ;

(¢) There exists a l-form a such that Vix Y= Voy Y=a(X) Y +a(Y)X
for arbitrary wvector fields X and Y.

(8) In particular, we know that a diffeomorphism f: M—M is a pro-
Jective tramsformation of an affine connection ¥ with zero torsion tf and
only if feAut(M; P(V)).

Let P be a projective structure on M. An affine connection V is said
to belong to P if P=P(V).

(5.2) LEMMA. Let P be a projective structure on M and V an affine
connection belonging to P. Let ¢; (—e,¢)—M be a C= regular curve with
c(0)=z. Then ¢(t) is a geodesic with respect to V (the parametrization
being disregarded) if and only if the curve c{t) is a straight line of P.

PROOF. Fix p<P such that m(p)=x. According to Proposition 12 in
[3], we know that the following two conditions are mutually equivalent:

(5.3) ¢(t) is a geodesic with respect to V ;

(5.4) There exists a standard horizontal vector field B(v) on P correspond-
ing to veg., such that c(t) and m(expsB(v)-p) coincide with each other if
their parametrizations are disregarded.

Now suppose c¢(t) is a geodesic with respect to 7. Set r(s)=(expsB(z}- p)
scexp(—sv) and g(s)=expsB(v):-p. Then we have



242 Tadashi NAGaNO and Takushiro OcHIAI

dr(s %
2(3 ) =B(¥) g -exp{—sv)—v%, .

Hence wp(dr(s)/ds)= Ad(exp(sv))v—v=0 (g_, being abelian). Thus 7(s) is a
horizontal lift of the curve y(s)=m(g(s)) with »(0)=p. Hence r(s)=7%(s; 0, p)
and 7*(s;0, plexp(sv) P. Therefore we have 7(s;0, p)=exp(tv)-o, which is
a straight line through o in P™(R). Then from Lemma (4.5), we know c(£)
is a straight line of P. Conversely suppose c¢(t) is a straight lineof P. So
&(t;a, p) is contained in a straight line through o, say, expsv-o (v=g.,) of
P™R). From Lemma (4.3), there exists a diffeomorphism ¢=¢(s) such that

E(p(s) ; a, p)=exp(sv}-0 and ¢0)=a.

From Lemma (4.5), we have ¢*(¢{s); a, p)-exp(sv)e P. Then

or{ 4o (e (o (5) 0, ) exp(so))

AR R —
=7v.

Therefore the curve ¢*(p(s) ; a, p)exp(sv) is the integral curve of the standard
horizontal curve B(v} through p. From (5.4), c(o(s))=m(exp(sB(v))-p) is a
geodesic of V. _ g.e.d.

In the rest of this section we fix a projective structure P on M. We
also fix x= M.

(5.5) LEMMA. Let f be in Aut(M; P) with flz)=wx. Let ¢:(—z¢)—M be
a straight line of P with projective parameter such that c¢(0)=x and
F(6(0) €{6(0)}. Suppose &(t;0,p)=tvCR"CP™(R) (ve R™—{0}). Then we
have :

(1) o) {v}, where o,= L, is defined by fop)=p-a,.

(2) flet))=clplt)), where o(t) is defined by o, (tv)=¢(t)r. In particular
© 18 of the form o(t)=t(at+b)™"

PROOF. From Lemma 4.4, we have (foe)(t;0, P)=0(&(;0,p)). Since
£(t;0,p) is a straight line in P™(R) with affine parameter, the curve
a;(¢(t;0,p)) is contained in a straight line in P™(R). Fix an affine con-
nection V with zero torsion belonging to P. From Lemma 3.2, both c(¢)
and f{c(?)) are geodesics with respect to V (the parametrizations being not
necessarily affine parameters). Since dfic(t))/dt],—o={¢(0)}, there is a diffeo-
morphism ¢ :{—¢, e)—>(—¢, ) with ¢(0)=0 satisfying fle())=c(o(t)). From
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Lemma 4.5, we obtain
o (2(t; 0, p))=2(e();0,p).

Since &(s;0, p)=sv, the above equality implies o (tv)=0(t)v. Therefore
p(t)=t(at+b)"" for some a,bs R. q.e.d.

(6.6) LEMMA. Let {fJCAut(M;P) be a l-parameter subgroup such that
fs@)=x and f;, =id at x for each s€R. Let (U E,V) be the projective
normal coordinate of P at x with respect to p<(m) Hx). (1) f, is written
with respect to this coordinate system as follows:

v

S =1

Jor some f=g, (=(R™)%).

2) If §+0, we have Wp=0 on V.

PROOF. It remains to prove assertion (2). Set E=(x!,---,2™). Take
any ve U with &v>0. Then we have f,(v)=U for any s=0, and f,(v)—0o
as s—co. Set filx)=(fYz),---,f™x)). From (1), we have

afﬁ( )__ 5{(1“{—357})—‘87)j§i
o5t T (T séo)
and
7
U (o) = (1w 550).
Set

0 3 ) m .5
Vo o e J— — .
L P( dxt’ ou’ > ox* 12=1 Wiy gt ”

Since f; leaves W, invariant, we have

() (S
()
= f_s.< WP< ( aii >@’fs‘< aii >v>f < a?ck ).)-

Hence we have
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ofy

0w’

3f‘ afs )afc

()= ()

(v)

kz]( v)= (fs(v)) Weal fs(’l/))

= Wl £1(0)) (Gt s0€°)(1 +£v)

{641+ sEv) — s XN +s&v) — sve € {81 +s$v)—svd51}
(1-+s&v)

X

Hence taking s—oo, we see Wi {v)=0. By the same argument, we have
Wi(v)=0 for any ve U with &v<0. Therefore Wi,;=0 on U.

