J. Fac. Sci. Univ. TokyoSect. IA, Math.33 (1986), 429-439.

Propagation of microanalyticity at the boundary for solutions of linear differential equations

By Giuseppe ZAMPIERI

(Communicated by H. Komatsu)

Abstract Let $M=R^n$, $iS^*M=R^n\times iS^{n-1}$. For coordinates $(x;i\eta)=(x_1,x';i\eta_1,i\eta')$ in iS^*M , we set $N=\{x_1=0\}$, $M^+=\{x_1\geq 0\}$, $S^{n-2}=\{\eta_1=0\}$, $iS^*N=R^{n-1}\times iS^{n-2}$. Let P=P(D) be a differential operator with constant coefficients and order m for which N is non-characteristic. Let \mathcal{A}_M be the sheaf of real analytic functions on M, denote by \mathcal{A}_M^P the kernel sheaf of P, and, for $u\in \Gamma(U\cap\mathring{M}^+,\mathcal{A}_M^P)$, $U\subset M$ open, let $\Gamma(u)$ be the m traces of n on n0. For n1 is n2 in n3 in n3 in n4 in n5 in n5

$$(0.1) (x', i\eta') \notin SS\gamma(u) \text{for any } u \in \Gamma(U \cap \mathring{M}^+, \mathcal{A}_M^P).$$

We prove that " $-\eta'$ -semihyperbolicity" to N^+ of P implies (0.1). Under some additional hypotheses we also prove the converse.

The first part of the statement was conjectured by Kaneko in [2]; its proof is a consequence of the results of [11] on "N-regularity" of non-microcharacteristic operators. The second part is obtained by means of a microlocally-null solution.

I wish to thank Prof. P. Schapira for frequent and invaluable discussions on this subject.

§ 1. Review on microlocal boundary value problems (cf. [5], [6])

Let M be an n-dimensional real analytic manifold, $N \subset M$ an analytic hypersurface, M^{\pm} the pair of closed half spaces of M with boundary N, X and Y complexifications of M and N respectively. Let T_M^*X , $T_M^*\pm X$, T_M^*X be the conormal boundles of M, M^{\pm} , N in X and T_N^*Y that of N in Y. Denote by $\overline{\omega}: Y \times T^*X \to T^*X$, $\rho: Y \times T^*X \to T^*Y$ and $\pi: T^*X \to X$ the natural mappings. We recall the sheaves \mathcal{B}_M , \mathcal{B}_N of hyperfunctions on M, N, and the sheaves $\mathcal{C}_{M:X}$, $\mathcal{C}_{N:X}$, $\mathcal{C}_{M^{\pm}|X}$, $\mathcal{C}_{N:Y}$ of microfunctions on T_M^*X , T_N^*X , $T_M^*\pm X$, T_N^*Y defined in [8], [5]. We collect in a Proposition all properties of such sheaves we need later (see [5] for the proof).

PROPOSITION 1.1. a) We have an isomorphism

$$\Gamma_{M=(\mathcal{B}_M)|_N} \cong \dot{\pi}_*(\mathcal{C}_{M=(X)})|_N, \quad (where \ \dot{\pi} = \pi|_{T^*X \setminus T^*_{Y}X}).$$

b) We have, in $(N \underset{y}{\times} T_{\underline{y}}^* X) \setminus T_{\underline{x}}^* X$, injective morphisms:

$$(1.1) C_{N:X} \longrightarrow C_{M = |X} \longrightarrow C_{M:X},$$

and an exact sequence:

$$(1.2) 0 \longrightarrow \mathcal{C}_{X,X} \longrightarrow \mathcal{C}_{M^{-1}X} \oplus \mathcal{C}_{M^{-1}X} \longrightarrow \mathcal{C}_{M,X} \longrightarrow 0.$$

c) The sections of $C_{N,X}$, $C_{M^{\pm};X}$ have the unique continuation property along the fibers of $\rho|_{T_{N}^{*}X\setminus T_{Y}^{*}X}$, $\rho|_{\overline{\omega}^{-1}(T_{M}^{*}\pm X)\setminus T_{Y}^{*}X}$. In particular if P(x,D) is a differential operator with analytic coefficients for which N is non-characteristic (i.e. if ρ is proper on $\overline{\omega}^{-1}(\operatorname{char} P)$), then:

$$(1.3) P: \mathcal{C}_{N:X} \longrightarrow \mathcal{C}_{N:X} \quad and \quad P: \mathcal{C}_{M^{\pm}:X} \longrightarrow \mathcal{C}_{M^{\pm}:X}$$

are injective on $T_X^*X \setminus T_Y^*X$ and $\bar{\omega}^{-1}(T_M^*=X) \setminus T_Y^*X$ respectively.

Let $x^* \in N \times T_M^* X$ and let P = P(x, D), (where $D = -i\partial/\partial x$), be a differential operator with analytic coefficients in a neighborhood of $\pi(x^*)$.

DEFINITION 1.2 ([6]). P is said to be N^+ -regular at x^* iff the following implication holds:

$$(1.4) u \in (\mathcal{C}_{M^{\pm}(X)})_{x^*} \cap \Gamma_{N \underset{M}{\times} T_{M}^* X}(\mathcal{C}_{M(X)})_{x^*}, \quad Pu \in (\mathcal{C}_{N(X)})_{x^*} \Longrightarrow u \in (\mathcal{C}_{N(X)})_{x^*}.$$

Replacing $C_{M^+|X}$ by $C_{M^-|X}$ (resp. $C_{M|X}$) in (1.4), we obtain the definition of N^- -regularity (resp. N-regularity). Note that P is N-regular iff it is N^- -and N^- -regular due to the exactness of (1.2) at x^* .

