J. Fac. Sei. Univ. Tokyo
Sect. IA, Math.
33 (1986), 175-232

Boundary value problems for systems of linear partial
differential equations and propagation
of micro-analyticity

By Toshinori OAKU

Abstract. We give a general formulation of boundary value prob-
lems in the framework of hyperfunctions both for systems of linear
partial differential equations with non-characteristic boundary and for
Fuchsian systems of partial differential equations in a unified manner.
We also give a mierolocal formulation, which enables us to prove new
results on propagation of micro-analyticity up to the boundary for
solutions of systems micro-hyperbolic in a weak sense.
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Introduction

Schapira {26] and Komatsu-Kawai [17] have formulated boundary value
problems in the framework of hyperfunctions for single linear partial dif-
ferential equations for which the boundary is non-characteristic and real
analytic. They have shown the advantage of hyperfunctions in boundary
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value problem: any hyperfunction solution of such an eguation has as
many boundary values as the order of the equation, which are hyperfunc-
tions on the boundary, and solutions are locally unique, i.e. Holmgren’s
type uniqueness theorem holds.

It seems, however, that general theory of boundary value problem for
systems of linear partial differential equations has been still lacking except
the work of Kashiwara-Kawai [6,7] for elliptic systems.

In this paper we study boundary value problems both for general
systems of linear partial differential equations with non-characteristic
boundary and for Fuchsian systems in the sense of Tahara [29]. We define
boundary values of solutions and prove Holmgren’s type uniqueness theorem ;
we also give a microlocal formulation and study the propagation of micro-
analyticity at the boundary for hyperfunction solutions. Our method is to
introduce a new sheaf attached to the boundary for which the boundary
value problem is always well-posed.

Let M be an n-dimensional paracompact real analytic manifold and let
M, be its open subset with 1-codimensional real analytic boundary N. Let
¢: M,—M be the canonical embedding and put By, =t ' By and By, =
By, ln, where By is the sheaf of hyperfunctions on M. Then a section of
By, s a hyperfunction defined on the intersection of A, and a neigh-
borhood of a point of N. Let X and Y be complexifications of M and N
respectively and let

S B P, =0 (=1, m)

be a system of linear partial differential equations with analytic coefficients.
Then M is regarded as a coherent 9Dy module (D x)*/(Dx)™(P;,), where Dy
denotes the sheaf of linear partial differential operators with holomorphic
coefficients on X. Boundary value problem (in the local sense) is to study
the relation between B, -solutions Home (M, By x,) of M and their
boundary wvalues.

In order to define a new sheaf, we assume that there exists a real
valued real analytic function f on a neighborhood of N such that f=0 on
N, f>0 on M,, and df=0. (We can slightly weaken this condition. See
§1.) We put M={eX: Imflz)=0}, M,={z=M : flz)>0}. Then there is
a sheaf B on M of hyperfunctions with holomorphic parameters since M
is locally isomorphic to RxC*'. Using B0, we define a sheaf By, on
N (Definition 1.2). We prove that there is an injective homomorphisgn a:
Bix +—>.‘B~ wix, and that the boundary value preblem is well-posed in B,

First, let us assume that Y is non-characteristic for 4. Then there
is an isomorphism
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Ioma (M, Briu,) —= Homa( My, By),

where My is the tangential system of . to Y. Combined with the in-
jectivity of «, this gives an injective homomorphism {boundary value map)

7 ﬂom_@X(ﬂ/Z, o@N1M+) - ﬂOMQJY(j/ZY, By).

Hence for solutions of . we have defined their boundary values, which
are hyperfunction solutions on N of the tangential system, and at the same
time, proved Holmgren’'s type uniqueness theorem.

