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Removable singularities of solutions of

linear partial differential equations

~——S8ystems and Fuchsian equations—
By Toshinori OAKU

Introduction.

A. Kaneko has studied continuation problem for solutions of linear
partial differential equations (with real analytic coefficients) systematically
by using the theory of non-characteristic boundary value problem for
hyperfunctions. In particular, he has proved in [2] and [3] fundamental
results on continuation of real analytic (and hyperfunction) solutions whose
singularities (i.e. points where the solution is not defined) are contained in
a real analytic and non-characteristic hypersurface with respect to a single
equation.

The purpose of this paper is to extend main results of Kaneko in [2]
and [3] in two directions: on the one hand, to general systems of linear partial
differential equations with a real analytic and non-characteristic hyper-
surface, and on the other hand, to (single) Fuchsian equations (in the sense
of Baouendi-Goulaouic [1]) with respect to a real analytic hypersurface
(which is characteristic for the equation).

Let M be an open set in R™ and N be a real analytic hypersurface in
M. Since the problems are of local character, we may assume that \N'=
{xeM; »,=0} with the notation x=(z, "), " =(xy -+, %,). Let

M i}lPijuj:o (=1, , )
=

be a system of linear partial differential equations with analytic coefficients
defined on M. We assume that 9 satisfies either one of the following
two conditions (we use the notation D'=(D,,---,D,), D,=d/ox,):

(NC) N is non-characteristic with respect to M.

(F) M is a single equation Pu=0 with a Fuchsian operator P of weight
m—k with respect to N in the sense of [1]; i.e,

P=x*D7r+ Az, DVa*'D7 1+ oo + A, DYDY *— -oo = A (x, D),
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where 0<k=m, Af{x, D’} is of order =j for j=1,---,m, and A,0,z',D")
is of order 0 for j=1,--, k. In addition, none of the non-trivial characteristic
exponents is an integer, and no pair of non-trivial characteristic exponents
differ by nonzero integers.

For such a system M, we define a closed subset Vy (M) of the purely
imaginary cosphere bundle +/—1S*N of N, which is a generalization of
the set of A-boundary characteristic points defined by Kaneko [2] when
both (NC) and (F) are satisfied (1.e. k=0 in (F)). Let ¢(z’) be a real
valued C' function on N such that ¢(Z)=0, de{%)=0 with a point & of N
and assume that not both of (%, = v—Idg(%)co)s ~/—1S*N are contained
in Vy 4(SH). Then our first result is as follows: any real analytic solution
of M defined on M\{(0, ") N; o(x')<0} is continued uniquely to a neigh-
borhood of # as a hyperfunction solution (Theorems 1.1 and 3.1). We also

give results on continuation of hyperfunction solutions under a stronger
condition.

In the proof of the above result, we use the theory of boundary value
problems for non-characteristic or Fuchsian systems developed in Oaku [11].
The most essential tool is the theorem on propagation of micro-analyticity
up to the boundary for micro-hyperbolic systems in a weak sense (Theo-
rems 3.2 and 3.3 of [11]), which generalizes Theorem 2.1 of Kaneko [2].

Next we consider real analytic continuation of real analytic solutions.
Since we have continuation theorems as hyperfunction solutions as above,
this reduces to a problem of propagation of (micro-) analyticity (interior
problem), which requires further assumption on M. In the case (NC), if
we impose on M, e.g., the condition of micro-hyperbolicity in the sense
of Kashiwara-Schapira [7], then we obtain this propagation of analyticity
as an immediate consequence of their results. In the case (F), however,
we have to prove in the first place that the continued solution has %, as
a real analytic parameter (this fact is trivial for (NC)). For this purpose
we use the theory of F-mild hyperfunctions developed in Oaku [10]. Theo-
rem 3.2 and Corollary 3.2 in § 3 are the main results on real analytic con-
tinuation in case (F).

Note that continuation problem for systems has been also studied by
Kawal [8] (both for real analytic and hyperfunction solutions) from a dif-
ferent viewpoint.

In §1, we study the continuation problem in the case (NC). In §2,
we develop the theory of boundary value problem for Fuchsian equations.
In § 3, we study the continuation problem in the case (F) by using the
results in § 2.

I would like to thank Professor A. Kaneko for suggesting these
problems.
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§1. Systems with non-characteristic hypersurface.

First let us recall the formulation of non-characteristic boundary value
problem for systems developed in Oaku [11]. Let M be an n-dimensional
paracompact real analytic manifold and assume that there is a real valued
real analytic function f on M whose differential df does not vanish on M.
We put M.={xcsM; =flx)>0}, N={xcsM,; flz)=0} and set

QNlMtz([:)*([i)“lc@M[N}

where ¢. : M.—M are the embeddings and 5, is the sheaf of hyperfunc-
tions on M. Sections of By,,, are represented by hyperfunctions on the
intersection of M, and of a neighborhood in M of a point of N.

There exists a complex neighborhood X of M such that f is extended
to X as a holomorphic function and that df+0 on X. We put Y={zeX,;
Sflz)=0} and

M={zeX;fz)eR}, M.=(zeM; +f(z)>0}.

We use a local coordinate system z=(z,, 25, -+, 2, of X such that f=z, and
that all #; are real-valued on M, and call such 2 admissible. We use the
notation 2'=(zy,*+,2,) and z;=z;++/ —1y,. There is a sheaf BO on M
of hyperfunctions with holomorphic parameters z’. Let 7.: M.—M be

embeddings and set
Q@Ylﬂ?i:(zi)*(zi)‘lﬁ@h/'

DEFINITION 1.1, By, =Hv (BOvz.), Byin=H3(BO)y). There
exist injective homomorphisms «, : QBNMQH.@N,M& {see Theorem 1.2 of [11],
where we used the notation a instead of «,). By the same argument as
the proof of Theorem 1.2 of [11], we can show that there exists a natural
injective homomorphism « : B,] N_’-@NLM’ Hence, from now on, we regard
Byly and Buy, as subsheaves of By, and B w. respectively. More-
over there exist restriction maps

/}/'tzﬁﬂlll\-%‘@]vi[’lt) F. —-@Nu‘l—-—)-@N\Mi-
(ro(w)=uly. for ue Byly, and #. are induced by the natural maps B0,
—-PBOy 5..) Combining these maps, we get a commutative diagram
7. 7.
e@zv M QMIN QNIM—
l (25 i a l a_

r_

DBy i, Byox Byw_.
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LEMMA 1.1. (#,,7.) induces an isomorphism
By wl Py = (Bt ) Brvwe YD Bvie | B ) -

PROOF. Since PO is flabby with respect to the real coordinate x, (cf.
Lemma 1.2 of [11]), there is an exact sequence

0 —> ' BO) — BO)y —> Q}@Y}ﬂ+@9@6wﬂ_ —> 0.