For understanding the meaning of N^+ -regularity we recall the theory of boundary values of hyperfunction solutions of differential equations following [9] and [10]. For local coordinates $x=(x_1,x')$ in M we set $N=\{x_1=0\}$ and assume N non-characteristic for P. Let m be the order of P, P_m the principal part, and \mathcal{B}_M^P the sheaf of \mathcal{B}_M -solutions of P. According to [9] we know that for $u\in \Gamma(\mathring{M}^+,\mathcal{B}_M^P)$ there exist a unique extension $[u]^+\in \Gamma_{M^+}(\mathcal{B}_M)$ of u, and unique sections $\gamma(u)=(h_j)\in (\mathcal{B}_N)^m$ which give an equality of the form:

(1.5)
$$P[u]^{+} = \sum_{j=0}^{m-1} h_{j} \otimes \delta_{x_{1}}^{(j)}.$$

We will call such $[u]^-$ the canonical extension of u and such $\gamma(u)$ the traces of u on N. Let $x^* \in N \times T_M^*X$; if $P_m(x^* + (0; \zeta_1, 0, \cdots))/\zeta_1^n$ is analytic

and $\neq 0$ at $\zeta_1=0$, we can decompose P=P'Q', Q' being invertible at x^* and P' being of Weierstrass type in D_{x_1} with degree μ (cf. [8]). Then N^* -regularity of P at x^* is equivalent to vanishing at $\rho(x^*)$ of the μ traces of $((\mathcal{C}_{M^+|X} \cap \mathcal{F}_{N^*T^*_{M}X}(\mathcal{C}_{M|X}))/\mathcal{C}_{N|X})$ -solutions of P' (which can be defined as in (1.5) by the aid of the division theorem for the sheaf $\mathcal{C}_{N|X}$ [4]). In particular for $y^* \in T^*_N Y$ we have (cf. [10]):

PROPOSITION 1.3. Under the above hypotheses on P and N assume further:

$$(1.6) \rho^{-1}(y^*) \cap \operatorname{char} P \subset \overline{\omega}^{-1}(T_M^* + X),$$

- (1.7) P is N^+ -regular at any point of $\rho^{-1}(y^*) \cap \bar{\omega}^{-1}(\operatorname{char} P \cap T_M^*X)$. It then follows
- (1.8) For any solution $u \in (\Gamma_M + (\mathcal{B}_M)/\Gamma_N(\mathcal{B}_M))_{\pi(y^*)}$ of Pu = 0, which satisfies $\overline{SSu}_{|\mathring{M}} + \bigcap \rho^{-1}(y^*) = \emptyset$, we have $y^* \in SS\gamma(u)$.

$\S 2$. N-regularity of constant coefficients operators

From now on we let $M=\mathbf{R}^n$, $X=\mathbf{C}^n$. We also assume that P=P(D) has constant coefficients and that $N\subset M$ is a hyperplane. We denote by (z,ζ) , z=x+iy, $\zeta=\xi+i\eta$ the coordinates in T^*X , put $S^{n-1}=\{\eta\in\mathbf{R}^n: |\eta|=1\}$ and write also $\mathbf{R}^n\times iS^{n-1}$ instead of $T_M^*X=T_M^*X\setminus T_X^*X$ (by identifying the points of T_M^*X on the same orbit of the action of \mathbf{R}^+). Let $P(\zeta)$, $\zeta\in\mathbf{C}^n$ be the polynomial associated to P(D), let $P_m(\zeta)$ be the principal part of $P(\zeta)$, and let $i\eta$ be a point in iS^{n-1} . We denote by $(P_m)_{i\eta}$ the first nonvanishing term of the expansion of P_m at $i\eta$ into a (Taylor) sum of homogeneous polynomials. If μ denotes the degree of $(P_m)_{i\eta}$ we then have:

$$P_{\rm m}(\zeta)\!=\!(P_{\rm m})_{i\eta}(\zeta\!-\!i\eta)\!+\!o(|\zeta\!-\!i\eta|^{\mu})\;, \qquad \zeta\!\to\!i\eta\;. \label{eq:pm}$$

DEFINITION 2.1. Let $i\eta$ and $i\theta$ belong to iS^{n-1} . We say that $i\theta$ is non-micro-characteristic for P at $i\eta$ iff

$$(2.1) \hspace{3.1em} (P_{\it m})_{i\it \eta}(i\theta) \neq 0 \; .$$

REMARK 2.2. By the homogeneity of P_m it is obvious that the above property only depends on the image of $i\theta$ by the projection ρ of iS^{n-1} from the poles $\pm i\eta$ to the equator.

