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0. Introduction.

The first work on microlocal analysis of nonlinear partial differential
equations was done by Rauch [15]. Rauch used the microlocal estimate of
the product of two functions and proved a theorem on propagation of reg-
ularity for semilinear wave equations.

Subseguently, Bony [3] dealt with the general nonlinear partial differ-
ential equations and considered the microlocal regularities of solutions at
non-characteristic points and on real simple characteristics. In [3], Bony
introduced the paradifferential operators. This machinery of paradifferential
operators, which is based on the Littlewood-Paley decomposition of func-
tions, turned out to be useful in the nonlinear microlocal analysis. Later,
Meyer [138], {14] improved some of Bony’s results, including remainder esti-
mates in the paraproduct. See also Coifman-Meyer [7] and Bourdaud [4],
where the Littlewood-Paley theory is applied to the problem on the
boundedness of pseudo-differential operators on L” spaces.

Partial differential equations discussed in this paper have mixed homo-
geneity in symbols in the sense that the order of differentiation may de-
pend on variables. Typical examples are the heat equation and the Schrodinger
equation. The pseudo-differential operators with such a homogeneity has
been previously considered by Hoérmander [9], Kumano-go (cf. [11]) and
others. But microlocal analysis for operators with mixed homogeneity
was first given by Lascar [12], and our terminology of quasi-homogeneous
pseudo-differential operators comes from his work.

Recently, Yamazaki [18], [19], [20], [21], [22] extended the theory of
paradifferential operators to the quasi-homogeneous case and derived
boundedness of the operators in various spaces and introduced calculus of
them. He applied the results to microlocal analysis of nonlinear partial
differential equations of such a type and thus obtained the non-characteristic
regularity theorem.
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In this paper, we also consider microlocal structure of solutions to
nonlinear partial differential equations of quasi-homogeneous type but with
a particular emphasis on microlocal regularities of solutions on real simple
characteristics. Actually we shall prove a propagation of regularity theo-
rem for a class of semilinear equations having gquasi-homogeneous leading
terms. The main results of this paper will be stated precisely in Section
1, after describing some notation.

As in existing works toward similar directions {e.g., Hormander [10]),
our proof is based on a microlocal energy estimate along the real bicharac-
teristics. To this end, however, we have to prepare the following two
things. The first one is to extend the sharp Garding inequality to the case
of quasi-homogeneous pseudo-differential operators. This will be done in
Section 2. Incidentally, as an application of our version of the sharp
Garding inequality, we can improve Lascar’s result on the propagation of
regularities to some extent.

The other mean which is crucial to handle nonlinear terms is the use
of the theory of quasi-homogeneous paradifferential operators due to Yamazaki
[18], [21], [22]. As a matter of fact, the boundedness and the symbol
calculus of these operators, which we need later, can be found in his papers
[21], [22]. However, we only need to use the L -property of paradifferential
operators as long as our interest is restricted to obtain a propagation reg-
ularity theorem. When we focus our attention to this limited target,
many of the arguments of Yamazaki [21], [22] intended for extensive
generality can be considerably simplified. This is actually carried out in
Sections 3 and 4 in a manner close to Meyer [13], [14], which may be of
some value by its own right and for the sake of self-containedness.

In Section 5, using the results of the preceding three sections we
prove the microlocal energy estimate which yields our main results of
this paper.

Acknowledgement. The author thanks Mr. Yamazaki for giving his
papers [21], [22] before publication. Actually the present study is motivated
and stimulated by his work. The suthor also wishes to express his hearty
gratitude to Professor A. Kaneko for his invaluable advices and unceasing
encouragement. '

1. Notation and statement of the results.

Here we recall shortly the definition of quasi-homogeneous pseudo-
differential operators.
Let Q denote an open set of R”. Let M=(y,, -, g, be a weight
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vector on the dual space R, satisfying inf{g;)=1. If ¢=R, and t>0 we
set tYE&=(t" &, .-+, t*&,). A function ¢ on 2% (R,\0) is (M-)quasi-homo-
geneous of degree m if g(x, t”&)=t"g(x, &) for every t>0 and (x,8) QX
(R\0). We also say that a subset I” of 2x{(R,\0) is an M-cone if (x, &)
=/ implies (x,t¥&) el for every t>0.

We introduce the function &, defined implicitly by 2 g2 [effi=1 if

£+0 and (0)y=0. Then [&]; has the following properties:

(1) [&ly is M-quasi-homogeneous of degree 1,

(2) [£]lyeC(R,\0) and its derivatives satisfy the following estimate:
for every acsN*

0f[€ly=0(&l<"">)  in [&ly=1,
where {a, M>= ﬁ} g,
et

) [&+nly=[sly+I5ly for every &, ne R,

4) (+[&ly)*el? if and only if s> |M|/2, where M |= 2 p
(2} was proved by Fabes-Riviére [8]; the others can e seen easily.

Let meR, 0=0=<p=1. We let S)*(2) denote the space of functions
plx, &) of class C on QX R, satisfying the following estimate: for every
a, 5 N™ and K€Q there exists a constant C, ; x such that

(1.1) 10£07p(w, SN = Co 5 x(LH[E])rosmIZHose e e K.

We call elements of S;/*(2) symbols of order m and type (p,d). Also by
Syt we write the subclass of S)*(R") consisting of the symbols which
satisfy (1.1) with the bound C, ; x independent of K=R™

We say that a symbol p=SY(£2) is classical if p has an asymptotic
expansion by quasi-homogeneous functions P of degree m;:

(1.2) plx, &) ~ é P2, §),

where m=m, and m'Z=m,>m,> -+- —»—o0. The precize meaning of (1.2)
is that, for every integer £,

k-1
ple, &)= X pnyle, )=0(£L")  in [£1,=21.
=

For a classical symbol p we call p, the principal symbol.
Let p be an element of Sy;*(2). We set
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pla, Dyue) = (22 \e<=2pe, Ha@)ds  for u=C3(Q),

@

where 4% denotes the Fourier transform of u:
e = Se‘i<r'f>u(x)dx .

plx, D) defines a continuous linear map C;(2)—C=(2), which can be ex-
tended with continuity to a map £(2)—~9D'(2). We let OpS¥;*(2) denote
the space of all linear operators P=p(z, D) with p(x, &) <S)(2). Ele-
ments of OpSYy"(2) are called M-pseudo-differential operators of order m
and of type (p, d).

