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Jacobi forms and a Maass relation for Eisenstein series

By Tadashi YAMAZAKI

(Communicated by Y. Thara)

Introduection.

Let H, be the Siegel upper half plane of degree n. A Jacobi form of
degree m is a holomorphic function on H,x C" with certain transformation
properties with respect to Sp(n, Z)x Z?*. A Jacobi form in the sense of
Hichler-Zagier [E-Z], from our point of view, is that of degree one. In
this paper we will show that some parts of [E-Z] can be generalized to
the case of arbitrary degree n.

We shall explain briefly the contents of our paper. Let &k, m be posi-
tive integers. A holomorphic function é(z,z) on H,xC" is a Jacobi form
of weight & and index wm if it satisfies the following transformation
formulas:

(1) ez +bier+d)7, z(er +d) ) =detler +d)exp(@r imz(cr +d) 'c'2)é(z, 2)
for any [g 3] in Sp(n, Z),

(i1) &z, 2+ 2c+ g)=exp(—2x im(Ac'2+24°2))¢(z, 2) for any 2, p in Z7,
(if n=1, we need a regularity condition at infinity).

As in the case of Siegel modular forms, we can prove the finite dimen-
sionality of the space of Jacobi forms and the Koecher principle for Jacobi
forms (§§ 1 and 2). We can define an operation of the Hecke algebra of
Sp(n, Z) on the space of Jacobi forms. If ¢ is a Jacobi form of weight k
and index m, and if T is an element of the Hecke algebra with similitude
v, then ¢|T is a Jacobi form of weight k& and index my (§4). Let E{V
be the Siegel-Eisenstein series of weight & and of degree n+1. We denote
the m-th Fourier-Jacobi coefficient of E{*Y by e,... For any natural
number m there exists explicitly determined element D(m) in the Hecke
algebra, such that e, ,=e,;/D(m). When n=1 this is equivalent to the
Maass relation for the Eisenstein series of degree two ((M]).

Notations. Throughout this paper # denotes a natural number and we
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call it the degree. Let Z, Q, R and C denote the ring of integers, the
field of rational numbers, the field of real numbers and the field of complex
numbers, respectively. For any commutative ring A, M, (A) denotes the
set of p by ¢ matrices with coefficients in A, and M,(A4) denotes M, ,(4).
We use ‘M and 1, for the transpose of a matrix M and for the n by
n identity matrix, respectively. We write J, for a standard alternating
matrix of degree 2n, namely
0 1,
J”L:[ } ’
-1, 0

where 0 is an » by » null matrix.

The Siegel upper half plane H, of degree n is the set of symmetric n
by n complex matrices with positive definite imaginary parts. The letter
r and z will always be reserved for variables in H, and CP®, respectively.
Let G., I's, S, be the real symplectic group, the Siegel modular group and
the group of similitudes, respectively ; namely we define

G.=Sp(n, R)={M & M,(R) ; ‘MJ , M=J.},
S,={Me M(R) ;" MJ, M=vJ, for some v>0}.

Let M be in S, If ‘MJ,M=vJ, we write v=u(}M). For any M:[g ﬂ

in S, and ¢ in H,, we put Mr=(ar+b)(cc+d)"’. This defines an action of
S, on H,.
The symbol e(xz) denotes ¢ and e™(x) denotes e{mz).

1. Jacobi group.

In this section we shall define the Jacobi group G and an action of
GZ on the space of functions on H,XC® In fact, for our later purpose,
we extend the definition a little bit and treat a group S;, which contains
G? as a normal subgroup.

As a set, we define S by Si=S,x R*®»x R, where S, is the group of
similitudes. We denote a general element of S by [M, X, «] in which
MeS,, XeR?™, reR. For g,=[M,, X;,x;] in S} (i=1,2), we define

919, =L MMy, v(Mo) " XM+ X, V(M) ™ ke o+ v (M) T X M 2 K]