Next, let us consider Fuchsian systems: Let 2=(2y, 2" )=(2y, 23, "+, 22)
be a local coordinate system of X with f=2. We use the notation D=
(Dy, D"), D'=(D,, -+, D,) with D;=06/0z,, We assume that k=m and that
P=(P;;) has the form

P=zDI,— Az, D');

here I, is the m X m unit matrix, A=(A;;) is a matrix of sections of D,
free from D, such that each A,; is of order =n;—mn;+1 with integers
My, *0r, M, and that A,;(0,27, D) is equal to a function a;(z'). We assume
moreover that any pair of the eigenvalues of A,=(a;;) do not differ by
integers. (These conditions are independent of the choice of local coordinate
systems as above.) Then there exists an isomorphism

J{orng;X(ﬂ/l, -@N1M+) —> (D))",
and hence an injective homomorphism (boundary value map)
7 ﬂ[om.@X(ﬂ’l, e@MMJr) — (By)".

This involves a new approach to boundary value problem for eguations
with regular singularities initiated by Kashiwara-Oshima [10] as long as
the boundary is of codimension 1.

Note that previous works cited above ([6,7,10,17,261) use so-called
canonical extension of hyperfunction solutions in M, to M, which we can
dispense with. Hence we hope our method will be useful for concrete
expression of solutions.

In non-characteristic case we also prove that B . -solutions of
become F-mild in the sense of Oaku [21,22]; i.e. having boundary values
in a natural way (F-mildness is a generalization of mildness due to Kataoka
[13]). Hence in this case the boundary values are defined without the
assumption of existence of /. We remark that in this case By x,-Solutions
become mild in fact (see [13]).

In the same way as the theory of microfunctions (cf. Morin oto [19,
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20] and Sato-Kawai-Kashiwara [25]), we define sheaves Cy, on SEM, Cyix,
and C viux, on S¥Y, microlocalizing Buy,, Buyins, B u, respectively (here
S%M denotes the conormal sphere bundle of M in M). Then the argument
above is also valid with Byx,, Byix,, By replaced by Cuu,, Cwis,, Cr
respectively (here Cy denotes the sheaf on S}¥Y of microfunctions). In
particular we get a microlocal version of Holmgren’s type unigueness
theorem, which has been proved for single equations with non-characteristic
boundary by Schapira [27] and Kataoka [33].

In § 3, using the sheaf C,,, which is supported by L,VL, with L,=
SEM|y=S%Y, L.=S%M]| w,, We study propagation of micro-analyticity of
solutions up to the boundary. First we prove

ﬂom@x(j%: FLO(C)M,L))I*ZO

for a point x* of L, under some conditions (a kind of micro-hyperbolicity)
on M (Theorem 3.1). We remark that ¥ may be degenerate on the
boundary. As an application of this theorem we obtain the following:
Suppose moreover that Y is non-characteristic for M or M is a Fuchsian
system with the condition above concerning A, and that a By, -solution
f of 9 is miero-analytic on p"{UNL,) with a neighborhood U of x* in
S%M ; here p: SEX\StX—S%EM is the canonical map. Then the boundary

value 7(f) of f is micro-analytic at #* (Theorems 3.2 and 3.3). Results of
this type have been proved by Kaneko [2], Schapira [27], Kataoka [14],
Sjostrand [28] for single equations (or for determined systems [28]) for
which the boundary is non-characteristic. ([27] and [28] also treat the case
where boundary conditions appear.) However there seems to have been no
such result for degenerate equations including Fuchsian systems.

To prove Theorem 3.1, we modify the argument of prolongation of
cohomology groups with holomorphic coefficients due to Kashiwara-Schapira
[11] and apply it to cohomology groups with B O coefficients (see Sect. 3.2).

Our method in §1 and § 2 will work also in case of higher codimensional
boundary to some extent. We shall study this case in a forthcoming paper.

§1. Several sheaves attached to the boundary
1.1. Definitions and vanishing theorems

In this section we define several sheaves attached to the boundary,
which will be “function spaces” for boundary value problems. We use the
notion and notation of derived categories and triangles in accordance with
Hartshorne [1].
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Let M be a paracompact n-dimensional real analytic manifold and M,
be its open subset such that its boundary N=0M, is a one-codimensional
real analytic closed submanifold of M. There exist complexifications X
and Y of M and N respectively such that Y is a closed submanifold of X,

We assume that there are a real analytic closed submanifold M of X
and its open subset M. such that MCMCX, oM.=Y, M, M=M,, and
that M, M, M,, X are locally isomorphic to R”, RxC", R,xC"*"}, C"
respectively with R,={t<R; t>0}. More precisely, for any point % of X
we assume that there exists a local coordinate system z=(z,,---,2,) over
a neighborhood 2 of 2 such that

R2NM)=2(QDNR",  22NM)=z2(Q)N(RXC"),
HRNM ) =2(2)N(R. X C*Y).
From now on we fix such M, M,. We call such a local coordinate system

as above admissible and use the notation z=(zy,2'), 2;=;+v—1 9.

