J. Fac. Sci. Univ. TokyoSect. IA, Math.33 (1986), 233-246.

On compact Riemannian manifolds admitting essential projective transformations

Dedicated to Professor Nagayoshi Iwahori on his 60th birthday

By Tadashi NAGANO and Takushiro OCHIAI

§ 1. Introduction.

Let (M,g) be an m dimensional connected compact Riemannian manifold $(m \ge 3)$. Let $\mathcal{C}(M,g)$ (resp. $\mathcal{L}(M,g)$) be the group of conformal (resp. projective) transformations of (M,g), which is endowed with compact-open topology. We write $\mathcal{C}(M,g)_0$ (resp. $\mathcal{L}(M,g)_0$) for the identity connected component of $\mathcal{C}(M,g)$ (resp. $\mathcal{L}(M,g)$). We know that both $\mathcal{L}(M,g)_0$ and $\mathcal{L}(M,g)_0$ are finite dimensional Lie transformation groups on M. It is well known that if $\mathcal{L}(M,g)_0$ is not compact, then (M,g) is conformally equivalent to the standard sphere ([4]). On the other hand, the following has been a conjecture for a long time:

(1.1) CONJECTURE. If $\mathcal{L}(M,g)_0$ is not compact, then (M,g) is projectively equivalent to either the standard sphere or the standard projective space.

In this paper we shall prove a partial result on the above conjecture. To explain our result, let X be a C^{∞} vector field on M. For $x \in M$, we define the $order\ o(X;x)$ of X at x as follows: Let (x^1,\cdots,x^m) be a local coordinate system of M around x and $X = \sum a^i \partial/\partial x^i$ the local expression of X. We set

 $o(X; x) = \inf\{the \ order \ of \ zero \ of \ a^i \ at \ x\}.$

Let $\mathfrak{p}(X,g)$ be the Lie algebra of infinitesimal projective transformations of (M,g). Then $\mathfrak{p}(M,g)$ is naturally identified with the Lie algebra of $\mathcal{P}(M,g)_0$. Moreover we know $o(X;x)\leq 2$ for any $X\in\mathfrak{p}(M,g)$, $X\neq 0$, and any $x\in M$. We shall prove

(1.2) THEOREM. If there exists a vector field X in $\mathfrak{p}(M,g)$ with o(X,x)=2 for some point x in M, then the compact connected Riemannian

manifold (M, g) is projectively equivalent to either the standard sphere or the standard projective space.

We remark that if $\mathcal{P}(M,g)_0$ is compact, then $o(X;x) \leq 1$ for any $X \in \mathfrak{p}(M,g)$ and any $x \in M$. Thus we believe that our result is a substantial evidence supporting Conjecture 1.1 to be true. In this paper, we shall freely use the results proved in [3], [1], [2] and [5], although we recall all the definitions and the results which are needed in this paper.

§ 2. Projective spaces and projective groups.

Let $P^m(\mathbf{R})$ be a real projective space of dimension m with homogeneous coordinate system $[\xi^0: \xi^1: \cdots: \xi^m]$. The group of the projective transformations of $P^m(\mathbf{R})$, denoted by L, is $GL(m+1; \mathbf{R})$ modulo its center; the obvious action of $GL(m+1; \mathbf{R})$ on \mathbf{R}^{m+1} induces the action of L on the projective space $P^m(\mathbf{R})$. We consider \mathbf{R}^m as an open subset of $P^m(\mathbf{R})$ by the identification

$$(2.1) (v1, \dots, vm) \in \mathbf{R}^m \longmapsto [v1: \dots : vm: 1] \in Pm(\mathbf{R}).$$

Let o be the origin of $\mathbb{R}^m \subset P^m(\mathbb{R})$. Let L_0 be the isotropy subgroup of L at o so that $P^m(\mathbb{R}) = L/L_0$. Write I for the Lie algebra of L and L_0 for the Lie subalgebra of I corresponding to L_0 . Then I is naturally identified with $\mathfrak{sl}(m+1:\mathbb{R})$. Set

$$\begin{split} &\mathbf{g}_{-1} \!=\! \left\{\! \left(\frac{0}{u} \middle| \frac{0}{0} \right) \!\in\! \mathbf{sI}(m+1\;;\; \mathbf{R})\;;\; u \!\in\! \mathbf{R}^{m} \right\} \\ &\mathbf{g}_{0} \!=\! \left\{\! \left(\frac{a}{0} \middle| \frac{0}{B} \right) \!\in\! \mathbf{sI}(m+1\;;\; \mathbf{R})\;;\; a \!\in\! \mathbf{R} \right\} \\ &\mathbf{g}_{-1} \!=\! \left\{\! \left(\frac{0}{0} \middle| \frac{t_{v}}{0} \right) \!\in\! \mathbf{sI}(m+1\;;\; \mathbf{R})\;;\; v \!\in\! \mathbf{R}^{m} \right\}. \end{split}$$

Then we have

Here we set $g_i=0$ if $i \neq -1$, 0, 1. We need a slightly different description of I. Let $(\mathbf{R}^m)^*$ be the dual space of \mathbf{R}^m ; an element of $(\mathbf{R}^m)^*$ will be a row vector. Set

$$I' = \mathbb{R}^m \oplus \mathfrak{gI}(m : \mathbb{R}) \oplus (\mathbb{R}^m)^*$$
.