We recall that for M<S,, v(M) is defined by ‘MJ,M=v(M)J,. The above
product makes S7 a group. We apply a similar procedure to G,=Sp(n, R)
and I",=Sp(n, Z). By restricting the multiplication to Gi=G,XR"XR
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and =TI, xZ*"x Z, we obtain two subgroups G and I'7 of SI. We call
G the Jacobi group of degree =.
The following remark makes the above definition understandable. Take

g=[M, X, ] in S7 and write M:[g’ 3] and X=(4, ¢), in which a, b, ¢, d

are nXn matrices and 2, y are n-vectors. We put v=v(M) and define ¢’ by

@ 0 b 011, 0 0 ‘u
,MOvOOZIILe/fl
I%l¢ 0 d 0|0 0 1, -2l

000 1o oo 1]

Then the correspondence g—g’ defines a homomorphism from S7 to S,...
Let k& and m be non-negative integers. Take [M, X, «] from SJ, and

decompose M and X into nxXn blocks [g 3] and m-vectors (X, u), respec-
tively. For any function ¢é(z,2) on H,XC", we define
(g”k,m[M’ ‘Y’ K])(T’ z)
=™ e+ A" A+ 222+ 2 p— {2+ A+ pilec+d) ez Ar+ 1)
X det{er+d) *¢(Me, v(z+ Ac+ w)(er +d) ™Y,

where we write v=y(M). This is an action of S} in the sense that for
any gZ:[M” Xi, Ki]; 7::1)2

(,Gs}k,mgl)jk,mugzz¢lk,m(glg2) B

where we write v=yv(M,).

2. Jacobi form.

In this section we shall define the Jacobi form and prove some basic
properties of Jacobi forms. Many of them are more or less well-known,
but we include here for the sake of completeness. For more generalities
we refer to [S].

Let & and m be positive integers.

2.1 DEFINITION. A holomorphic function ¢ on H,XC" is called a
Jacobl form of weight %k and index m (and of degree n) if it satisfies the
following two conditions:

1) Slamg=¢ for all g in I'7,
ii) ¢ has a Fourler expansion of the form
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oz, 2)= NZ ¢(N, r)e(Tr(Nec)++'2),

where the summation is taken over all symmetric half integral
matrices N of degree # and all integral n-vectors ». We require
that ¢(N, r)=0 unless 4mN—"r» is semi-positive.

The vector space of all such functions is denoted by J, (I 4.

We recall some elementary facts about Theta functions. Let ¢ and b
be rational n-vectors. The Theta function 6, ,(r,z) with characteristic
{a,b) is defined by

=Z7n

Oan(z, )= 2 e((1/2)(g+a)c'(g+a)+(g+a)(z+Db)).

The right hand side converges absolutely and uniformly on any compact
subset of H,xC".

2.2 DEFINITION. Fix a point z in H, Let m be a positive integer.
We define R,{(r) to be the vector space of all holomorphic functions f on
C" satisfying

S+ 2c+ p)=e™(—(1/2)az2—-22) f(2)

for all integral n-vectors 1 and .

2.3 THEOREM ([I]). Let us fix a point ¢ in H, and a positive integer m.
Then the functions {0, (mr, mz)}, r=(ry, -, r.), mr.€Z, 0=r,<1,1=1,---,n
form a basis of R,(t). In particular the dimension of R,(z) its m™.

2.4 PROPOSITION. Let ¢ be o Jacobt form of weight k and index m.
There exist uniquely determined holomorphic functions f, on H, satisfying

(1) oz, 2)= 3 f()0, (2mz, 2mz) ,

wn which the summation s taken over all rational n-vectors r={(r, -+, r,)
with 2mr. € Z, 0=r, <1 for i=1,--,n.

PROOF. Proposition 2.4 follows easily from Proposition 2.3 and Lemma
3.4 in [S].

For any integral wn-vector », we have

0a+r.b(7: Z) :6a,b(f’ 2).

Therefore by an abuse of notation, we may write 4,r,z) for any repre-
sentative ¢ of Q" modulo Z*. We need the following transformation
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formula for the Theta function.