REMARK. Suppose that there exists a real valued real analytic function
J on a neighborhood of N in M such that N={f=0}, f>0 in M., df+0 on
N. Then replacing X by a neighborhood of N in X, we can take

M={zcX; Imfz)=0}, M.={zeM; Ref(z)>0}.

Let ¢: M.—M, z: M,—M be the natural embeddings. We denote by
Dy the sheaf of hyperfunctions on M. Set BO=PBOy=H:(Or)Dwyz, where

Oy is the sheaf of holomorphic functions on X, and wy is the orientation
sheaf of M. Then BO is the sheaf of hyperfunctions with holomorphic
parameters.
DEFINITION 1.1. C,C/}JI_I_:(*{“IO@M, c@A’\IIJI,}_:QJI*,!N}
BOz, =17 BO, DBOyiz,=BOx ly.
Note that these sheaves are 9Dy-modules, where 9y is the sheaf of

rings of linear partial differential operators (of finite order) on X with
holomorphic coefficients.

LEMMA 1.1. Put M=RxC""' and M=R". Then for any open set U
of R and any Stein open set 2 of C* "' we have

H(UX2; LOY=0 (v=0).

PROOF. We use the notation z=(z,2’) with 2'=(z, -+, 2,) €C*", 2=
z++—1y with 2,y R" ete. Set
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V={zcC"; x,=Rez,cU,2' €£}.
Then V is a Stein open set of C*, and we get
RIIUxQ; BOY=RI'(V; BRI y(O1]=RI 50 (V; O]
For v=2, we have
Hyor V; Ox)=H""(V\M ; Ox)=0
since V\M is also Stein. Hence we have
H(UXQ; BO)=HV; Ox)=0
for v=1. This completes the proof.

REMARK. The argument above implies that H*(2; $O)=0 holds for
y#0 if there exists a Stein open set V of X such that VAM=2.

LEMMA 1.2 R ' BO=0 for v#0.

PROOF. We may assume X=C" M=RxC", M,=R,xC"". Let 2
be a point of M. Then we have

(R”Z*Z“.,@@);:Ligg H(UNM.; BO),

where U runs on the system of neighborhoods of 2. We may assume that
U is the product of an open set of R and a Stein open set of C*~'. Thus
this lemma follows from Lemma 1.1.

PROPOSITION 1.1. There are natural isomorphisms
u, 2 H T BOg )Qwssn,  Bww,=2Hi (BOz ) vQoy
where wy,z denotes the sheaf of orientation of M relative to M.
PROOF. Tirst note that (cf. [25, Chapter I] and Komatsu [16])

Bu=Hi T (BO)Qwyn-
Hence we get

$y+ERZ*Z—IRF},{(Q@)[?Z_1]@&)}[”‘[ERZ*RFM_}_(Z_lQ@)[W/_1]@({)_}1/}?
=R[ (Rt BONn—11Qwu g =Ry {(BO07 ) n—11Q&w i

This proves the first isomorphism, from which the second follows.
Taking these isomorphisms into account, we introduce a new sheaf
as follows:
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DEFINITION 1.2, Byy, = H¥ (BOy 5,)Ruwy.

Note that —@Nlm depends also on M, not only on M, and that _@’N.M+
is a Dz-module.

PROPOSITION 1.2. There is a natural Dy-linear sheaf homomorphism
@ =-CBN|M+ - QN]M+-
PROCF. There is a natural 9Dy-linear homomorphism

ﬂﬁ[(ﬁ@_ﬁ+)fN - ﬂxr(o@@ﬂJy)

induced by the embedding Y —M. Since wu,alyZoyy=wy, Wwe get the
homomorphism a.

