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Propagation of microanalyticity at the boundary
for solutions of linear differential equations
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(Communicated by H. Komatsu)

Abstract Let M=R", iS*M=R"xiS" 1. For coordinates (x;iy)= (i, 2’;
in,1p") in iS*M, we set N={,=0}, M*={2;=0}, Sn2={z,=0}, iS*N=R"!
%3872, Let P=P(D) be a differential operator with constant coefficients and
order m for which N is non-characteristic. Let Ay be the sheaf of real
analytic functions on M, denote by Jl’;{ the kernel sheaf of P, and, for u&
F(Uf\]fl*, Jlf;,), UC M open, let 7(u) be the m traces of 4 on UNN. For
(x/;i7") €iS*N with (0,2) €U we discuss the condition :

(0.1) @', iy &SSr(w)  for any we (UMM, A5,

We prove that “—z’-semihyperbolicity” to Nt of P implies (6.1). Under some
additional hypotheses we also prove the converse.

The first part of the statement was conjectured by Kaneko in [2]; its proof
is a consequence of the results of [11] on “N-regularity” of non-microcharac-
teristic operators. The second part is obtained by means of a microlocally-
null solution.

I wish to thank Prof. P. Schapira for frequent and invaluable discussions

on this subject.

$1. Review on microlocal boundary value problems (cf. [5],[6])

Let M be an n-dimensional real analytic manifold, NCM an analytic
hypersurface, M= the pair of closed half spaces of M with boundary N, X
and Y complexifications of M and N respectively. Let THX, T%:X, TX
be the conormal boundles of M, M* N in X and T%Y that of N in Y.
Denote by @ : Y>f, T*X-T*X, p: Y>é T*X—-T*Y and = : T*X—X the natural

mappings. We recall the sheaves B, By of hyperfunctions on M, N, and
the sheaves Cy-x, Cy.x, Cy=ix, Cwiy of microfunctions on THX, T#X, T'§=X,
T%Y defined in [8], [5]. We collect in a Proposition all properties of such
sheaves we need later (see [5] for the proof).
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PROPOSITION 1.1. a) WWe have an tsomorphism
I y=(By)v=m(C =l (where &==x{r-xuax)
b) We have, in (N VT ¥ XNTEX, injective morphisms :
(1.1) Cxx>> Cu=x>>Cuix,
and an exact sequence :
(1.2) 0——>Cvx——>Cu~xBCy~x —>Cxx—>0.

c) The sections of Cyx, Cy=x have the unique continuation property
along the fibers of p rixryx, Plz-wr%-xnrfx. In particular if Pz, D) 1s
a differential operator with analytic coefficients for which N is mnon-
characteristic (i.e. if p is proper on @ ‘(char P)), then:

(1.3) P:Cy _y_>CN;X and P:CMi;X—>C}I:ZX
are injective on TENNTEX and & {TH=XN\T¥X respectively.

Let 2*eNXT%X and let P=P(x, D), (where D=—1d/dx), be a differ-

M
ential operator with analytic coefficients in a neighborhood of z{z*).

DEFINITION 1.2 ({6]). P is said to be N*-regular at z* iff the follow-
ing implication holds:

(1.4) ue(Cu+x)e” F;\';}T},X(C_’V[IX)J:* , Pus(Crx)y == us{Cyxls -

Replacing Cy+x by Cu-x (resp. Cuy.x) in (1.4), we obtain the definition of
N--regularity (resp. N-regularity). Note that P is N-regular iff it is N~
and N -regular due to the exactness of (1.2) at z*.

For understanding the meaning of N*t-regularity we recall the theory
of boundary values of hyperfunction solutions of differential equations
following [9] and [10]. Tor local coordinates z={(x, &) in M we set
N={z,=0} and assume .\ non-characteristic for P. Let m be the order of
P, P,, the principal part, and B% the sheaf of P ,-solutions of P. Accord-

ing to [9] we know that for uEF(iI*, =) there exist a unique extension
[ul]* €eu+(By) of u, and unique sections y(u)=(h;) € (By)" which give an
equality of the form:

m—1 )
(1.5) Plul'= 3 h,;Q0%).