2.5 PROPOSITION ([I]). Let Mz[g g] be @ mateiz in I, Then for

any v in {1/2m)Z" modulo Z™, we have

{3) G,.02mMz, 2mz{ct+d)™")
=e™zlct+d) 'cfz)det(cr +d) 2 X u, (M)E, o2, 2mz)

n which the summation is taken over o complete system of representatives
of (1/2m)Z™* modulo Z", and (u,(M)),, is a constant unitary matriz of
degree 2m)" depending on the choice of det{cz +d)'

Let ¢(r,2) be a Jacobi form. Then by Proposition 2.4, there corresponds
a family {f,(z)}, of holomorphic functions on H,. If we apply the condition
ab

of the Jacobi form for [M,0,0]el, M:[C d]’ we obtain
(4) 2 (M), mMe, 2mz{ct +d)™1)

=e™(z{er+d) 'c'z)det(er +d)* X fi ()8, o(2mz, Zmz) .

Apply Proposition 2.5 to the left hand side and compare the coefficient of
Gs.(2mz, 2mz), then for any s in (1/2m)Z"™ modulo Z* we get

(5) 2 S (Me)u, (M) =det(cr +d)*2f; .

We may say that {f(z)}, is a vector valued modular form of weight
k—1/2 (with respect to the automorphic factor {u,}).

Conversely suppose given a family {f.; r<(1/2m)Z" mod Z*} of holo-
morphic functions on H, satisfying (5). If we define a function ¢(r,2) on
H,xC" by (1), we obtain a Jacobi form of weight % and index m.

Thus we have proved

2.6 THEOREM ([S]). The equation (1) gives an isowmorphism between
Jeudl ) and the space of wector walued wmodular forms satisfying the
transformation formula (5) for any M in I,.

Using the Koecher principle for a vector valued automorphic form
({C], [F)]), we have the Koecher principle for Jacobi forms.

2.7 THEOREM (Koecher principle). Assume that n>1. Then any holo-
morphic function é(z,z) on H,xC™ satisfying the condition
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Slomg=¢, for all g in I}
1s a Jacobt form of weight k and index m.
2.8 COROLLARY. The Jacobi forms form a bigraded ring.

2.9 PROPOSITION. Let ¢ be a Jacobt form of weight k and index m
and A, p rationol n-rectors. Then the function

h(z)=e™Ac )z, Az + )

is o modular form of weight k with respect to o congruence subgroup of
I, (depending only on A and p).

Since this can be proved in the same way as was Theorem 1.3 in
[E-Z], we omit the proof.

2.10 THEOREM. The space Jun(l'n) of Jacobi forms is finite dimen-
stonal.

PROOF. We fix a point 7, in H,  The functions of z on C~
O, o217y, 2m2) 1 2mMr L7, r=(1ry -0, 7), 057, <1, 1=1,++,1m

are linearly independent and they are holomorphic, therefore they are
linearly independent on R™ Since Q" is dense In R*, we can find (2m)"
vectors y, in @ satisfying

( 6 ) det(ﬁr,0(2m70’ 2mﬂz))rzi O .

It follows from Proposition 2.9 that the functions A;(c)=¢(z, #;) belong
to the space M, (I(y,)) of modular forms of weight & for the congruence
subgroups /'(p;) of I',. We claim that the correspondence ¢—{h;}; is
injective. Since JM(I"(y.)) is finite dimensional, our Theorem follows from
the claim. Suppose that #,=0 for all 7. By Proposition 2.4, there exist
holomorphic functions f. on H, such that

oz, 2)= 2 f ()0, (2mz, 2mz) .
If we take a sufficiently small neighborhood of ¢, (6) holds there replacing

7, by 7. This implies that in the same neighborhood, f.(z)=0 for all r.
Since f,{z) is holomorphic, it is identically zero on H,. Q.E.D.
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3. Eisenstein series and other examples.

As in the theory of Siegel modular forms we will obtain our first
examples of Jacobi forms by constructing Eisenstein series.
Let & be an even positive integer. In the Siegel modular case we set

( 1 ) Ek(z—): 2 (1’k,m[*M7 O} O])(T, O) 3

MEFn,o\ n

where ', ,={M<l,; 1,.IM, 0,0]=1} and 1 denctes the constant one
function. It is well-known that for k>n-+1 this converges absolutely and
uniformly on any compact subset of H,. Similarly we define