REMARK 2.3. For a point x^* and subsets S, V of T^*X , with V smooth,

one defines a closed cone $C_V(S)_{x^*}$ in the normal boundle $(T_v T^*X)_{x^*} = T_{x^*}T^*X/T_{x^*}V$, (with the real underlying structure), in the following way. A vector $\delta \in (T_v T^*X)_{x^*}$ does not belong to $C_V(S)_{x^*}$ if and only if there exist an open cone $\Gamma \subset T_{x^*}T^*X$, invariant under $T_{x^*}V$ and verifying $\Gamma/T_{x^*}V \supset \{\delta\}$, and a neighborhood U of x^* , such that:

$$((U \cap V) + \Gamma) \cap U \cap S = \emptyset \qquad \text{(cf. [4])}.$$

Let η , θ be as in Definition 2.1, choose coordinates such that $\eta = (0, \dots, 0, 1)$, $\rho(\theta) = (1, 0, \dots)$, and take $x^* \in \mathbb{R}^n \times \{i\eta\}$. In view of the homogeneity of P_m it is immediately seen that (2.1) is equivalent to:

$$\lambda \partial / \partial \zeta_1 + \bar{\lambda} \partial / \partial \bar{\zeta}_1 \oplus C_V(\operatorname{char} P)_{x^*}$$

for
$$V = \{\zeta_1 = \cdots = \zeta_{n-1} = 0\}$$
 and for any $\lambda \in \dot{C}$,

or else to:

$$\theta \cdot \partial/\partial \xi \in C_{V'}(\operatorname{char} P)_{x^*}$$
 for $V' = \{\xi_1 = \zeta_2 = \cdots = \zeta_{n-1} = \xi_n = 0\}$
and for any $\theta \in S^{n-1}$ with $\rho(\theta) = (\pm 1, 0, \cdots)$.

(For the second statement cf. the proof of Lemma 3.3.)

Let η , θ belong to S^{n-1} and set $N=\{x\cdot\theta=0\}$. In view of Remark 2.3, the following is a particular case of Theorem 4.3 of [11].

THEOREM 2.4. Let $(P_m)_{i\eta}(i\theta) \neq 0$. Then P is N-regular at $i\eta$ (i.e. at any $x^* \in N \times \{i\eta\}$).

To obtain a partial converse we construct in next theorem "microlocally-null" solutions. Let $\eta, \theta \in S^{n-1}$, set $N = \{x \cdot \theta = 0\}$ and denote by M^{\pm} the pair of closed half spaces of M with boundary N.

THEOREM 2.5. Let P_m have real coefficients and assume:

$$(2.2) (P_m)_{i\eta}(i\theta) = 0, \quad \partial((P_m)_{i\eta})(i\theta) \neq 0, \quad (\partial = (\partial/\partial \zeta_i)_i).$$

Then there exist hyperfunctions u^{\pm} , in a neighborhood of 0, which satisfy:

(2.3)
$$Pu^{\pm} = 0, \quad SS \ u^{\pm} \subset M^{\mp} \times \{i\eta\}, \quad (0:i\eta) \in SS \ u^{\pm}.$$

PROOF. We will prove the statement for $u=u^+$. First we construct $u \in \Gamma(M, \mathcal{B}_M)$ verifying:

(2.4)
$$Pu=0, \quad (0; i\eta) \in SSu, \quad SSu \cap (\mathring{M}^+ \times \{i\eta\}) = \emptyset.$$

In the proof we will replace $(P_m)_{i\eta}$ by $(P_m)_{\eta} = i^{-m+\mu}(P_m)_{i\eta}$ (μ being the degree of $(P_m)_{i\eta}$), and $i\theta$ by θ for simplicity. Let us choose $\eta^i \in S^{n-1}$ with

$$(P_m)_{\tau}(\eta^1) \neq 0$$
 and $(\eta^1 \cdot \partial)((P_m)_{\tau})(\theta) \neq 0$.

We can then write

(2.5) $P_{m}(\eta + \sigma\theta + \tau\eta^{1}) = \tau Q(\sigma, \tau) + R(\sigma, \tau), \ \sigma, \tau \in \mathbb{C}$, where degree $Q = \mu - 1$, $|Q(\sigma, \tau)| \ge c |(\sigma, \tau)|^{\mu - 1}$ for $|\tau/\sigma| \ll 1$, $R(\sigma, \tau) = o(|(\sigma, \tau)|^{\mu})$ and finally Q and R are real for real arguments.

Thus when $|\tau/\sigma| \ll 1$, the equation (2.5) for τ is equivalent to:

(2.6) $\tau - r(\sigma, \tau) = 0$ with $r(\sigma, \tau) = o(|\sigma|)$ and with r analytic and real for real argument.

We denote by $\tau_1^0 = \tau_1^0(\sigma)$ the small solution of (2.6) for τ , i.e. the only solution $\tau(\sigma)$ of (2.5) with $\tau(\sigma) = o(|\sigma|)$; $\tau_1^0(\sigma)$ is clearly real for real σ .

Let $\lambda \in \mathbb{R}^+$, $\lambda > C$, and $\sigma \in \mathbb{C}$, $|\sigma| < c$. Denote by $\tau_j^0(\lambda(\eta + \sigma\theta))$, $j = 1, \cdots, \mu$, and $\tau_j(\lambda(\eta + \sigma\theta))$ the μ zeros for τ of $P_m(\lambda(\eta + \sigma\theta) + \tau\eta^1)$ and $P(\lambda(\eta + \sigma\theta) + \tau\eta^1)$ respectively, with order $\lambda 0(|\sigma|)$. For suitable labelling we have $|\tau_j^0 - \tau_j^1| < c_1 \lambda^{1-1/\mu}$ for $\lambda > C$. On the other hand for some small positive δ there exists $c = c_\delta$, (c < 1/3), such that for $2c_1 \lambda^{-1/\mu}/\delta < |\sigma| < c$ and for $j \neq 1$, we have: $|\tau_j^0 - \tau_1^0| \ge \delta \lambda |\sigma| \ge 2c_1 \lambda^{1-1/\mu}$.