Suppose M=(p,, -+, ¢tn). For real valued functions p(x, &), gz, &) de-
fined on 2% (R,\0) we let

P = Z (0905, 0:,09:,0)
Jia=
be the partial Poisson bracket of p and ¢, where the sum is taken over
all j such that g;=1. We can regard {p, g}, as a first order differential
operator Hy acting on ¢, where HY denote the M-Hamiltonian vector de-
fined by

oy a. . N
HI) G E:l) (O;jfjaxj aszacj) .
Since HZp={p, p}»=0 it is clear that p is constant on integral curves of
HY; these on which p=0 are called (null) bicharacteristic strips for p.
We consider the regularities of solutions in the Sobolev space. We let
Hj; denotes the anisotropic Sobolev space with norm:

1/2

=Y+ EL0 2 g )
We also define its microlocalization as follows:

DEFINITION 1.1. Let wu(xz) be a distribution defined near = R"™ and
let £ R\0. We write us Hi (&, £) if there exist a classical symbol a(zx, &)
of order 0 and a function y=C7 with a(Z, &+0, y(&#)=0 such that alz, D)yu
= Hy.

We then say that w belongs to Hi at (&, £). Moreover, let I'CR"x
(R.\0) be an M-cone. Then we write us Hy(I") if u belongs to Hj at all
points of I'. As usual, for QCR"*, Hj 1..(2) denotes the space of ue D(Q)
such that yue Hy; for every y=C7(£2); this is equivalent to say that «
belongs to Hj at every point of Qx(R,\0).
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We are now ready to state the main results of this paper.

Let £ be an open set of R™ and let P=p(x, D) be a classical }M-pseudo-
differential operator on £ of order m. Assume p has a real valued prin-
cipal symbol and simple characteristics (i.e. Hj %0 on p,'(0)). Let F'=
F(z:; U, -+, U, --+) be a C>-function defined on R*"XC", where N is the
number of multi-indices « satisfying <a, M><m—1, and assumed further
to be holomorphic with respect to U, -+, U,, ---. Let u=u(x) be a func-
tion defined on £ ; we shall use the abbreviation

F(D*u)=F(x; w(x), --~, D*ulx), --+), o, My=m—1.
We then consider the following semilinear equation
(1.3) Py + F(D%u)=0 in Q.

THEOREM A. Let s> (m—1)+|M|/2 and let 6 <s—(m—1)—|M|/2. Sup-

pose u is a solution of (1.3) which belongs to Hy o(2). If u belongs to

0 ot some point (&, &) in prl(0) them wu belongs to Hi° on the null
bicharacteristic strip through (&, &).

If F is free from the higher derivatives of u then we can weaken
the assumption on s and on ¢ accordingly.

THEOREM A’. Suppose F is independent of D%u for « such that
la, M>>m—h, where h is real and h>1. Let s>(m—h)-+-[M|/2 and let
o=<s—m+2h—1—|M|[2. If uc H ,(2) is a solution of (1.3) and belongs
to Hi™ at (%, §)ep*(0) then w belongs to Hi° on the whole bicharac-
teristic strip through (%, &).

The semilinear Schrodinger equation is a typical example; however,
from the additional fact that the anti-podal image of the bicharacteristic
strip consists only of non-characteristic points, we allow the nonlinear term
F of the equation to be a holomorphic function of % and % (the complex
conjugate of u). This was considered in Sakurai [16]. Here we extend
the result for more general equations.

Let P be a classical M-pseudo-differential operator on £CR", which
satisfies the same assumption as in Theorem A. Let F(D%w, D*0)=
F(zx;w, @, -, D*u, D@, -++), <o, M><M—h with =1, be a smooth func-
tion holomorphic with respect to D*u, D*% where @ denotes the complex
conjugate of u. Now consider the equation:

(1.4) Pu+F(D*u, D*a)=0 in Q.
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Then we have

THEOREM B. Let s>(m—h)--|M|/2 and let o<s—m-+2h—1—|M|/2.
Let ue Hy 1,{2) be a solution of (14). Consider o null bicharacteristic
strip v for P such that the anti-podal image of which consists only of
non-characteristic points. Then w belongs to HY on y if this is true at
some point on 7.

2. Quasi-homogeneous pseudo-differential operators.

In this section we list the facts on the quasi-homogeneous pseudo-
differential operators, which will be used in the proof of the main results.

The classical results on the continuity of pseudo-differential operators
is the following.

THEOREM 2.1. Let meR and let 0=6<p=1, 6<1. Let P be an ele-
ment of OpSJy(2). Then P maps E'(QNHS continuously to HiT(Q).

When M=(1, ---, 1) Theorem 2.1 was proved by Hormander [9] if 0=
0<p=1 and by Calderon-Vaillancourt [5] if 0<6=p<1. See also Kumano-go
[11], where the pseudo-differential operators with weight functions in-
cluding our (1+[£];) are considered.

Symbol calculus of M-pseudo-differential operators is the same as the
homogeneous one. The calculus is well known ; see for example Kumano-go
[111.

PROPOSITION 2.2, Suppose that 0=0<p=l1, o<1,
(1) For peS}y and p'€SE™ define q=Siy*™ by

qlx, &)= (25)'”Sge'i<y”’>p(x, E+-p)p'(x+y, E)dydy .

Then p(z, D)p'(x, D)=q(zx, D). Moreover, q has the asymptotic expansion

qlx, §) ~ E(;i,)i
a

a

0¢p(x, &)osp’(x, &) .
(2) For P=p(a, D)=OpS¥s” define the formal adjoint P* by (Pu, v)
=(u, P*v) for u, veCF(R™), where (,) denotes the usual sesquilinear prod-

uct, and define p*(x, §) €Sk by

P, E):(Z:)‘”Sse‘i@’”mdydn :
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Then P*=p*(x, D). Moreover, p* has the asymptotic expansion

—__s)lal
(e, & ~ 20 b ).

For operators P and @ we define the commutator [P, @] by [P, @]=
PQ—QP. Then we have

COROLLARY 2.3. For M=(py, -, p,) we set v=Iinf({p;—1; p,>11{1}).
Let peSE™ and p' =S¥ be two classical M-pseudo-differential operators
with the principal symbols v, and v, respectively. Then [p(x, D), p'(x, D)]
e0p S¥Ey+™ 1. Moreover, we have

[p(z, D), p'(x, D)= —i{pw, pmtule, D)+O0p ST 177,

The starting point of microlocal analysis is the following non-charac-
teristic regularity theorem, which was proved initially by Lascar [12].

THEOREM 2.4. Let P be a classical M-pseudo-differential operator on
QCR" of order m; let pn be the principal symbol of P. Let (%, £)eQx
(R\O) and let w be o distribution defined near &. Suppose that p(%, £)=0.
Then Puc Hi(%, &) implies ue HyY™(&, &).

This theorem mesans that if Pu is smooth then the singularities of u
must be included in the characteristic set p,'(0).

Now we generalize the sharp Gérding inequality to quasi-homogeneous
pseudo-differential operators. This inequality is essential for the energy
estimate, which yields the propagation of regularity theorem (Proposition
2.7).

PROPOSITION 2.5. Let P be o classical M-pseudo-differential operator
of order m defined on QCR™ and let p, be the principal symbol of P.
Assume that

Repalx, §)=0.
Then, for every K=%, there exists a constant Cx such that
2.1) Re (Pu, w) = Cxlulliyn-vn  Jor ueCF(K).

