J. Fac. Sei. Univ. Tokyo
Sect. 1A, Math.
33 (1986), 379-402.

Asymptotic completeness for three-body Schrodinger equations
with time-periodic potentials
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(Communicated by H. Fujita)

§1. Intreduction.

The purpose of this paper is to study the asymptotic completeness for
three-body Schrodinger equations with time-periodic potentials:

9 51 o 1

27O, Xy, By ) = — =T it o1} (8, Ty Xy, X5,
(L1) 2ot 31 20 ) { 3 g dnt I Vit 2| ity w2y )
(1.2) Vilt+ o, ai—u,)=V(t, x;— ;)

where ¢(t, -)e LA R™), ;€ R* (n>3), and w is the pericd of the potentials.
We assume that the potentials satisfy

ASSUMPTION (A). There exist constants p and ¢ such that 1=<p<n/2
<g=o and for each a=(1,7), t—V,.(t ) is an (LP(R*)NLYR"))-valued
absolutely continuous function. If n=3 and ¢<2, we assume further that
they are continuously differentiable.

REMARK. If n=3, we suppose g=2 for the sake of simplicity.

Under Assumption (A), (1,1) generates a family of evolution operators,
and one can suitably define wave operators (see §3 and §4 for definitions).
The central question in scattering theory is, then, to characterize the im-
ages of the wave operators, so called the problem of asymptotic complete-
ness.

In this paper, we shall show that the completeness of wave operators
holds for (1.1) if one of the following conditions is satisfied: (I) no two-
body subsystems have bound states or “resonances” (§3); (II) two-body
subsystems may have some bound states, but #=3 and the potentials decay
exponentially (§4). In the second situation (II), the difficulty of embedded
eigenvalues arises and we are forced to impose rather strong restrictions
as they appear.
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In the appendix, we shall give a new property of the eigenfunctions
of two-body subsystems, which we need in § 4.

The asymptotic completeness for two-body Schrodinger equations with
time-periodic perturbations has been studied by Schmidt [17], Yajima [19],
Howland [9], Kitada-Yajima [13] and others ([2], [5]). Yajima and Howland
employed a time-periodic analogue of the Howland stationary theory
for time-dependent Hamiltonians ([8]), which we follow. On the other
hand, the asymptotic completeness for three-body Schrodinger equations
(with time-independent potentials) was proved first by Faddeev [6] by
stationary method, which is subsequently generalized by Ginibre-Moulin
[7] and Thomas [18], and by Enss by the time-dependent method ([3], [4]).
We shall show that the synthesis of the Yajima-Howland method for the
time-periodic system and the stationary theory for three-body system by
Fadeev yields a proof of the asymptotic completeness for our system.

Notations. We shall use the following notations throughout the paper.

We denote the set of natural numbers by N, integers by Z, and reals
by R. We write R™ for the Euclidean m-space, and 7 for torus R/wZ.

For a Hilbert space K, we write LT, 9) for the H-valued L?-
space on 7, and H'{T, 4 ) for the H-valued Sobolev space of order » on
T. For a pair of Banach spaces X and Y, B(X,Y) denotes the Banach
space of all bounded operators from X to Y, and B(X)=B(X, X). We
write B.(X) for the space of all compact operators in B(X). We write
Li(R") for the weighted L’space of order 4 on R":{pcLi.(R"): ¢(x)
X (1+]x])f e LA R™).

For a function FF=F(z), we often denote the operator of multiplica-
tion by F(x) with the same symbol F. We write <x>=(1-+[z[®"? for
xe=R™,

&, e denote the Fourler transform from Rj-space to RI-space:

(1.3) <;“_-J_3¢)(5):(2n)-nx'2g exp(—iz8)g(2)da .

R7
&F,..¢ denotes the Fourier series expansion of ¢ on 7'=[0,w):

(1.4) (F,6), = a)“"QSwexp(~i27:/xt/w)¢(t)clt .
0

For an operator A, we denote the closure of A by [4]
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$ 2. Preliminaries.
2.1. Definition of Hamiltonians.

We assume that each particle is moving in R® (n=3), and its mass is
m; (1=1,2,3). If they are interacting via two-body time-dependent poten-
tials V¢, @, —a;), their motion is described by the Hamiltonian on LAR*?)
given by
2.1) b2 0 hla v

. ( )—_‘ = 27’)’1/2 xi+a=%,j) a(t, ﬁ/i”—.},j)

where R’ is represented as {(@;, %5, %;) : 2, € R", 1=1,2,3) and « runs over
all pairs (4, 7), 1=S1<j=<3. We suppose time-periodicity of the potentials
f Va} :

(2.2) Valloti—2 )=V (t+w, z,—2,) .

Using the center of mass coordinate and the Jacobi coordinates for the
pair a={1, 7):

3 2
!( X= 2 my-xsf X my
=1 i=1
(2.3) %l To=0;—%;

o« =% (M2 m ) (mmy)

<

where %k is determined by {1,7,k={1,2,3}, we represent L}R") =
LHR" ; dX)QLYR™ ; dz,dy,) and

1 1 1
oM Ax— 2., Az A

(24) H(t) = @ 27% Yo

- : E/‘iét; wa’)

:<~5117AX®1>+1®H(?5)

3
where M= X m,;, m*=m;'+m;' and n;'=(m,+m,) '—m;'. Then separat-
i=1

ing out the trivial center of mass motion i.e. the motion due to —(1/2M)Ay,
we consider the equation

(2.5) ¢%¢<t, Sy )= H(B)O(2)

(1 1 N T e N
*‘1‘_ Zma Aza— 277/a Aya~‘§;‘{ »‘\tltz)JQ(t3 xa,ya)
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on LHR™=H with BR7={{2,,¥a): Za» Yo =R"}. The free Hamiltonian H,
is given as
1 1

(2.6) Hy=— g A=

A, .
We remark that these definitions are independent of the choice of the pair
a=(1, j).