Applying the functor RI'y (the right derived functor of I'y), we get a
commutative diagram

0—>I"'W(By) —> Byly — QNIJI_F@QNUI_ —> 0

(1) | Ja Jana)
0>y By) —> @MM - @N|M+@-@N:M_ —90

with exact rows since N is purely (n—1)-codimensional with respect to
BO|y and BOy i, (cf. Proposition 1.3 of [11]). Since « and «. are injec-
tive, the assertion follows from this diagram.

Now let M be a coherent 9 y-module (Dy denotes the sheaf on X of
rings of linear partial differential operators of finite order with holomor-
phic coefficients) for which N (i.e. Y) is non-characteristic. Let My=
M| FM be the tangential system of M to Y. Then My becomes a co-
herent 9y-module. We have defined (Theorem 2.1 of [11]) injective homo-
morphisms 7. (boundary value maps) as composites of the homomorphisms

ﬂ[ommX(ﬂ, aCBN:Mi) - ﬂ{omg;x(ﬂ’l, @N;_/’Ili) - ﬂ{onwy(j/lm QCBN) .

a. 7.

PROPOSITION 1.1. Let w. be sections of Homg (M, Byiw,) respectively.
Then there ewists a section w of Homae (M, Byly) such that r.(w)=u. if
and only if v (u)=y_(u_). Moreover such u is unique.

PROOF. By virtue of Holmgren’s theorem for hyperfunctions (Theo-
rem 2.1.3 of Sato-Kawal-Kashiwara [12, Chapter I1I]) we have

gg’[O)‘)ZQX(.\?%, FN(QV)):O .

Hence from (1.1) we get a commutative diagram
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0—> j[O)ng)X(q%, ﬁ(BM!N) —_— j[OWZg}X(ﬂ, a@Nm),)@ﬂ[OMQX(ﬂ, QMM#)
(1.2) | a | @)
00— j[OWZ@X(ﬂ, —@Nul) — ﬂ[om@X(fM, @N;Jh)@j[OWIQX(ﬂ’ —@N\M_)

—> Ex f}@X(LS/%, Fv(c-(BU))

|

— Ex t}pX(ﬂ, FN(f’CBM))

with exact rows. On the other hand, by the proof of Proposition 2.1 of
[11], we have a commutative diagram of isomorphisms

Homg (M, @NMLI_) *—?’—ﬂ[omg,x(ﬂ, -@NIM)——;;_) Homg (M, -@MM_)

(1.3) * 12 /
Homo ( My, By) .

By (1.2) and (1.3) we get injective homomorphisms
(ﬂom.@X(ﬂ, QN‘.MJ@L%OWQX(W, @N:M;))/‘g{OWme(ﬂ, °CBM|N)
> (Homo (M, By ,)DIHomao ( My Bis )| Homa 1 (HMy Buvise)

(ay,al)
-~ Homao ( My, By) .
?+"7;~

This completes the proof.

Let p: T*X|y—T*Y be the canonical projection. For the sake of sim-
plicity, we sometimes identify the purely imaginary cosphere bundles
VEIS*M=SEX and +IS*N with ~/Z17*M and ~/ZIT*N respectively by
identifying the points in a same orbit of the action of R, : here «/:Ti’*M
denotes the purely imaginary cotangent bundle with the zero section
removed, and R, ={tcR; t>0.

DEFINITION 1.2 (cf. [11,83]). Let M be a coherent 9Dy-module with
respect to which XN is non-characteristic. We define subsets V3 ,(.H) and
Vsl M) of ~/=1S*N as follows: A point z*=(%, v/—1&'c0) of ~/—1S*N
is not contained in V3 (M) if and only if
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(MH1) M is micro-hyperbolic relative to M. in the direction *dz; at
each point y* of p Y(@*)NV=IS*MNSS(M) in the sense of Definition 3.1
of Oaku [11]; i.e. there exist a neighborhood U of y* in T#X and an open
cone I of C;xC% such that

(O; ?1,0,"' ’O)EF s
(UNN=IT*M)+D)NUNSS(INT* X5, =D,

where z is an admissible local coordinate system of X, and {=({, -+, &x)
are its dual variables.

(MH2) p Y(@*)NelSS(INT*X |z )Ty o*)€p7(2¥) ; ZRe {20}

where cl denotes the closure in T*X.
We set VN,A(%):VE,A(ﬂ)UVE,A(L%)-

DEFINITION 1.3. We set
Vi p(M)=V5.a(H)
Uz*e vV =1IS*N; o~ {a")INelSS( NV —IT* M|y ) # D}
and Vi s(M)= V5 5( IV Vz, ().

REMARK 1.1. It is easy 1o see that V& . M) and VE z( M) are closed
sets. When M is a single equation, these sets coincide with the sets of
A- and B-boundary characteristic points defined by Kaneko [2] by virtue
of the local version of Bochner’s tube theorem.

Theorem 3.2 of Oaku [11] implies the following :

PROPOSITION 1.2. If u. is a real analytic (resp. hyperfunction) solu-
tion of M on M., then the singular spectrum SS(r.(u.)) of the boundary
value of u. is contained in Vi (M) (resp. VE s(M)).

Now we can generalize Theorem 3.1 of Kaneko [2] to systems.

THEOREM 1.1. Let M be a coherent I x-module with respect to which
N is non-characteristic. Let & be a point of N and ¢ be a real valued
Cl-function on N such that o(£)=0 and de(&)#0. Assume that K is a
closed subset of N such that ¢ <0 on K and that Vy (M) (resp. Vy z(M))
does mot contain both of the points (%, =/ —Idep(&)oo)s ~/—1S*N. Then
any real anclytic (resp. hyperfunction) solution u of M on U\K, U being
an open neighbovhood of & in M, is uniquely continued to a neighborhood
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of & as a hyperfunction solution of M.

PROOF. By Proposition 1.2, either one of the points (&, + v —Idep(&)oo)
is disjoint from both of SS(y.(w.)) with u.=uly,. In view of Proposition
1.1, yo(u)—7-(u)=0 on UN(N\K). Then by virtue of the following ver-
sion of Holmgren’s uniqueness theorem (Lemma 1.2), we get 7 (u)—7-{(u.)
=0 on a neighborhood of # in N. Hence the statement of the theorem
follows from Proposition 1.1.