PROOF. Let % be an element of C5(K). Take a real valued function
1= C7 () satisfying y=1 in a neighborhood of K. Then (Pu, u)={(yPu, u).
Hence, we can assume that the symbol »(z, & of P is defined on the
whole of R"X R,. More precisely, we can assume p(x, §)S{%y" without

loss of generality.
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[z

In order to prove the proposition we shall make use of the “wave
packet transform” introduced by Cordoba-Fefferman [6]. Let us now define
the operator W: LAR")—LR"xXR,) by

Wuly, 5):Cn[5]3f456i<y'”’5>'[5]~‘11y'1:2’220(:c)dﬁ; )
where ¢,=(2r)7*"* and let W™ be its adjoint:
I/V*F(;(,‘):cnSSei<l‘—y)5>-[5]Mly—l‘izl‘z[s]g[/lF(‘y’ E)d?jdé .
Then we have

LEMMA 2.6. Let p be an element of S¥. Then

W*pW=p(zx, D)+ R,
where ReO0p STt

PROOF OF THE LEMMA. The distribution kernel of W™*pli is
Wrp Wiz, m)z(2n)"”86i<z‘”'5>t(z, g )iz,
where

a%axﬁ4%rm§m{e@mww%*WWM%SMw

Observing that

rElyliz—y1teiz—1202
laf;'ge L1y liz-ylo+lz-yl )/’dy.

1
= 5|0 [€]x

g([z—yP‘{ !x_y[Z)e—ES]H(iz~y.‘2+ir-;u2),r’2dy

=C[gly# "
and that

!
azjge—[ayﬂ:z—y:?—:z-yi2>/2dy

<\lz,—y _I[E]ye—ifiy(.z—y\zi—.x—yiQ)/zdy
J j

[T\ (sl =y P[] oo s Pty Doy

<Clel
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. —T& Vo=t 2y . .
<and the same estimate for 4, ].Se Ly tie-yitriz=yi "“dy), we can easily verify

192005 1(z, &, @) S Ca.pp(LH[E]y)mSorirzvisin o

for every a, §, reN”. Then, from the calculus of multiple symbols given
by Kumano-go (cf. [11]), we can see that W*pW<=O0pS¥™, and that the
symbol of W*pW is

t(x,’ E; x)+ 21 aéjaz7t(z; é} x)iZ:JJ 3
j= J

M, m—1

modulo a function which belongs to S¥y% .
Using Taylor’s formula we obtain

n/2
tx, &, x) =<L‘;}TL> Se'““i"‘“”‘%p(y, &)dy

=plo, &)+ 30,90, 52 (g, e ay

J=1
16157 08l —y PN
=p(x, £)+0-+symbol in ST,
In the same way we can show that
33 8,9, theee = ST
j=1
The lemma is now proved.

END OF THE PROOF OF PROPOSITION 2.5. In view of the preceding
lemma we can write

(Pu, w)y=(W*p, Wu, u)+(Ru, 1)
with R<OpS¥75 !, Note that
2.2) Re(W*p Wu, w)=0 if Rep,=0,
which comes from
SW*pm Wulz)a(z)dx = SSpm(y, & Wuly, &)Pdyd?

and that if ReOpS{7* then
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(2.3) (Rw, W S NRU s, < cm- ool 8l st cmm12
;<—C!tu‘l§1,(m—1>/2 .

From (2.2) and (2.3), (2.1) follows immediately.

Using Proposition 2.5 one can prove the following result along the
same line as in the proof of Proposition 3.5.1 of Hérmander (10). See also
the proof of Proposition 5.1 below, where the same argument will be used
for a more complicated operator.

THEOREM 2.7. Let 2 be an open set of R". Let P be a classical M-
pseudo-differential operator on 2 of order m and let p, be the principal
symbol of P. Consider a null bicharacteristic strip for Repn: I2t—r(t)
= QX (R\0), where [={t=R; t,<t<t,). Assume thot Im p,=0 in o neigh-
borhood of yU). If uweD'(Q) satisfies that Puc Hi(y(I)) and that u<
H5 ™ Hy(t), then we HY™(y(1)).

If p, is real valued then, by applying Theorem 2.7 for both P and
— P, we obtain the following result of Lascar (Theorem 4.1 in (12)).

COROLLARY 2.8. Let Q be an open set of R* and let us ' (2). Let

P be a classical M-pseudo-differential operator on 2 of order m with real

principal symbol. Assume 7 is anm interval on o wmull bicharacteristic
s+m—1

strip where Pu belongs to HS. Then u belongs to HS; on v if this 1is
true at some point on 7.

3. Paraproducts.

We first define the Littlewood-Paley decomposition adapted to the an-
isotropic function spaces.

Let ¢ be a C=-function of teR*={teR; t=0} with the value in [0,1],
which satisfies ¢(t)=1 if t=1/2 and $(¢)=0 if t=1. We set

9)g1(5) ¢([$]1{/2k) s kZO; 1: 2) Tty
o (&) =d([&]x/2") —([£1/2"), k=1,2,--
and define the operators S,: L*—L* and 4,: L*—L? by

SUN @ =01 @),  k=0,1,2,-,
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By convention we set ¢)(&)=¢¥(&) and 4,=S,, We ithen define the
Littlewood-Paley decomposition of feS': '

fo)= 3 4N)@).

Let M, denote the linear space of all Fourier multiplier on L? (1<p
ZLoo); see Bergh-Lofstrom [2], Chapter 6. Note that

(e =g (274e)
K@) =gt oY)

for k=1,2,8,---. Hence, by Lemma 6.1.3 of Bergh-Lofstom [2], each ¢¥
(resp. ¢i) has the same norm in M, as ¢¥ (resp. ¢¥). Since the Fourier
inverse images of ¢f, ¢I are in S (CLY), it is evident that ¢¥ and ¢¥
belong to M, for 1=<p=<co.

The functions S,(f) and 4,(f) satisfy the following estimate for their
derivatives.

LEMMA 3.1. Let f=S8', and assume that 4,(f), S.(f)el? 1<p=co.
Then for every «

(3.1) 105 4 o= Co28< 21 4, (O 1o
(3.2) 108N = Ce28< "2 [Su(N ;0 -
PROOF. Note that
108 (N o S 105 Skerdul N 1o
182 SN 2 € 102 Sk (Sl N 1o -

Then 02S,., has the symbol

EGHL(E) =R (2 G (2 THE) |

Hence, by Lemma 6.1.3 of [2], we obtain (3.1), (2.2) with C,=1{i8)"0¥(&)]
< oo,

»p

It is convenient to introduce the anisotropic Besov space though our
results only concern with the regularity in the Sobolev space. Now sup-
pose 1=p, g=oo and let s€R. We define the anisotropic Besov space
Bj; as follows:
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DEFINITION 3.2. A tempered distribution u belongs to Byy if there
exists a sequence {¢,;=1? such that

Iyl p=e2.