The Hamiltonian 5%(¢) and the free Hamiltonian A% for a two-body
subsystems relative to « are defined by

L A+ Valt, ) = hi 1 Valt, wa)

2.7 ]7,"(2‘):_—2%*—

and the kinetic energy for the third particle is

1

(2.8) li=——5,— 4,

They will be regarded as operators on L2(R;‘a):/1“ or LAR; ) as well as
operators on LA R*™)=4.

For the details of these decompositions, we refer to Ginibre-Moulin [7]
or Reed-Simon {16], Vol. III.

2.2. Time evolutions.

Under Assumption (4), H(t) and {h*(¢);} generate unitary evolution
operators :

PROPOSITION 2.1. Suppose that (A) is satisfied. Then there exist sets
of unitary operators {U{t,s):t,s€ R} on K and {u"(t,s): t,s=R} on he
such that

2.9) (t,5y — UlL, s) 1s strongly continuous.
2.9 (t,2y = u(t, 8) are strongly continuous.
(2.10) Ult, s)=U(t, r)U(r, s)

(2.10) w(t, s)=u(t, r)u*(r, s)

(2.11) Ult+w,s+w)=Ult,s)

(2.11) w(t+w,s+w)=u%{,s)

(2.12) U(t, S)H'Z(RZn) :HQ(R?“n')
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(2.12)7 w*(t, s)H{R")=H*R")
2.13) —C% Utt, 8)g= —iHE) Ut s)¢

j—s Utt, s)g =i U(t, s) His)o

(2.13) “(t, s)p=—1ih"(tIu’(t, s)o

.,
dt

d . . s
Es_u (t, s)p=1u’(t, s)h*(s)d
where t, 8, r€ R, a=(1, ), ¢ H(R™), p= H(R") and the derivatives are
taken in the strong semse in LY (R*) or LHR").

This is a simple consequence of a Kato’s theorem [10] on the genera-
tion of evolution operators.

2.3. Howland-Yajima method.

Following Yajima [19] and Howland [&], [9], we introduce Hilbert
spaces
HK=IXT, H)=TH{T QK
(2.14)
ke=IXT, %)=L T)Qh .
Define propagators {U(s): o= R} and {Uye)} on K, and {u*(o)} and {u&(o)}
on K by
(U))@)) =U, t—o)¥(t—0)
(2.15)
(Uoa))(t) =exp(—ic H)¥ (t—0)

(W (o)D) ty=u(t, t—0)@*(t—0)
(2.15)
(ug o)D)ty =exp(—1iohd)P(t—0)

where U={T(t):teT, T{t)e I a.e}eK and @°={@°(t):t=T, ¢*(t)ch”
a. e.}ek“. It is easy to see that these are one-parameter unitary groups
on K or k®. Hence there exist self-adjoint operators K, K, k* and k¢ such
that Uls)=exp(—1ioK), U,lo)=exp(—icK,), u{o)=exp(—ick®) and u%{s)
=exp(—okf). We let K =k +If=k*@1+1QI§ on K =h"Q@L R} ), then
K< is also a self-adjoint operator and it satisfies
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(2.16) (exp(—ic K }T)(t) = (u*(t, t— o) Qexp(—1ol§))¥ (t—0)
for = K. We denote their resolvents by

{ GO=C—K)", G=(—EK)"'

1 9t O=C—k9",  gs(Q)=C—kH™"

{ G O)=(C—K"™

(2.17)

with e C\R.

We denote by 4, (B, resp.) the multiplication operator by a.(t, x.)=
| Valts ma) 72520 Viu(t, @) (balts 22)=|V,(t, @) resp) on K or K&

For two-body subsystems, it is known that the boundary value of the
(free) resolvent exists in the following sense:

PROPOSITION 2.2 ([15]). For each a,q(l)=[A.95)B.] 18 a B.(k%)-
walued analytic function on C*, and it has continuous boundary value
on R=+10. Moreover, q.&) is unmiformly bounded, uniformly Holder-
continuous im £ on the close wpper (lower resp.) half plane, and |g.(0)|
tends to zero 1f |[Im{]—oco.

For the proof, see Yajima [19] or Howland [9].

¢ 3. Single-channel case.
3.1. Asymptotic completeness.
In this section, we assume (A) and

ASSUMPTION (B). For each a, q.{A==10) has no (+1)-eigenfunctions for
any 1 in R.

Assumption (B) implies that k£* has no eigenvalues, and hence 4“(t+, t)
has no eigenvalues, for any a and any ¢. This fact can be verified by the
standard method of scattering (see Kuroda [15], for example). Thus, here
we consider the scattering with single channel.

THEOREM 1. Under Assumptions (A) and (B), wave operators defined
by

(3.1) H":(s)zsiig U(s, t) exp(—i{t—s)H)

exist and are complete for each s€ R :
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(8.2) Ran W.(s)=H*(U(s+w,s)) .

The existence of W.(s) can be proved by Coock’s method (see Reed-
Simon [16], Vol. III) and we omit the proof. The completeness of W.(s),
the equation (3.2), follows from the next proposition.