LEMMA 1.2. Let ¢ be a real valued C' function on R™ such that ¢(0)
=0 and de(0)#0. If w is a hyperfunction defined on o neighborhood of
0 with support contained in {x € R"™; ¢(x) <0}, and if its singular spectrum
does not contain both of (0, = vV —1de(0)oo), then u vanishes on a wneigh-
borhood of 0.

PRrROOF. This lemma follows immediately from Holmgren’s theorem
for hyperfunctions (Proposition 3.5.2 of Kashiwara-Kawai-Kimura [4]) and
the method of sweeping out (see e.g. the geometric arguments in
Kashiwara-Schapira [71).

Under some additional conditions, we get continuation as real analytic
solutions. We denote by zy: ~—1T*M—-M and zy:~—1T*N—N the
canonical projections.

THEOREM 1.2. Let M, ¢, K be as in Theorem 1.1 and assume that
Vi (M) does not contarn both of the points (£, =/ —1de(®)). Assume,
moreover, that for each point x* of nyz (%), there exist a,bc B with b=0
such that adx,+bde is micro-hyperbolic for M at &* in the sense of
Kashiwara-Schapire [71. Then any real analytic solution wu of M on
U\K, U being an open neighborhood of & in M, is uniquely continued to
a neighborhood of % as a real analytic solution of M.

PrROOF. First we can continue % to a neighborhood of # as a hyper-
function solution % in view of Theorem 1.1. Since the singular spectrum
of @ is contained in {(x, v —1&); ax;+bp(x’) <0}, # becomes real analytic
by virtue of Theorem 2.2.1 of Kashiwara-Schapira [7].

Now let us consider isolated singularities of real analytic solutions.
The following is a generalization of Theorem I of Kaneko [3]:

THEOREM 1.3. Let M be a coherent Dx-module with respect to which
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N is non-characteristic and & be a point of N. Assume that zvi{%) is not
contained in Vy 4 M). Then any real analytic solution of M on U \{z},
U being an open neighborhood of % in M, is uniquely continued to U as
a hyperfunction solution of M. Moreover if, for any point z* of 7 (Z),
there exists a wector ve R™\{0} such that {v,dz)> is micro-hyperbolic for
M at x*, then w i3 continued to U as a real analytic solution of M.

PROOF. There exists a real valued real analytic function ¢ on N such
that ¢(&)=0 and de(£)#0 and that (&, v —1de(%)) is not contained in
Vy,a(M). Hence u is continued to U as a hyperfunction solution @ by
virtue of Theorem 1.1. Under the additional condition, micro-analyticity
of 4 propagates up to # from outside by virtue of Theorem 2.2.1 of [71.

Ezample 1.1. Let M be an open set in R* containing 0 and consider
a system M defined by

M (D3 DHYu=DyDi+DDu=10

with D;=§/dx;, Then any real analytic solution w(z) of M defined on
M\{xeM; 2,=0, x,<0} is continued to a neighborhood of 0 as a real analytic
solution. In fact, it is easy to see that (0, ~/—1dx,) is not contained in
Vy.a(M) (cf. Example 3.1 of [11]) and that dz, is micro-hyperbolic for M
(in the sense of [7]) at z*=(0, v—1<& dx>oo)e v ZIS*M if &,+0, while
dxz, is micro-hyperbolic for M at x* if &=0.

Erample 1.2, Let M be as in Example 1.1 and consider

M (Dy+ =12 1D) ™+ DM = (Dy+ v/ —1D)u =0

with positive integers k¥ and m. Then any hyperfunction solution of M
on M\{xreR'; z,=0, 2,<0} is uniquely continued to a neighborhood of 0
as a hyperfunction solution of HM. In fact, (0, v—Idx.) & Vy 5(. M) holds
in this case. Note that =d«, are not micro-hyperbolic for M at (0, v/—1dzx,)
in the sense of [7].

The condition of micro-hyperbolicity in Theorems 1.2 and 1.8 is not
always necessary :

Ezample 1.3. Let M be as in Example 1.1 and put
o 4

P=D\(Dy+~—1z,D;) + ZE a(x)D;+b(x);
=

here a, and b are real analytic functions on .}/ such that a.(0)e v —1IN
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with N=1{0,1,2,---}. Then any real analytic solution of the system
M Pu=(Dy+v~1D)u=0

on M\{(0, xs) ; 2,<0} is continued to a neighborhood of 0 as a real analytic
solution. In fact, sinece (0, v —Idz,o0)& Vy (M), the solution is continued
to a neighborhood of 0 as a hyperfunction solution in view of Theorem 1.1.
Then analyticity propagates up to 0 by Theorem 2.1 of Oaku [9] (cf. Ex-
ample 2.5 of [9]). Note that, in general, there are no ¢,c< R such that
adx,+edx, is micro-hyperbolic for M at (0, = ~/—1da,) in the sense of [7].

REMARK 1.2. Theorems 1.1-1.3 still hold even if we replace Vy ()
by
VN,*(ﬂ)mSUPD(ﬂomspy(jih )

for *=A,B; here Cy denotes the sheaf on +/—1S*N of microfunctions,
and Supp denotes the support of the sheaf. (This assertion follows im-
mediately from the arguments above.) This makes no change for single
equations, but for overdetermined systems, this provides, in some cases,
another sufficient condition for continuation of solutions. For example, any
hyperfunction (resp. real analytic) solution of the system

M D+ V=IDYu=(D,+ v —=Tx,D)u=0

defined on U\{x=R'; £,=0, 2,<0} with an open neighborhood U of 0 in R!
is continued to a neighborhood of 0 as & hyperfunction (resp. real analytic)
solution. In fact, My=_M/z,. M is microlocally analytic hypo-elliptic (i. e.
Hom (My, Cy)=0) at (0, ~/—1dw,0), while both of (0, =+/—1dx,c0) belong
to Va.u(M). Note also that the solution has x,++/—~Iz, as a holomorphic
parameter. See, e.g., Sato-Kawai-Kashiwara [12, Chapter III], Kashiwara-
Kawai-Oshima [5], Oaku [9] as to (sufficient) conditions for systems to be
microlocally analytic hypo-elliptic.

§2. Boundary value problem for Fuchsian equaticns.

Let M, M., N, X, M., Y be as in §1. For an admissible local coordi-
nate system z=x-++—1y=(2,2), we use the notation D=(D, D), D’'=
(Dy, +++ 5 Dy), where D;=0/0z; in the complex domain, and D;=0/dx, in the
real domain (there will be no fear of confusion).