Thus for $\lambda > C \gg 0$ and $2c_1\lambda^{-1/\mu}/\delta < |\sigma| < c \ll 1$, $\tau_1(\lambda(\eta + \sigma\theta))$ is an analytic function of λ and σ which verifies:

$$(2.7) |\tau_1(\lambda(\eta+\sigma\theta))| = \lambda 0(|\sigma|^2), (if |\sigma^2| > \lambda^{-1/\mu}),$$

(2.8)
$$|\operatorname{Im} \tau_1(\lambda(\eta + \sigma\theta))| = \lambda |\operatorname{Im} \sigma|0(|\sigma|), \quad (\text{if } |\operatorname{Im} \sigma||\sigma| > \lambda^{-1/\mu}).$$

(2.7) is obvious. To prove (2.8) we note that Cauchy inequalities give: $\left|\frac{\partial}{\partial\sigma}\tau_1^0(\eta+\sigma\theta)\right|=0(|\sigma|) \text{ due to } |\tau_1^0(\eta+\sigma\theta)|=0(|\sigma|^2). \text{ Since we also have } \text{Im }\tau_1^0(\eta+\sigma\theta)=0 \text{ for } \sigma\in \pmb{R}, \text{ we then obtain : } |\text{Im }\tau_1^0(\eta+\sigma\theta)|=|\text{Im }\sigma|0(|\sigma|) \text{ which obviously implies (2.8).}$

We put in the following $\sigma = s + i\lambda^{-(1-\nu)}$, |s| < c, $\lambda > C$; then for $1 > \nu > 1 - 1/2\mu$ and for suitable $C \gg 0$, $c \ll 1$, all above requirements are satisfied. We set $J = \{(\lambda, s) ; \lambda > C, |s| < c\}$ and $I = \{\lambda(\eta + s\theta + i\lambda^{-(1-\nu)}\theta) ; (\lambda, s) \in J\}$; we also denote by $\zeta = \zeta(\lambda, s)$ the points of I. We put, for $z, \zeta \in \mathbb{C}^n$ with ζ close to I:

(2.9)
$$F(z,\zeta) = \exp[i\langle z,\zeta + \tau_1(\zeta)\eta^1\rangle].$$

Then because of (2.7), (2.8) we have, with a new constant c_1 :

$$(2.10) |F(z,\zeta)| \leq \exp[-\lambda \langle y,\eta \rangle + 2c\lambda |y| + c_1 \lambda^{\nu} |z|], \zeta \in I.$$

Thus for $y \cdot \eta > 3c|y|$ the integral

(2.11)
$$G(z) = \int_{I} F(z, \zeta) d\zeta$$
, (where $\int_{I} F(z, \zeta) d\zeta$ stands for $\int_{J} F(z, \zeta(\lambda, s)) d\lambda ds$),

converges absolutely to define an analytic function of z. We put $\Gamma = \{y: y: \eta > 3c|y|\}$ and set:

$$(2.12) u(x) = G(x + i\Gamma 0),$$

in the sense of hyperfunctions. Clearly Pu=0 and $SS u \subset M \times i\Gamma^0$.

Let us remark now that it is not restrictive to assume η^1 orthogonal to η . Let ρ^1 be the projection of S^{n-1} from the poles $\pm \eta^1$ and let $I^1 = \{\lambda(\eta + s\rho^1(\theta)), |s| < c, \lambda > 0\}$ and $N^1 = \{x \cdot \eta^1 = 0\}$. Then

$$u\Big|_{N^1} = \Big(\int_I e^{ix\cdot\zeta}d\zeta\Big)\Big|_{N^1} = \int_{I^1} e^{ix\cdot\zeta}d\zeta$$
,

modulo microfunctions vanishing on $N^1 \times \{i\eta\}$. Thus $(0; i\eta) \in SS \ u|_{N^1}$ and therefore $SS \ u \cap (\{0\} \times \{i(\rho^1)^{-1}(\eta)\}) \neq \emptyset$. Recall the hypothesis $(P_m)_\eta(\eta^1) \neq 0$; then $(\rho^1)^{-1}(\eta) \cap P_m^{-1}(0) \cap B(\eta) \subset \{\eta\}$ for a suitably small neighborhood $B(\eta)$ of η in S^{n-1} . We can also assume $B(\eta) \supset \Gamma^0$; then $SS \ u \subset M \times i(P_m^{-1}(0) \cap B(\eta))$ by Sato's theorem and by construction. Collecting the above remarks we then conclude: $(0; i\eta) \in SS \ u$.