PROPOSITION 3.1. Under Assumptions (A) and (B), wave operators
defined by

(8.3) 9 . =s-lim exp(icK) exp(—ioK,)

vt
exist and are complete:

(3.4) Ran W.=K*(K).

PROOF OF THEOREM 1. We follow the argument of [19]. Let C{7 and
C1/, be operators on K defined by

{3.5) (V)= UL, s)¥ (1) Ve K, tell,w),

(3.6) (CVF)(t)=exp(—ilt—s)H)¥ (1),

where we identified T with [0, w). Then it is easily shown that exp(—iwK)
=CP(1RQU(s+w, 8))C17°  This implies

(3.7) HUB) =LA T)QH*(Uls+w, 8))) .

On the other hand, we see

(3.8) Ran(7/.)=Ran(<V(1Q W.(s))<s?)
=CVIAT)QRan(W.(s)) .

Theorem 1 follows from (8.7) and (3.8).
The existence of 9. follows from that of W.(s), and in the rest of

this section we prove (3.4).

3.2. Faddeev matrix.

By analogy with Ginibre-Moulin [7], we consider Faddeev matrix F, ;({)
defined by

(3.9) Fa,.i (g):AaGa(C)BS(:) 5 (aT_LAS)
for e C\R on K.
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PROPOSITION 3.2. As a B(X)-valued function of I on C\R, F,;(%)
{a+# ) satisfies the following properties:

(1) F,p(0) is uniformly bounded.

(1) Fap(Q) is analytic.

(iii) Fs(Q) s uniformly Holder-continuous.
(iv) 1 Fa.5l tends to zero if |Im {|—oo,
(v) F.p(Q)eBAX) for each {=C\R.

The proof will be given in the next subsection. Proposition 3.2 implies
that F,z() has a continuous boundary value on R=:40 as a compact-operator

valued function. Let K be the direct sum of three copies of K :
(3.10) A= K, K=X.
We define an operator F(2) on K by
(3.11) (F(Z)d)a :a§ FosQos, d={(d) =K.
LEMMA 3.1. (1) F(©) is a B(K)valued function of L<=C\R, and is
uniformly bounded, analytic and uniformly Holder continuous in {.
(i) (A—F(Q)* exists for L=C\R.

(iii) There exists a closed null set 6’CR5 such that (1—F())™" can be
extended continuously on (R+10\& as a B(X)-walued function of L.

Lemma 3.1 is a direct consequence of Proposition 3.2 and a Kuroda's
theorem (Theorem 3.10 of Kuroda [14]) on the stationary scattering theory.

LEMMA 3.2. Under Assumption (A), we have
(3.12) GO =G+ azﬁ [B.Go D1 —F ()2 A:G (D)
for LeC\R.

PROOF. By the argument of Lemma 3.3 of Yajima [19], we have the
“second resolvent equations”:

(3.13) GO =G0+ ZBG(DITAGE],
(3.14) GO =Gal0)+ 3 [B;GoDI14:6(0)].

We substitute (3.13) to (3.14), and by iterations we have (3.12) if |[Im{] is
sufficiently large. By analyticity, (3.12) holds for any J=C\R.
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3.3. Proof of Propositions 3.1 and 3.2.

At first, by the “second resolvent equations” (see (8.18) and (3.14)), we
obtain

(3.15) Fos@)=(1+[A.GaQ)B.NAGALBS) -

LEMMA 3.3. [A.GQ)B.] and [AG(L)B,] satisfy the assertions (i), (ii)
and (iii) of Proposition 3.2.

PROOF. We see

e ]
(3.16) N (S ]

and
(3-17) Aaga(C)Ba :Aagg(C)Ba + [Aagg(:)Baj ‘ (l - q«(:)) i [Aagg(/:)Ba] -
Then Proposition 2.2 and Assumption (B) implies the lemma.

Thus it is sufficient to prove the assertions for Falg(C):AaGo(;’)B;.
We may suppose a=(1,2), §=(2,3) without loss of generality.

LEMMA 34. F’aﬁ(i) satisfies the assertions (1)-(iv) of Proposition 3.2
replacing Fap by Fap.

PROOF. We consider the system without separating the center of mass
motion. Let K’ be L¥T, L*(R*™)) and K, be the operator defined by

(3.18) (exp(— 10K ;) f)(t) =exp(—io Hy) f(t—0)

where fe X’ and Hoz—Z}Ll(l/Zmi)AIi. G5 () denotes its resolvent (Z—K )7L
Clearly, the assertions (i)-(iv) for F’;lg(i):AaGg(C)B.; are equivalent to
those for F,(0).

Mimicking the proof of Proposition 5.1 of Ginibre-Moulin {7], we see

(3.19) (A exp(—1tKy)Bos f)(8) Locrans
=Cllap(s)i rerem DS — )1 porcrny 18] 77 (s —1)i L2(R37)

where fe X’ and »=p or ¢. Using Laplace transform, Young’s inequality
and Holder’s inequality, we obtain
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(3.20) 145G (O Basi sexns
=Cillemmm=mr- e ”L;fo,w @il r2cr, 220> [1Bosll et ta-nrer, 220
+emibmsi. ol Locr, 12my [basll L2cr, 22y}

with 1=<a=<2¢q/n (see the proof for Lemma 3.1 of [19]). (i) and (iv) follow
immediately from (3.20).
From (3.19), we also obtain

(3.21) JAuG () Bss— AnGo () Byl s
éC!C—EW : {]W12”L2<T,L2q>' “bzauLa/(ﬂ'*l)(T,L%

-+ i;a/m”LZ(T,LM?) ' Hb23”LZ(T,L2p)}

for any « and 5 satisfying 1<a<2¢/n, 0<8<—1+n/2p. This implies the
assertion (iii).

