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§1. Introduction.

Multiplicity free representations of a group with respect to the
restriction to a subgroup play important roles in the symmetry breaking
theory. Let X be a physical system and G be its symmetry group. Then
the set of states of X forms a representation space of G. To distinguish
these states, we often break the symmetry from G to a subgroup H, and
label (p, ) for the states which are involved in the irreducible constituent
p of G and ¢ of H. Here if p is not multiplicity free with respect to
GDH, we can not settle the ambiguity of labeling problem from the
knowledge of representations of H, cf. [1],[4],[5].

We shall study the embedding SL(2n, C)DSp(n,C). Combinatorial
discriptions of the decomposition rule of the restricted representations of
irreducible representations of SL(2n,C) to Sp(n,C) into their irreducible
constituents are given in [8], [9], and [10]. In this paper, we classify the
multiplicity free irreducible finite dimensional representations of SL(2n, C)
with respect to this embedding (Theorem 3.1) using the results of [10].
The author is grateful to Professor Nagayoshi Iwahori for suggesting
this problem to him, explaining its significance in application to physics.
He is very obliged to the referee for pointing out an error in the original
proof of Theorem 3.1 and suggesting its correction.

§2. Combinatorial notations. cf. [7], [10]

DEFINITION 2.1. A partition of % is a non increasing sequence of
positive integers such that the total sum of them equals ». The diagram
Y(1) of a partition i=(2;, A --+,4,) Is the set of points (i,7) of Z? such
that 1=5=4..

We usually figure it as the following example replacing the points by
squares, and the first coordinate ¢ is the row index increasing as one goes
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downwards.

Exa’mple. IJet /2‘_‘(4’ 2; 1)7 then }7(;‘):,__‘_

1

For a partition 2 we define the transposed partition ‘4 of 1 by
(le)i:#{j | 2]‘:7;}~

We usually write 4 for Y(4) as an abbreviation identifying a partition
and its diagram.

A subdiagram g of 1 is a diagram corresponding to the partition s
such that g, =<4; for any 7.

Let I'={1,2,-+,m,n',(n—1),---,2’, 1’} be an ordered set with the order
1<2< - <n<n’<(n—1)'< -+ <2°<1". Elements of {1,2,---,n} (resp.
{1',2',+--,n'}) are called positive symbols (resp. negative symbols.)

DEFINITION 2.2. Tableau. Let 2 be a diagram. A tableau (I -tableau)
T of shape 2 is a map from A into I". Graphically, T may be described
by numbering each square of the diagram 2 with the elements of I.

T(t,7), the symbol written in (i, 5)-place of T, is often written t,,; for
abbreviation.

A tableau is called weakly normal if ¢, ,<¢, ., for any 7 and j such
that (4, 5) and (¢,5+41) are involved in the shape of 7.

DEFINITION 2.3. Normalization. Let T be a tableau of shape 2. Then
there is a unique weakly normal tableau 7' of shape 21 such that the set
of symbols in the i-th row of 7 coinsides with that of T with multiplicities
for any 7. In the other words, 7 is the tableau got by arranging the
symbols in each row of T into a non-decreasing sequence. 7 is called the
normalization of 7.

DEFINITION 24. Standard tableau. A tableau T is called standard if
ts;<ti ;s and t;;=t,,; for any 7 and 7.

DEFINITION 2.5. Word. Let T be a tableau. The word of T is the
sequence w(7T) of the elements of I defined by reading the symbols in 7T
from left to right in successive rows, starting with bottom to top.

Let w(T)=ay, ay -+, 0, be the word of a tableau 7. For a symbol 7
and a positive integer p, ¢r(i, ») denotes the number of oceurrence of 7 in
the subsequence ay, s -+, a, of w(7T). For a positive symbol 7 and a posi-
tive integer p, dr(z, p) denotes ¢r(i, p)—cr (i, p).
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Multiplicity free representations

DEFINITION 2.6. Sp(n)-tablean. Let 2 be a diagram. An Sp(n)-tableau
of shape 2 is a standard tableau T of shape 1 satisfying the following
conditions 1) and 2) for any positive symbol ¢=1,2,---,7—1 and any posi-
tive integer p.

1) er(i, py=er(i+1, pl.
2y dr(i, py=do(i+1, p)=0.

Note. We shall call these conditions “L-R property ” because of the
resembrance of the Littlewood-Richardson rule which we meet in the
representation theory of general linear groups and symmetric groups.

Note. In [2], DeConcini defined “symplectic tableau” which is different
from our Sp{n)-tableau.