We assume that a linear partial differential operator P with real
analytic coeflicients defined on M is a Fuchsian operator of weight m—Fk
with respect to N in the sense of Baouendi-Goulaouic [1]: i.e. in a neigh-
borhood of each point of .V, P is written in the form
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P:a’(x)(x};DT—fil(x’ D/)xI{—ID;n.—l_%_ ceT +Ak(x> D/)DT~k+ e +Am(x, D/))

with an admissible local coordinate system {cf. § 1) z=x+ +/—1y; here a(x)
is a non-vanishing real analytic function, %k and m are integers with 0=k
<m, A,(z,D’) is an operator of order =j for 1=j=m, and A,(0,a", D) is
of order 0, i.e. equals a real analytic function a,2’), for 1=<j=k The
roots A=0,1,---,m—k—1, A(z'), -+, A.(x’) of the indicial equation

AA—1) oo (A—mmA 1) Fafz)AA—1) s (A—m+2) 4 -
Fa(2)A(A-1) - A—m+k+1)=0

are called the characteristic exponents of P. For a point £=(0,%") of N,
we define a condition C{%) by

C(&): 242 e Z, 2,(8")—A,(&")& Z\{0} for any 1<, j=k.

The notion of Fuchsian operators and the characteristic exponents are in-
dependent of (not necessarily admissible) local coordinate systems fixing N.
However, in this paper we fix an admissible local coordinate system since
the problems of continuation of solutions treated in § 3 will be of local
character.

We set M=Dy/DyP: i.e. M is the equation Pu=0. Then, e.g.,
Homao (M, Buyix,) is the sheaf of By, -solutions of M.

Let us recall the definition of the microlocalizations Cy ,_ and C Ny,
of B, and B . respectively.

DEFINITION 2.1 (cf. [11]). Let muyz: M\MYVUSEM—M and zyy:
(YAN)USEY—Y be comonoidal tran§formations (cf. [12D). We define
sheaves Cy, on SEM, and Cyiy, and Cyyr, on ~—1S*N=8}1Y by

CM::&%gjlﬂ((nM/M);l(zi)*(?t)—IQ@)a s CNiM::CMi‘
M

Sy

gNiMi :ﬂg;y((ﬂzv/y)_le@@mﬁt)a B

where o denotes the antipodal map, and S§Y is regarded naturally as a
subset of Ski.
There exist short exact sequences (Propositions 1.7 and 1.8 of [11]

SP=
0 —> (2.):(2) " BOyy —> (22)5(e) " By —> (17.11,")'1)*6)1i — 0,

- SP- .
00— fB@Yu‘[JN > @Nlﬂi > (TFN)*CN.)ft >0

(sp. and é\f): are called spectral maps), and injective homomorphisms
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[ CN!M_;__)C)NIMi Compatible with (24 ‘,CBN;MJLT’.@N:M:.

_ DEFINITION 2.2 (Proposition 2.4 of [11]). The sections of the sheaf
O9y.y over an open subset 2 of Y are the operators

Pla, D)= 3 Py(z D)
P

satisfying the following conditions:

(1Y Piz,C) is holomorphic on a neighborhood of 2:<C*™* in XxC"7,
and homogeneous (hence a polynomial) of degree j with respect to {’.

(i1} For any compact set K of Y, and for any :>0, there exist C>0
and 6>0 such that

WM&Ng%MCW

for any j and {’ if |z] <4, 2’ €K.
Note that O9y.5 has a natu~ra1 rirlg structure and that it acts on
BOly and BOy .z, and hence on By, Dyiy,, and Cy 5 (ef. [11]).

THEOREM 2.1. Let M be as above and assume the condition C(Z) for
a point & of N. Then, on a neighborhood of &, there exist ingjective homo-
morphisms (boundary value maps)

IR ﬂomg)X(ﬂ/l, QNIMi) —> (By)",
N ﬂon’l@x(&%’ CN[Mi) — (CN)m s

=

and these maps commute with the spectral maps. (We decompose 7. wnto
the form 7.={7iregs Tssing) With

¥ oreg - ﬂomg)X(j/l, @Nu":)"(o@ﬂmnk {or ﬂ[Om.@X(jf, Cx J[:)__)(CN)m—k)
7 =sing + j[OW_@X(u%, QN\JIJ:)——)(O@N)I? (or ﬂom@‘y(ﬂﬂ Cy 31:)—>(6>1v)k) B

and the meaning of this decomposition will be clarified in Propositions
2.1 and 3.1.)

PROOF. Let us assume k<sn since the case k=1m is easier. We use
the technique due to Tahara (see the proof of Theorem 1.2.12 of [18]). As
a 9y-module, the equation z,Pu=0 is equivalent to a system

((Dllm-—k—l 0 \) ( All Al?
! 0 EY 0N P 214 Az

,U/(l)\

@23

'

>
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where I, is the » . unit matrix, A;; are m;Xm, matrices with m,=m—¥,
m,=1k defined by

01 \ /0 )
A= Co. ' . 1), Am:(é O ,
0 1 0 oeees 0
Qoeeneveeeans (0 11. |
_| : _ 2.1
AZI_( O 0 b A2Z—‘ . k___l 1 3
—flm h ——Ak+1 —‘Ak A _Ag, _A1+k‘/
by the relations
U 2, D7
2 Ui D‘ﬂb ) 26(2) — Z%DT;’ETI'LL
Dty 2EDP 1y
We define a system . by
?/L(l)
L (2D I,—B) >:O
,u/(2)
with
B I‘zilm—k—l 0 Ay A12> 2,44 A
\ 0 Lo/ \z4y Ay 2,4, As )

Then [ is a Fuchsian system in the sense of Tahara [13]. In fact

0 A
Byz'y=B(0,z', D)=

0 E#)

is a matrix of holomorphic functions in 2 by the definition of Fuchsian
operators, where E(z')=Ax»(0,2",D’). It is easy to see

det(AL,— Bz N=a""*(A—1)(1—2) --- (A—k)
FA=DA=2) - A=k +1)ay(z')+ - +H(A—Das-i(2') Faul2)]

Hence the eigenvalues of By(z’) are 0 (with multiplicity m—k) and 2,(z")
—m+k+1 (j=1,---. k). Under the conditionp(a"c), there exists an inverti-
ble mxm matrix @=@(z, D’) of germs of ODy,y at & such that