BY; becomes a Banach space endowed with the norm
luliaars= 125 du@) ] o}l o -
REMARK 3.3. As in the isotropic case we can show that

(1) g{és:H€1,

(2) if q:<q, then B} CBy,

(3) (Sobolev embedding theorem) if p<# and s—|M|/p=t—|M|/r then
Bl C B

Here, in (2) and in (3), the inclusion stands for a continuous embedding

between two Banach spaces. These are proved in quite the same way as

in the isotropic case:; see Yamazaki [21] for complete proofs of them.
From (3) above it follows especially that if s>|M|/2 then

Hy(=Byy) CBY;™ M "C L.

In this paper, we shall only use the Besov space of a positive order.
When s>0, By, is characterized by the following lemma.

LEMMA 34. Let 1=p, q=<oo, and assume that s>0. Let m be an
even integer greater than Max{s, n/2}. Then a function f=L® belongs to
BIs if and only if there exist a sequence {e €1 and a sequence {fi} con-
sisting of smooth functions such that, for every integer k=0,

{(3.3) Hf“‘kaLp§5k2_ks s
and that
(3.4) HagkaLp§6k2k<a,y>~ks fmﬂ |a[:7’n.

PrROOF. First we prove the “if” part of the lemma. Let g,=S.(f5).
Then
=gl s ==l T N =Sl e

oore s M 1= GED) 1ot pyimp|
<27 f;‘;(?ﬁ;ﬁﬂ(lz it fk)}'m
[ /‘V D-kRMEN I
és_—i‘“%cl}——ﬂg—i)"! Sup:a. =m{2_k<“"v>”Dafk}]Lp}

gt gm

. }Ip
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where |-l denotes the norm of M,. Note that the function
(I—gf2*g)/|2-F g

has the same 3/, norm as the function

(1—¢if &)/ 1&™
by Lemma 6.1.3 of [2]. Using Lemma 6.1.5 of [2] we see that the latter
function in fact belongs to M, (1=<p=oo), because m>n/2. Therefore
If=gull o =Ce27%
with C independent of k; in particular we have g,—f in L2

Now let we=g,~gss, k=0,1,2, - (g,=0) so that f= > u, in L2
k=0
Then

supp . C{EE R™; (8)y =2%}
fell =~ gk||Lp+”f Grll o
§622—ks’

with another {¢j<!? Applying Theorem 3.8 of Yamazaki [21] we can
then conclude that feBY,.

In order to prove the “only if” part of the lemma we set f.=S.(f).
Then

1 ~filo = 514,702

where 7,= X ¢,2 97" Also, by Lemma 3.1,

[
i=#

10570 2 1084, )]

k
=C, X 27025
i=0

okl e, M>-ks
77132 >

Il

where 7, = X g,27 ¢ P d>m0
j=0

Since s>0 (resp. ‘o, M>='al=m>s) we see that {n,} (resp. {r}}) be-
7 4
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longs to 1¢ by means of the following sublemma.

SUBLEMMA 3.5. Suppose r is real, 0<r<1 and let {s;}€? with 1=¢
<co. It follows that

(V) if ;= D e then (el
7
k

2) of 7= _Z‘,Osj%k‘” then {pi}els.
=

PROOF. If g=1 or oo then the assertions of the sublemma are evident.
Hence, by the Riesz-Thorin theorem, we get the sublemma for 1=¢=co.
REMARK 3.6. We intend to apply Lemma 3.4 to a series f= i u#;. To
i=o0

k

verify (3.3), (3.4) with f,= X u; it is enough to show that there exists a
j=0

sequence {¢;} €17 such that '

(3.5) sl p=e,277
and that
(3.6) l0%u,ll  p =2/ ¥ for lal=m>s.

In fact, arguing as in the latter part of the proof of Lemma 3.4, we
can easily show that {f,} satisfies (3.3), (3.4).

Employing the Littlewood-Paley decomposition and using Lemma 3.4
we obtain

PROPOSITION 8.7. Let s>|M|/2 and let we Hy,. Assume that F=F(U)
is o holomorphic function of U=C, vanishing at 0. Then Flu(z)) e H.

PROOF. First note that u belongs to L” by the Sobolev embedding
theorem. Thus F(u(x)) becomes a well defined element of L~.
Now set u,=S.(u) and v,=4,(u)=u,—u,_,. We have

Flu)=Fl{ue) +(F(u)— Flue)+ -+ +(Fla)— Fluy_)) = -+
and

Fluy) — F(up- ) =muv,,
where

1
My— SOF/(uk_I_Q‘t'Uk)dt .

o
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Then m, satisfies
(8.7 [0gmy(z)| £ C 28>,

Admitting this for the moment we shall complete the proof of the
proposition.

Since dsue Hy<"> (=B <), for |a|=m,
1030,] o Sep2F< e M2ks {eysl®.
Then, from (3.7) and the above estimate, it follows that

losmval o= 3 Conallzmullz=02 vl 12
a't+a’=qa

§6k2k<a,M>—ks s

where {¢,} is another sequence belonging to [>. Applying Lemma 34 or

oo

rather Remark 3.6 to the series X m,v,, we conclude that Flu(x))e Hj.
j=0
Now we shall show (3.7). Using the Sobolev inequality and Lemma

3.1, we obtain
185 (up_r() Tt (@ ECU (L H (D) 3) 0580 AN o A H(Dy))050:(8)1 }2)

=C25 2 (Nl s, + 10l s
M M

§0;2k<a,M> .
Hence (3.7) follows from

LEMMA 3.8. Let F be a holomorphic function. Suppose Lhat a sequence
g, €C(R") satisfies 089, ()| SC2*<*"> for every a. Then |05F(g,(x))|
é C;2k<a,M>-

PROOF OF LEMMA 3.8. By using the chain rule, we can write
agF(gk): 2 Cau),w,a(q)DqF(gh)aa(l>gk i ag'(mglz i)

a=a D total@)
where the sum is taken over all the decompositions of «, and 1=¢=|al.
Then o . i
102 F(g:(2N=Coa 2105 gul@)| -+ |05 @ gulw) | £ CR20> >,
which proves the lemma.

Let us now recall the definition of the paraproduct =: &' X8 =5
which was introduced by Bony [3] in the homogeneous case and extended
by Yamazaki {181 to quasi-homogeneous case.
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DEFINITION 3.9. Let u and v be two tempered distributions. We de-
fine ={u,v) by the following:

nu, 0)= 3 Sesu)dilo)

If wel” we can easily see that the map =(u, -), which associates
=(u,v) to v, defines a continuous map on L? for every p with 1<p<oo.
The linear operator =(u, -) can be regarded as a pseudo-differential operator
with the symbol

20) "\ 07, Sy

of type (1,1), where 6(n, &)= é:‘; i () (€) is supported by {(5, HHe R, X R, ;

(n)x =(1/16)[€]x}. Such an operator will be considered in detail in Section 4
as a paradifferential operator.