Then I' is a Lie algebra with the following bracket operation: if $u, v \in \mathbb{R}^m$, $\xi, \eta \in (\mathbb{R}^m)^*$ and $A, B \in \mathfrak{gl}(m; \mathbb{R})$, then

$$[u, v] = 0$$
, $[\xi, \eta] = 0$, $[A, u] = Au$, $[\xi, A] = \xi A$, $[A, B] = AB - BA$. $[u, \xi] = u\xi - \xi uI_m$,

where I_m denotes the identity matrix of degree m. Define a mapping $\iota: I' \to I$ by

$$\iota(u \oplus A \oplus \xi) = \left(\frac{0}{u}, \frac{0}{0}\right) + \left(\frac{-\frac{1}{m+1}\operatorname{Tr} A}{0} \right) = \left(\frac{1}{m+1}\operatorname{Tr} A\right)I_{m} + \left(\frac{0}{0}, \frac{\xi}{0}\right).$$

Then ℓ is a Lie algebra isomorphism. By this isomorphism ℓ , we identify I with I', that is, $\mathfrak{g}_{-1}=\mathbf{R}^m$, $\mathfrak{g}_0=\mathfrak{gI}(m;\mathbf{R})$ and $\mathfrak{g}_1=(\mathbf{R}^m)^*$.

§ 3. Projective structures.

Let M be a C^{∞} manifold of dimension m. Let $\pi_k: P^k(M) \to M$ be the bundle of the k-th frames of M. It is a principal bundle with the structure group $G^k(m)$. Remark that $G^1(m) = GL(m; \mathbf{R})$ and $\pi_1: P^1(M) \to M$ is the usual frame bundle of M. We also remark $G^1(m) \subset G^2(m)$ in the natural fashion. Let $\pi_2^1: P^2(M) \to P^1(M)$ be the natural projection. If $f: M \to M$ is a diffeo morphism of M, then f induces the bundle isomorphism $f_{(k)}: P^k(M) \to P^k(M)$ with $\pi_k \circ f_{(k)} = f \circ \pi_k$. Write Θ for the canonical form of $P^2(M)$ (for the definition, see p. 224 of [3]). Since Θ is $(\mathfrak{g}_{-1} \oplus \mathfrak{g}_0)$ -valued, we set $\Theta = (\Theta^i) + (\Theta^i_j)$. We remark $f_{(2)}^* \Theta^i = \Theta^i$ and $f_{(2)}^* \Theta^i_j = \Theta^i_j$. Write $\theta = (\theta^i)$ for the canonical form of the frame bundle $P^1(M)$. Then we have

$$(3.1) (\pi_2^1)^*\theta^i = \Theta^i.$$

With respect to the inclusion $\mathbf{R}^m \subset P^m(\mathbf{R})$ described in (2.1), we have the mapping

$$\sigma \in L_0 \longrightarrow j^2(\sigma) \in G^2(m)$$
.

Since this mapping is injective, we consider L_0 as a subgroup of $G^2(m)$. Moreover we have

$$GL(m; \mathbf{R}) = G^{1}(m) \subset L_{0} \subset G^{2}(m).$$

The Lie subalgebra of I_0 corresponding to GL(m;R) with respect to inclusion (3.2) is exactly g_0 in (2.2).

A principal subbundle P of $P^2(M)$ with structure group $L_0\left(\subset G^2(m)\right)$ is called a *projective structure* on M. A diffeomorphism $f:M\to M$ is called an automorphism of P if $f_{(2)}(P)=P$. We write $\operatorname{Aut}(M;P)$ for the group of the automorphisms of P. A projective Cartan connection on P is, by definition, a 1-form ω on P with values in the Lie algebra $\mathfrak l$ of L satisfying the following conditions:

(3.3)
$$\omega(A^*) = A \quad \text{for every} \quad A \in \mathfrak{l}_0,$$

where A^* is the fundamental vector field on P corresponding to A;

$$(3.4) (R_{\sigma})^* \omega = Ad(\sigma^{-1})\omega,$$

where $Ad(\sigma)$ denotes the adjoint representation of L_0 on I;

(3.5)
$$\omega(X) \neq 0$$
 for every nonzero tangent vector X of P.

Let P^L be the principal bundle over M obtained by enlarging the structure group of P to L, that is

$$P^L = P \times_{L_0} L$$
.

Then P is a subbundle of P^L and a projective Cartan connection ω in P can be uniquely extended to a principal L connection form on P^L , which is denoted by ω' . According to the decomposition $I = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ in (2.2), we set

$$\omega = \omega_{-1} \oplus \omega_0 \oplus \omega_1$$
 and $\omega' = \omega'_{-1} \oplus \omega'_0 \oplus \omega'_1$.

The curvature form Ω of the projective Cartan connection ω is defined by

$$Q = d\omega + \frac{1}{2}[\omega, \omega].$$

According to the decomposition $\mathfrak{I}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1=R^m\oplus\mathfrak{gl}(m;R)\oplus(R^m)^*$, we set

$$egin{aligned} & \mathcal{Q} = \mathcal{Q}_{-1} \! \oplus \! \mathcal{Q}_0 \! \oplus \! \mathcal{Q}_1 \ &= & (\mathcal{Q}^i) \! \oplus \! (\mathcal{Q}^i_j) \! \oplus \! (\mathcal{Q}_j) \,. \end{aligned}$$

Using the canonical form $\Theta = (\Theta^i) \oplus (\Theta^i_j)$, we have the decomposition as follows:

(3.6)
$$\begin{cases} \Omega^{i} = \frac{1}{2} \sum K_{jk}^{i} \Theta^{j} \wedge \Theta^{k}, \\ \Omega_{j}^{i} = \frac{1}{2} \sum K_{jkl}^{i} \Theta^{k} \wedge \Theta^{l}, \\ \Omega_{i} = \frac{1}{2} \sum K_{ijk} \Theta^{j} \wedge \Theta^{k}, \end{cases}$$

where K_{jk}^i , K_{jkl}^i and K_{ijk} are functions on P (see Proposition 2 of [3]).