To prove fundamental properties of 2] wiu,, We need the vanishing of
some cohomology groups whose coefficients are B0y z,. For this purpose
we hegin with the following :

LEMMA 1.8. Let 2 be a Stein open set of C™ Then the set {0} x 2
in C*xXC™ has « fundamental system of neighborhoods consisting of
Stein open sets in C*XC™.

PROOF. This lemma is a special case of a theorem of Siu (Invent.
Math. 38, 89-100 (1976)). We give here an elementary proof. We use the
notation w={w, -, w,) and z=(z, -, 2,). There exists a strictly pluri-
subharmonic C* function ¢ on £ such that the closure of {z€2; ¢(z)<c}
is compact in £ for any ce R. Let V be an open neighborhood of {0} x £.
Our aim is to show that there is a Stein open set U of C¢xXC™ such that
{0} xQcUcV. We can take a C™ function g on R such that ¢’>0, g” =0,
U={(w,2)eC**x 2; lw]><exp(—(glo())))}C V. Set f=e %, Then we have
<0 and f7-F<(f'). We set

(1.1) Plw, 2)=|w|*— fle(2)).
Let (i, 2) be a point of dUN(C?x 2) and let (4, Cé<xC™ satisfy
i 9 ., 2O . o,
(1.2) EI awj (w, 2)(9j—{— = az] (w, Z)ijo.
Let us calculate the Levi form _[¢(, 2)(4,0) of ¢ at (i, 2):
o o ¢ 52 e s
L, 2)(8, C)— m—(w 2)0,6,+ o¢ (b, 2) L,

]k az azk

2

=10 £ (BN 5o X e o) 221 |

Jj O'Zj




182 Toshinori OAKU

Since

ol E -1,

=[] |6l

by (1.1) and (1.2), we get (note that we may assume f”(¢{2))=0)

S {p(2)) []*6]° _
Fp(®)? Ho(&)
Thus the boundary of U is pseudo-convex in C*x 2, and U is Stein. This
completes the proof.

Lo, 2)(0,0)=102— Lol =01~ 0.

PROPOSITION 1.8." Put X=C", M=RxC*™, M,=R,xC"!, M=R"
Then

(1) H*Q; BOys,)=0 holds for any Stein open set £ of Y={0}x
C*'=C*" and any nteger v+0.

(ii) The flabby dimension of BOyz, is n—1.

(i) Hir-1v=6(B0via ) v=0 for any proper convex closed cone G
wilth vertex 0 in R"™ and v#n—1.

PROOF. (i) By the definition of BOyz, and Lemma 1.2 we have
RI'(2; DOy iz, )=RI(Q2; Rei'BOly)
:Ligg RINU; RZ*Z"ﬁ@):%n RF(UmM+; BO),
where U runs on the system of neighborhoods of £ in M. TLet U be an

open set of X=C" such that UnM=U and set X,={<X; 2,>0}. Then
we get

RI(UNM, ; BO)=RI'UNM, ; RI z(Ox)[1]
:an?nx'+nﬁ(UﬂX+§ @X)[H
By virtue of Lemma 1.3 we have for v=1,

H(Q; BOpz)=Um Hz  (UNX,; O
U

SNX 0

=lim H(UNX\M ; Ox=0,
U

where U runs on the system of neighborhoods of 2 in X. This completes
the proof of (i).
(ii) follows from the fact the flabby dimension of Oy is equal to n.
(iii) By (ii) we have

(1.3) j[‘izn-la-\/—Tc(c@@Y:Jh)!N:O
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for v=n. In order to prove (1.3) for v<n—2, we use the following lemma,
which is a part of the abstract edge of the wedge theorem due to Kashiwara-
Laurent [9].