This notion of paraproduct brings us a new method of linearizing non-
linear equations. Namely, we have

THEOREM 3.10. Suppose that w and F satisfy the same assumplions
as vn Proposition 3.7. Then we have
Fu)==(F'(u), w)+w
with we BNL» (CHE MR,

A similar result with we H%Z 2 has been proved originally by
Yamazaki [18]. Thus, the above-stated result is a little improvement of
his result”?, while our proof is based on the argument of Meyer [14], as
is carried out below for the sake of completeness.

PROOF. As in the proof of Proposition 3.6 we set u,=S8,(u), v.,=4.(uw)
=1u,— s, and write

Flu)= i MUk s
z=0

where

1
My = g F' (1, +te)dt .
0

Then
w=F(u)—z(F’(w), u)=(m—Ss-o(w))vs .

3 After completion of this work, the author was informed that the same result
as our theorem has been proved among others in a recent preprint by Yamazaki.
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Liet m be an integer fixed as m>s. We shall show that there exists
a sequence {z,} =1 such that the estimate

(3.8) 192 (s — Sy o F () | e 2F <7

holds for 0= |al=m.
In order to show (3.8) we set [F'(u)=F"(0)-Gu), where G is holo-
morphic satisfying G(0)=0. Noticing that

1
7nk—Sk,6(F’(u)):SOG(uk_1+tvk)dt—Sk,,tGé’zc})

we can write v

7nk"‘Sk—s(F/(u)):G(uk)“sk(G(u))*ﬁk*}’k;~
where

pk:Sk(G(u)) — S, (G(w)),
1
Te = <SO(1~t)G’(uk_1+t@'k)dt>vk .
In Proposition 3.7 we have proved that G(u)= Hj. Hence

(3.9) 168040l 2= Zol 054, (Gu) ] eS8 277
Arguing as in the proof of Proposition 3.7 we also have

Z.

M

(3.10) i|a§7’k”Lz§5k2k<a’M>_ks s {ers
Our problem is thus to examine in what sense the linear operator S,

and the nonlinear operator ¢ commute. We shall show the following :

LEMMA 3.11. Assume G is a holomorphic function vawishing at 0
and let u be an element of Hi with s>|M|/2. Let m be an integer, m>s.
Then there exists a sequence {e,} €1 such that, for 0= aj<m,

(3.11) 102(G(Sy(u)) — SUG )| 2 S g2t 1>k |

This lemma, together with (3.9) and (3.10), will prove (3.8). Before
proving the lemma we shall now complete the proof of Theorem 3.10.

PROOF OF (3.8)= THEOREM 3.10. It follows from nu<= Hj (=B¥y) that
1600l 12 <ep 2557278 with a sequence {¢;}<{%. By using the Schwarz in-
equality, this and the estimate (3.8) yield

[0 (me—Sy-w))va) | Spp2Fe o
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for 0=|a|<m, where 5,=Cess; with the constant C depending only on m,
thus {n,}€!’. From Remark 3.4 we can then conclude that < By,

PROOF OF LEMMA 3.11. First we consider the case «=0. Since ¢ is
holomorphic, the following estimate holds with {e,}<si?:

1G(SHu) = G 2 S CUS(u) —ull 2 =27 .

Here the second inequality is a consequence of Sublemma 3.5. Also, be-
cause Glu)e Hy,

ISHG(u) =Gl p=e27

with another sequence ¢,=!®. By the triangle inequality, these estimate
yield (3.11) for a=0.

Next we suppose |a]=m. To prove (3.11) it suffices to show
(3.12) 102SHG(w))]| 2 Sep28< 774

(3.13) 108 G(SH(w)l e Se2P<e >

with ¢, €% Since G(u)e HYy, (3.12) follows by Lemma 3.1. The crucial
part of the proof is thus to show (3.13).

PROOF OF (3.13). We write, as in the proof of Lemma 3.8, (setting
U =Sx{(u))

(8.14) Gluy) = S Caw a@DIG(u)0E Py o 05 Pu,

a=a D fopa @

where the sum is taken over all the decomposition of «. Choose p; so
that 2/p;=<a"”, M>/<a, M> and take the L* norm of the each term on the
right hand side of (3.14). Using the Holder inequality we obtain

(8.15) | DG (u)3g Vuy -+ 05 Pausl 2 S I DG ()| =105 Vil 71 -+ 105 P ugl 5,

Now, we assert that there exists a sequence g, =0* such that the esti-
mate

(3} 19 ~
(3.16) “af ukRijéekziKa D M>A-si<a, M>)

holds for each j.

In order to show (3.16) we distinguish three cases as follows:
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(L1

(1) 4 >T]M|<2 pj)>s,

(1) <a‘<”,M>+fM[<l_i>:s’
2 p,

(III)  <a™, M)+ }AM|<£_L> <s
2 p;

In (I) we set u,=v,+v,+
j:l} 2} cec.

HAag () 0
105 Vil

Hence

(3.17) 105V wgll 25

-+ + vy, Where vo=uo=S{u) and v;=4,(u),

The Sobolev 1nequahty gives

(6}
2 ZC18E P4l gy aresinp

§5k2k(<aU>,M>+rM.‘(l/Z—l;‘pj)—s) .

k .

2 i (209 i3 2-1.p -3
§C 51_21(<6( M>+1M (172 lpj) 3

=0

(6209 1Y ~1/pd-3
gvkzk(<a M>+1M1€1/2 l,p]) a)’

where

3 .
-1 G, M>+1 M ~Up -8 ~ j2
T/k:CZeiZ(k iX<a >HMIAR-UP P = ] ,

by Sublemma 3.5. Since s>

a7, My {a, M)

P, My —1M|<

Thus (3.17) yields (3.16).

|M}/2 and 1/2—1/p,>0,

1

7

<la?, M><1 -

In the same way we can show that

n (II) and that

n (I1I). In both cases (3.16)
Hence (3.16) is established.

125V uul 2= O(k)

105 Pupl, 2, <0(1)

is clearly satisfied because

Now combining (3.16) with (3.15) we have

DG(1,)6% e

q i - 3 B . v
e aﬁ(Q)uklleé I 5k2k<a<1),_v/u~v <M
=1

; /11
= Gy 7 ' il it
p> s=<{a"’, M~ 23(2 p>

S >
w, My /"

&, :”’> 2 Ia’[

>

(recalling that 2/p,=

=m>S.
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SE; 2k<aJl>—ks
where &, Is another seguence belonging to {.. This proves (3.13) in view
of (3.14).

END OF THE PROOF OF LEMMA 3.11. We have proved (3.11) for a=0
and |a|=m. It only remains to prove (3.11) for 1=Zlal=m—1. Now let
1=|alE€m—1. We can then prove (3.11) by an interpolation method; see
for example Bergh-Léfstrom [2]. Now the proof of Lemma 3.10, and
therefore, the proof of Theorem 3.9 are complete.