REMARK. From the condition 1), the positive part of a Sp(n)-tableau
must be a canonical tableau, cf. [10].

DEFINITION 2.7. Weight of a Sp(n)-tableau. Let T' be a Sp(n)-tableau
of shape 2 where 2 is a partition of m. Then from the condition 2), we
can regard the sequence Dy :=(dr(1,m), dr(2, m), -+, dr(n, m)) as a diagram.
Dy is called the weight of T.

Example. % g 32 is an Sp(n)-tableau of shape (4,2) for n=3. It

2]

weight is (2,1, 1).

§3.

Let us recall the parametrization of the irreducible representations of
special linear groups and symplectic groups by means of the Young
diagrams, cf. [10], [11]

Via the highest weight theory, there is a canonical one-to-one corre-
spondence between the set of equivalence classes of the irreducible repre-
sentations of SL(n,C) (resp. Sp(n,C)) and the set of diagrams such that
the length of their first columns are not longer than n—1 (resp. n). We
shall denote p¢” (resp. p§*™) for the irreducible representation of SL(n,C)
(resp. Sp(n, C)) corresponding to the diagram 2 with respect to the above
correspondence.

Let p¥™ Dbe an irreducible representation of SL(2n,C). Let us consider
its restricted representation P | 857§ to Sp(n,C) which is canonically
imbedded in SL(2n,C). Let us denote d;, for the multiplicity of the
irreducible representation pSP™ in o™ | &% as an irreducible constituent.
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We say that p$ is Sp(n)-multiplicity free if and only if d;,=1 for
any u.

THEOREM 38.1. The irreducible representation p¥> of SL(2n,C) is
Sp(n)-multiplicity free if and only if the tramsposed diagram ‘A of 2
appears in Table 1 below.

Table 1.
a) (8,24,15=(8,3,--,8,2,--+,2,1,+++, 1) 1,7, k>0
b)) ((p+1), p%) 1, 5>0
¢) (p, 1) i, 5=0
d) (2n—1), p?) 7, 5>0
e) ((2n—1), 2n—2), 2n—3)" 1y 7, =0
) (2n—1), (2rn—2),1%) 1, 7 k=0
g) (2n—1)%,27,1%) 1,9, k=0

We shall prove the theorem using the following result in [10].

THEOREM 3.2 (Restriction rule. cf. [10]). In the notation above d; ,
equals the number of Sp(n)-tableauz of shape ‘2 and wetght p.

Now we shall prepare some notations.

DEFINITION 3.3. Reverse sequence. Let p,q and » be positive integers
such that n=q=p and g=r. Then the reverse sequence with top p, peak
g and bottom r is the sequence of symbols p,p+1,-,¢,¢,(¢g—1),--,
(r=1), #’. The length of this sequence is 2¢—p—r+2.

DEFINITION 3.4. The complete reverse sequence of length s (s=2n—1)
is the sequence
1,2,-,p, 05 (p—1),---,2,1 if s=2p is even,
1,2,--+,p, ply (p— 1),, Tt 3,3 2 if s=2p—1 is odd.
DEFINITION 3.5. Highest sequence. The highest sequence of length s
(s<2n—1) is the sequence
1,2,3,-+,8 if s<n, and

1,2,8, -, n,n, (n—1),---, (2n—s—+1) if s>n.

3~
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DEFINITION 3.6. Euxtension of an Sp(n)-tableau. Let 4 be a diagram and
1 be its subdiagram such that 4,— =2¢, is even and ¢,=g¢;., for any
i. Suppose T is an Sp(m)-tableau of shape ¢ with weight z. Then we
define the extension 7% of 7 as follows. Let a; be the maximal positive
symbol occuring in the i-th row of T. We have a tableau T, of shape 1
defined as T, 7)=T(,7) if j<p, and the rest part of its ¢-th row is a
reverse sequence of length p, with top e;+1 and bottom (a;+1) for any
i. (Note: peak is a;+¢;). T* is the normalization of T,

We set s=g, in the above definition. Then we get the following.
PROPOSITION 3.7. T?* is an Sp(m-s)-tableau with weight <.