We know that there exists a unique projective Cartan connection $\omega_P = \omega_{-1} \oplus \omega_0 \oplus \omega_1$ with the following properties:

(3.7)
$$\begin{cases} \omega_{-1} = (\Theta^i) & \text{and} \quad \omega_0 = (\Theta^i_j), \\ \sum_i \Omega^i_i = 0, \\ \sum_i K^i_{jil} = 0. \end{cases}$$

We call this unique projective Cartan connection ω_P the normal projective Cartan connection of the projective structure P. From the uniqueness, we have

$$(3.8) f_{(2)}^* \omega_P = \omega_P$$

for each $f \in \operatorname{Aut}(M; P)$. Each $f \in \operatorname{Aut}(M; P)$ extends uniquely to the bundle automorphism $f'_{(2)}$ of P^L . Then we have

$$(3.9) (f_{(2)})^* \omega_P' = \omega_P'.$$

It is known that there exists a unique \mathfrak{g}_0 -valued 2-form Φ^i_j on $P^1(M)$ such that $(\pi_1^2)^*\Phi^i_j=\Omega^i_j$. In view of (3.1) and (3.6), there exist the functions H^i_{jkl} on $P^1(M)$ such that $K^i_{jkl}=H^i_{jkl}\cdot\pi^1_2$. In particular (Ω^i_j) uniquely determines the tensor field W_P on M of type (1,3). We call W_P the projective curvature tensor of Weyl. We know if $W_P\equiv 0$, then the projective structure P is flat ([3]). We remark here

$$H_{ibl}^i \cdot f_{(1)} = H_{ibl}^i$$

for each $f \in Aut(M; P)$. Or equivalently we have

$$(3.10) f^*W_P = W_P$$

for each $f \in Aut(M; P)$.

From (3.3) and (3.5), we know that for each $v \in \mathbb{R}^m = \mathfrak{g}_{-1}$, there exists uniquely a vector field B(v) on P satisfying

$$\Theta_{-1}(B(v)) = v$$
, $\Theta_0(B(v)) = 0$ and $\omega_1(B(v)) = 0$.

We call B(v) the standard horizontal vector fields corresponding to v.

§ 4. Development.

In this section we fix a C^{∞} manifold M of dimension m and a projective structure P on M. We write $\omega_P = \Theta_{-1} + \Theta_0 + \omega_1$ for the normal projective

Cartan connection of P. As explained in the previous section, the Cartan connection ω_P naturally defines the principal L-connection $\omega_P' = \Theta'_{-1} + \Theta'_0 + \omega'_1$ on $P^L = P \times L$.

Fix $x \in M$ and $p \in P$ with $\pi_3(p) = x$. Let I be an open interval of R with $a \in I$. Let $c: I \to M$ be a regular C^{∞} curve with c(a) = x. Let $c^*(t: a, p)$ be the horizontal lift of c(t) through p in P^L with respect to the principal L-connection ω_P' , that is

(4.1)
$$\omega_P'\left(\frac{d}{dt}c^*(t;a,p)\right) = 0 \text{ and } c^*(a;a,p) = p.$$

Now choose any C^{∞} curve $\rho: I \to L$ such that $\rho(a) = e$ and $c^*(t; a, p) \cdot \rho(t) \in P$ for any $t \in I$. Set $\bar{c}(t; a, p) = \rho(t) \cdot o \in P^m(\mathbf{R})$. Then $\bar{c}(t; a, p)$ is a C^{∞} curve in $P^m(\mathbf{R})$ whose definition is independent of the particular choice of the curve $\rho(t)$. The curve $\bar{c}(t; a, p)$ is called the development of the curve c(t) at t = a with initial point p. Take $b \in I$ and $q \in P$ such that $\pi_2(q) = c(b)$. There exists uniquely $\tau \in L_0$ such that $q = c^*(b; a, p) \cdot \rho(b) \cdot \tau$. Then $c^*(t; b, q) = c^*(t; a, p) \cdot \rho(b) \cdot \tau$ and $c^*(t; b, q) \cdot \tau^{-1} \cdot \rho(b)^{-1} \cdot \rho(t) \tau \in P$. Hence we have

(4.2)
$$\bar{c}(t; b, q) = \tau^{-1} \cdot \rho(b)^{-1} \cdot \bar{c}(t; a, p)$$
.

In particular we know that the curve $\bar{c}(t;b,q)$ is contained in a straight line in $P^m(\mathbf{R})$ if and only if $\bar{c}(t;a,p)$ is. Keeping this fact in mind, we call the regular curve c(t) a straight line of P if the development $\bar{c}(t;a,p)$ is contained in a straight line through o in $P^m(\mathbf{R})$. Moreover if $\bar{c}(t;a,q)$ is a straight line with affine parameter t for some $q \in \pi_2^{-1}(x)$, then we call the curve c(t) a straight line with projective parameter.