{2) Ek,m(z', Z): E ](1ik,mg)(f9 Z);

gery
where
=gl 1, ng=1}

:{[M> (Z’ ﬂ); K]EP;IL ) ﬂlerm(}} ;‘:ﬂ} -

If the series converges, it defines a Jacobi form of weight %k and index m.
We call E,, the Jacobi-Eisenstein series. '

If M ranges over a complete set of representatives of ', \[", and 2
moves over Z”", then [M, (2,0}, 0] ranges over a complete system of rep-
resentatives of I \I"Z. It follows from the definition that

(el | 2 5] G20, ), 0] e, 20

=det{ct+d) *e™(—(z+ b+ Aat)(ct +d) el (z— b+ iaz7)

—Aaz(Aa)+22a'z +22a4 (b)) .
A simple calculation shows that
a—(ar+bler+d) e="er+d) ™,
at'a—{ar+-b)(cc+d) car+b)=(ar+b)(cc~d) *—a'b.
Hence the Eisenstein series is written explicitly as follows:
(3) E,..(r,2)= %‘, ; det{cr+d) *e™(AMzi A2 er —d) 'z —z(er -+ d) c'z)
= %\, det{er +d) *e™(—z(er +d) '¢'2)0, 2, 2mzlct +d) 1)

=Z Ooolenl M, 0, 0]) (27, 2me)
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i

in which M :[‘cl 34 runs through a complete system of representatives of

I'n o\, and 4 runs over Z". On the other hand, it follows from Proposi-

tion 2.5 that for M:’:? g] in I,

Go.o 2m M=z, 2mz(cz +d)™h)
=det(cr ~d) ™ (2(ct +d) T'c'2) D uo( M), o 2mz, 2mz) ,

and the vector (uy(M)), is of norm one.
Thus we have proved the following

3.1 THEOREM. Let k be an even integer with k>n-+2. The Jacobi-
Eisenstein series FE,.(c,2) converges absolutely and wuniformly on any
compact subset of H,XC" and defines o Jacobi form of weight k and
wndex m.

The second example of Jacobi forms is the Fourier-Jacobi coefficients
of Siegel modular forms. A holomorphic function F on H, is called a
Siege!l modular form of degree n>1 and of weight £ if it satisfies the
transformation formula

(4) F(Mz)=det(cc +d)*F(z),

_ja bl.
for all M_[C d] in I,
‘2z
z t
F(z’) be a Siegel modular form of weight k and degree n-+1. We write
the Fourier-Jacobi expansion ([P} of F in the form

3.2 THEOREM. Let 7'2[ ]denote a general point in H,.,. Let

F(z))= Z)‘,Oqﬂm(z-, 2)e(mt) .
Then ¢uit,2) is a Jacobi form of weight k and index m.

For the proof we refer to Theorem 6.1 of [E-Z].
Another important example of a Jacobi form is the Theta series defined
by an even unimodular lattice.

3.3 THEOREM. Let T='T be an even unimodular positive dejinite
matriz of order 2k, For any integral 2k-vector y such that yT'y=2m,
we define 0r, by
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(5) br fr,2)= 2 Z)g((l/Z)Tr(‘XTXr)+yTth) .

EHokn

Then 81, 18 a Jacobi form of weight k and index m.

Since this can be proved in the same way as in [F], we omit the proof.

4. Hecke operator.

The Hecke algebra of the Siegel modular group acts on the space of
Jacobi forms. Let M be an integral element in S,. Decompose the double
coset I',MI", into left cosets:

rMr,=\JI'M;.
For any Jacobi form ¢ of weight & and index m, we define
( 1 ) ¢Ik,m(FnMFn):”(Zw)nk_n(thwz 2 ¢lle,m[Mi, O’ O] .

It is clear that the right hand side does not depend on the choice of
representatives M,.

4.1 PROPOSITION. Let M be an integral element of S, and let ¢ be a
Jacobi form of weight k and index m. Then the function ¢y (I M)
on H,XC" defined by (1) is a Jacobi form of weight k and index my(M).