(ii) follows since F, ) 1s weakly analytic on D(A,) X D(B,) and is
uniformly bounded.

LEMMA 38.5. For each {€C\R, F.3(0)€BAXK) (a+8).

PROOF. By virtue of (3.20), it is sufficient to prove it for a., bx<
C=(T, C7(R™) which is dense in LX T, L \L*») or LA T, L¥®)N\L*"«"D(T, L*).
We suppose @y, b e C(T, C3(R™)).

Let ¢ be a Cy-function such that @(z)=1 (=0 resp.) if |z|=1 (jz|=2
resp.), and set ggr(v)=d¢(x/R). Take R,>0 large enough so that for any
E>R,

{1—gr(x)}a.(x)=0,

{1—¢r(2)}bs(x)=0.

(3.22)

Then we see for R> R,

(3.23) AGoQ)B ;= Audr (2)9r(4 )Gl L) Pr(Ta)Pry(T3)Bg
+ AuPry(2NGQ), Pr(25)10r(2e)Pr,(€5) By
+Aabr( 2 Pr(2a) Gl ]Pr(X5)Pry(45) B -

The first term in the right hand side is compact because ¢ (2a)-Pr(2p)
and ¢r(v.) @r () have compact supports in R*® (Lemma 3.1 of [19]).
Thus it is sufficient to prove

(3.24) HGAD), (,:"R(xa)],d)ﬁo(xa)”B(J{) — 0 (R—00)
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for each {=C\R. By simple computations,

325 [GoQ), galea)]= GO@[ =R ] )
1 (A8 R) (Tl R) g |
(g Joo0 [ 2029, )60,

It is clear that B GJ0)-(Ad)(z./R)-Go({)|—0 as R—oco. We prove
(3.26) R HVg)(@alR) Vo Gl Gry(@e)| —> 0 (R—o0).

LEMMA 3.6. Let go(0)=((—hey)™* with hy=—A on LYR"). Then for
any 0>1/2, (x> V,g0)<x>"?% is uniformly bounded in {<C\R.

Granting Lemma 3.6 for the moment, we proceed with the proof of
{3.26). Performing Fourier transforms in ¢ and y,, we see

(327) gyaqﬂgtay{R v¢)(ﬂ/a/R)vxaG0(C)¢?0( a)} gz-*Fgflw

= RHTNal R) V08 (=2 =577 )l

Let & be a constant such that 1/2<§<1, then obviously |¢Ro(xa)!§0<xa>”
and |R%Ve)z./R) =£C{x,>"% with some R-independent constant C>0.
Hence, by Lemma 3.6 we obtain

2 1

(3.28) [ ) BT 08(c— 22

772>¢Ro(xa) :‘ ZCR™ %%
with some C independent of {, » and 5. This proves (8.26).

PROOF OF LEMMA 3.6. In the case n=1, V,g,{) is represented by the
integral kernel ((z—a')/2|x—2'|) exp(ikix —x]) where k={**, Im k=0. Thus
the Hilbert-Schmidt norm of <> ?Y,g,(5)<x>~% is bounded by l<x)> %I1¥2
which is obviously uniformly bounded in &.

In the case n>1, we erte ze=R™as x={(n, ) RB'XRB" P, Perform-
ing a Fourier transform in z’, we see

(@4 a 8 I .
2 SF I C\"?l _— \Ul) :_ ’2
(8.29) 2T 9y gl )T s 0, guE =€)

where g¢tP(0)=({+a%ax})™". Hence () %{(6/0%)g))<xp ™ is uniformly
bounded in £ and the lemma follows since (&) ?<<{x)7°.

(3.15) and Lemmata 3.3-3.5 imply Proposition 3.2.
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PROOF OF PROPOSITION 3.1. It is easily seen from Lemmata 3.3-3.5
that A.Gy{)Bs has a continuous boundary value on B=+40. On the other
hand, Lemma 3.2, Proposition 3.2 and Lemmata 3.3-3.5 follow that 4,G({)B;
has a continuous boundary value on (R+40)\&. Then Proposition 3.1 fol-
lows from a abstract theorem of scattering (Theorem 5.2 of [14]).

§$4. Multi-channel case.

4.1. Asymptotic completeness.

In this section, we suppose #=3, and instead of (A) we suppose

ASSUMPTION (C). There exists a constant >0 'such that t—e?*
X Vlt, %) is an L*(R?)-valued continuously differentiable function for each «.

Of course, propositions in § 2 remain valid under (C). Two-body sub-
systems may have some bound states with non-threshold energies, but we
assume for simplicity that each two-body subsystem has exactly one bound
state :

ASSUMPTION (D). FEach ¢.({) has no (+1)-eigenfunctions for any (e
[0, 2z/w) =10 except for 1,410 with 1,<(0,2r/w). The (41)-eigenspace of
Ga{A,=10) is one-dimensional.