In the rest of this paper, we sometimes write $c^*(t)$ (resp. $\bar{c}(t)$) for $c^*(t; a, p)$ (resp. $\bar{c}(t; a, p)$) if there is no danger of confusion.

(4.3) LEMMA. The development $\bar{c}(t)$ is a regular curve in $P^m(\mathbf{R})$.

PROOF. Since $\pi_2(c^*(t) \cdot \rho(t)) = \pi_2(c^*(t)) = c(t)$ and c(t) is a regular curve, we have

$$0 = \Theta_{-1}\left(\frac{d}{dt}(c^*(t) \cdot \rho(t))\right) = \Theta'_{-1}\left(\frac{d}{dt}(c^*(t) \cdot \rho(t))\right).$$

On the other hand, we have

$$\frac{d}{dt}(c^*(t)\rho(t)) = \left(\frac{d}{dt}c^*(t)\right) \cdot \rho(t) + \left(\rho(t)^{-1}\frac{d\rho(t)}{dt}\right)^*c^*(t)\rho(t) .$$

Hence

$$\begin{split} 0 &\neq \Theta_{-1}' \! \left(\frac{d}{dt} c^*(t) \cdot \rho(t) \right) \! + \! \Theta_{-1}' \! \left(\left(\rho(t)^{-1} \frac{d\rho(t)}{dt} \right)_{c \ (t) \rho(t)}^* \right). \\ &= \! A d(\rho(t)^{-1}) \Theta_{-1}' \! \left(\frac{d}{dt} c^*(t) \right) \! + \! \left(\text{the } \mathfrak{g}_{-1}\text{-component of } \rho(t)^{-1} \frac{d\rho(t)}{dt} \right). \\ &= \! \text{the } \mathfrak{g}_{-1}\text{-component of } \rho(t)^{-1} \frac{d\rho(t)}{dt} \,. \end{split}$$

Clearly we have

$$\begin{split} \frac{d\bar{c}(t)}{dt} = 0 &\iff \rho(t)^{-1} \frac{d\bar{c}(t)}{dt} = 0 \\ &\iff \rho(t)^{-1} \frac{d\rho(t)}{dt} \in \mathfrak{l}_{\scriptscriptstyle 0} \ (=\mathfrak{g}_{\scriptscriptstyle 0} \oplus \mathfrak{g}_{\scriptscriptstyle 1}) \\ &\iff \text{the } \mathfrak{g}_{\scriptscriptstyle -1}\text{-component of } \rho(t)^{-1} \frac{d\rho(t)}{dt} = 0 \ . \end{split}$$

Hence we have $d\bar{c}(t)/dt \neq 0$.

q.e.d.

(4.4) LEMMA. Let f be in $\operatorname{Aut}(M; P)$ with f(x) = x. Let σ_f be the unique element of L_0 such that $f_{(2)}(p) = p \cdot \sigma_f$. Then the curve $\sigma_f \cdot \overline{c}(t; a, p)$ is the development of the curve f(c(t)) at t = a with c(a) = p.

PROOF. Let $f'_{(2)}$ be the bundle isomorphism of P^L induced by $f_{(2)}$. From (3.9), we have $(f'_{(2)})^*\omega'_P = \omega'_P$. Hence $f'_{(2)}(c^*(t)) \cdot \sigma_f^{-1}$ is the horizontal lift of f(c(t)) through p. Then we have

$$f_{(2)}'(c^*(t)) \cdot \sigma_{\scriptscriptstyle f}^{-1} \cdot \sigma_{\scriptscriptstyle f} \cdot \rho(t) = f_{(2)}'(c^*(t)) \cdot \rho(t) = f_{(2)}(c^*(t) \cdot \rho(t)) \in P \; .$$

Thus the development of f(c(t)) at x with the initial condition p is $\sigma_f \cdot \rho(t) \cdot o = \sigma_f \cdot \bar{c}(t)$. q. e. d.

(4.5) LEMMA. Let $\varphi: J \to I$ be a diffeomorphism with $\varphi(b) = a$. Then we have $\overline{(c \circ \varphi)}(t; b, p) = \overline{c}(\varphi(t); a, p)$.

PROOF. We have $(c \circ \varphi)^*(t; b, p) = c^*(\varphi(t); a, p)$ and $(c \circ \varphi)^*\rho(\varphi(t)) \in P$. Since $\bar{c}(\varphi(t); a, p) = \rho(\varphi(t))o$, our assertion is true. q. e. d.

- (4.6) PROPOSITION. Fix $x \in M$ and $p \in P$ with $\pi_2(p) = x$. There exist an open ball U of o in $\mathbb{R}^m \subset P^m(\mathbb{R})$, an open neighbourhood V of x in M and a diffeomorphism $E: U \to V$ satisfying the following conditions:
 - (1) E(o) = x;
 - (2) For the curve c(t) = E(tv), we have $\bar{c}(t; o, p) = tv$.
- (3) For any $v \in U$, c(t) = E(tv) is a straight line of P with affine parameter such that $\dot{c}(o) = \pi_2(B(v)_p)$.