Q YNz01,—B)Q=2zDI,—B,, Q0, 2", D=1,
by virtue of Theorem 1.3.6 of Tahara [13]. Put
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[ Ly szE(z/)_v
el )
0 I,
Then we have
0 0
(2.1) R Yz DJ,—BYR=zDI,— ) .
0 E)

Hence any .@M x,-solution of L is uniquely written in the form

u [ a.(x)
=R
U af0b, ()
with a.(z)e(B)™ " bz )= (By)* on a neighborhood of & We get an
isomorphism
T+ ﬂfom.@‘g(ﬂi; -(BA’|51+) o (DBw)"
on a neighborhood of & defined by

. ?+reg(’v+) ‘@, (x)
7+(’LL+): . = ,
r+sing(v+) b+(m )
since 2, : '@Nlm_’-@mm is an isomorphism. Combining 7. with the injec-
tive homomorphism «,, we get an injective homomorphism

5. j[OWZg)X(j/[, .,CBN|M+) - (QN)"L

With 7. (6s) = (7 sreg(®4), Tsing(4)) E(By)" B (By)*.  y. is defined in the
same way. Since c o, are @.@YW-moduleS the above argument also holds
even if we replace By, B w. By bY Cyin,, Coorr . .» Cx respectively.
This completes the proof.

Now let us recall the definition of F-mild hyperfunctions introduced
in Oaku [10]:

DEFINITION 2.8. Let z be an admissible local coordinate system around
#€N. Then a section f. of By, is F-mild at & if and only if there
exist an integer J, open convex cones /'; of R*™, ¢>0, and holomorphic
functions F(z) (j=1,---,J) on a neighborhood of

{2€C"; |2—%]<e, Tz,=Fx, 20, Imz' <1

such that on {xeM. ; lz—2| <&,
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Sfalx)= é Fyz, o' +—1I"0).

We denote by B, the subsheaves of By, , consisting of sections which
are F-mild at each point of N.

The notion of F-mildness is invariant under local coordinate transfor-
mations fixing N; for a section f.(z) of B5, ., the boundary value f.(+0, z’)
is naturally defined as a hyperfunction on N (ef. [10]).

PROPOSITION 2.1. Let M be the equation Pu=0 as above and assume
the condition C(Z) for a point & of N. Let u.(z) be a By, -solution of
M. Then w.(x) is F-mild at & if and only if 7..ne(.)=0 on a neigh-
borhood of & Moreover, if u.(x) is F-mild, then y..ex{u.) is equal to the
set of boundary values

(a0, 2"), -+, DP ¥, (20, 7))
in the sense of F-mild hyperfunctions.

PROOF. We define a sheaf $* on N by

~

BA=H% (Oxly),

where O denotes the sheaf on X of holomorphic functions. Then there
exist natural injective homomorphisms

B Gt — —@mut

(cf. Lemma 2.1 of [11]). Moreover «. induce injective homomorphisms
‘@N:yt/ﬁfvmi - @NlMi/‘Bi(@A)

(cf. Proposition 2.3 of [11]). Thus a section f. of By, is F-mild if and
only if «.(f) is contained in the image of §..

When k=m, u.(z) is F-mild if and only if wu.(zx)=0 (Theorem 2 of
Oaku [10]). Hence let us assume k<m and use the same notation as in
the proof of Theorem 2.1. Now let u. be a By, -solution of M and set

;’:reg(u:):a:(x/) k3 Tising(u:):b:(m/) .
Then w.(z) is the first component of the vector
a.(x") )

Rz, D/)(
zF0b ()
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It is easy to see that P4 is an @@y] #-module. Hence u. is F-mild if
and only if a.(z’) and v®(x)=x7“"b.(x’) are contained in the image of 3..
Let us consider a system

T® (2. DI, — EZ v =0.
Since FE(#) has no integer as an eigenvalue, we get
R Homg (T1?; B*)=RI y(R Homg (T1?; Oxly))n—11=0,

where R4 om denotes the right derived functor of Hom. Thus v&(x) is
contained in the image of 3, if and only if b.{(x')=0 since v¥(x) is a solu-
tion of JI®. On the other hand, a.(z’) is always contained in the image
of B.. Thus wu.(z) is F-mild if and only if b.(z")=0.

Now assume b.(x')=0. Let us write R in the form

Rll RIZ
R =
RZI RZZ
with m;>xm; matrices K;;, Then we have

()
Dlu?(fv") ) =Rz, D)a.(a)
D+, (2)

(2.2)

as sections of _@N,M:. Since w.(z) is F-mild, the components of both sides
of (2.2) are conNtained in the image of B.. Hence we can regard (2.2) as
an equality in $4. Applying the natural homomorphism

BA —> By Bz, B4,
which is compatible with the boundary value homomorphism
PBiow, > By= DYy |0 DRy,
defined by wu.(x)—u_(=0,2'), we get
a_(2)="(u.(=0,x"), -+, DP Fu(=0,2"))

since Bu(0, %', D')=1I,_,. This completes the proof.

DEFINITION 2.4. Let P be a Fuchsian operator of weight m—k with
respect to N. We define sets of A-boundary characteristic points V¥, 4(P)
C/ZISEN with ==, —, @ as follows: A point x*=(&, v/ —1& o) of
+~/—=1S*N is not contained in V3 (P) if and only if there exists ¢>0 such
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that ¢(P)(z, §, v—1&)+0 for any xz=M. with lz—3i<s, &= R" with
&' —£&'| <e, and for any Z,=C with +Rel,<0; here o(P) denotes the prin-
cipal symbol of P. We put

VyalP)=V5 4PYU V5 L(P).

DEFINITION 2.5. We define sets of B-boundary characteristic points
% 5(PYCV=IS*N with ==+, —, @ by replacing the condition =Re ;<0
in Definition 2.4 by = Re {,=0.

REMARK. When k=0, the sets defined above coincide with the sets
of A- and B-boundary characteristic points defined by Kaneko [2].

We denote by p: +v—1S*M\SZX—S% M the canonical map. Then there
exist natural sheaf homomorphisms

b p—I(C)JIJLi) - CM|p‘1<Li> ’

such that ¢.(sp.(f.))=sp(f.) for sections f. of By =DByly_ ; here Cy
denotes the sheaf on ~/—1S*M of microfunctions, sp: ;' B,—Cy is the
spectral map, and L.=S}iMI|, .