LEMMA 1.4 (Théoréme 1.4.1 of [9]). Let T be a topological space.
Suppose that there is givem a contravariant functor which associate with
each complex manifold Y a sheaf Fy on YXT of Op-modules satisfying
the following (H1)-(H3):

(H1) If UDV are open subsets of Y such that U is connected and V
is not empty, and if W is an open subset of T, then we have

F(U\V)XW(UX W; gy):().

(H2) Let f: Y—=C be a holomorphic function with df+0 on Y and
put Z=f"10). Let ¢: Z—Y be the canonical embedding. Then we have o
short exact sequence

£
Oﬁgy""%’gy‘—)i*gz*‘-)o.

(H3) Let Y and Z be complex mamifolds with - Z compact. Let f be

the projection of YXZXT to YXT. Then

B *ngz ggY@CHy(Z: @z)

holds for any integer v.

In addition to these conditions, suppose that G is a closed convex set
of C*,z€G, and that there is no C-linear subvariety L of C" of dimension
(n—q+1) containing z such that LN\G is o neighborhood of z in L. Then
for any teT

ﬂéxT(gcn)cz,t>:O
holds for any v<q.

PROOF OF PROPOSITION 1.3 (continued). Now let us prove (1.3) for v
=n—2 using Lemma 1.4. For each complex manifold ¥ we set

Fy=(tv)ultr) " BOgxylornr,

where 7y : R, xY—RX7Y is the embedding. It is easy to see that YT,
defines a contravariant functor. Hence it suffices to verify (H1)-(H3) of
Lemma 1.4 for this &, with T={0}.

(H1) follows from the unique continuation property of sections of BO
with respect to the holomorphic parameters. We can verify (H2) by ap-
plying the functor R(zy).:+'RI .y to the short exact sequence
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i*
00— @ch — 0C><Y h—— Z'>4<00xz —_—> 0;

where ¢ is the injection of CxZ to Cx Y.
Lastly let us verify (H3). Let f: YxZ—Y and f: CxYXxZ—-CxY
be the projections. We shall show the isomorphism

(1.4) Rf*@szg@Y(g)cRF(Z? Oz).
Let us take the Dolbeault resolution

d 0

0 > (9 &50.0 é’(o,n 6’(0,0‘,) 0
z—>Cz  —>Cz —> —> Cz -V,

where d is the dimension of Z and &% * denotes the sheaf of differential
forms of type (0, ) with C*= coefficients on Z. For y=Y we have a
homomorphism

@Y,y®CRF(Z; @Z) —> RP({y} XZ; @sz)ng*(@sz)y-
Since H(Z; Og) is finite dimensional for any v (theorem of Cartan-Serre),
we get the isomorphisms
Oy QcHNZ; Of) — @Y,y®CH”(Z; Oz) — HY({y} X Z; Opuz)

applying the argument of Andreotti-Grauert. This proves (1.4).
Replacing Y with CXx Y and applying the functor RI'g.,, we get

R.]Z'*QORXYXZEQ@RXY®CRF(Z; Oz).
Applying the functor R(iy).i7!, we get
Rf*ng%gy@cRF(Z; @Z)-

Thus (H3) is verified. Since R"*!'++/—1G does not contain C-linear sub-
varieties of C"™' of dimension =1, (iil) follows from Lemma 1.4. This
completes the proof of Proposition 1.8,

By Proposition 1.3 we have the following:

PROPOSITION 1.4. (1) DBy, is a flabby sheaf om N.
(ii) Let U be an open set of N. Then

D(U; By )=H U ; BOy.z,)
holds for any open set U of Y such that U~nN=U.

We can show similar results for &, :
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PROPOSITION 1.5. (i) DBy, is a flabby sheaf on M supported by M ..
(ii) Let U be an open set of M. Then

I'U; By )=Hit (UNM,; BO)

holds for any open set U of M such that UnM=U,

This is a consequence of the following :

PROPOSITION 1.6. Put X=C", M=RxC"", M,=R,xC"', M=R"
Then

(1) HNUXQ; BOz )=0 holds for any open set U of R and any
Stein open set 2 of C™™', and for any v+0.

(ii) The flabby dimension of B0z, is n—1.

(1) Hrxrn-10v765(BOz )i =0 for any proper convex closed cone G
with vertex 0 in R* and v+n—1.