Assumption (D) implies that k¢ has exactly one eigenvalue i, in
[0,27/w) and it is simple. We denote by gbaE/(“ the A,-eigenfunction of k*
with normalization ¢, =w'?% Then by the definition of k*, we see

4.1 (8, t)a(t) =exp(—i(s — 1) Aa)pals) (a.e. (s,1)

where ¢, ={g.(t):teT, gba(t)E/l“}ek“. Thus we may assume that ¢,(?) is

continuous in t as a h%valued function, and (4.1) holds for all s and ¢.
Under these assumptions, we can prove the asymptotic completeness.

To state our result explicitly, we introduce some spaces and operators.

Let ﬂi (7/:1,2) be
[ ﬂ]ng(Rgxa.ya))@ @3 L2(-R7313)

(12) —HOD D I
l I=L R, ).
We define J(t)= B(%,, %, as
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(JOF=Tf+SIOF, =] B |25,
4.3) L Id=fi, fee S
TelOf o0 ) =gulls s)fulys) , Fuc P,
and time evolutions U; on %, (i=1,2) as
" { Uty )f =lexp(—ilt—s) HMJ®| @ exp(—~ilt—s)f. |, e,
Uity 0f =T, 90, eI

where 1§ =1§+2,=—(1/2n,) A, -+ 2,
We define wave operators W.(s)=W.(s; U,, U,J) by

(4.5) Wos; Uy, Uy, J)=s-lim Us(s, )J () U,(t, s) .
ttoo

PROPOSITION 4.1. W.(s) exist and are isometric operators from 9,
mto H,.

Since {@.{t): t=T} forms a compact set in LA R®), the proof for Poad-
osition 4.1 can be carried out in a way almost identical with the standard
one for time-independent Hamiltonians (see Reed-Simon [16], § XI.5), and
we omit its proof.

Now, we can state our goal of this section.

THEOREM 2. Under Assumptions (C) and (D), W.(s) are complete:
(4.6) Ran W, (8)=H(Uls+w,s)).

By analogy with the last section, we reduce the problem to time-
independent one by the Howland-Yajima method. Let KX; (t=1,2) be

HH=LXT, I()
o { =IXT, H")D 6? IXT, H¢)
(4.7) } KO o Ko
{ HKo=LXT, Is) .
Self-adjoint operators K; are defined on J; by
{4.8) texp{—iweK) ) =Ut, t—o)flt—0), [feHX;.
We define 4 =B(X,, J,) by
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(4.9) () =J@) ), feX;.
Then wave operators 9/ .= .(K,, Ky, 4) are defined by
(4.10) 9 Ky K, g):s;lim exp(icKy) d exp(—iK,) .

It is easy to see that the existence of 9/, follows from that of W.(s). It
is not difficult to prove that ¥ . are isometric operators.

PROPOSITION 4.2. Under Assumptions (C) and (D), W . (K, Ki, J) are
complete
(4.11) Ran G (K, Ki, J ) =K5(K,) .

As was in § 3, Theorem 2 follows from Proposition 4.2, and we devote
the rest of this section to the proof of Proposition 4.2.

4.2. Faddeev matrix.

Following Ginibre-Moulin [7], we introduce the (modified) Faddeev
matrix as follows. We define G,(0), Lg, »$(%),C, and J, as:

(4.12) GO =G —=P?(k))

(4.13) (exp(—ioL§) f)(t)=exp(—idle) f(t—o),  feLAT, LARY)

(4.14) r§(Q)=(C~L§H™
(4.15) (Caf V) =<y>"flya), LT, LAR)
(4.16) (FNO)=J(00 ),  feIXT, LA(R)

with a fixed constant 6>1. Y. is an operator from LXT,L*R%) to
LAT, L R%). Let K be the direct sum of three copies of KX and
LAT, LXR;] ))'s

(4.17) =3 Fwe g A»,
nga):J{ , j{(la):Lz(T, LB(Rfla)) .

Then the (modified) Faddeev matrix F(2) is defined on Z by the follow-
ing eguations:

(4.18) (F(C)f):,e;a w55, S=(fad e

Jj=1,2
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(4.19) Foopol0) = AGo(0)Bs

(4.20) Faos) = AaGo(0)BsAsd 578 (OC
(4.21) - Fapl8)=C'JiBs

(4.22) Farpn(Q)=C'JEBsAs g pr5 (0C -

_PROPOSITION 4.3. For {€C\R, Fau(Q)=BR®, AP), and as «
B(K, KP)-valued function of &€ C\R, Fs(l) satisfies the following prop-
erties

(1) Flapll) ts uniformly bounded.

(i1)  FaoplQ) is analytic.

(i11)  Faopll) s uwniformly Holder-continuous.
(iv) 1 F ol tends to zero if |Im{[—oo.
(V) FlaopolQ) € BT, HP) for each L.

PROPOSITION 4.4. As a B(K®, KP)-valued function of £y Flaopi(Q)
(a=p) satisfies the properties (1)-(v) of Proposition 4.3, 1f we replace
Faopol) by Faoﬂx(C)-

PROPQSITION 4.5. Fapll)=Fapg (@#p) is a bounded operator from
Hi® to K.

PROPOSITION 4.6. As a B(K®, XP)-valued function of &, Fop(0)
(a#p) satisfies the properties ()-(v) of Proposition 4.3, if we replace
FaOBO(C) by Falﬂ1(C)~

We postpone the proof of Propositions 4.3-4.6 till subsection 4.4 and
proceed with the proof of Proposition 4.2.

LEMMA 4.1. (1—-FQ)™* exists for (=C\R. Moreover except for o
closed null set ECR, (1—-F(&)™' has a continwous boundary velue on
R+10.