The following theorem is proved just in the same way as in the
proofs of Proposition 3.6 and Theorem 3.9.

THEOREM 3.12. Let F=F(x; U, -+, Uy be a C*-function defined on
R* < C¥ which s holomorphic with respect to Uy, -+-,Uy. Let s>|M}|/2 and
let udx), -, ux(z) be elements of Hy. Then F(zx;u(x), -, ux{z)) belongs
to H5 locally. DMovreover, we have

N
Fx; w(x), -, uxlz))= El w0y B (@ 5 w(@), === 5 unl@)), uy (@) +-Gla),
where G belongs to BiF locally.

REMARK 3.13. (1) We note that B> C B2 MR pirs-idiz= g4~ Y.z
(see Remark 38.3). Thus the theorem asserts that the remainder function
G is more regular than F(x; u(z), -+, uy(z)) by degree s—|M|/2.

(2) Suppose further that F(z;0,---,0) belongs to S. Then under the
assumptions of Theorem 8.11 we can show that F(x; u, -+, u,) e H3 and
that GeBELFCHY 1A

4. Paradifferential operators.

In this section, we define our symbol class of paradifferential cperators
and describe the symbol calculus for them. Partly we use results of
Yamazaki [21], [22]. But partly we follow a line adapted from Meyer [13],
[14]. This line is relatively simpler than that in [21], [22] and sufficient
for our purpose.

The following definition of a symbol class of paradifferential operators
is due to Meyer [14L

DEFINITION 1.1. Let 7 be real, »>0. We let 3™ denote the set of
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all functions o= C™(R" X R,) such that, for every a=N",

(4.1) 10202, )y 3017245y S Ca(LH[E]) <04

and that the spectrum of z-o(x, &) is supported by {(&, ) B, X B, ; 5}y =
(1/10)[€]s), that is, 4(, §)=0 when [7]; =(1/10)[£]y, Where

307, 8)= ge‘i“%(x, £)d .

Moreover, we let Op ¥ ™ denote the space of pseudo-differential operators
with symbols in 2¥™ and call elements of X¥™ (quasi-homogeneous) para-
differential operators.

REMARK 4.2. Let o be an element of ¥ ™ Then, using the Sobolev
inequality, we have
102080 (1, E)| = Cp 5 (14 [E] ) (<P M2 Dsmedt>
provided <B, M># v, where (X),=max(X, 0) and
|0g0%a(x, §)] =Cp g log(2+[€]) - (L[] <~
when <8, My=r. From this it follows especially that X} ™"CS™

In view of the above remark we can consider the paradifferential
operator as a subclass of M-pseudo-differential operators of type (1,1). On
the continuity of S¥;™ the following result was given by Yamazaki {21],
Theorem D (see the remark after it).

THEOREM 4.3. Let s>0 and c=SE™. Then olx, D) maps HY™ con-
tinuously to Hj,.

We shall now give a symbol calculus for Y¥ ™ Symbol calculus of
paradifferential operators is also given in [22] for more general function
spaces. But here we present a somewhat simpler version sufficient for
our purpose.

PROPOSITION 4.4. Let o= 3¥° and let ==SY’. Then

(@, D)alx, D) =w(z, D)+ plx, D),

where

(4.2) olz, £)= 55 (x, £)8%0(x, £)

<aldt>zr  al
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and psSH; .

PROOF. Let us define w by (4.2). Then, by the explicit formula of
the composition, we have

3

ol =0 "\ [clo, 64— _ 3 Trosele, &)o' <ol Sy

<ea,M>sr &

By using the Taylor formula we can rewrite this

olz,8)= X Sva 9fz(w, £)e™" 73y, E)dy

<am>zrd ol
fo J<KN

+ % %S(S:(l-—t}l"ﬁgr(m,S+t7/)dt>77 e <" 5(y, E)dy ,

al=N+1

where N=[r].
Now we set, for <a, M>>7 and |a|=ZN,

,0"(90,E):Sﬁ“#?(w,é)ei<“"">3(m &)dy
and, for laj=N+1,
g )
otz &)={({ 1= 0"0gc(, €+ )t Jyre=0s, 1y

It suffices to show that p* belongs to Syi™" for each a.
First we consider p* for (@, M>>r and [a|<N. Differentiating under

the integral sign we have
(4.3) 8%050" (¢, £)
= 2 Capoe\ 0B T, (1) PSP 5, E)dy

_P",:
7
Since 7S} we have
107087 (2, §)| SC(LF[£]y)<2 7 sarimi=,

Also, by the Schwarz ineguality, it follows that

Sl‘q“*-j"a?é(n, &)ldy

IIA

P IR 1/2‘ »
(§ [ e 7 F Ol ey ) 10 o0 €) g
ca

A

[,—.] )<ﬂ SLU>-r-<p", WI>



Propagation of regularities 369

Here we have used the fact that <a, M)>#. Hence
102070% (5, €)| SC(1+[€]y) 7 <7370,

which implies p*eS¥;™" for <{a, M>>7r, la|=N.

Next we consider the estimate of p* for |a|=N-1. Since (1/2)[&]y =
[-+ty]y=2[&]y on the support of & the following estimate holds for (y,¢)
Esupp é -

'3@65(&(1—2&)%?7(%, E—}-t}y)dt), écu+[$]M)<$,A1>—<a+r.n1> ,

where C denotes a constant independent of 5. Accordingly, the proof for
lay M>>r, la| <N can be applied without any change ; hence we have p*<
S¥m for |Jal=N+1.

Now all terms in the right-hand side of (4.3) are in S¥;7". Thus o
belongs to SY;"" as desired.

REMARK 4.5. Let o and p be as in Proposition 4.4. Then, by Remark
4.2, we have

ogp(, £)d%o(x, £) e Sy
provided <a, M)+, and also
¢ p(w, £)d%a(x, &) ST 7 for every >0,
when <{a, M>=r. Hence wcS¥;® for every +>0.

Moreover, for the commutator with an element of SY°, we can easily
see the following.

COROLLARY 4.6. Let o(s, D)cOpX¥?® and let p(x, D)sOpSE:’. Then,
modulo an operator belonging to Op S¥i™", it follows that

(1) [p(x, D), o(x, D)]0p SE,7Y if »>1, with the symbol supported by
those of ¢ and P,

@) [px,D),o(z, D)]0pS¥i™** for every ¢ >0, if r=1, with the symbol
supported by those of ¢ and p, or

(3) [p(x, D), o(z, D)]=0 2of 0<r<1.

Since this is a direct consequence of Proposition 4.4 and Remark 4.5,
we omit the proof.