This can be proved by the same method as Proposition 1.3.

1.2. Microlocalization and concrete expression

Let
T/t - (M\M)USf{hW —> M; Tyy: (YAN)USEY — 1V

be comonoidal transforms of M and Y with centers M and N respectively
(cf. [25, Chapter I]). If z=x++/ "1y is an admissible local coordinate
system of X, then (x, v — 17 c0)=(x, v 1<y, d2’>oo) (resp. (0,2, v/ —15 o))
is the corresponding local coordinate system of S%M (resp. S¥Y) with p =
(2, -+, p) € R and </, d2’>=ndz,+ - +9.dz,. We define sheaves on
S%M and on S%Y as follows (we denote by a the antipodal map):

DEFINITION 1.3,
CM+ :ﬂgi}l((ﬂmﬁ)—1$@3’1+)a®wy/ﬂ, Cw ML= C,v1+ I(zM,i,)—m\n
Cyix, :ﬂgg;«ﬂ'w/y)ﬂfB@mﬂJ(z@w‘v .

Note that these cohomology groups of order v vanish for v#n—1
in view of Propositions 1.3 and 1.6. A natural map T*M X Y—T*Y induces
&

a (real analytic) diffeomorphism Sz >§N =S%Y. Hence we identify (zy, ) (V)

with S¥Y. By virtue of Propositions 1.3 and 1.6, the arguments in Morimoto
[19,20] and [25, Chapter I] work in these cases. Let
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(#70) &) (M\M)USMM —_> M; tyy (YAN)VUSyY — Y

be the real monoidal transforms of M and Y with centers M and N respec-
tively (cf. [25]) and let

ewi s INM — (M\M)\JS M, ewmy: YAN — (YAN)VSyY

be the canonical embeddings. If (z,2’) is a local coordinate system of M,
then z+ v =10 0=2++/—1<0", (8/02")>0 (resp. (0, ') ++/—=12'0) is the cor-
responding local coordinate system of S,M (resp. SyY) with v e R*"L
Note that we can identify (ruz) (V) with S,Y. Set

i, =) BOx ) sy
i, = (emr)(BOr iz Ly lsyr -
Then there exist injective homomorphisms (boundary value maps)
bt A, — o) Buyy b A, —> (ewr) " B,
and surjective homomorphisms (spectral maps)
sD.: ()" B, —> Curys 80 (wwr) " Buvise, —> Covar, -

Here we define b, and b by using Cech cohomology groups in the same
way as [19, 20] (see also Martineau [18] and Komatsu [16]). A subset U
of SyM (resp. SyY) is called convex if the intersection of U and each
fiber of c,,; (resp. zyv) is convex. We define the polar set U°CSEM
{resp. S}Y) of U by

U°={(z, v=17'); —Re<p’,v"><0 for any z++/—12'0€U}.
In the same way as in [19, 20] we obtain the following:

PROPOSITION 1.7. (i) There exists an exacl sequence

~ Sp ~
0— o@@ymulzv - @NIM_“_ - (TCN/Y)*CN[M+ — 0.

(11) Let U be an open convex subset of SyY and let f be a section
of .CBN, u, over tyy(U). Then there exists a section F of Jlm u, over U
such that b(F)=f if and only if the support supp (SP(f)) is contained in U°.

PROPOSITION 1.8. (i)} There exists an exact sequence

b Sp.
0— @@FLJM - QCBM+ — (TFM/A”{)*CM+ —0.
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(ii) Let U be an open convex subset of SyM and let f be o section
of QM+ over T, 5(U). Then there exists a section F of JMJ( over U such
that b (F)=f i+f and only if supp(sp.(f)) is contained in U°.