PROOF. Propositions 4.3-4.6 imply that F(£)? is compact on K. Eence
the lemma follows from Theorem 3.10 of Kuroda [14].

PROOF OF PROPOSITION 4.2. We apply the abstract theory of two-
space scattering :

THEOREM 4.1 ([11)). For i=1,2, let K, be o self-adjoint operator in
a separable Hilbert space K, with the spectral family {E. ()} and the
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resolvent G,({)=(—K;)™". Let J=B(K,, K,). Let I' be an open subset
of R. Suppose X; is a Banach space densely embedded in K, (i=1,2).
Suppose, further, that the following conditions are satisfied.

(a) lim,...lJ exp(—ioK)ul = |ull for usK,.

) W.(I)=slim,...explicK,) J exp(—icK)E(T") exist.

(e} SL; ¢, P)=r""Im L(GLQ)d, Gi(L)) has a continuous boundary value
on ['+10 if ¢, p= X,

(A} There s a B(X, X))-valued strongly continuous function N()
on ["*={g+iy:zel’, =iy=0}, such that G,({)¢=IG(ONQ)$ for ¢ X,

Then K, is absolutely continuwous on I, and there exists Z. < B( K, K1)
such that YW (INZE.=E) ).

In particular, if I" is dense in R, the wave operators I/, are com-
plete, 1.e. Ran 9. = K(K,).

Let I'=R\&. We define X, (1=1,2) as:

{ X,=X"0 D XVCK,

(4.23) e {Sg =@ g, IAT, LHR:, )OIARS,)|
| 00 =IXT, L{R;, ) K@,
(4.24) Xy={pe I, exp dllz.] +ly.D-g= I} .

D)€ B(¥,, X) is defined by

(D)) ao=AGo(C)p
L (DO)P)a=CTFE ¢ .

(4.25)

Note that D({) has a continuous boundary value on R=+10 by Proposition
4.3. By virtue of Lemma 4.1, we can define N({{)< B(X,, X )by

J (N(©)@)o=6+ ZB((1—FO) " DO)$ar— ZCo ol (1= FQ) DO S) s

(4.26)
| (N(©))a=Cal(1— FE) D))

for (', g X,

Now, we have remarked that (a) and (b) hold, and it is well-known
that (c) holds. Following the computations of Ginibre-Moulin [7], §6 and
§ 8, we obtain (d). Then we apply Theorem 4.1, and Theorem 2 is proved.
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4.3. Two-body subsystems.

To prove Propositions 4.3-4.6, we need some facts on the resolvents
of two-body subsystems, and this is the reason we impose Assumption (C).

Let h(t)=ho+V(t,2), he=—A on LR’ and let V satisfy (C). 2X;
denotes the exponentially weighted L’-space of order 5:

(4.28) X y={p& L. (R) : exp(flz])- ¢ € LX(R)]

and we set Y=L T,X;). For r&R and >0, we set

2r

w

(4.29) F§’=:{CEC:5<Re <

—e, =ImI>ri.
}

PROPOSITION 4.7. For any ¢>0, g0)={—ky) ' has an analytic con-
tinuation from I'®* to I';77* as a B(Ys Y_;)-valued function for some
»>0. Further, it is norm-continuous on I ;7% and is compact for each
zerie,

PROOF. Take 7>0 so small that —d<Im ve—iy, where we take a
branch of +/ such that Im ~/C >0 for {eI"*.

Performing a Fourier transform in ¢, we see

(4.30) N A R (e e

Since ({—he™* is an integral operator with the kernel —(4x) 'az—z’|
X expli~/{ -lx—z’]), it is easy to see that ({—(2x/w)u—hy) " has an analytic
continuation from 7'%* to I'77* as a B(X; X _;)-valued function for each
y#. Further it is uniformly bounded and uniformly continuous in x and
7 with fixed y. Thus (4.30) implies that ({—k,) ' can be analytically ex-
tended to I';7= as a B(Y;, Y _;)-valued function.

For proving that ({—%,)~' is compact, we use that ({—(2x/w)p—h)™*
is of Hilbert-Schmidt from X; to X_; for each p, and that
1(L—x/w)pt—he) 1| =0 (g—00), which can be proved by using integrations
by parts as in the proof of the Riemann-Lebesgue theorem (cf. Reed-Simon
[16], Chap. XI, Problem 60).

The next corollary follows from the proposition above and the analytic
Fredholm theorem.

COROLLARY 4.1. Suppose Assumption (C), and :>0. Then, as «
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B(Y;, Y _s)-valued function, g({)=({—k)™* has a meromorphic continuation
from ['%* to I'77= for some y>0. Moreover the residues of g({) at the
poles are finite rank operators.

The next proposition gives a relation between the poles of g¢({) and
the eigenvalues of k.

PROPOSITION 4.8. Suppose Assumption (C). Let A1€(0,2z/w) be «
simple eigenvalue of k, and P be the orthogonal projection onto the A-
eigenspace. Then

(4.31) 92 (0=9@)—E—-A"'P

has an analytic continuation from C*={{eC:Im{=0} to a neighborhood
of 2 as o B(Y;, Y_s-valued function.

PROOF. We employ an argument similar to the proof of Theorem
I1I-1 of Aguiler-Combes [1]. We know that g({) has a meromorphic con-
tinuation by Corollary 4.1. We show that 2 is a simple pole, and its
residue is given by —P.