THEOREM 2.2. Assume the condition C(%) with a point £=(0,%") of N
and suppose that a point ©*=(%, v—1&') of ~—1S*N is not contained in
V5 4(P). Let u.(x) be a section of Homge (M, Cy.) on a neighborhood of
z* in SgM such that ¢.(u.) vanishes on UNL.. Then y.(u.) vanishes
on a neighborhood of x*, where

Vet ﬂomg)X(j%, CN{)It) —> (Cy)"

are the boundary value homomorphisms defined in Theorem 2.1.

PROOF. Let . be the system defined in the proof of Theorem 2.1.
Then .[ is a Fuchsian system in the sense of Tahara [13], and no pair of
the eigenvalues of By(%) differ by a non-zero integer. Hence this theorem
follows immediately from Theorem 3.3 (cf. also the remark after it) of
Oaku [111.

COROLLARY 2.1. Under the condition C(2) with an 2= N, let u.(x) be
a real analytic (resp. hyperfunction) solution of M on M.. Then the
singular spectrum of y_(u_.) is contained in V3 (P) (resp. in V3 p(P)).
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§3. Continuation of solutions of Fuchsian equations.

In this section we study the continuation of solutions of Fuchsian
equations by using the theory of boundary wvalue problem for Fuchsian
equations developed in §2, and the theory of micro-hyperbolic boundary
value problem developed in [11]. We use the same notation as in § 2.

PROPOSITION 3.1. Let M be the equation Pu=0 with a Fuchsian
partial differential operator P of weight m—k with respect to N. Assume
the condition C() for a point $<=N. Let u.(x) be By -solutions of M.
Then there exists a hyperfunction solution w(x) of M defined on a neigh-
borhood of & im M such that w(z)=u.(z) on M. if and only if 7icestt:)
=y _ gl ) holds on a neighborhood of & in N. Moreover, such u(x) is
UNLqUe.

PROOF. We use the same notation as in the proof of Theorem 2.1.
Then, as a 9 y-module, H is equivalent to a system

D1 m-k 0 An AI?
M — ( v=0
A21 Azfz'“lk
by the relations

0 2D,
,U(l) mn D71n -k
p= L= : L r@= .
@ Drkiy 221Dy

We define a system J by

T (Dzdn—B)w=0.

Dy 0 (AL Ap
Dyl —B= ( - ( ) Tizy
0 2Dy A Ap—1,
2y O
T(zl): ) .
0 I,

Note that

with

Now let v.(x) be By, -solutions of M and put
w.(w)="T(w) v.(x).

Let us prove that there exists a P yjy-solution v{x) of S}’ such that v(z)
=v.(x) on M, if and only if there exists a 9, !v-solution w(x) of J? such
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that w(z)=w.(x) on M.. First let us assume that there exists such v{x).
Then there exists a column vector w(x) of Byly such that

v(@)=T{x)wlx)

since x,: By—DBy is surjective (cf. [4]). Then wix) is a By|y-solution of
1 such that wzx)=w.(x) on M.. Next let us assume there exists a B ly-
solution w(x) of JI such that w(x)=w.(x) on M.. Then »(z)=T(x)w(x) is
a Byly-solution of M’ such that v{z)=v.(x) on M.. In view of (2.1) we
have

'_]m—k O
(3.1) R (Dwzl,—B)R=2D1,— .
0 E@N—1,

Let us define a system 9l by

~ _Im_k 0
Tz Dl p— w=0.
0 E')—1,

Since @@“—, acts on .@_\-;_‘,i and .@_\w, there exists such w(x) as above if
and only if there exists a @A?i,),—solution w(x) of 91 such that P W)=
Ra_(w.) (see Lemma 1.1).
Let w.(x) be _@’N;M:-solutions of 9. Then w.(z) are uniquely written
in the form
wTla. ()
w(x)= ( )

2 Ib ()

with a.(z') e (,,@_V)"‘;k, b.(w')=(By)*. Let us prove that there exists a By -
solution @(x) of Jl such that #.(@)=w.(z) if and only if a.(z)=a_(z).

Since
()2 (a")

make sense as vectors of hyperfunctions (or of sections of .@M x), there
always exists @®(x)=(PBylv)* such that

(. D, — E(z")+ L)o®(x) =0

and that #P(x)=aF*"%_(z') on M.. Thus we have only to prove that
there exists #P(x)=(PByiv)™ % such that

Dz (x)=0,

and that o%(x)=a%a_(z’) on /. if and only if a.(x’)=a_(x’). Assume
that there exists such #“(z). Then 3¥(x’)=x,%P(x) is a section of (By)™*
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and hence we get

(2 )V =a () =a_(z').

Conversely, if a,(z)=a_(z’), then

BP(x) = (2,+ v —10) la (z')

satisfies Do @®(x)=0 and @ (z)=xa.(z’) on M..
In view of (3.1) we get

( e (2") ) ( a.(x’) )
8.2) v {e)=T(z)R =7 T(x )R .
e () 7. (")

On the other hand, by the argument of the proof of Theorem 2.1, we have

ImAk 0 Tireg(ui)
a3 < )Mm:R( ) .

0 s TYC7Y ssinglU)
Comparing (3.2) with (3.3) as sections of !BMMi, we get
03 =7 areg(s), DB =7 cqing(u.) .
Hence we have proved the first statement of the proposition. To prove
the uniqueness of 7(x), it suffices to show
(3.4) Homo (M, ['y(By))=0.

Since 27 *P is a Fuchsian operator of weight 0, and none of its charac-
teristic exponents is a negative integer, there exists no I'y(B,)-solution of
2™ tPy =0 by virtue of Corollary 4.6 of Kashiwara-Oshima [6]. Hence we
have proved (3.4). This completes the proof.

REMARK. Using the duality argument, Tahara defined boundary values
equivalent to 7.... and proved a result similar to Proposition 8.1 under a
condition weaker than C(&) (Proposition 2.3.11 of [18]). Here we have
chosen to prove it from our viewpoint employing the sheaves .@N w. in-
stead of showing the equivalence of his definition and 7. e

As g special case, let us study the continuation of F-mild solutions.

PROPOSITION 3.2. Under the condition C(&), let u.(x) be By _-solutions
of M such that

T+reg(u+) :Y-reg(u—) .
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Let u(x) be the unique & y'v-solution of M such that w(x)=u.(x) on M..
Then u(x) has x, as a real analytic parameter; 1. e., the singular spectrum
of w(x) 1s disjoint from SEM.

PROOF. By the Cauchy-Kowalevsky theorem for Fuchsian operators
due to Baouendi-Goulaouic [1], we have a sheaf isomorphism

Rﬂ[om_@X(j/l, @le) ;) (@Y)m—k

in the derived category. Applying the right derived functor RI"y, we get
an isomorphism

74 Homo (M, B4) — (B

(See the proof of Proposition 2.1 for the definition of .@A.) There exists a
commutative diagram

—@NlM+ i -@A £ -@MM_
(3.5) '?\ l 8 /;.'