Now we give a concrete description of _@N,M+ following an idea of
Kaneko [4] for usual hyperfunctions. Set M,=RxC*"', M.=R,xR*
N={0}x R*" and let U be an open subset of N. We define a C-linear
space SF(U) as the direct sum

FU) =P Ayu (U+~=IT0),

where [' runs over all the open convex cones of B"™!. Then an element
Jof SF(U) is written as

J P
f= Z}IF;(QCL- z' v —117",0)
=
with F,€ Ay, (U++=11,0). Let G(U) be the minimal C-linear subspace
of F(U) containing all the elements of F(U) of the form
Fey, o'+~ —110)—Fylx, "+ —11,0)

with Fy& Ay, (U+~=17,0) (j=1,2) such that I5C7, and Fily,o=r,=
F;. We denote F(U)/G(U) by FPyy,(U). Then it is easy to see that b
induces a C-linear homomorphism @ of F@N.M+(U) to QN.M+(U).

PROPOSITION 1.9. @: F.CZ~3N|M+(U)—>_@N|M+(U) 18 an 1somorphism.

PROOF. Let 9 -+, """ be vectors of R such that
n-1
_UOE,,;‘ZR"'I\{O}, det(y, -+, ") >0,
7

where E,i={y'eR""; ', 7">>0}. Let 2 be a Stein neighborhood of U
in Y and set
U;,={0,2)e@; Imz'eE,;},

U={2,Us, -, U},  U'={Upy-~,Upi}.
Since (U, U’) is a relative Stein covering of (2, 2\U), we get
Bau (U=H" (U mod U’ ; BOyix,)
=C"" (UmodU"; BOyiz )6C* (UmodU’; BOyiz,),

here~5 is the coboundary operator. Through this isomorphism an element
of Byu,(U) is expressed as the modulo class [ f] of an
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f=7.lz—§(~1)fF,-(ac1, ZVQANUN AU AU Ao AUy
=
eC* (U mod U’ ; BOrix,),

where F; is a section of B0y z, on NU,. Set
viE]

V()= F '+ V=10 € F By, (U)

with I';= N E,». Then this defines a C-linear map

v#Ej

¥ U mod U’ ; BOvz,) —> FByu (U).

N Let us show that ¥ induces a homomorphism of @MM (U) to
F.@N.M(U) independently of the choice of 7°%:--,7""". By moving the
frame (7%, -+, 7""") step by step, we have only to show that ¥ defines the
same map as before even if 7° is replaced by 7’ sufficiently close to 7"
Hence take »”° so that

E o0 JE ;U Eyn-1=R" 1\ {0}
and set
Vo={(0,2)eQ; Imz' €Eyq,

W,=1{0,2)YeQ; Imz € EpNEyd,
CV:{Q; VO) Vl)“'; Vn~l}y CV/:{VO) Vl)'”) Vn—l};
G ={Q, Wy, W, -+, Wa_i}, G =Wy, Wy, -+, Wasi}

with V,=W,=U, for j=1,---,n—1. Then both (¥, V") and (W, W)
are relative Stein coverings of (2, 2\U). Suppose that

n-1
9= EO(—I)’Gj(acl, ZVRAV A AV AV A AV

eC" YV mod V' ; BOyix,)

defines the same element as [f] in Bin ,(U). Then the image of [f] by
the natural map

H* (UmodU'; BOypz,)—> H W mod W' ; BOyix,)
and that of [g] by
H* (Y mod V' ; BOyix,) —> H* (W mod W' ; BOyiz,)

coincide. Hence there exist sections H;, of B0y, on [\ W, such that
viEj R



Boundary value problems for systems 189

-1 n-1
Fj_Gf:;%(”l)j+k+1ij+k Zl("l)j+kak> Hj+ H,;=0.
= =4
This implies
E)O(Fj(xl, z’ + \/ji Fjo)—Gj(ml) 96'/"‘ \/jI [';0)):0
=

in F@MMJ((U), where /7y =1", and
I =E,on N Ep (§=1,--,n—1).

1sy#j

Thus ¥ is well-defined as a homomorphism of .@M » (U) to F@MMJF(U ).
In view of this invariance of ¥ and the definition of b, it is easy to see
that both ¥o® and @<¥ are identities. This completes the proof.

From now on we identify .@N.M+(U) with F_@MM(U). The following
lemma will be used together with Proposition 1.9 in the proof of the
edge of the wedge theorem.