We let ¢ and ¢ be elements of ;. Then (¢,9({)¢) is meromorphic
and has no poles except for A in a neighborhood of 1. Let Ci={eC:
7l2—d< +Arg({—2)<z/2+d} (0<d<=/2) be a conic neighborhood of A.
The pole of (¢, g({)¢) at A is at most of order one because

€=
C—p

432)  (C—2%6, g<c>¢>=g( )d(¢, E(p)g) — 0 (C=C5 L)

by Lebesgue’s theorem, where {E(-)} denotes the spectral measure of £.
Further, the residue of (g, g({)¢) coincides with —{¢$, P¢) since

4.33) (c—z><¢,g<c>¢>:8(gj—f))d<¢,E(p)gb)—»—<¢,P¢> (CeCz, -0

again by Lebesgue’s theorem. Hence (¢, g7 (L)) =(¢, 9O — (L~ (4, PP)
is holomorphic near A.

COROLLARY 4.2. Suppose that (C) and (D) are satisfied. For any
>0, there exists y>0 such that

(4.34) 9" =901 —P(k))

has an analytic comtinuation from I'>* to I'77* as a B(Ys Y _s)-valued
function, and it is uniformly bounded, uniformly continuous on I'77=UC=.
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We prepare two more lemmata on subsystems. We assume (C) and
(D), and let ¢, be the A,-eigenfunction of k¢

LEMMA 4.2. For any p, veR,
(4.35) Y. HY(T, Li(RY),
(486) Sup S]‘;ba(t, xa’)lg<xa>” 32 I Vﬁ(t’ xﬁ)!dxa éc;z‘, ?,»’a\ g
t S+a

The proof of (4.35) will be given in the appendix. (4.36) can be proved
analogously to the time-independent case (see Ginibre-Moulin [7T]).

LEMMA 4.3. Let fek®, then

(4.37) (PPPE)F)E, 22) = dalt, xa>g¢a(t, T, wd,

PROOF. Under the assumption (D), the set of ail eigenvalues of &* is
{haT2x]/w)p: p=Z} and the (1,+(2n/w)p)-eigenfunction is exp(iun(2z/w)t)da.
Hence, for each f, g=C=(T, C7(R*) we obtain

©38) (PP = S o Nexp(ip g tt, 2 T Tt

X Sexp<~i,u 23 u><,/)a(u, xo)gtu, 2. )dudxy, .

N

Remark that S¢“(t’ 2 0f(t, xa)dcca<Sgba(u, xr) o, xo)dxy, resp.) is a H'*-function

of ¢ (u resp.). Since X exp(iu(2z/w)(t—u)) converges to w-d(t—wu) in
ful<N

H Y (TxT) as N—oo, we obtain

(39) (PP =\ gult, 5T B0 Sty vt

4.4. Proof of Propositions 4.3-3.6.

Now, we can prove Propositions 4.3-4.6 using the results of the last
subsection.

PrROOF OF PROPOSITION 4.3. By the second resolvent equation, we see

(4.40) Foosol0) =1+ AG B AGIOB ;= ALK )GABs .
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If we perform a Fourier transform with respect to y,., we obtain
(4.41) F oy, AsGuL)BEF ] ,‘:Aag“<c—771%—7;2>(1—P”’(k“))Ba.

Then by Corollary 4.2, we can conclude that (1+A4,G.({)B,) enjoys the
properties (i), (ii) and (iii) of Proposition 4.3. Thus it is sufficient to prove
the properties (1)-(v) for A,G({)Bs and A,PP?(k*)Go({)Bs. Those for
A,G({)Bs have been proved in Lemmata 3.4, 3.5. On the other hand, since
A PPP(E*)x, S e B(K®) by (4.35) and (4.87), and (x>~ 'Gy(L)B; satisfies the
properties (#>1) by the proof of Lemmata 3.4, 3.5, we obtain those for
APPP(k*)Go(L)B s

PROOF OF PROPOSITION 4.4. Using the second resolvent equation and

the formula 47 (0)=G3()F s we obtain after some computations

(4.42) Foos(D=(1+A,G0)B) (A 578 (OCs—AGo0) F 5C5)
— A PPk G 573 (O)Cp+ A PPP(E")G(0) S 5C
=L+L+1I;.
A8 (OC;=(4. 5 5 C;‘)(C‘wﬁ ({)C;) satisfies the properties (i)-(v), be-

cause A,9:C3 1 S B(AP, X&) by Lemma 4.2, and Cyrf (D)C; satisfies Prop-
osition 2.2.  AsGo(0) I sCs=(AsGo{)Cs)Js satisties them also. Since
(1+A,G-(Q)B,) enjoys the assertion (i)-(iii) by Proposition 4.3, the proof
for I; is completed.

L=(A PPk 4C;' NCsr§ (0)Cs) has the properties if A,P?7(k%)9;:C:
e B(KP, Ki»). Using Lemmata 4.2 and 4.3, one obtains an estimate :
(4.43) 1A PP 4 505 Mz ZCl Aal s Pall zoer. pacre

X “Sba“L“(T.Lg(Rf?))“(,‘L',vi“L”(T,Lg(RS))

X Iflzs, (feKo) .
Proof for L= (4, P??(k*)<x > )< *Go{)C35) J 5 can be done analogously.
PROOF OF PROPOSITION 4.5. By definitions, we see

(4~44) (Fiizli-).f)(ya) = <ya>€§¢n‘(t5 ma)bﬂ(t) xﬁ)f(t’ 9:‘,3’ Zj,s)d?]a

for fej(‘ﬁ". Then by the Schwartz inequality, Lemma 4.2 and (4.36), we
obtain
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(4.45) i Falﬂoflngggwaw Ayt

[alt, wadbstts 20000, 25 y5)d,

(w1t 2P Vot 25)ld0, )

X <ij(t, L gy yﬁ)lzdxa>dyﬁdt
= Conll F17.
PROOF OF PROPOSITION 4.6. Since
(4.46) FoapQ=(C3' JEB A4 sC5)NCori(C)C5)

it is sufficient to prove that C.'9#BsA;9 ,C5 e B(K®, ). This can be
estimated analogously to (4.43).