Now we prove the last part of (2.4). We set $\Omega_{\varepsilon} = \{\lambda(\eta + s\theta) + it\theta : \lambda \ge C_{\varepsilon}, |s| \le \varepsilon, \lambda^{\nu} \le t \le \varepsilon \lambda\}$. As already seen, for any $\varepsilon \ll 1$ we can find $C_{\varepsilon} \gg 0$, with $C_{\varepsilon}^{1-\nu} > \varepsilon^{-1}$, in such a way that $\tau_1(\zeta)$ is an analytic function of $\zeta \in \Omega_{\varepsilon}$ which satisfies:

$$(2.13) |\tau_1(\zeta)| = \lambda 0(\varepsilon^2), |\operatorname{Im} \tau_1(\zeta)| = t0(\varepsilon), \zeta \in \Omega_{\varepsilon}.$$

Then for F defined by (2.9) we have the estimate:

$$(2.14) |F(z,\zeta)| \leq \exp[-\lambda y \cdot \eta + \lambda |y| |0(\varepsilon) - tx \cdot \theta + t |x| |0(\varepsilon)|], \zeta \in \Omega_z.$$

Let $0<\alpha<1$; for $x\cdot\theta>\varepsilon^{\alpha}|x|$, $y\cdot\eta>0(\varepsilon)|y|$, $\varepsilon\ll1$, we then conclude that $Fd\zeta$ is integrable in $\mathcal{Q}_{\varepsilon}$. Under the same conditions we also have: $\lim_{j\to\infty}\int_{\mathcal{Q}_{\varepsilon}\cap\{\lambda=j\}}Fd\zeta=0$. Thus we obtain:

$$(2.15) \qquad \int_{\mathcal{Q}_{\varepsilon} \cap \{\iota = z^{\nu}\}} F d\zeta = \int_{\mathcal{Q}_{\varepsilon} \cap \{\iota = \varepsilon \lambda\}} F d\zeta + \int_{\mathcal{Q}_{\varepsilon} \cap \{\lambda = C_{\varepsilon}\}} F d\zeta + \int_{\mathcal{Q}_{\varepsilon} \cap \{\lambda = \varepsilon\}} F d\zeta.$$

The second term in the right hand side of (2.15) is entire and the third is null on $\mathring{M}^+ \times \{i\eta\}$ as a section of $\mathcal{C}_{M/X}$.

For treating the first we set $t=\varepsilon\lambda$ in (2.14). Assuming $x\cdot\theta>\varepsilon^\alpha|x|$ we then have:

$$|F(z,\zeta)| \leq \exp[-\lambda((\varepsilon^{1+\alpha}-0(\varepsilon^2))|x|-2|y|)].$$

Thus the first integral on the right side of (2.15) defines a real analytic function on $x \cdot \theta > \varepsilon^{\alpha} |x|$ since, for such x and for any y with $|y| < (\varepsilon^{1+\alpha} - 0(\varepsilon^2))/2$, it converges absolutely.

To complete the proof of (2.4) we only need to notice that, $\forall \varepsilon$, the hyperfunction u of (2.12) differs from the term on the left side of (2.15) by a term which is null on $M \times \{i\eta\}$ as a section of $\mathcal{C}_{M \times X}$.

Last the statement of the theorem can be deduced from (2.4) by the following:

LEMMA 2.6. Assume that there exists a hyperfunction u in a neighborhood of 0 which verifies

(2.16)
$$Pu=0, \quad (0;i\eta) \in SS \ u, \quad SS \ u \cap (\mathring{M}^+ \times \{i\eta\}) = \emptyset.$$

Then we can find v, in a neighborhood of 0, which verifies

(2.17)
$$Pv=0$$
, $(0; i\eta) \in SS v$, $SS v \subset M^- \times \{i\eta\}$.

PROOF. Let $W(x,\omega)$, $(x,\omega)\in M\times S^{n-1}$, be the component of a curve wave decomposition of $\delta(x)$ and let $J(D_\omega)$ be a local operator on S^{n-1} with constant coefficients (cf. [2]). For u as in (2.16) we take $\bar{u}\in\mathcal{B}_M$ with $\bar{u}-u=0$ on $B_\varepsilon=\{|x|<\varepsilon\}$ and $\bar{u}=0$ on $M\setminus \bar{B}_\varepsilon$ due to the flabbiness of \mathcal{B}_M . For a suitable $J(D_\omega)$ and for $v'(x)=u(x)*J(D_\omega)W(x,\omega)|_{\omega=\tau}$, we then have $(0\,;i\eta)\in SS\,v'$ due to Lemma 1.1 of [2]. We also have: $SS\,v'|_{B_\varepsilon}\subset (M^-\cap B_\varepsilon)\times \{i\eta\}$, $SS\,Pv'|_{B_\varepsilon}=0$. Thus if we replace v' by v=v'+h where h is an analytic solution of Ph=-Pv' on B_ε , $\varepsilon'<\varepsilon$, then (2.17) is satisfied by such v.

REMARK 2.7. In the proof of Theorem 2.5 we only need to assume that the restriction of char $P(\zeta-i\eta)$ to some imaginary homogeneous 2-dimensional plane through $i\theta$ has an analytic branch tangent to the $i\theta$ -axis. This condition covers a wider class of polynomials than those considered in Theorem 2.5. For instance all polynomials which are locally hyperbolic at $i\eta$ and such that $\pm i\theta \in \pm i\partial \Gamma$ satisfy the above condition. (If $\pm iv$ are directions of local hyperbolicity, we denote here by $\pm i\Gamma$ the components of $\pm iv$ in the complement of $i\mathbf{R}^n \cap (P_m)^{-1}_{ij}(0)$ in $i\mathbf{R}^n$.