=0

We will call such [x] the canonical extension of u and such y(w) the
traces of w on N. Let a:*e‘\"af T% X if Po(e*=(0;Z,0,--9))/¢% is analytic
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and #0 at {;=0, we can decompose P=P’Q’, Q' being invertible at z* and
P’ being of Weierstrass type in D,, with degree px (cf.[8]). Then
N¥-regularity of P at 2* is equivalent to vanishing at ofx*) of the p
traces of ((C’M+IXf\]”N[XlT*MX(C’M,,X))/C’MX)-solutions of P’ (which can be defined
as in (1.5) by the aid of the division theorem for the sheaf Cy. [4D). In
particular for y*=T%Y we have (ef. [10]):

PROPOSITION 1.3. Under the above hypotheses on P and N assumey
Surther:

(1.6) o Hy*)Nchar PCa Y(T%-X),
(1.7) P is N*-regular at any point of o '(y*)"& ‘(char PN TEX).
It then follows

(1.8) For any solution UE(L y (BT A Bsg)eys 0f Pu=0, which satisfies
SSuliu+MNp ™ y*) =0, we have y* <SS y(u).

§2. N-regularity of constant coeflicients operators

From now on we let M=R", X=C". We also assume that P=P(D)
has constant coefficients and that NCM is a hyperplane. We denote by
(2,0), 2=z +1y, {=&+in the coordinates in T*X, put Sti={peR";|y|=1}
and write also R"xiS"! instead of 7% X=T*X\TiX (by identifying the
points of T%X on the same orbit of the action of R*). Let P, LeC™
be the polynomial associated to P(D), let P,(Z) be the principal part of
P(f), and let iy be a point in 4S**. We denote by (Pn)i, the first non-
vanishing term of the expansion of P, at 17 into a {Taylor) sum of
homogeneous polynomials. If x denotes the degree of (Pn)iy We then have:

Pro(Q)=(Pr)i(—in) +ol|C—1in|#), {—iyp.

DEFINITION 2.1. Let 4y and ¢ belong to iS™. We say that 76 is
non-micro-characteristic for P at iy iff

2.1 (Po)inli6) 0.
REMARK 2.2. By the homogeneity of P, it is obvious that the above
property only depends on the image of 76 by the projection o of 1S** from

the poles iy to the equator.

REMARK 2.3. For a point =* and subsets S, V of 7*X, with V smooth,
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one defines a closed cone Cy(S),« in the normal boundle (T, T*X),.—
T.T*X|T..V, (with the real underlying structure), in the following way.
A vector 6=(TyT*X),. does not belong to Cy(S),- if and only if there
exist an open cone I'CT.T*X, invariant under 7.V and verifying
I'|T,. V{8, and a neighborhood U of 2*, such that:

(UNWVy+INnlinS=9 (cf. [4]).

Let 7, 6 be as in Definition 2.1, choose coordinates such that »=(0,---,0,1),
ol =(1,0,--+), and take x*€ R"X{in}. In view of the homogeneity of P,
it is immediately seen that (2.1) is equivalent to:

2818¢,+28/0, &« Cy{char P) .

for V={{,=+-- ={,.;=0} and for any ZEC',
or else to:

§-0/06 € Cy.(char P),»  for V'={={=={,,=£,=0}
and for any 6= S™! with p(@)=(+1,0,--+).

(For the second statement cf. the proof of Lemma 3.3.)
Let », 6 belong to S*! and set N={z-#=0}. In view of Remark 2.3,
the following is a particular case of Theorem 4.3 of [11].

THEOREM 2.4. Let (P,)i(i0)#0. Then P is N-regular at in (i.¢. at
any x*< NX{in}).

To obtain a partial converse we construct in next theorem “ micro-
locally-null” solutions. Let 7,8=S", set N={x-§=0} and denote by M=
the pair of closed half spaces of M with boundary N.

THEOREM 2.5. Let P, have real coefficients and assume:
(2.2) (Pr)p(i0)=0, 0((Pr))(0)+0, (©@=(3/3L:):).
Then there exist hyperfunctions u*, in a neighborhood of 0, which satisfy :
(2.3) Pu==0, SSu*CM7™x{iy}, (0;ip)sSSu*.