Appendix. Property of eigenfunctions.

Here we prove a property of eigenfunctions of two-body subsystems.
Let R(t)=hot+ V(t, ) (hy=—A resp.) on L*R™ be the Hamiltonian (free
Hamiltonian resp.) of our system. U{t,s) denotes the evolution operator
generated by A(t), and & (k, resp.) denotes the self-adjoint operator defined
by (exp(—igk)P)(t) = Ult, t—a)p(t—o) ((exp(—ioko)d)(t) =exp(—ich)d(t—o)
resp.) on K=L¥T, LXR™). We suppose

ASSUMPTION (F). There exists a d>1/2 such that t—~<{x>®V(¢, x) is an
L=(R™)-valued continuously differentiable function.

The purpose of this appendix is to prove the next Theorem.

THEOREM A.l. Let ¢ be an eigenfunction of k with an eigenvalue 1<
R\(2rjw)Z. Then for any p<R,

(A1) oe H(T, LA(R")) .

Now, we set alt, x)=<x>’V(t, x) (b(t, z)=<x> % resp.) and o (b resp.) be
the multiplication operator by a(t,2) (b(t,z) resp.) on K. We write q{)=
a(l—ky,)"'b. Then we have (cf. Proposition 2.2)

PROPOSITION A.l (Yajima [19]). ¢(Q) has a continuous boundary value
on (R\(2z/w)Z)+10 as o compact-operator valued analytic function in K.

If we remark
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d _[(9aN ., ;.\
(A2 200 = (5 )=k,
¢(¢) can be regarded as an operator in HX7, L(R")) and moreover,

LEMMA A.l. ¢{{) satisfies the property stated in Proposition Al re-
garded as an operator-valued function in H'(T, L*(R")) also.

LEMMA A.2. Let X be o Hilbert space and Y be a Bamnach space
densely embedded in X. Suppose that T is a compact operator in X and
that its restriction Tly on Y 4s also a compact operator wn Y. Then, if
feX is an eigenfunction of T: Tf=1f, f€Y.

PROOF. Let m be the multiplicity of the eigenvalue 2 of 7 on X. It
follows from the Riesz-Schauder theorem that T* has eigenvalue 7 of the
same multiplicity m on X. Since T*=(T|y)*|x, T* has eigenvalue 1 with
multiplicity =m on Y*. Hence we conclude that T'|y has an eigenvalue i
of a multiplicity =m by using the Riesz-Schauder theorem again and the
2-eigenspace of 7 in X must coincide with that of Ty

Lemma A.1 and Lemma A.2 yield

PROPOSITION A.2. Let ¢<=be a (+1)-eigenfunction of q(A+10) : ¢(A+1i0)¢
=, then ¢< HY(T, IX(R™).

To prove Theorem A.l, we need one more lemma.

LEMMA A.3. Let A€ R\(2z/w)Z. Suppose that ¢ € H'(T, L:(R")) satisfies
(A.3) hﬁl 7l (A+ip—ko) 'gl3=0.
Then (A+i10—ky) ‘¢ HY(T, L:_\(R")) and

(A4) ;nl ()h :—io_kO)_l¢”H1(T.L72,__1(RnD § /‘.7”@’”}11(1)1]?(}371)) .

PRrROOF. Using a Fourier transform in ¢, we obtain from (A.3),

. . -1 2
(A5) 1§n§pu<z~—%p+m—ho> (Frudls] =0.

Hence we can apply Proposition (2.6.1) of Ginibre-Moulin [7], and see
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1
(A.6) l[( “"’LO ]ZO> (gt»ﬂgﬁ)ﬂ L2 (Rmécﬁfn (gtqygﬁ)” ”L%(Rn) !
2 2 i K
(A7) 2 <‘u> |<A—7a*®0—ho> (gw#gﬁ)# .L?»](R")

<C7, = PIEF ep¢),«”%?(1€7‘)-
This implies (A.4).

PROOF OF THEOREM A.l. Let ¢<K be the 2-eigenfunction of k. Then
it is easily seen that ¢=a¢ is a (+1)-eigenfunction of ¢(1+10): p=¢(A-+20)¢.
Hence Proposition A.2 yields ¢<= HY(T, L*(R")). Moreover, because bg<
HYT, L R™) and

(A8)  pll(A+in—ky) b l*=—Im(bg, (A+1inp—ko) 'bg)
= —TIm( V(A +ip—ke) b, (1+1ip—Fke) 'be)
=0,

it follows from Lemma A.3 that (A+in—ky) b¢=¢ = H(T, L;_..(R")), and
that ¢=a¢ < HY(T, L};_ (R™). Repeating this process vr-times, we obtain

(A9) o< HYT, L3<25»1)(Rn)) .
Thus ¢=(1-+-10—k,) ‘bpc HY(T, L:(R")) for any p<R.
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