Proposition 4.4 allows one to study the microlocal regularities of
o(z, D)u, with ¢ in $7¥° up to the finite order, say r. Indeed, we have
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PROPOSITION 4.6. Let s>0, 0<p=7r and let o(x, D)= Z¥" If wis an
element in H (&, E)\JHS,, then so is o(x, D)u.

PROOF. Choose a closed M-conic neighborhood V of (&,2) where u
belongs to Hj° and a classical symbol a=S¥;’ supported by V such that
ao(%, £)#0. Then Proposition 4.5 gives

a(z, Dlo(x, DY=1<(x, D)+w{z, D),

where & S}{" supported by V and w=S¥;™". Since s—6>0 we can apply
Theorem 4.1 to obtain

la(z, Dyo(z, Dyull oro SCUHUE svoe, F 120l seor),
HM HM [¢2] H}[

where {u{ 10, stands for a fixed seminorm induced from the definition
M

of we Hyf(V).

Recalling that p<r and that u<=Hy?(V), by the hypothesis, we can
conclude that a(wx,D)o(z, Dyus Hy°. Namely, oz, D)u belongs to H%' at
(&, é).

5. Proof of the main results.

In this section we shall prove the main results of this paper.

PROOF OF THEOREM A. Let « be a solution of
3.1) Py+F(D%y)=0 in QC R,

where u € Hj10o(2) for s>(m—1)+|M|/2 and belongs to HS” at (&, £). To
prove Theorem A, it suffices to show that % belongs to H on each closed
interval y on the null bicharacteristic strip through (&, £). Now let v be
a closed interval on the null bicharacteristic strips and consider (5.1) in a
neighborhood UCQ of z(y), where z: 2 X (R,\0)—2 is the natural projec-
tion. Multiplying (5.1) by a real valued function y=Cg5(2) which is equal
to 1 on U, we may assume that the symbol of P belongs to S¥;™ and that
supp F' is contained in a fixed compact set of £.

We let r=s—(m—1)—|M|/2 and use the abbreviation

Fi(D%u) = (5 2y -0, D%y -ee) .

oF
a(D*w)

Since D ues Hy ™" (=H% ') on the support of F(D*u) it follows from
Remark 3.13 that
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(5.2) F(D"u):ZT:(F;(D“u),D“u)—

where ¢ belongs to HFS m+P-MIA(— [{i-m-D¥"y and that
(5.3) F(D*uys Hyf' M 2nE(2) .

By the definition of paraproducts the symbo! of X =(F7, D*-) is
o, 8)=(20) " S\ FLD ) ()3, ey ¢

where 8(x, &)= Z‘, Pt (&) e C(R,x R,) introduced in Section 3. Recall-

ing that 4 is supported by {(n, &) e B, X R, ; [7]y =(1/16)[¢],} we see, in view
of (5.8), that s} ™4
Now, writing L=o(z, D)2’ we need to consider the following
linearized equation:
(P+Lhw=ge Hyy™ b,

PROPOSITION 5.1. Let P=0pSy¥,™ be a classical M-pseudodifferentiol
operator with principal symbol p, and let L be an element of Op Y#™:,
Let s>(m—1)+|M|/2, 0<o=r. Consider a null bicharacteristic strip [=
t—rye R* X (R\0) for Re pn, where I={{cR; t,<t=t}. Assume Imp,
=0 on a meighborhood of y(I). Then if u<sHjy satisfies (P+.Liu=g<s
Hym-vre(o(D)) and we Hy '(r(t) it follows that we Hy (7 (1)).

PROOF. First of all, we set s'=s—(m—1) and
v=(1+[D],)" ",
P=P1+[D]y)™,
Lo=LA+[DL

Replacing s through L by s’ through ., we can assume m=1 without
loss of generality.

Now set v=inf({g;—1; p;>1}{l}) for M=(u, -+, #,) and let p=s-+0.
We prove the proposition by increasing the regularity of u step by step.
Each step shows an incriment of v/2 regularity on y(/). Thus by replac-
ing p we may assume that u belongs to H4™”? on y(I).

Choose a closed M-conic neighborhood 7" of y(I) such that g= Hy (),
we Ho™') and that Im p, =20 on I'. We let M be a bounded subset of
S¥:¢ which consists only of real valued symbols c=SY,°~* supported by 7.
With ce M we put C=c{z, D) and consider the form:
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(5.4) (Cg, Cu)=(CPu, Cu)+C.Lu, Cu)
=(PCu, Cu)+{C, Plu, Cu)-(CLu, Cu) .
Let us write p=A-+iB with A and B self-adjoint, that is, A=(P-+ P*)/2
and B=(P—P*)/2¢. Taking the imaginary part of (5.4) we obtain :
Im(Cqg, Cu)=(BCu, Cu)+Re(IC, Blu, Cu)
~Im([C, Alu, Cu)+Im(CLu, Cu) .

We can write B=B +B” where the principal symbol of B’ is non-
negative everywhere and the support of the symbol of B” does not meet
I". Applying the sharp Garding inequality (Proposition 2.5} we have

(5.5) Re(B'Cu, Cu)= —CiliCull%2.

Also, by noting that B”C is of order — oo, we have |(B”Cu, Cu)| <C, where
C’ is a constant depending on w but not on c= M. Hence

(5.6) (BCu, Cu) =z —C,|Culz. —C1.

Next we note that the symbol of C*C, B] is ic{by, ¢}y =(1/2){b;, ¢*} » apart
from an error which belongs to a bounded set of SY;» *(2), where b, de-
notes the principal symbol of B and {-, -}, denotes the partial Poisson
bracket defined in Section 1. Since {b,¢%, is real valued the sum of
C*[C, B] and its adjoint belongs to a bounded set of S¥;* . This yields,
with a constant C; depending on u,

(6.7) Re({C, Blu, Cu)=z —C5.

In the same way we can show the estimate:

(5.8) Im([C, A, Cre) ==

—Z—Re({au S alz, Dy, w)—C5,

where a, denotes the principal symbol of A.
Now we turn to the estimate for Im(C_Lu, Cu). Let C=(1+[D],)°C,
which is in a bounded set of Sy;°. Then we have

(5.9) 1CLul=1CLulge
=201LCul5e +1UC, Ll ) -

The boundedness of paradifferential operator as a pseudo-differential operator

with a symbol in S%;° gives
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(5.10) 1 .LCul ;,011§C4;16*u|;§,%[ =CiCull%s .

On the other hand, by Corollary 4.6, we can write
[C, L]=<(z, D)+w(x, D),
where w& S¥;7" and the symbol r(z, &) is supported by /' such that
reSHt if r>1,
re SH, T for every ¢>0 if r=1 or
=0 if 0<r<«<l.