PROOF. We will prove the statement for w=u'*. First we construct
wel (M, By) verifying :

(2.4) Pu=0, (0;ip)eSSwu, SSun(M*x{in)=0.

In the proof we will replace (Pn)y; by (Pn); =1 #(P,): (¢ being the
degree of (Pn)y), and i¢ by ¢ for simplicity. Let us choose »'€S™™ with
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(Po)yp)#0 and (5-0)((Pn),)(6)#0.
We can then write

(2.5) Pu{p+of-+opi=cQs, )+ Rlo, 1), 0,7 =C, where degree Q=p—1,
IQ(e, 2)|=cl(o, )| ** for |z/e|<1, R(s,7)=0(|(s,7)]|*) and finally Q
and R are real for real arguments.

Thus when |z/¢]| <1, the equation (2.5) for ¢ is equivalent to:

(2.6) 7—r(o,z)=0 with 7(o,7)=0(|o|) and with + analytic and real for
real argument.

We denote by zi=<z(¢) the small solution of (2.6) for r, i.e. the only
solution z{(s) of (2.5) with r(¢)=o0(l¢]); o) is clearly real for real o.

Let 2eR*, 2>C, and ¢<C, [¢|<c. Denote by <(A(np+a8)), j=1,---, 1,
and ¢,(A(y-+00)) the p zeros for z of P,(A(p+aob)+cp') and P(A{n-+ob)-+77')
respectively, with order A0(|¢|). For suitable labelling we have |ti—1z,/ <
¢, 277Y# for 2>C. On the other hand for some small positive § there exists
c=¢s (¢<1/3), such that for 2¢,47Y#/d<ls|<e¢ and for j+1, we have:
28—z = drlo|=2¢,21 V2,

Thus for 2>C>»0 and 2¢,27V#/6<|e] <e<X1, 7,(A(np+06)) is an analytic
function of 2 and ¢ which verifies:

@7 lei((p+a0))| =20(o]*), (i Jo%> 2774,
(2:8) Im (208 =AlImal0(ol),  (f [Tmolla]>27"%).
(2.7) is obvious. To prove (2.8) we note that Cauchy inequalities give:

!
%r?(‘/}-’raﬁ)i:O(lal) due to |zlp+o6)|=0(l¢"). Since we also have
Im 9(n+00)=0 for o= R, we then obtain: {Imr¥»+0) =|Im ¢{0(jo]) which
obviously implies (2.8).

We put in the following o=s+11"9"%, |s|<¢, 4>C; then for 1>v>
1—1/2p and for suitable C>0, ¢<1, all above requirements are satisfied.
We set J={(1,8);2>C, |s| <¢} and T={A(p+s0-+i2 “"78); (2, s)eJ}; we also
denote by {={(4,s) the points of I. We put, for 2z, {=C" with { close
to I:

(2.9) F(z,{)=expli<z, {+z07D].
Then because of (2.7), (2.8) we have, with a new constant ¢;:

(2.10) Fiz, D)

IIA

expl — A<y, 7 +2cdlyl et lzl], (el



434 Giuseppe ZAMPIERI

Thus for y-7>3cly| the integral

~

@11 6()={ F;0dC, (where | F(z,0dg stands for | F(z, L0, 9)dids)

converges absolutely to define an analytic function of z. We put I'=
{y:y-7>38clyl} and set:

(2.12) w(x)=G(x+100),

in the sense of hyperfunctions. Clearly Pu=0 and SSucC M xil™

Let us remark now that it is not restrictive to assume 7' orthogonal
to 7. Let p* be the projection of S*! from the poles =z' and let
F={A(np+sp'(#), Isl<e, 2>0} and N'={x-5»'=0}. Then

u’zvl :<816i2':dc>'m - S zleix';dc ’

modulo microfunctions vanishing on N'x{ip}. Thus (0;ip) eSS uly and
therefore SSun(0}x{i(e) (M} #D. Recall the hypothesis (Pn),(5")+0;
then (") P NPRHONB(p){n} for a suitably small neighborhood B(y) of
7 in S*%. We can also assume B(5)DI°; then SSuCMXi(P,(0)N\B(y))
by Sato’s theorem and by construction. Collecting the above remarks we
then conclude: (0;ip) =SS u.