On the other hand, we see from the proof of Proposition 2.1 that

Homg (M, BH)—— (Bu)™*

s4

(3.6) lﬁ: T 1 (%d)

ﬂomgx(ﬂ’f, —(ENIM,:) ; (EBN)M

is commutative. Put a(¢’)=7.regltt+)=7 reg{ee-). Then there exists a B4
solution #%(z) of M such that 7(#t)=a(z’). It follows from (3.5) and (3.6)
that

On the other hand, we have

alx’)
f:(a;(u;)):r:(ut)=( .
0

Hence a.(u.)=7_(3(%#)) holds. In view of Lemma 1.1, this implies that
there exists a section u(z) of Byly such that F(#@)=afu). Since alu) is
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contained in the image of 5, we can prove that u(x) has x; as a real
analytic parameter by the same argument as the proof of Proposition 2.3
of [11] (see also the proof of Lemma 3.1 of [11]). Moreover, u(z)=1u.(x)
holds on M. since

ve(uly )=7Aauly ) =7F.Fla(u)) =7 (a(u.) =7.(u.) .

This completes the proof.

Now we can generalize Theorem 3.1 of Kaneko [2] to Fuchsian equa-
tions:

THEOREM 3.1. Let M : Pu=0 be the equation with a Fuchsian operator
P of weight m—k with respect to N and assume the condition C(&) for a
F€N. Let ¢ be a real valued C'-function on N such that o(Z)=0 and
that de(®)=+0. Assume that K is a closed subset of N such that ¢ =<0 on
K and that Vy (P) (resp. Vy s(P)) does not contain both of the points
(%, + v —1de(2))e vV=1S*N. Then any real analytic (resp. hyperfunction)
solution w(z) of M on U\K, U being an arbitrary open neighborhood of
& wm M, is uniquely continued to a meighborhood of % as a hyperfunction
solution alx) of M. Moreover, if w(x) is real analytic on U\K, 4(x) has
x, as a real analytic parameter on a neighborhood of %.

PROOF. By Theorem 2.2, not both of the two points (£, + v —1dw(£))
are contained in

SS(r s (wla NUSS(y(uly_)),

where SS denotes the singular spectrum of a vector of hyperfunctions.
On the other hand, by Proposition 3.1,

(37) 7+reg(u!M+):7’—reg(uI}{_)

holds on UN{(N\K). Hence by Lemma 1.2, (3.7) holds also on a neighbor-
hood of &. Using Proposition 3.1 once again, we get an extension #%{z) of
u{x) to a neighborhood of % as a hyperfunction solution of 4. Proposi-
tion 3.1 also implies the uniqueness of #@(x). Lastly, let us assume that
u(z) is real analytic on U\K. Then, in particular, ul,, are F-mild on
NN(U\K), and hence

(3-8) 7+sing(ulJ[+):T—sing(u/i)[‘)zo

holds on NN(U\K) by virtue of Proposition 2.1. By Lemma 1.2, (3.8)
holds also on a neighborhood of £ in V. Thus Proposition 3.1 implies that
#(x) has x, as a real analytic parameter on a neighborhood in M of Z.
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This completes the proof.

COROLLARY 3.1. Let M: Pu=0 be as in Theorem 3.1 with the con-
dition C(&) for a point & of N. Assume that there exists & €S** such
that (&, v/ =1& o) is not contained in Vy (P) (resp. Vy s(P)). Then any
real analytic (resp. hyperfunction) solution w(z) of M defined on U\{%},
U being a neighborhood of & in M, is uniquely continued to U as a hyper-
Junction solution of M. Moreover, the continued solution has x, as a
real analytic parameter 1f w(z) 1s real analytic on U\{Z}.

PROOF. Put oz )=<(x’,€&> and K={2#}. Then the assumptions of
Theorem 3.1 are satisfied. This completes the proof.

Example 3.1. Let M be an open set of R® containing 0 and put
8
P=g(D{—2H(D3—D3))+ Zlaj(%)Dj—i—b(x) s
iz

where a; and b are real analytic on M with ¢,(0)¢ Z and an integer k=0.
Then any real analytic solution of Pu=0 on M\{zxeM; z,=0, £,=0} is
uniquely continued to a neighborhood of 0 as a hyperfunction solution.

Let us give some sufficient conditions which guarantee that the con-
tinued solutions are real analytic. For this purpose let us begin with the
following lemma.

LEMMA 3.1. Let A(zx, D) be a microdifferential operator of finite order
defined om a neighborhood of x*=(%, v/ —1éco)e ~/=1S*M with &=(£, &)
such that & +0. Assume that the principal symbol of A is written in the
form o(A)(x, &)=x%a(x, &) with a nonnegative integer k and an analytic
Sunction alx, &). We also assume the following two conditions:

(3.9)  There exists ve R"\{0} such that a(x, &) 1s micro-hyperbolic in the
direction <v,dz)> at x*; 1.e. there exists ¢>0 such that a(x, &+ ~1tv}#0 if
le—&|<e, [£6—&|<e, and 0<t<e.

(8.10) a(Z, &, &) is not identically zero as a function of &.

Under these conditions, let u(x) be o microfunction defined on a meigh-
borhood of x* which satisfies Az, D)u(x)=0 and vanishes on
(2, v=1&, v=1&)ev=IS*M; & <éJUi(y, V=18); u+%&). Then ulx)
vanishes on a neighborhood of Z.

PROOF. We may assume &=0 and &,=0. By Weierstrass’ preparation
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theorem, we may also assume that a(z, {) is written as

alz, §) =L +ailz, )+ - +au(z, (),

where p#=0 is an integer, and a,(z, {') are holomorphic on

{(2,£NeC™xC" "} |zl <e, 1T'—&"| <6}

with a0, £)=0 (j=1, <+, p). We prove the lemma by induction on u.
First let us assume g=0. Then the equation A(x, D)u=0 is eguivalent to
an equation z'u=0 on a neighborhood of x* (cf. [12]). Since the bicharac-
teristics of z, are the integral curves of 9/0¢,, u(x) vanishes at z*.