(5.7) LEMMA. Let {fyCAut(M; P) be a 1-parameter subgroup such that
fi@)=x and (f).=1d at = for each s R. Let ¥V be an affine connection
with zero torsion on M which belongs to P and ¢: R—M a geodesic with
respect to N, c{0)=x. Then we have the following :

(1) There exists a l-parameter group of diffeomorphisms ¢, of R
such that o(0)=0 and fie(t))=clps(t):

(2) If {ps is non trivial, then Wp(c(t))=0 for any t<R.

PROOF. From Lemma 5.2, we know fi(c(t)) is also a geodesic with
respect to V, although the parametrization is not necessarily the affine
parameter. Since (f,),=id at x, we have {f;-c(t);te R}={c(t); t= R}. From
this assertion (1) is true. To prove {2), let X be the vector field on M
which generates {f}. Fix peP with mn(p)=2, and set a==i{p). Since
{(f)x=1d at =z, we have (f)w(a)=a for any s<R. Hence there exists
§=(R™* (=g) such that (fJo(p)=p-exp(s€). Set o(s)=exp(sf). From
Lemma 4.4 and Lemma 4.5, we have

(5.8) O'(S) * é(t 5 O; p):é(sﬂs(t) 5 0’ p) .

From Lemma 5.2, we know &(¢; 0, p) is contained in a straight line through
o in P™R). Hence {p,(t)} is a 1-parameter group of projective transfor-
mations of K. In particular, if we set G={teR; ¢,(t)=t for any s R},
then G is a discrete subset of R. Let E: U=V be the projective normal
coordinate of P with respect to p. Set v=¢(0)e R™ (=g_;) in terms of this
coordinate system. We shall prove the following fact:

(5.9) o(X;c@)=2 for any ac=G if {¢s is non trivial.

Since {¢,} is nontrivial, we have &v=0. So assume &v>0. {The case &v <0
can be treated similarly.) So assume G=#{0}. Take a=G such that
0, NG=@ or (a,)NG=@. Assume (0,a)\G=@. Choose b=(0,a) so
that bv=U. Then ¢db)—a as s—>—co. From (5.6) we know &(a;0,p)=o.
Choose p(t) = L such that o(0)=1d and ¢*(¢; 0, p)o(t) = P. Set g=c*(a;0, p)p(a).
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Since fi(cla))=c(a), there exists uniquely z(s)= L, such that (fi)e(g)=g-z(s).
We claim z(s)=p(a)'e(s)pla). In fact,

(fea(e™(t; 0, P)o(t)) = (F)inlc*(t; 0, p)) - o(t)
=¢*(t; 0, pla(s)-p(t)

=c¢*(t;0,p)-p(t)p(t) - o(s)- p(t} .
On the other hand

(fie{c™(a; 0, ppla))=q-z{s).

Thus z(s)=p(a) 'o(s)p(a). Since p(a)-o=c(@; 0, u)=0, we have p(a)= L,. Since
o(s)sexpg, and expgq; is normal in L, we see z(s)eexpg,. Then (f)o,(7i(q)
=r3((fde(@))=ni(q-(s)) =xi(g). So we know (fi),=id at ¢(a), i. e, o(X; c(a))
=2. Similarly for o(X;c(a))=2 in case (a¢,0)N\G=@. Now replacing =«
with e(a) and & with Ad(p(a) )& where (0,a)NG=@ or (a,)NG=D, we
find o(X;b)=2 if (a,b)NG=D (a>0), or (b, a)"G=@ (¢ <0). Repeating the
same argument, we conclude o(X;a)=2 for any ac=(G. Now set G=
{A.}neo21,20.-. Then {p, is transitive on (4, 4,,,). From (3.10) and
Lemma 5.6, we know Woy(e(t))=0 for any t<(A4,, 4,..). Thus we have
Welc(t))=0 for any t= R. g.e.d.

§ 6. Proof of Theorem 1.2.

We keep the notation in §1. Let {f,} be the 1-parameter group of
transformations generated by the vector field X.

(6.1) LEMMA. The set {x=M;o(X;x)=2} consists of at most two points.

In particular, the fundamental group = (M) of M s isomorphic to either
{1} or Z,.

PROOF. Suppose we had three distinct points x, z, and x; such that
oflX;z,)=2 (¢=1,2,8). Take any y=M such that X(y)#0. Consider the
orbit I={f.(y); s R}, a 1-dimensional submanifold of M. Let ¢,: R—3 be
geodesics which pass through =z, and y (1=1,2,3). Since, (f,).=id at =,
(:=1,2,3), we know f, leaves each ¢,(R) invariant. Hence ICc¢,(R). In
particular we have ¢,(R)=c,(R)=¢;(R) for every point y. This is impossible.

Now let = :M*—M be the universal covering of M. Let ¢g* and X*
be the lift of g and X to M* respectively. Then we have X*<=p(M*, g¥)
and ol X*;y)=2 if o(X; z{y))=2. g.e.d.

PROCF OF THEOREM 1.2. Let V be the Levi-Civita connection of ¢
and P=DP(Y) the projective structure to which ¥V belongs. Set F=
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fve; X(y)=0}. Take any y=M—F. Let ¢(t) be a geodesic joining z and
y. From Lemma 5.7, we have Wyp(c(t))=0. Hence we have W, vanishes
on .M—F. On the other hand, we know M—F contains no interior point.
Hence W, vanishes on M. Let =*:M*—M be the universal covering of
M. M* is compact by Lemma 6.1. Let ¢* X* and P* be the natural lift
of g, X and P respectively. Then we have o(X*;y)=2 for yer (z).
Hence W, =0 on M. From Theorem 16 of [3], we have our conclusion.
g.e.d.
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