PROOF. For each $v \in \mathbf{R}^m = \mathbf{g}_{-1}$, we write B(v) for the standard horizontal vector field corresponding to v. Remark that for each $s \in \mathbf{R}$, we have B(sv) = sB(v). Set $F(v,t) = \pi_2(\exp tB(v) \cdot p)$. This is a C^{∞} -map which is defined for $\|v\| \le 1$, $|t| < \varepsilon$. We remark that B(sv) = sB(v) implies F(sv,t) = F(v,st). Set E(v) = F(v,1). Then E is a C^{∞} -map which is defined for $\|v\| < \varepsilon/2$. Clearly E(o) = x. We shall calculate the differential of E at o. Take any $v \in \mathbf{R}^m$. Setting $\pi_2^1(p) = \alpha$, we have

$$\begin{split} \frac{d}{dt}E(tv)|_{t=0} &= \frac{d}{dt}F(tv,1)|_{t=0} \\ &= \frac{d}{dt}F(v,t)|_{t=0} \\ &= \pi_{2^*}(B(v)_p) \\ &= \pi_{1^*}(\pi_2^1)_*(B(v)_p) \\ &= \alpha(\theta((\pi_2^1)_*(B(v)_P))) \\ &= \alpha(\Theta_1(B(v)_P)) \\ &= \alpha(v) \; . \end{split}$$

Thus if we identify $T(M)_x$ with \mathbf{R}^m by the frame $\alpha : \mathbf{R}^m \cong T(M)_x$, we have $E_{*o} = \mathrm{id}$. To prove (2), set $r(t) = (\exp tB(v) \cdot p) \cdot \exp(-tv)$ and $q(t) = \exp tB(v) \cdot p$. Then we have

$$\frac{dr(t)}{dt} = B(v)_{q(t)} \cdot \exp(-tv) - v_{r(t)}^*.$$

Hence

(4.7)
$$\omega_P'\left(\frac{dr(t)}{dt}\right) = Ad(\exp tv)v - v = 0,$$

remarking g_{-1} is abelian. Thus r(t) is a horizontal lift of the curve $\pi_2(q(t)) = F(v, t) = E(tv)$ with r(0) = p. Hence $c^*(t; 0, p) = r(t)$ and $\rho(t) = \exp(tv)$. Thus we have $\bar{c}(t; 0, p) = \exp tv \cdot o = tv$. The assertion (3) is clearly true.

q. e. d.

We call (U, E, V) the projective normal coordinate of P at x with respect to $p \in (\pi_2)^{-1}(x)$.

§ 5. Projective equivalence of affine connections.

Let M be a C^{∞} manifold of dimension m. In this section we make use of fact 3.2 in § 3. Let ∇ be an affine connection on M with zero

torsion. Then ∇ naturally defines the bundle inclusion $\iota_{\nabla}: P^1(M) \hookrightarrow P^2(M)$ (see Proposition 10 of [3]). We write $P(\nabla)$ for the L_0 -subbundle of $P^2(M)$ obtained by enlarging the structure group of $\iota_{\nabla}(P^1(M))$ to L_0 . Thus the affine connection ∇ naturally defines the projective structure $P(\nabla)$ on M. Two affine connections ∇_1 and ∇_2 are called *projectively equivalent* if $P(\nabla_1) = P(\nabla_2)$. A diffeomorphism $f: M \to M$ is called a projective transformation of ∇ if ∇ and $f_*\nabla$ are projectively equivalent. The following facts are proved in Proposition 12 of [3]:

- (5.1) FACTS. (1) The correspondence $\nabla \mapsto P(\nabla)$ gives rise to the bijection between the projectively equivalent classes of affine connections with zero torsion on M and the projective structures on M.
- (2) Let ∇_1 and ∇_2 be affine connections with zero torsion on M. Then the following three conditions are mutually equivalent:
 - (a) ∇_1 and ∇_2 are projectively equivalent;
- (b) ∇_1 and ∇_2 define the same geodesics if the parametrization is disregarded;
- (c) There exists a 1-form α such that $\nabla_{1X}Y \nabla_{2X}Y = \alpha(X)Y + \alpha(Y)X$ for arbitrary vector fields X and Y.
- (3) In particular, we know that a diffeomorphism $f: M \rightarrow M$ is a projective transformation of an affine connection ∇ with zero torsion if and only if $f \in Aut(M; P(\nabla))$.

Let P be a projective structure on M. An affine connection ∇ is said to belong to P if $P=P(\nabla)$.

(5.2) LEMMA. Let P be a projective structure on M and ∇ an affine connection belonging to P. Let c; $(-\varepsilon, \varepsilon) \to M$ be a C^{∞} regular curve with c(0) = x. Then c(t) is a geodesic with respect to ∇ (the parametrization being disregarded) if and only if the curve c(t) is a straight line of P.

PROOF. Fix $p \in P$ such that $\pi_2(p) = x$. According to Proposition 12 in [3], we know that the following two conditions are mutually equivalent:

- (5.3) c(t) is a geodesic with respect to ∇ ;
- (5.4) There exists a standard horizontal vector field B(v) on P corresponding to $v \in \mathfrak{g}_{-1}$ such that c(t) and $\pi_2(\exp sB(v) \cdot p)$ coincide with each other if their parametrizations are disregarded.