Next let us assume the lemma with g replaced by 0,1, -+, p—1. We
may assume that w(x) satisfles A(x, D)yu(x)=0 on {(z, ~/—1fo0); x| <e,
|6—£|<e}. There exists 0<d<e such that any root {,=p(¢’) of the equa-
tion a(0,¢,, &)=0 satisfies |p(¢")| <e/2 if |&'—£&'| <5, and that u(x) vanishes
on {(0, v=1¢o0)e v/ =IS*M; |&' —£|<5,£,< —¢/2}. Now let us fix /' =S*?
with |§'—&’| < and denote by o1, , 0. the real distinet roots (if any) of
the equation a(0,{;,0")=0 in {, with p,<p,< -+ <p,. We denote by g, the
multiplicity of the root p;. Then we have g+ -+ +-p,<pu. Note that, by
the first part of the proof, u(x) vanishes on

{0, v—Té0)e~/—1S*M; &'=6",6,<pi} .

Let us assume g;<px for any 1=j=+. Then A(x, & and u(r) satisfy
the assumptions of the lemma at (0, v—1(p, " )o0) with g replaced by ..
Hence by the induction hypothesis, u(z) vanishes at (0, v/—1{p;, 8")o0), and
hence on {(0, v/ —1(&,6Yo0 ; £, <p,}. Using this argument step by step, we
conclude that u(x) vanishes on {(0, v/ —1(&, 6" ) oo ; |&,] <sl.

Consequently, the support of u(z) is contained in

{(0, /—160); £'€8;, &,=p(8)},

where S; is the subset of {&'&S*2; |& —§&'| <4} consisting of such &’ that
the equation a(0,¢,, &)=0 in {, has only one real root {;=p(¢") with multi-
plicity . If &e8; we have

a(0, &) =(&—p(&" )" .
Hence p(€)=—0a,(0, &)/ x holds and a,(0, &’) is real for £'=S,. Put

h(z, &)= (v, 2> ~c(a+% Re a.(0, 5'>>

with sufficiently small ¢>0 so that dh is micro-hyperkolic for A(z, D) at
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x*. Since the support of w(x) is contained in {(z, v—1£c0); h(x, &) =<0},
u(x) vanishes at «* by virtue of Theorem 2.2.1 of [7]. This completes the
proof.

THEOREM 3.2. Let P be a Fuchsian operator of weight m—k with
respect to N satisfying the condition C(&) with $=N. Assume that the
principal symbol of P is written in the form

o(P)z, &)=uip(z, &)

with an analytic function p(z,€) on a neighborhood of ry(%). Assume
the following two conditions:

(3.11) Therééacists §'e8" such that (%, v —1& )& Vy 4(P).

(3.12) For any &8 with p(Z,&)=0, there exists ve R™\{0} such that
plx, &) 1is micro-hyperbolic in the direction <(v,dx> at (&, v/—1&c0)
=/ =1S*M.

Under these conditions, any real analytic solution of Pu=0 on U\{%},
where U is an arbitrary open meighborhood of & in M, is continued to U
as a real analytic function.

PROOF. Let u(x) be a real analytic solution of Pu=0on U\{#}. Then
by (3.11) and Theorem 3.1, u(x) is continued to U as a hyperfunction solu-
tion #i(x) of Pu=0. Moreover #(z) has x, as a real analytic parameter.
Let us fix an arbitrary &’ S* % and let p,<---<p, be the real distinet roots
of the equation p(%,{,&)=0 in . Then #(x) is micro-analytic on
{(2, v=1(&, &)0) e v =IS*M ; £,<p,} since @(x) has x, as a real analytic
parameter. Then by (3.12) and Lemma 3.1, #%(x) becomes micro-analytic
at (%, v—1(o, £)), and hence on {(&, v—I(¢, §)0); £,<p,} (note that
p(z,{) is a polynomial in {; and satisfles (3.10)). Proceeding successively,
we conclude that #(x) is micro-analytic on {(&, v—1(¢,, &")o0); &, € R}. Since

A1

&’ is arbitrary, #%(x) becomes real analytic on U. This completes the proof.

The following corollary extends Theorem I of Kaneko {3] to Fuchsian
equations:

COROLLARY 3.2. Let P be a Fuchsian operator of weight m—k with
respect to N satisfying C(Z) with E=N. Assume that the principal symbol
of P is written in the form

o(P)(z, &) =aip(x, &)

with a real valued real analytic function p(x, £) such that
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(3.13) grad;p(2,8)#0 if £¢€S™*" and p(&, £)=0.

(3.14) There exists &' =S*7? such that the equation p(&, Ly, £)=0 in & has
m real distinct roots.

Under these assumptions, any real analytic solution of Pu=0 defined
on UN{Z} is continued to U as a real analytic function, where U is an
arbitrary open mneighborhood of % in M.

Example 3.2. Let M be an open subset of R" containing 0 and put
P=g(Di+ s +Dj—Disy— -+ — D2+ z:laj(vf'f)Dj%b(x);
iz

where «,(x) and b(z) are real analytic on M with ¢,(0)&Z, and 1<k<n.
Then any real analytic function w(x) on M\{0} satisfying Pu(x)=0 is con-
tinued to U as a real analytic function.

Ezxample 3.3. Let M be an open subset of R’ containing 0 and put

P=a(Di=3DE+Di+ DY+ 2 ay()DD,+ T a,@)D,+b@),

154,553
where «;;, a;, b are real analytic on M with a,(0)Z. Then any real
analytic function w(z) on M\{0} satisfying Pu(x)=0 is continued to M as
a real analytic function.

Finally let us give an example where the assumption (3.12) of Theorem
3.2 does not hold, but real analytic solutions are continued real analytically:

Example 3.4. Put z=(x, ;) R* and consider an operator
P=g,(D,+e(x) D)(Dy+ =12, Dy) +ax) Dy - aslx) Dy +b(x) 5

where a,, @y, b, ¢ are real analytic on R%. Moreover, we assume that ¢(x)
is real valued and
(0, ) N

e(0, 2020, a,(0,z) & Z5 - (0, 932)’

for any #,<0. Then any real analytic solution u(z) of Pu=0 on R\{(0, z,) ;
2, =0} extends to R* as a real analytic function. In fact, since (0, x,, v —1dxs)
= Vv a(P), u{x) extends to R® as a hyperfunction solution #(x) of Pu=0.
Since #(x) has =z, as a real analytic parameter, the singular spectrum of
u(x) is contained in {(0, %, v/ —~1(£y, &)o0) ; 2, <0, & =0, £=0} by virtue of
Lemma 3.1. In view of Theorem 2.1 of Oaku [9], #@(z) becomes micro-
analytic also at £ =0, and hence real analytic on R
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