PROOF. We write ¢=6l, .0 MI,. We have to prove the trans-
formation formulas. Let N be in [',. If {M,}; is a complete system of
representatives of "\, MI",, so is the set {M,N},. Since

(¢|kr7ﬂ[‘Mi’ 0) OJ)Ik,mu(M)[N7 O, O]:¢lkm[MzN3 0, O];
we have ¢lpmanlN,0,0]=¢. On the other hand, since u(M)XM;' is
integral for any X in Z*", we have

(¢|k,m[Mi, 0, O])Ik,my(M)[lzns X) O]:(¢]k,m[12ny ”(M)Xfwi‘l’ O])!km[ﬂ/[u O) O]

:¢|k.m[[”i’ O’ O} .
When n=1, the condition at infinity follows from the explicit formula

given below. Q. E.D.

In the rest of this section we shall fix a prime number p. Let
0,=0d;(p) be a diagonal matrix of order » such that the first n—1 com-
ponents are one and the rest are p. We set H=GL(n,Z) and
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Hi(p)=H;=(07"Ho;)NH.

It is well-known that the double coset

1, 0
T<10)=Fn[ }Fn
0 pl,

has the following decomposition into left cosets [F]:

80 b‘v'l]
0 pt(aiv)—l ’

0sisn

in which » runs over a complete system of representatives of H\H and b

has the form [8, 8] with b= in M,_(Z) and b’ moves modulo p.

Let ¢ be a Jacobi form of weight & and index m. Take the Fourier
expansion of ¢ (see Definition 2.1):

oz, 2)= sz c¢(N, r)e{Tr(Nr)+r'z),

in which N ranges over the set of n by » symmetric half-integral matrices
and » runs over Z". TFixing 7 and v we write

;v byt
D(5z?/‘):2 ¢Ikm[{ _JyO: O}z
0 0 p'(ow)*

in which the summation with respect to b is taken over the set mentioned
above. Using the obvious formula

p(n—i)(n—i+l)/2 if 51N5150 mod P,
= e((lf'p)TI'(Nb))=[O
»

b7 mod

otherwise,

we have

D(e)= = 2 det(pd)~"e(N, r)e(Tr(N(d;z +b)d:p™") + p'(zd:p ™))

s

<

=pTHRTOYRDAIGDR 5 (N p)e(pT Tr(8,NOiT) +78%)

;N3 =0 mod p

:p—k(n—i)+(n—z’)<7z—z‘+1)/2 2 C(pai—zi\fai—l’ 7‘5;1)6(TI‘(NT)+7”52) ,
N,r

where we use a convention that if N is not half-integral or » is not
integral then ¢(N,»)=0. More generally we have,
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v 0
Dwﬂ’):D@i):k,mp ,0,0
0 ‘vt
:p—k(n—i)ﬂn—i)(n—iﬂ)/zVZ C(pa;l t’lJ-lf\’r@d(?i—l, rv'lﬁfl)e(Tr(Nz-)—f—'rtz) 3
Summing up over all 4 and v, we obtain the following

4.2 PROPOSITION. Let ¢ be a Jacobi form of weight k and index m,
having the Fourier expansion

oz, 2)= \E (N, r)e(Tr(Nz)+rz).

Then we have

(@12 T(p))(z, 2)
— VE . E pi(k-nHi(i—l)/z Z c(pa;l tv—lz\]v«léi—l, Tv"5{1)e(Tr(Nz')—l—7"z) .
N,r 0gisn VEHNH

7

Since the double coset 7T, . (p?)=1"n(pl.)]", consists of just one left
coset [I.(pl,,), we get the following

4.3 PROPOSITION. With the same assumptions and notations as ahove,
we have

(,O'ék,mTo,n(]f))(T, Z) :pnk—n(n+1)¢(z_’ ]92)
=pt D 3 (N, p7r)e(Tr(Ne) +r'z) .
N7

5. Maass relation.

In this section we shall closely examine the action of T(p) on the
Eisenstein series. Using a result of Bocherer [Bl, we get relations among
the Fourier coefficients of Siegel-Eisenstein series. When n=1, these
relations reduce to the Maass relations for the Siegel-Eisenstein series of
degree two.

In the rest of this section we shall fix a prime number p. As in
Section 4, let §; be the diagonal matrix with the first n—17 elements are

-1
one and the rest are p. We define an element §; in S, by 622[10 gi g]

5.1 LEMMA. Ve have the following decomposition of T(p):

T(p)= \J I'no0:l .