Even when r=1 the symbo! z(z, &) belongs to S¥;""%, Thus, by Theorem
4.3, we have

(5.11) IC, LIull g SNzl o +lenl 4o
=Cy H%”Hl.ow—uz(p) + H{[’)

=G,

where [ull ,o_1s, denotes a fixed seminorm induced naturally from the
M

definition of we HY'"). Combining (5.9) and (5.10), (5.11) we have

1CLul3. =2C|ICuli%+C5.
Hence

(5.12) Im(CLu, Cu) = — —;—(HCIMH [ Cull%,)

2~<cé+-;—>ucunz —cy.

= iip?

Summing up (5.6)-(5.8) and (5.12) we obtain, with another constant Cg,

(5.13) Re(e(x, Dyu, u) <[|Cgll2.+Cx,
where
(5.14) ez, £)={ay, ¢ y(x, &) —(2C,+2C,+2)c¥x, &) .

Note that while C;, which comes from C; to C;, may depend on %, the
constants C; and C, are completely independent of the choice of .

We may assume that the map 7 is injective. Let V, be an open M-
conic neighborhood of 7(¢) where uwe H% and choose a non-negative C~
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function ¢ which is Jl-quasi-homogeneous of degree o and supported by I
such that {a,c®y=Hz., ()20 in I'\V, with strict inequality on y(I)\V,.
Also choose C™ functions d, and d; M-quasi-homogeneous of degree 0 and 1
respectively so that Hg., (d)=1, H¥, (d)=0 and d, is different from 0 on
the support of ¢. Now we let ¥ consist of the functions

er.=ceto(l+2dH) ™ ?, 0<e<1,

where 1 is a fixed real number satisfying A=C,+C,+2.
If ¢ is replaced by ¢, . the function ¢ in (5.14) becomes

;.= ¢}y +(22—2C,—2C,—2)c?) e %o(1 -2~ .

Since e;.=0 outside of V, with strict inequality on y(I)\'V, we can choose
a non-negative function feS¥;* which is positive on y(I) and a real valued
function ¢=SY;° supported by V, so that

(5.15) FP=({ay, ¢y (24—2C,—2C,— 2)c¥)e¥ o+ ¢ .

Let fi=f(1+&dY)™ "2, q.=q(1+8d?) ™" An application of the sharp
Garding inequality (Proposition 2.5) to the difference of the two sides in
(5.15), multiplied by (1+¢%d?” leads to the estimate

1/e(x, D)uli: = Re (er.(z, D)u, w)+ gz, D)ulll+C" .

Then it follows from (5.13) and the fact ge H4(I") that ||f(z, D)ul?: is
bounded when ¢ | 0. This proves that flz, D)u: the limit of F(z, D)u in
D', must belong to L. Hence usH4% on y(I), and in view of the induc-
tion mentioned at the beginning this proves the proposition.

Now we shall complete the proof of Theorem A. Apply the preceding
proposition for both P+.[ and —(P+.L). Then we can conclude that
belongs to H%° on bicharacteristic strip y passing through (%, £) in both
direction. This proves Theorem A.

To prove Theorem A’ we prepare the following lemma.

LEMMA 52. Let F{z, U, -, Uy C*(R*XC") be holomorphic with
respect to Uy, -+, Uy, Let s> |M}/2 and e <s—|M|/2. Assume u(x), -+, ux{x)
are elements of Hi1082) which belong to Hy® at (%,8). Then F(z; uz),
s un(®) is an element of Hi () and belongs to HY’ at (%, &).

PROOF. Since the statement is local we may assume that supp F' is

contained in a fixed compact set in £ and that w,e Hj for j=1,---,N.
By Remark 3.13 we have F(x; u,(z), -+, uy{z))s Hy and
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N
F(x DUy e ,un): Z)ln'(au].F,uj)—f—G,

j=

where G Hy "2 From the definition of paraproducts and from the fact
that Bu].F(m s e s uy) = HYy for j=1,-.+, N, which is also given by Remark
3.13, it follows that
o,(¢, D)=xr(0,,F, -)€0p 377,

where r=s—|M]|/2.

Then, by Proposition 4.6, o,u; belongs to H%’ at (%, &) provided U;E
H°(%,€). Since this is true for every j and since Ge HY 'M\2C HY? we
have proved the lemma.

PROOF OF THEOREM A’. Arguments of F consist of # and D°%u,
{o, M><m—h. Clearly we may assume m=h.
An application of Lemma 5.2 with no microlocal assumption gives

(5.16) Pyu=—F(D*uy)e Hy G (2) .

Now let 7y be the bicharacteristic strip through (%, £). Then it follows
from (5.16) and from the assumption that we H%°(%, &) that

UE Hiypoc QYN H G 7 mr bty |
by Corollary 2.8. Again Lemma 5.2 implies
F(Deyye HyrsthoDoda-m=m(y
Then, by Corollary 2.8, it follows that
& Hyinstehobistal(y

If 2(h—1)Ze¢ we have done. If not, we can continue this process and
obtain

uEH}rr}in(s+k(h—1)ys+o}(,},) s
after k-times use of Corollary 2.8 together with Lemma 5.2. Since k can
be arbitrarily large we can conclude that
we Hy (),
which proves Theorem A’.

Before proving Theorem B we give a remark as follows: Let (x,£)”
={x, —§&) and 7y ={(x,&); (z, —&<=y}. Then, for the complex conjugate %
of u, a= H5((x,4)) (= Hy(y)) if and only if we HS((x,8)7) (€ Hy(r 7).
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PROOF OF THEOREM B. First we suppose A=1. As in the proof of
Theorem A we can assume that PeOpS¥;™ and that supp Fe@, ue
HynE(Q). :

Now let » be a null bicharacteristic strip such that the anti-podal
image of which consists only of non-characteristic points. Let us further
make an inductive assumption that u belongs to H3°* both on y and .
We shall then prove that u belongs to H3° on y and 7.

An application of Lemma 5.2 yields

Pu=—F(Du, D*a)s H; " "™7).
Then, by Theorem 2.4, we have
(5.17) ue Hy (7).
Using Theorem 3.12 with Remark 3.13 we can write
Pu+ Lu=G—TL7,

where, with r=s—(m—1)—|M|/2

- _OF . o
I-<“=”[§§m—1n< a(D‘*u)’D >EOp 27mr,

r_ ___a,F_____ a, iom-1
£—<a,M§§m—1ﬂ< G(D“ﬁ)’D >Eop Zr ’

and
G = H;{—(m—l)+rCH§”—(7n—1)+d B

Then from (5.17), by Proposition 4.8, it follows that _Z’aer,;"*m‘”(r),
and therefore, G—_La s H{ " P(y). Now applying Proposition 5.1 we con-
clude that

we Hy (7).

This together with (5.17) will prove Theorem B for A=1, because of the
induction mentioned at the beginning.

The proof for hA>1 is quite similar to that of Theorem A’, except
that, here in Theorem B, we need to work on y and 7 simultaneously.
Apply Corollary 2.8 on 7 and apply Theorem 2.4 on y . Then we can
prove Theorem B in the same way as in Theorem A’.

All the results of the present paper are now established.
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