Now suppose c(t) is a geodesic with respect to ∇ . Set $r(s) = (\exp sB(v) \cdot p) \times \exp(-sv)$ and $q(s) = \exp sB(v) \cdot p$. Then we have

$$\frac{dr(s)}{ds} = B(v)_{q(s)} \cdot \exp(-sv) - v_{r(s)}^*.$$

Hence $\omega'_{P}(dr(s)/ds) = Ad(\exp(sv))v - v = 0$ (\mathfrak{g}_{-1} being abelian). Thus r(s) is a horizontal lift of the curve $\gamma(s) = \pi_2(q(s))$ with r(0) = p. Hence $r(s) = \gamma^*(s; 0, p)$ and $\gamma^*(s; 0, p) \exp(sv) \in P$. Therefore we have $\overline{\gamma}(s; 0, p) = \exp(tv) \cdot o$, which is a straight line through o in $P^m(\mathbf{R})$. Then from Lemma (4.5), we know c(t) is a straight line of P. Conversely suppose c(t) is a straight line of P. So $\overline{c}(t; a, p)$ is contained in a straight line through o, say, $\exp sv \cdot o$ ($v \in \mathfrak{g}_{-1}$) of $P^m(\mathbf{R})$. From Lemma (4.3), there exists a diffeomorphism t = c(s) such that

$$\bar{c}(\varphi(s); a, p) = \exp(sv) \cdot o$$
 and $\varphi(0) = a$.

From Lemma (4.5), we have $c^*(\varphi(s); a, p) \cdot \exp(sv) \in P$. Then

$$\omega_{P}\left(\frac{d}{ds}(c^{*}(\varphi(s); a, p) \cdot \exp(sv))\right)$$

$$= \omega_{P}'\left[\frac{d}{ds}(c^{*}(\varphi(s); a, p) \cdot \exp(sv)) + v_{c^{*}(\varphi(s); a \cdot p) \exp(sv)}^{*}\right]$$

$$= v$$

Therefore the curve $c^*(\varphi(s); a, p) \exp(sv)$ is the integral curve of the standard horizontal curve B(v) through p. From (5.4), $c(\varphi(s)) = \pi_2(\exp(sB(v)) \cdot p)$ is a geodesic of ∇ .

In the rest of this section we fix a projective structure P on M. We also fix $x \in M$.

- (5.5) LEMMA. Let f be in $\operatorname{Aut}(M; P)$ with f(x) = x. Let $c: (-\varepsilon, \varepsilon) \to M$ be a straight line of P with projective parameter such that c(0) = x and $f_*(\dot{c}(0)) \in \{\dot{c}(0)\}$. Suppose $\bar{c}(t; 0, p) = tv \subset \mathbf{R}^m \subset P^m(\mathbf{R})$ $(v \in \mathbf{R}^m \{o\})$. Then we have:
 - (1) $\sigma_f(v) \in \{v\}$, where $\sigma_f \in L_0$ is defined by $f_{(2)}(p) = p \cdot \sigma_f$.
- (2) $f(c(t)) = c(\varphi(t))$, where $\varphi(t)$ is defined by $\sigma_f(tv) = \varphi(t)v$. In particular φ is of the form $\varphi(t) = t(at+b)^{-1}$.

PROOF. From Lemma 4.4, we have $(f \circ c)(t; 0, p) = \sigma_f(\bar{c}(t; 0, p))$. Since $\bar{c}(t; 0, p)$ is a straight line in $P^m(\mathbf{R})$ with affine parameter, the curve $\sigma_f(\bar{c}(t; 0, p))$ is contained in a straight line in $P^m(\mathbf{R})$. Fix an affine connection ∇ with zero torsion belonging to P. From Lemma 5.2, both c(t) and f(c(t)) are geodesics with respect to ∇ (the parametrizations being not necessarily affine parameters). Since $df(c(t))/dt|_{t=0} \in \{\dot{c}(0)\}$, there is a diffeomorphism $\varphi: (-\varepsilon, \varepsilon) \to (-\varepsilon, \varepsilon)$ with $\varphi(0) = 0$ satisfying $f(c(t)) = c(\varphi(t))$. From

Lemma 4.5, we obtain

$$\sigma_f(\bar{c}(t;0,p)) = \bar{c}(\varphi(t);0,p)$$
.

Since $\bar{c}(s;0,p)=sv$, the above equality implies $\sigma_f(tv)=\varphi(t)v$. Therefore $\varphi(t)=t(at+b)^{-1}$ for some $a,b\in R$.

(5.6) LEMMA. Let $\{f_s\}\subset \operatorname{Aut}(M;P)$ be a 1-parameter subgroup such that $f_s(x)=x$ and $f_s=\operatorname{id}$ at x for each $s\in R$. Let (U,E,V) be the projective normal coordinate of P at x with respect to $p\in (\pi_2)^{-1}(x)$. (1) f_s is written with respect to this coordinate system as follows:

$$f_s(v) = \frac{v}{1 + s \xi v}$$
 for some $\xi \in \mathfrak{g}_1 \ (= (\boldsymbol{R}^m)^*)$.

(2) If $\xi \neq 0$, we have $W_P = 0$ on V.