0gisn
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PROOF. Obviously we get distinet double cosets for different <. Take
a representative B (Iﬂ of a double coset in ', \T(p)/l,. There exist

matrices # in GL(n, Z) and v in GL(2%n, Z) such that
(e, d)=wu(0,e)v,

where ¢ is a diagonal matrix with positive elements ¢, -, ¢, ¢50c500,

j=1,---,n—1. By replacing the representative if necessary, we may assume

that w=1,. Decompose v into nXn blocks v:[zl Z“)z] Then from the
3 EY

relation c¢'d=d‘c, we get vs'v,=v/v,. Therefore replacing »,, v, if necessary,

we may assume that v is a symplectic matrix. It follows from the

relation a'd—b‘c=pl,, that
= v 5
¢ d 0 ¢

P R
where we put x=—av,+~bv, Since [Z 3] is in T(p), [])6 ﬁ_i is also in
t e

T(p). In particular there exists an index 7 such that ¢=4;. It follows

from the definition of 7(p) that
[Su 29312}
w=|, s
S12 DS
in which s;;="‘sy;, s;; and ps,=7p'sy» are integral matrices of size (n—1) X (n—1),
(m—1)xX1 and 1X1, respectively. Our Lemma follows from the following

identity ;
{}96{‘ m} {1,2 31}5,[17, sz}
0 &) Lol 1ol
Si1 Sps 0 0
$i=1, and s,= . Q. E.D.

5.2 LEMMA. For any 0=1<n, we put

where we set

Hi(p)=H;=(6,GL(n, Z)6:)Y"\GL(n, Z),
gp(n’ i):[Hn : HL]:[Hn : Hn—i] .
Then we have

gpoin,0)= I (p* " =1)(p“—1)7",

lsasi
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and
pertPEg (n,a) X = TI (1+p“X)}.

Ozasn lgasn

"

Since this is well-known and easy to prove, we omit the proof.
To simplify the notation, we put for M=S, and 1=Q"

J(k> m M’ )-):er,m[lmy (}\, 0); O:H:J[’ 0, O] .
Also for any 0=i=<#n, we set
Fn(ai)zrnﬂ(5§'lfn,05;),

and
K,= > Enj(k, m: M, A).

Mel Gy 2EZ
5.3 LEMMA. (i) If p})m, then
K,=p "+ 0%g (ny B, mp -
(ii) If plm, then
Ki(r,z)=p ¥ D2y (n—1, n—1) Ky miolc, p2)
+ g n—1, n—i—1)E, snlc, 2)}.

PROOF. We put U:{[lon s ] : s:ﬁseMn(Z)} and I",(3,), =I",(3,)U. Then

it is easy to show that the set

1, 00
{[ }; m:[ },x;z%;eMi(Z) modp}
0 1, 0 x4

is a set of representatives of 7,(6)\],(8;).. It follows from the definition
that
Ki=p7* 3 > gk, pm 5 M, 257" .

Mel g\l 12

If we replace M by [10” f]M with %:[82
n, i

summation is multiplied by the factor e™(piAd;'xér*’4).

], then each term in the

(i} The case ptm. If we sum over z, modp, we get
pz'<z'+1>/2 if ZEZ"{SL-,

5 m 8T Sml sy —
> e™M(pAdilxsTiiA) = .
0 otherwise.

z4 mod P

Hence we have
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Ki:])—ik+i(i+1),‘3 2 E j(k, m : M, 2) .

Melppy\[n AEZT

If {u,}; is a set of representatives for H\H,, then {[7“61' %?__1]}. is a set of
7 J

representatives for 77,(3:).\/ ». Finally we get

Ki__.p~ik+i(i+1)/2 Z 2 an(k, mp ; M, Xu)

UEH\NHy ME[, g\M'n AEZ

:p—ik+i(i+1)/2[Hn : Hl] 2 Z j(k, mp ; M’ /’{)

ML, o\N'p AEZ®

.___p—ik-:-i(iw'-l)/z[Hn . Hi]Ek,mp .