Now we prove the last part of (2.4). We set Q.={i(y+s0)+itd; 2=C,,
ls|<e, A¥=t=<ed}). As already seen, for any <1 we can find C.»0, with
Cl™*>¢7%, in such a way that r,({) is an analytic function of {= &, which
satisfles :

(2.13) 70 =20("), [Imz,(0)|=20(), (=Q..
Then for F defined by (2.9) we have the estimate:
(2.14) |F(z, )| <expl— Ay~ 7+ 2|yl0(e) —tz -0 +tlzi0(E)],  {=L2..

Let 0<a<1; for z->e%xl, y-n>0()|y|, ¢e<1, we then conclude that
FdZ is integrable in Q.. Under the same conditions we also have:

lim Fd{=0. Thus we obtain:

J—eo S.Qar\{l=j)

2.13) S Fit = S Fag+\ Fz=- Fdz.
2.nit=2} R.nlt=22} .nti=Cgl 2.nls.=:}

The second term in the right hand side of (2.15) is entire and the third is
null on M*x{irj} as a section of Cy x.

For treating the first we set t=:4 in (2.14). Assuming z-6>¢%|x] we
then have:



(1]
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[F(z, )] sexpl — (e« —0(%) x| —2y[)].

Thus the first integral on the right side of (2.15) defines a real analytic
function on -6 >¢*|z| since, for such x and for any y with |y} <("*—0(s))/2,
it converges absolutely.

To complete the proof of (2.4) we only need to notice that, Ve, the
hyperfunction % of (2.12) differs from the term on the left side of (2.15)
by a term which is null on M X {in} as a section of Cy.x-

Last the statement of the theorem can be deduced from (2.4) by the
following :

LEMMA 2.6. Assume that there exists a hyperfunction u in o neigh-
borhood of O which verifies

(2.16) Pu=0, (0;i)eSSu, SSun(M"xfin)=92.
Then we can find v, in a neighborhood of 0, which verifies
(2.17) Pv=0, (0;ip)=SSwv, SSvCM"x{ip.

PROOF. Let Wix,w), (x,w)=M xS""!, be the component of a curve
wave decomposition of §(x) and let J(D,) be a local operator on S*! with
constant coefficients (cf. [2]). For w as in (2.16) we take =B, with
fi—u=0 on B.={|z|<e} and %=0 on M\B, due to the flabbiness of By.
For a suitable J(D,) and for v’(x):u(x);J(Dw)W(x, ®)|w=y, We then have

(0;47) =SS’ due to Lemma 1.1 of [2]. We also have: SSv'[, C(M NB.)
X {ip}, 8S Pv'|5,=0. Thus if we replace v by v=v'+k where h is an
analytic solution of Ph=—Pv’ on B., ¢ < then (2.17) is satisfied by
such ».

REMARK 2.7. In the proof of Theorem 2.5 we only need to assume
that the restriction of char P({—i7) to some Iimaginary homogeneous
2-dimensional plane through 48 has an analytic branch tangent to the
1f-axis. This condition covers a wider class of polynomials than those
considered in Theorem 2.5. For instance all polynomials which are locally
hyperbolic at 77 and such that *=i6< =i/  satisfy the above condition. (If
+iv are directions of local hyperbolicity, we denote here by =i/" the
components of +4v in the complement of 1R" N (P,); (0) in iR

REMARK 2.8. Let N be non-characteristic for P. The boundary values
rluwy=(h,); of wel (M*, B%) (cf. (1.5)) are calculated as A;=Buly for a
normal system of boundary operators B, For w(z)=G(z+i/'0) with /"=
I'Ni{z-0=0}+# @, one easily obtains: B,(x,D)u(zx)ly=(B(z,D)G(2}iy)(a'—1i['0)
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(where z’ is the variable in N). Thus it is easily seen that for the
hyperfunction u=u* of Theorem 2.5 one has (in a neighborhood of 0):

(2.18) ulg-e Aylias; (0;i)eSSru),

(where A, is the sheaf of analytic functions on M and A% the kernel
sheaf of P).