REMARK 2.8. Let N be non-characteristic for P. The boundary values $\gamma(u) = (h_j)_j$ of $u \in \Gamma(\mathring{M}^+, \mathcal{B}_M^P)$ (cf. (1.5)) are calculated as $h_j = B_j u|_X$ for a normal system of boundary operators B_j . For $u(x) = G(x+i\Gamma 0)$ with $\Gamma' = \Gamma \cap \{x \cdot \theta = 0\} \neq \emptyset$, one easily obtains: $B_j(x,D)u(x)|_X = (B_j(x,D)G(x)|_Y)(x'+i\Gamma' 0)$

(where x' is the variable in N). Thus it is easily seen that for the hyperfunction $u=u^+$ of Theorem 2.5 one has (in a neighborhood of 0):

(2.18)
$$u|_{\dot{M}^{+}} \in \mathcal{A}_{M}^{P}|_{\dot{M}^{+}}; \quad (0; i\eta) \in SS \gamma(u),$$

(where \mathcal{A}_M is the sheaf of analytic functions on M and \mathcal{A}_M^P the kernel sheaf of P).

REMARK 2.9. Let N be non-characteristic for P. Instead of the hypotheses of Theorem 2.5 assume that a root τ of $P_m(i\eta+\tau\theta)=0$ verifies $\text{Re }\tau<0$. Then one can give a much simpler construction of an analytic solution G(z) of PG(z)=0 on a set of the form $\mathbf{R}^n+i\Gamma^+$ where $\Gamma^+=\{y\cdot\eta>\varepsilon(|y|+Y(-x_1)|x_1|)\ (Y\text{ being the Heaviside function}).$ Moreover one can prove that $G(x+i\Gamma^+0)|_{\mathring{M}^+}$ is analytic near 0 and that $(0\,;i\eta')\in \text{SS}((G(z)|_r)(x'+i\Gamma'0))$ but one cannot expect any more that $G(x+i\Gamma^+0)|_{\mathring{M}^+}$ extends as a hyperfunction solution of P to a neighborhood of 0. However since $G(x+i\Gamma^+0)|_{\mathring{M}^+}$ is mild from N^+ (cf. [6]) then the calculus of its boundary values can be performed as in Remark 2.8 according to Proposition 2.6 of [2]. In particular (2.18) is satisfied by $u(x)=G(x+i\Gamma^+0)|_{\mathring{M}^+}$.

COROLLARY 2.10. In the hypotheses of Theorem 2.5, P is neither N^+ -nor N^- -regular at $i\eta$.

PROOF. We fix $y^*=(y;i\eta)$, $y\in N$, take $u(x)=u^+(x-y)$ with u^+ as in (2.3) and prove that P is not N^+ -regular at y^* . (The proof of non- N^- -regularity is analogous.)

By flabbiness of \mathcal{B}_M we write $u=u_1+u_2$ with $u_1\in\Gamma_M+(\mathcal{B}_M)$, $u_2\in\Gamma_M-(\mathcal{B}_M)$. We consider u as a section of $C_{M!X}$ at y^* and u_1 (u_2 resp.), as a section of $C_{M^{\pm}|X}$ ($C_{M^{-}|X}$ resp.) (cf. § 1). The injectivity of $P:C_{M^{\pm}|X}\to C_{M^{\pm}|X}$ at y^* (cf. (1.3)) implies $u\in C_{M^{\pm}|X}\cup C_{M^{-}|X}$ for Pu=0 and $u\neq 0$ as a section of $C_{M!X}$ at y^* . It follows $u_1\in C_{N!X}$, $u_2\in C_{N!X}$ for $C_{N!X}=C_{M^{\pm}|X}\cap C_{M^{-}|X}$ at y^* (by the exactness of (1.2)).

Note that, because of (2.3): $u_1 \in \Gamma_{N \underset{M}{\times} T_M^* X}(C_{M!X}) \cap C_{M^+|X}$ at y^* and $Pu_1 \in C_{N|X}$ at y^* (for $\Gamma_N(\mathcal{D}_M) \subset C_{M^+|X} \cap C_{M^-|X} = C_{N|X}$ by Proposition 1.1). This contradicts the N^+ -regularity at y^* .

§ 3. Regularity of the traces of solutions of constant coefficients equations

We put here $\theta = (1, 0, \dots)$ and write $z = (z_1, z')$, $\zeta = (\zeta_1, \zeta')$, z = x + iy, $\zeta = \xi + i\eta$; sometimes we also write $\zeta = \text{Re } \zeta + i \text{Im } \zeta$. We set $N = \{x_1 = 0\}$,

 $M^+=\{x_1\geq 0\},\ S^{n-1}=\{|\eta|=1\},\ S^{n-2}=\{\eta\in S^{n-1}\ ;\ \eta_1=0\}$ and also identify S^{n-2} with $\{\eta'\in R^{n-1}\ ;\ |\eta'|=1\}.$ We denote by σ the projection $(\zeta_1,\zeta')\to \zeta'$ from C^n to C^{n-1} . Let P=P(D) be an operator with constant coefficients, denote by P_m the principal part of P, and assume N non-characteristic for P. Let $i\eta'=i(0,\eta')\in iS^{n-2}$.

DEFINITION 3.1 (cf. [2]). P is said to be $-\eta'$ -semihyperbolic to N^+ iff, for a suitable constant c:

$$(3.1) -\operatorname{Re}\zeta_1 \leq c[|\operatorname{Re}\zeta'| + ((\operatorname{Im}\zeta')^2 - (\operatorname{Im}\zeta' \cdot \eta')^2)^{1/2}]$$
 when $\operatorname{Im}\zeta' \cdot \eta' \geq 0$ and $P_m(\zeta_1, \zeta') = 0$.