{ii) The case pim. Since e™(pAdy'xdr A)=1 for any z and i, we have

Ki(z,z)=p #+iesbe % > jlke,mlp; M, paéi)(z, 2)
Ml pGpy\ly 2€Z7
=pTiriGrLR 3 > Jk,mip; M, Dz, p2).

Ml Gy n 2epznay?

Since H, is the stabilizer of pZ"57!, we get

Kz, z)=pt¥ia=ve 5 3 % gk, mip; M, 2)(z, pz),
AEL

del, \Np L

in which the middle summation is taken over all lattices L in Z™ such
that Z"/L=(Z/pZ)"*. On the other hand it is easy to see that for any
“good” function f on Z", we have

S fW)=g,n—1,9) B f(A)+p""'gy(n—1,i—1) 3 f(p2).

Py 7Y ey
Observing that
gy mip; M, pA)z, pz)y=7lk, m ; M, Dz, 2},
we obtain the desired formula. Q. E. D.

5.4 THEOREM. Let p be a prime number.
(i) If prm, then

BrnlinT(0)={ IL (14579 Ex

15isn

(i1) If pim, then

(Epmlen T, 2)= }[ I (1 +p“i)}{Ek,m,vp(r, p2)+ PP (7, 2)}

l2gi=n

PrROOF. It follows from the definition that
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Ek,mlk,mT(p):pnkhn(n‘)—l)/z 2 Z Zznl]k,m[lw,iwa ]3—1(2, O)J/[; O}

MeEl \T(p) M'Er, N n 2E

:pnk—n(nﬁ»l)/Z E E 1lk,m[12m ()*, 0)3 O][*'W: O’ O] .

HMEel, \T(p> A1EZ™
On the other hand, by Lemma 5.1 we can take
{0:M 5 1=0, -, m, M (8N .}
as a complete set of representatives for 7", \T(p). Hence we have

Ek,mlk,mT(p):pnk—n(n+1)/2 2 2 Z 1‘km[6;M’ p_l(/?ﬂ 0)5:M, O]

0sisn Ml p@\[yp 2EZ7

— k- 1)/2
_pn n{n+13/ Z Kz

0sisn
Therefore Theorem 5.4 follows from Lemmas 5.2 and 5.3. Q. E.D.

We expand the Siegel-Eisenstein series Ef{**“(¢/) into the Fourier-
Jacobi series:

B () = 2 e e, elmt).

As we showed before, ¢, {7, 2) is a Jacobi form of weight k£ and index m
for [',. The Jacobi form e, , is studied by Bocherer. A special case of
Satz 7 of [B] may be formulated as follows.

5.5 THEOREM ([B]). For any m>0, we have

ek,m(r3 Z): E O'k—l(q/ndnz) Z ‘U(a)Ek,ma?'/dZ(Ta da/—lz) 3
dZ|m, d>0 ald,a>0

i which p 18 the Mobius function and

or-i(a) :dmZm drt,

5.6 COROLLARY. (i) If plm, then

. )
ek,m,,z{ IL (10" ep e T0)

2gi<n

(ii) If plm, then

ek,mp:{ H (1+pk—i)_l}ek,mlk,mT(p)_p“-n>k+n(n+1)_lek,m/p|k,mTO.n(pg)-

2=isn

Since this is just a combination of Proposition 4.3, Theorems 5.4 and
5.5, we omit the proof.
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For any natural number m, we define an element D,(m) in the Hecke
algebra for [, with similitude m by the following formal product:

EDn(m),)n—s: H {1_ H (1+pk—i)~1T(p)p-s+Toxn(pZ)p(l—n)k+n(n+l)—l—2&}—l.

m=0 p: prime 1<iZn

We can reformulate Corollary 5.6 in the following

5.7 THEOREM (Maass relation). For the Fourier-Jacobi coefficients
e, {7, 2) of the Stegel-Eisenstein series, we have

€rm =1l Dp(m) .
5.8 REMARK. If =1, then the above Euler factor is
1=T(p)p~* + Top*)p* .

This is the ordinary Euler factor for the modular group, hence we have
D,(m)=T(m) for all m. Therefore in this case Theorem 5.7 is nothing but
the Maass relation for the Siegel-Eisenstein series of degree two ([M]).
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