REMARK 2.9. Let N be non-characteristic for P. Instead of the
hypotheses of Theorem 2.5 assume that a root ¢ of P,(inp+cd)=0 verifies
Rer<0. Then one can give a much simpler construction of an analytic
solution G(z) of PG(z)=0 on a set of the form R"+i/* where ['"=
{y-p>e(lyl+ Y(—x)|z,]) (Y being the Heaviside function). Moreover one
can prove that G(z-+47"*0)|x+ is analytic near 0 and that (0;iy))e
SS((G(»)|y)(x’+41770)) but one cannot expect any more that G(zx-+iI10)|x+
extends as a hyperfunction solution of P to a neighborhood of 0. However
since G(x+4*0)|5- is mild from N* (cf. [6]) then the calculus of its
boundary values can be performed as in Remark 2.8 according to Prop-
osition 2.6 of [2]. In particular (2.18) is satisfied by wu(z)=G(x+2*0)| s+

COROLLARY 2.10. In the hypotheses of Theorem 2.5, P is neither N7-
nor N -regular at iy.

PROOF. We fix y*=(y;i7), y=N, take wu(z)=u"(r—y) with 4" as in
(2.3) and prove that P is not N*-regular at y* (The proof of non-N"-
regularity is analogous.)

By flabbiness of B, we write u=u,+u, with w, el y+(By), U<
L y-(By). We consider 2 as a section of Cyix at v* and u, (u, resp.), as
a section of Cy-x (Cy-x resp.) (cf. §1). The injectivity of P:Cutix—
Cy=y at y* (cf. (1.3)) implies u&Cy+x JCxu-x for Pu=0 and u+#0 as a
section of Cyix at y*. It follows u; € Cyiy, & Cyix £0r Coix=Cu+xNCu-1x
at y* (by the exactness of (1.2)).

Note that, because of (2.3) : u;EFN;;T?IX(CJl!X)mCMﬂX at y* and Pu,eCuix
at y* (for T AB)CC oy xNCo—x=Cwx by Proposition 1.1). This contra-
dicts the N*-regularity at y*.

§$3. Regularity of the traces of solutions of constant coeflicients
equations

We put here ¢=(1,0,---) and write z=(z,2"), (=, ), z=x+1y,
{=&—-ir; sometimes we also write {=Re{+¢Im{. We set N={z,=0},
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M*={x,=0}, S"'={lp|=1}, S**={ypeS™';5=0} and also identify S*7*
with {’eR"™;|p’|=1}. We denote by ¢ the projection ({;,{")—{" from
C"” to C**. Let P=P(D) be an operator with constant coefficients, denote
by P, the principal part of P, and assume N non-characteristic for P. Let
i’ =14(0, p")e1S" 2

DEFINITION 3.1 (cf.[2]). P is said to be —# -semihyperbolic to N* iff,
for a suitable constant c¢:

(8.1) —Re{ i =c[|Re [ +(Im P —Am -5 P)"]
when Im{ -»'=0 and P,({,{)=0.

REMARK 3.2. The former is weaker than the notion of “semihyper-
bolicity to N* at —in’” which is defined as follows ([2]}:

(3.2) Rel,=0 when {eo™ (i3 )N PL(0) and |7 —7'|<1.

In fact by use of the local Bochner’s tube theorem (and also by remember-
ing that P,(18)+#0, 6=(1,0,--+)) it is easily seen that (3.2)=(3.1). Let 6=
(1,0,--)e8*", »’eS*"* and assume P,(¢0) 0.

LEMMA 3.8. (38.1) 2s equivalent to:
(8.9 Rel,=0 for LeoaMip )N PLN0)
(3.4) (Pr)i(i6)#0 for neo iy )NPRHOYNIR™.