REMARK 3.2. The former is weaker than the notion of "semihyperbolicity to N^+ at $-i\eta'$ " which is defined as follows ([2]):

(3.2) Re
$$\zeta_1 \ge 0$$
 when $\zeta \in \sigma^{-1}(i\tilde{\eta}') \cap P_m^{-1}(0)$ and $|\tilde{\eta}' - \eta'| \ll 1$.

In fact by use of the local Bochner's tube theorem (and also by remembering that $P_m(i\theta) \neq 0$, $\theta = (1, 0, \cdots)$) it is easily seen that $(3.2) \Rightarrow (3.1)$. Let $\theta = (1, 0, \cdots) \in S^{n-1}$, $\eta' \in S^{n-2}$ and assume $P_m(i\theta) \neq 0$.

LEMMA 3.3. (3.1) is equivalent to:

(3.3)
$$\begin{cases} \operatorname{Re} \zeta_1 \geq 0 & \text{for } \zeta \in \sigma^{-1}(i\eta') \cap P_m^{-1}(0) \\ (P_m)_{i\eta}(i\theta) \neq 0 & \text{for } \eta \in \sigma^{-1}(i\eta') \cap P_m^{-1}(0) \cap i\mathbf{R}^n \end{cases}.$$

PROOF. We let, in a suitable coordinate system, $\theta = (1, 0, \dots), \eta' = (0, \dots, 0, 1)$, and write $\zeta = (\zeta_1, \zeta'', \zeta_n), \zeta' = (\zeta'', \zeta_n)$.

First we prove that (3.3) and (3.4) imply (3.1). Let $i\eta \in \sigma^{-1}(i\eta') \cap P_m^{-1}(0) \cap i\mathbf{R}^n$. The condition $(P_m)_{i\eta}(i\theta) \neq 0$ is equivalent to: $|\zeta_1| < c|\zeta'|$ for $(P_m)_{i\eta}(\zeta) = 0$, $\zeta \neq 0$. Since $P_m(\zeta) = (P_m)_{i\eta}(\zeta - i\eta) + o(|\zeta - i\eta|^\mu)$, $|\zeta - i\eta| \to 0$ (μ being the degree of $(P_m)_{i\eta}$) then the former is also equivalent to: $|\zeta_1 - i\eta_1| \leq c|\zeta' - i\eta'|$ for $P_m(\zeta) = 0$, $|\zeta - i\eta| \ll 1$. Taking into account the homogeneity of P_m we then obtain:

$$(3.5) |\operatorname{Re}\zeta_1| \leq c(|\zeta''| + |\operatorname{Re}\zeta_n|) \text{if} P_m(\zeta) = 0, |\zeta - i\eta| \ll 1.$$

On the other hand for any $\zeta^0 \in \sigma^{-1}(i\eta') \cap P_m^{-1}(0) \cap (C^n \setminus iR^n)$, we have ${}^{\bullet}_{\omega} \operatorname{Re} \zeta_1^0 > 0$ by (3.3). It follows:

$$(3.6) -\operatorname{Re}\zeta_1 \leq c(|\zeta''| + |\operatorname{Re}\zeta_n|) \text{if} P_m(\zeta) = 0, |\zeta - \zeta^0| \ll 1.$$

By (3.5) and (3.6) we then conclude that (3.1) is satisfied by any $\zeta \in P_m^{-1}(0)$ with $|\zeta'||\zeta'| - i\eta'| \ll 1$. In consequence it is also satisfied by any $\zeta \in P_m^{-1}(0)$

with $\operatorname{Im} \zeta_n \geq 0$ since, when $|\zeta'/|\zeta'| - i\eta'| > \varepsilon$, $\operatorname{Im} \zeta_n \geq 0$, we have $|\zeta'| < c(|\zeta''| + |\operatorname{Re} \zeta_n|)$ for a suitable $c = c_\varepsilon$.

 $(3.1) \Rightarrow (3.3)$ is obvious. Finally let us prove $(3.1) \Rightarrow (3.4)$.

Let $i\eta \in \sigma^{-1}(i\eta') \cap P_m^{-1}(0) \cap i\mathbf{R}^n$ and consider $P_m(i\eta + \zeta + \tau\theta)$ for $\zeta \in \mathbf{C}^n$, $\tau \in \mathbf{C}$, $|\zeta| + |\tau| \ll 1$. Note that $P_m(i\eta + \tau\theta)$ cannot vanish identically in τ due to (3.1). Then for some integer $\nu \geq 0$, $P_m(i\eta + \tau\theta)/\tau^{\nu}$ is analytic and $\neq 0$ at $\tau = 0$. We write, in view of Weierstrass's theorem:

$$P_m(i\eta + \zeta + \tau\theta) = F(\zeta, \tau)(\tau^{\nu} + G(\zeta, \tau))$$
,

where F is analytic and $\neq 0$ at $(\zeta, \tau) = (0, 0)$ and G is a polynomial in τ of degree $\leq \nu - 1$ whose coefficients all vanish at $\zeta = 0$.