PROOF. The standardness of 7% follows from the fact that there is
no negative symbol larger than (a;)” in the :-th row of the Sp{m)-tableau
T. Since the reverse sequences occuring in 3.6 have no influence on the
L-R property and weight, 7% satisfies the L-R property and has weight
z. Tt is clear that there is no positive symbol larger than m+s in T4,

DEFINITION 3.8. Let A be a diagram and let 1;=2n. The complement
diagram °1 of 2 is the diagram defined by (‘2);=2n— -4, where k=(‘2); is
the length of the first column of A

LEMMA 3.9. For any irreducible representation of™ of SL(2n,C),
o

(zn) i .gL(Zn c)_p(zn) <L(2ncc>_

PROOF. Let H be a maximal torus of SL(2n,C). When we regard a

representation of SL(2n,C) as a representation of H, m(2, g) is defined as

the multiplicity of an irreducible character § of H in p¥™. Then it is

easy to show that m(°2, ) =m(1, —0), where —0(hy=0(h™Y) for any element

h of H Then the lemma follows from the general theory on the repre-
sentations of semisimple groups, cf. [6].

Now we shall prove the theorem. First we show the following.

CLAIM 3.10. We can make two different Sp(n)-tableaux of shape v
with @ same weight if v does not exist in Table 1.

Table 2 is the table of fundamental Sp-tableaux we shall use to prove
this claim.
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Table 2.
A,=1238% A,=122 1
11 12
A,,=123844 A,=12382 1
11 12
A;5=1234 4 A;;=123838 2
129 123
Ags=128455 Ad,,=12348 2
1292 123
B4,3A2:1 2 3 1/ E\;‘gg:l 2 3 3,
129 128
12 11
B,.,=123492 B,..=12344
1233 1284
123 129
D,,,=1231 D,,,=12382
122 1271
1 1
Ds=123471 D,..=1234%
1233 1281
1 1
E . ..=1231 E ... =1238¢2
122 1271
12 12
1 1

é sub-index indicates the shape of a tableau. X, and
X, are Sp-tableau of a same shape » and have a same
weight (X is A, B, D or E).

PROOF OF THE CLAIM.

Case 1. Suppose there exists an 7 such that v,=v,,,+2 and v;,,#0 or
1, and y;#2n—1. Then we can construct an Sp(n)-tableau of shape (v, vii1)
as an extension of suitable A4,, in Table 2. In particular we shall use
A, such that p=v;, mod 2 and g=v,;,;, mod 2.

Now writing a highest sequence in any j-th row such that j is smaller
than %, a complete reverse sequence in any k-th row such that k is larger
than i—+1, we get an Sp(n)-tableau of shape v from the Sp(n)-tableau of
shape (v;, v;41) above. On the other hand, we have another Sp(n)-tableau
of shape v with the same weight from A4, , similarly.

Case 2. Suppose there exists 7 and j such that v,=a--1#2n—1,
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v;=v;, =023 and v;,,=1. We can construct an Sp(n)-tableau T, of shape
(¢+1,a,1) as an extension of D,,,,, in Table 2 for p=a mod 2. Then we
shall construct an Sp(n)-tableau T of shape v as follows. We shall denote
M for the sequence we shall write in the s-th row of 7, which is
defined by

M is the highest sequence for s<1,

M? is the sequence written in the first row of T,

M* is the sequence written in the second row of 7', for i<s=<j,
M* is the sequence consists of single element 1 for s> j.

On the other hand, we get another Sp{n)-tableau T, of shape (a+1,¢,1)
as an extension of D,,, ,,. Then we have a tableau 7’ given by exchanging
the j-th row and the i-th row of 7" with the first row and the second
row of T.. T and T’ are different Sp(n)-tableaux of shape v with a same
weight.

Case 3. Next we shall consider the case yv;—v;, <1 if v, #0. Suppose
there exists an 7 such that v;=a=2 and v,,,=0. From the hypothesis of
claim, there exists & and m such that v,=a+1, v,.;=¢, vp=0+2 and
Vpai—=a+1. We shall assume that ¢+2<2n—1.

Then we can construct two different Sp(n)-tableaux of shape v with a
same weight from B,.s i1, a0d Byys iy, in Table 2 for p=a mod 2. Since
their construction is similar as in Case 2, we shall omit it.

Case 4. When v;—v;+,=1 for any 4, then v has rows of length 1, 2, 3,
and 4 from the hypothesis. Then we can construct two different Sp(n)-
tableaux of shape v with a same weight easily from FE, ;. and E.o..

We have seen that the claim holds when v;+2n—1. Hence to complete
the proof, we shall assume that »,=2n-—-1. We shall denote v* for the
diagram made from v by taking the all rows of length 2n-1 off. It is
clear that we have no problem when »* is not one of types a), b}, and c).
On the other hand, if v* is one of these three types, considering the com-
plement diagram ‘v of v, Lemma 3.9 assures us that p@* is not multiplicity
free easily.