7

PROOF. We let, in a suitable coordinate system, 6=(1,0,--+), 7'=
(0,-++,0,1), and write {=({, (", {n), '=(L", L)

First we prove that (8.3) and (3.4) imply (8.1). Let inpso ' (in)NPLN0)
NiR®. The condition (P,);,(16)=0 is equivalent to: [£;| <¢|l’] for (Pn)x(C)
=0, {#0. Since P,({)=(Pn)u(l—ip)+o(l{—inl#), [{—in|—0 (z being the
degree of (P,);,) then the former is also equivalent to: |{,—1in| <¢|l —ip’]
for P,({)=0, |{—ip|«l. Taking into account the homogeneity of P, we
then obtain:

(3.5) IRelil=cll"|+IRelul)  If PuQ)=0, |{—ip/<1.

On the other hand for any {’co (19 )N\ PRHO)N(C™\iR"™), we haveTRe{{>0
by (8.3). It follows:

(3.6) —Reli=c(|l"[+[Rel,)) if Pu(0)=0, [{-{«1.

By (3.5) and (3.6) we then conclude that (3.1) is satisfled by any {=P;(0)
with |2/ —ip’l«1. In consequence it is also satisfied by any {eP,Y0)
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with Im{,=20 since, when |[{/[{'|—iyp'1>e, Im{,=0, we have [{'|<
c(Il"1+1Re,]) for a suitable c=c¢..

(3.1)=(3.3) is obvious. Finally let us prove (3.1)=(3.4).

Let ipso(in)NPL(O)NIR™ and consider P.(ip+{-+70) for {C",
-=C, [{]+]r]«1. Note that P,(in+8) cannot vanish identically in ¢ due
to (3.1). Then for some integer v=0, P,(in+70)/z* is analytic and #0 at

-z=0. We write, in view of Welerstrass’s theorem:
Pm(i7]+c+‘:5):F(C, T)(T”_'_G(C) T)) ’

where F' is analytic and #0 at ({,z)=(0,0) and G is a polynomial in r of
degree <v—1 whose coefficients all vanish at {=0.

To prove our statement we need to show that v=pg (u being the
degree of (P,);). Clearly v=zp. To show the opposite we take »'eS*™
such that (P,)(i7")#0 and write:

P (in+isy' +0)=F(isp', 7). :1[1 (z—17,(8))
F=loy

with z,(s)=a;s"(1-+0(1)), seC, s—0, for some constants a,=C, b,cQ, b;>0.
We also note that P,(in+isy’)=(P.)uir')s*+o(]s*]). Therefore if we
suppose v> u, we then have b,<1 and a,#0 for some j. Take d=C such
that k=—Rea,d>0 and let s=td, teR*; it is immediately seen that
—Rec,(s)=Eki"’>¢|s! for any ¢ when t—0. This contradicts (3.1). The
proof is complete.

Let (x”;4p)e Nx4S*% and let p:4S”'—iS""* be the projection. We
are now ready to compare (3.1} with the condition:

{3.7) uE(FM*(o@.,w)/]jlv(ﬁy))(o,z'); Py=0,
SS ulw+N{0, 2 X {p ()} =0 = (¢ ;in )& SSy(u).

In fact by Lemma 3.3, Theorem 2.4, Proposition 1.3 and Remarks 2.8, 2.9,
one immediately obtains:

THEOREM 3.4. Let P,(i6)+0, (§=(1,0,--+)), N={x,=0}, and take (x’ ;i7)
=Nx1S™2 Then (8.1)=(3.7). Conversely (3.1)=(3.1) +f we assume in
addition: P,eR[{] and 3((Pr):)(i6)=0 for any incsp (in YNPZH0).

Example. The following is not included in the counterexamples to
(3.7) considered by Kaneko in [2]. Let us consider in R*:

N={z,=0}, ir=1(0,0,0,1), P(D)=Di—DJ(D.Ds—D3).

We have:
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o Hig" )N P H0) ={in}, Py(if) =[ — (L~ L8 le=ct.0.00=0,
apzﬁ;(iﬁ):[_i(c& _2C2; Cz)]::u',o:m:'é 0.

Thus (3.7) is not satisfied and P is not N*-regular at i».
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