To prove our statement we need to show that $\nu = \mu$ (μ being the degree of $(P_m)_{i\eta}$). Clearly $\nu \ge \mu$. To show the opposite we take $\eta^1 \in S^{n-1}$ such that $(P_m)_{i\eta}(i\eta^1) \ne 0$ and write:

$$P_{m}(i\eta+is\eta^{1}+\tau\theta)=F(is\eta^{1},\tau)\prod_{j=1,\cdots,\nu}(\tau-\tau_{j}(s))$$

with $\tau_j(s) = a_j s^{bj} (1+o(1))$, $s \in \mathbb{C}$, $s \to 0$, for some constants $a_j \in \mathbb{C}$, $b_j \in \mathbb{Q}$, $b_j > 0$. We also note that $P_m(i\eta + is\eta^1) = (P_m)_{i\eta}(i\eta^1)s^\mu + o(|s^\mu|)$. Therefore if we suppose $\nu > \mu$, we then have $b_j < 1$ and $a_j \neq 0$ for some j. Take $d \in \mathbb{C}$ such that $k = -\operatorname{Re} a_j d^{bj} > 0$ and let s = td, $t \in \mathbb{R}^+$; it is immediately seen that $-\operatorname{Re} \tau_j(s) = kt^{bj} > c|s|$ for any c when $t \to 0$. This contradicts (3.1). The proof is complete.

Let $(x'; i\eta') \in N \times iS^{n-2}$ and let $\rho: iS^{n-1} \to iS^{n-2}$ be the projection. We are now ready to compare (3.1) with the condition:

(3.7)
$$u \in (\Gamma_{M^{+}}(\mathcal{B}_{M})/\Gamma_{N}(\mathcal{B}_{M}))_{(0,x')}, \quad Pu = 0,$$

$$\overline{SS u|_{\hat{M}^{+}}} \cap (\{(0,x')\} \times \{\rho^{-1}(i\eta')\}) = \emptyset \Rightarrow (x';i\eta') \in SS\gamma(u).$$

In fact by Lemma 3.3, Theorem 2.4, Proposition 1.3 and Remarks 2.8, 2.9, one immediately obtains:

THEOREM 3.4. Let $P_m(i\theta) \neq 0$, $(\theta = (1, 0, \cdots))$, $N = \{x_1 = 0\}$, and take $(x'; i\eta') \in \mathbb{N} \times iS^{n-2}$. Then $(3.1) \Rightarrow (3.7)$. Conversely $(3.7) \Rightarrow (3.1)$ if we assume in addition: $P_m \in \mathbb{R}[\zeta]$ and $\partial((P_m)_{i\eta})(i\theta) \neq 0$ for any $i\eta \in \rho^{-1}(i\eta') \cap P_m^{-1}(0)$.

Example. The following is not included in the counterexamples to (3.7) considered by Kaneko in [2]. Let us consider in \mathbb{R}^4 :

$$N = \{x_1 = 0\}, i_7 = i(0, 0, 0, 1), P(D) = D_1^3 - D_4(D_1D_3 - D_2^2).$$

We have:

$$ho^{-1}(i\eta')\cap P^{-1}(0) = \{i\eta\}, \ P_{i\eta}(i\theta) = [-i(\zeta_1\zeta_3 - \zeta_2^2)]_{\zeta=(i,0,0)} = 0, \\ \hat{o}P_{i\eta}(i\theta) = [-i(\zeta_3, -2\zeta_2, \zeta_1)]_{\xi=(i,0,0)} \neq 0.$$

Thus (3.7) is not satisfied and P is not N^+ -regular at $i\eta$.

References

- [1] Bony, J.-M., Extensions du théorème d'Holmgren, Sém. Goulaouic-Schwartz (1975/6), Exp. 17, École Polytechnique, Paris, 1976.
- [2] Kaneko, A., Estimation of singular spectrum of boundary values for some semi-hyperbolic operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 401-461.
- [3] Kaneko, A., On the propagation of microanalyticity along the boundary, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 319-352.
- [4] Kashiwara, M. and P. Schapira, Microhyperbolic systems, Acta Math. 142 (1979), 1-55.
- [5] Kataoka, K., On the theory of Radon transformations of hyperfunctions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 331-413.
- [6] Kataoka, K., Microlocal theory of boundary value problems I and II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 355-399, and 28 (1981), 31-56.
- [7] Kawai, T., Construction of elementary solutions for I-hyperbolic operators and solutions with small singularities, Proc. Japan Acad. 46 (1970), 912-916.
- [8] Sato, M., Kashiwara, M. and T. Kawai, Microfunctions and pseudodifferential equations, Lecture Notes in Math. vol. 287, Springer Verlag, Berlin-Heidelberg-New York, 1973, 263-529.
- [9] Schapira, P., Propagation au bord et reflexion des singularités analytiques des solutions des équations aux dérivées partielles I and II, Sém. Goulaouic-Schwartz (1975/6) Exp. 6, École Polytechnique, Paris, 1975 and ibid. (1976/7) Exp. 9, 1976.
- [10] Schapira, P., Propagation at the boundary of analytic singularities, Proc. NATO Maratea, D. Reidel, Dordrecht-Boston-London, 1980, 185-212.
- [11] Schapira, P. and G. Zampieri, Regularity at the boundary for systems of microdifferential equations, Proc. Padova Conference "Hyperbolic equations...", Dec. 1985.

(Received September 11, 1985)

Département de Mathématiques CSP Univ. Paris-Nord 93430-Villetaneuse France

and

Istituto di Analisi dell'Università via Belzoni 7, 35131-Padova Italy