The rest to show is that the representations corresponding to the
transposed diagrams in Table 1 are multiplicity free with respect to our
restriction. Let 7 and S be Sp(n)-tableaux of a same shape » and a same
weight z. We must show that if v is found in Table 1, then T=S.
Lemma 3.9 assures us that it suffices to check this for a), b), ¢), and g)
in Table 1.
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a) Let v=(3%,2/,1%). Then the number of occurrence of 1 and 1" in
T are ++j+k and 1+5-+k—r, respectively. Because of the L-R property,
we can regard T°Y(I"—{1,1'}) as a diagram, say p. Extracting all squares
of T on which 1 or 17 are written, we get a tableau T, of shape px. For
a example, if T=1 2 3, then 7,=2 3. Bhifting the symbols as 1—i—1
22 2 2
1

4

bt et et

and " —(#—1), we see that the resulting tableau 7, is also a Sp(n)-tableau.
In the example above, Tzzi %/. Similarly we get S, from S. It is clear
from our construction that 7, and S, have the same weight. Moreover,
as remarked above, the number of 1 and 1’ in 7T are both determined only
by v and . Hence, we also have [T,]=1S,[, here |A| means the number
of squares in the shape of a tableau A. Thus, in the present case, the
desired conclusion follows from the next lemma.

LEMMA. Let A and B be Sp(n)-tableaux of shape (2°1°) and (2°19)
respectively. Suppose |A|=|B| and A and B have a same weight, then
A=B.

PROOF. Let z and y be the number of occurrence of 1’ in 4 and B
respectively. Because of the L-R property, 1’ can occur only in the second
column of A4, and 2’ can not occur in A. So the weight of A4 is
(a+b—2x,a—z). By the same reason, the weight of B is (¢c+d—y,c—y).
So z=v and the shape of A and B coincide. Hence A=B.

b) Let v=((p+1), p’). First, we shall assume that p is even.

CLAIM 1. In every row of T, the first p symbols of it forms a reverse
sequence with top 1.

Proof is easy from the L-R property.

Note let us consider the sub-tableau 7, of T corresponding to the
subdiagram p=(p**%) of v. Then from Claim 1, T, is also an Sp(n)-tableau.
We also see that the transposed diagram af of the weight of 7, is an even
partition. In other words, (aT)S:(‘DTO)S is even for any s.

CLAIM 2. For any row of T, its p+1-th symbol T(i,p—1) 18 ({(a¥),)
for some s=r, or p+1.

Proof is easy.
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From these claims, we see that ‘zr=‘D, has just 7 odd rows. This
construction is reversible, i.e. we can construct 7 from v and ¢ as follows.
We define a diagram 7 by

{*z); if (‘z), is even

T (), =1 i (%), is odd.

It is easily seen that there exists at most one Sp(n)-tableau of shape
(p**7) with weight 7 such that any of its row is a reverse sequence. S0
T, must coincide with S, which is made from S similarly as 7, Then
T and S must coincide because they are standard. When » is odd, we can
prove our statement similarly.

c) Let v=(p%,1%). Then the symbol 1’ can occur only in the p-th
column of 7. The number of occurrence of 1’ in 7 equals k=1+j5—7. So
an argument similar to the one used in a) shows that the number of Sp(n)-
tableaux of shape v with welght r equals the number of Sp(n—1)-tableaux
of shape v={((p—1)*"% (p—2)*) with weight #=(rs, 75, -+, 74). We knew that
this number is at most 1 from the previous Case b).

g) Let v=(2n—1),27,1%). We make Sp(n)-tableaux 7T, and S, in the
same way as in a). Since any row of length 2n—2 makes no influence on
the weight of an Sp(n—1)-tableau, we shall consider the tableau 7, (resp.
S,) made from T, (resp. S,) by taking all rows of length 2n—2 off. S;
and T, are Sp(n—1)-tableaux. It suffice to show that T=S;. Suppose that
the shapes of 7, and S, are ((2n—3)%1%) and ((2n—38)°,1%) respectively.
Since {Tul=1S,| and n+#1, @n—-2a—c)=2n—38)a—c)+{b—d). So a—b=
¢—d. On the other hand, it follows from the L-R property that the
number of cells in the weight of T, (resp. S;) equals a+b (resp. c+d). In
short, |Dr,|=a+b and |Ds,| =c+d. Since Dr,=Ds, the shape of T, coincides
with that of S,. Now we have T;=S; from the result of ¢). Q.E. D
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