PROOF. It remains to prove assertion (2). Set $E=(x^1, \dots, x^m)$. Take any $v \in U$ with $\xi v > 0$. Then we have $f_s(v) \in U$ for any $s \ge 0$, and $f_s(v) \to 0$ as $s \to \infty$. Set $f_s(x) = (f_s^1(x), \dots, f_x^m(x))$. From (1), we have

$$\frac{\partial f_s^j}{\partial x^i}(v) = \frac{\delta_i^j (1 + s\xi v) - s v^j \hat{\xi}^i}{(1 + s\xi v)^2}$$

and

$$\frac{\partial f_{-s}^{j}}{\partial x^{i}}(f_{s}(v)) = (\delta_{i}^{j} + sv^{j}\xi^{i})(1 + s\xi v).$$

Set

$$W_{P}\!\!\left(\!\!\!\begin{array}{c} \partial \\ \partial x^{i} \end{array}\!\!\!, \frac{\partial}{\partial x^{j}}\!\!\!\right) \!\!\!\!\! \frac{\partial}{\partial x^{k}} \! = \sum\limits_{l=1}^{m} W_{kij}^{'} \frac{\hat{o}}{\partial x^{l}} \;.$$

Since f_s leaves W_P invariant, we have

Hence we have

$$\begin{split} W'_{kij}(v) &= \frac{\partial f^i_{-s}}{\partial x^a}(f_s(v)) W^a_{bcd}(f_s(v)) \frac{\partial f^b_s}{\partial x^k}(v) \frac{\partial f^c_s}{\partial x^i}(v) \frac{\partial f^d_s}{\partial x^j}(v) \\ &= W^a_{bcd}(f_s(v)) (\delta'_a + s v^l \xi^a) (1 + s \xi v) \\ &\qquad \times \frac{\{\delta'_k(1 + s \xi v) - s v^b \xi^k\} \{\delta'_i(1 + s \xi v) - s v^c \xi^i\} \{\delta'_j(1 + s \xi v) - s v^d \xi^j\}}{(1 + s \xi v)^6} \;. \end{split}$$

Hence taking $s\to\infty$, we see $W'_{kij}(v)=0$. By the same argument, we have $W'_{kij}(v)=0$ for any $v\in U$ with $\xi v<0$. Therefore $W'_{kij}=0$ on U.

- (5.7) LEMMA. Let $\{f_s\}\subset \operatorname{Aut}(M;P)$ be a 1-parameter subgroup such that $f_s(x)=x$ and $(f_s)_*=\operatorname{id}$ at x for each $s\in \mathbf{R}$. Let ∇ be an affine connection with zero torsion on M which belongs to P and $c:\mathbf{R}\to M$ a geodesic with respect to ∇ , c(0)=x. Then we have the following:
- (1) There exists a 1-parameter group of diffeomorphisms φ_s of \mathbf{R} such that $\varphi(0)=0$ and $f_s(c(t))=c(\varphi_s(t))$:
 - (2) If $\{\varphi_s\}$ is non trivial, then $W_P(c(t)) = 0$ for any $t \in \mathbb{R}$.

PROOF. From Lemma 5.2, we know $f_s(c(t))$ is also a geodesic with respect to ∇ , although the parametrization is not necessarily the affine parameter. Since $(f_s)_*=\mathrm{id}$ at x, we have $\{f_s\cdot c(t):t\in \mathbf{R}\}=\{c(t):t\in \mathbf{R}\}$. From this assertion (1) is true. To prove (2), let X be the vector field on M which generates $\{f_s\}$. Fix $p\in P$ with $\pi_2(p)=x$, and set $\alpha=\pi_2^1(p)$. Since $(f_s)_*=\mathrm{id}$ at x, we have $(f_s)_{(1)}(\alpha)=\alpha$ for any $s\in \mathbf{R}$. Hence there exists $\xi\in (\mathbf{R}^m)^*$ $(=\mathfrak{g}_1)$ such that $(f_s)_{(2)}(p)=p\cdot\exp(s\xi)$. Set $\sigma(s)=\exp(s\xi)$. From Lemma 4.4 and Lemma 4.5, we have

(5.8)
$$\sigma(s) \cdot \bar{c}(t;0,p) = \bar{c}(\varphi_s(t);0,p).$$

From Lemma 5.2, we know $\bar{c}(t;0,p)$ is contained in a straight line through o in $P^m(\mathbf{R})$. Hence $\{\varphi_s(t)\}$ is a 1-parameter group of projective transformations of \mathbf{R} . In particular, if we set $G=\{t\in\mathbf{R}:\varphi_s(t)=t \text{ for any } s\in\mathbf{R}\}$, then G is a discrete subset of \mathbf{R} . Let $E:U\cong V$ be the projective normal coordinate of P with respect to p. Set $v=\dot{c}(0)\in\mathbf{R}^m$ $(=\mathfrak{g}_{-1})$ in terms of this coordinate system. We shall prove the following fact:

(5.9)
$$o(X; c(a)) = 2$$
 for any $a \in G$ if $\{\varphi_s\}$ is non trivial.

Since $\{\varphi_s\}$ is nontrivial, we have $\xi v \neq 0$. So assume $\xi v > 0$. (The case $\xi v < 0$ can be treated similarly.) So assume $G \neq \{0\}$. Take $a \in G$ such that $(0,a) \cap G = \emptyset$ or $(a,0) \cap G = \emptyset$. Assume $(0,a) \cap G = \emptyset$. Choose $b \in (0,a)$ so that $bv \in U$. Then $\varphi_s(b) \to a$ as $s \to -\infty$. From (5.6) we know $\bar{c}(a;0,p) = o$. Choose $\rho(t) \in L$ such that $\rho(0) = \mathrm{id}$ and $c^*(t;0,p)\rho(t) \in P$. Set $q = c^*(a;0,p)\rho(a)$.

Since $f_s(c(a)) = c(a)$, there exists uniquely $\tau(s) \in L_0$ such that $(f_s)_{(2)}(q) = q \cdot \tau(s)$. We claim $\tau(s) = \rho(a)^{-1} \sigma(s) \rho(a)$. In fact,

$$\begin{split} (f_s)_{\scriptscriptstyle{(2)}}(c^*(t\,;\,0,\,p)\rho(t)) &= (f_s)'_{\scriptscriptstyle{(2)}}(c^*(t\,;\,0,\,p))\cdot\rho(t) \\ &= c^*(t\,;\,0,\,p)\sigma(s)\cdot\rho(t) \\ &= c^*(t\,;\,0,\,p)\cdot\rho(t)\cdot\rho(t)^{-1}\cdot\sigma(s)\cdot\rho(t) \,. \end{split}$$

On the other hand

$$(f_s)_{(2)}(c^*(a;0,p)\rho(a)) = q \cdot \tau(s)$$
.

Thus $\tau(s) = \rho(a)^{-1}\sigma(s)\rho(a)$. Since $\rho(a) \cdot o = c(\bar{a}; 0, u) = o$, we have $\rho(a) \in L_0$. Since $\sigma(s) \in \exp \mathfrak{g}_1$ and $\exp \mathfrak{g}_1$ is normal in L_0 , we see $\tau(s) \in \exp \mathfrak{g}_1$. Then $(f_s)_{(1)}(\pi_2^1(q)) = \pi_2^1((f_s)_{(2)}(q)) = \pi_2^1(q \cdot \tau(s)) = \pi_2^1(q)$. So we know $(f_s)_* = \mathrm{id}$ at c(a), i. e., o(X; c(a)) = 2. Similarly for o(X; c(a)) = 2 in case $(a, 0) \cap G = \emptyset$. Now replacing x with c(a) and ξ with $Ad(\rho(a)^{-1})\xi$ where $(0, a) \cap G = \emptyset$ or $(a, 0) \cap G = \emptyset$, we find o(X; b) = 2 if $(a, b) \cap G = \emptyset$ (a > 0), or $(b, a) \cap G = \emptyset$ (a < 0). Repeating the same argument, we conclude o(X; a) = 2 for any $a \in G$. Now set $G = \{A_n\}_{n=0,\pm 1,\pm 2,\cdots}$. Then $\{\varphi_s\}$ is transitive on (A_n, A_{n+1}) . From (3.10) and Lemma 5.6, we know $W_P(c(t)) = 0$ for any $t \in \mathbb{R}$.

§ 6. Proof of Theorem 1.2.

We keep the notation in § 1. Let $\{f_s\}$ be the 1-parameter group of transformations generated by the vector field X.

(6.1) LEMMA. The set $\{x \in M; o(X; x) = 2\}$ consists of at most two points. In particular, the fundamental group $\pi_1(M)$ of M is isomorphic to either $\{1\}$ or \mathbb{Z}_2 .

PROOF. Suppose we had three distinct points x_i , x_2 and x_3 such that $o(X; x_i) = 2$ (i=1,2,3). Take any $y \in M$ such that $X(y) \neq 0$. Consider the orbit $I = \{f_s(y) : s \in \mathbf{R}\}$, a 1-dimensional submanifold of M. Let $c_i : \mathbf{R} \to M$ be geodesics which pass through x_i and y (i=1,2,3). Since, $(f_s)_* = \mathrm{id}$ at x_i (i=1,2,3), we know f_s leaves each $c_i(\mathbf{R})$ invariant. Hence $I \subset c_i(\mathbf{R})$. In particular we have $c_i(\mathbf{R}) = c_2(\mathbf{R}) = c_3(\mathbf{R})$ for every point y. This is impossible.

Now let $\pi: M^* \to M$ be the universal covering of M. Let g^* and X^* be the lift of g and X to M^* respectively. Then we have $X^* \in p(M^*, g^*)$ and $o(X^*; y) = 2$ if $o(X; \pi(y)) = 2$.

PROOF OF THEOREM 1.2. Let ∇ be the Levi-Civita connection of g and $P=P(\nabla)$ the projective structure to which ∇ belongs. Set F=

 $\{y \in M : X(y) = 0\}$. Take any $y \in M - F$. Let c(t) be a geodesic joining x and y. From Lemma 5.7, we have $W_P(c(t)) = 0$. Hence we have W_P vanishes on M - F. On the other hand, we know M - F contains no interior point. Hence W_P vanishes on M. Let $\pi^* : M^* \to M$ be the universal covering of M. M^* is compact by Lemma 6.1. Let g^* , X^* and P^* be the natural lift of g, X and P respectively. Then we have $o(X^*; y) = 2$ for $y \in \pi^{-1}(x)$. Hence $W_P = 0$ on M. From Theorem 16 of [3], we have our conclusion.

q. e. d.

References

- [1] Kobayashi, S., Canonical forms on frame bundles of higher order contact, Proc. Sympos. Pure Math. Vol. 3, Differential Geometry, Amer. Math. Soc., Providence, 1961, 186-193.
- [2] Kobayashi, S., Transformation groups in differential geometry, Ergebnisse der Mathematik, Band 70, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [3] Kobayashi, S. and T. Nagano, On projective connections, J. Math. Mech. 13 (1964), 215-236.
- [4] Obata, M., Conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258.
- [5] Ochiai, T., Geometry associated with semi-simple flat homogeneous spaces, Trans. Amer. Math. Soc. 152 (1970), 1-33.

(Received July 15, 1985)

Tadashi Nagano Department of Mathematics University of Notre Dame Notre Dame, Indiana 46556 U.S.A.

Takushiro Ochiai Department of Mathematics University of Tokyo Hongo, Tokyo 113 Japan