LEMMA 1.5. Let f be a section of .@N‘MJr on a neighborhood of &< N.
Then (%, v/ —1&00)eS%Y is not contained in supp(sp(f)) if and only if
there exist sections F; of JZN.M+ on U+~ —11,0 such that U is a neigh-
borhood of &, I'; is an open cone of R"™' with &&I'S={3"; <y, 3>>0 for
any Yy €1';} and thot

flo)= 2 Fyfw, o+ VEIT0).

PROOF. We may assume 2=0. Suppose x*=(0, v/ —1 & co)esupp(SD(f)).
We take &, ---,6* 'e B"*' 50 that
R.&U---UR &=y e K" "\{0}; ', &>=0}.
For ¢>0 putting »'=£+£'/e for j=1,---,n—1 and °=—&', we set
El={ eR""; ', y>>0},
D.={0,2YeY; || <4,
Ui={0,2YeD,: Imz €L/},

Z.=D\'U U’
=1

Then we have
CA‘!,?I*_,:*EH_I:Q Hy {(D.; B0y.5,).
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Since $p is induced by the natural map
(1.5) HyYD.; BOyz,) — H(D.; BOvin,),

the image of f b~y (1.5) vanishes for some ¢>0. We fix such an . Then
as a section of By iy (D.NN),

f(:c):"g: Fy(, '+~ =11,0)

holds with sections F; of B0y iz, on NUZ where I';= N\ E. Set

v#j vej
U={D., U, U,---, Uy, U'={U,U;---,U},
V={D, Ul -, U, <V'={U,--, U}
Then (1.5) is compatible with the natural map
H (U mod U’ ; BOpiz,) —> H" (W mod V' ; BOyiz,)-

Since the image of f by this homomorphism vanishes, there exist sections
Fy of BOyix, on QkUﬁ for k=1,---,n—1 such that Fy=Fy+--+F, .
YFEQ,

Hence we get
f(x): :ilFok(xz, x4+ V=1 F0k0)+7LZ_)1F,-(x1, 2+ v —1 FjO)
=1 Jj=1

with F0k2¢mkE:' Moreover neither I'$ (j=1,--+,7n—1) nor /'y contain &.
v#£0,

The converse implication is obvious by virtue of Proposition 1.7. This
completes the proof.

1.3. Edge of the wedge theorem and injectivity of «

PROPOSITION 1.10 (Edge of the wedge theorem for Byx,). Let M, N,
M be Euclidean spaces and let I'; (j=1,-+-,J) be open convex cones of R
and V be a bounded open set of N.

(i) If fis a section of Baru , on V such that supp (3D(S)) is contained

J
in the interior of VX Vﬁ( U T}’>OO, then there exist sections F; (j=1,---,J)
_~ Jj=1
of Awim, on V+~=1I",0 such that

fl@)= 3 Fy(o, o'+ v =1T0).

(ii) Let F; be sections of j‘v.m on V++—1I,0 such that
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J

2 (g, 2"+~ =11 ,0)=0

m _@Vw (V). Then for any subcone I';el, (z e. the closure of I';N\S™?
18 contamed e I7)), there ewxist sections Fy, of JZM uy o0 V=I5 +T:)0
such that

J
Fj:kE:lek, Fj}a“l“ij:O (1§j,k§J).

PROOF. We apply the theory of curvilinear wave expansion of holo-
morphic functions developed by Kataoka [12] and Kaneko [3] to hyperfunc-
tions with holomorphic parameters. Putting & =(&, -+, &,)eS"2 2/ =a +
VLY =(2y, 0, 2) EC™TL <R, E D =25t oot 2,65, 20 =42, 7', We set

(n—2)!
(—27~+/—1)*!

(= VI, £0) Ml = V=1, ED — (222, DY)
{2/, &+ v = l(z"—<z g

First let us prove (i). Since _CBMM . is flabby, there exists a section f of
_CBN[M , on N such that F=fon V. Using the Cech cohomology we can
take sections G,(x,,2") of BOyiz, on {(0,2')€Y; Imz 4,} with open con-
vex cones 4, of R"' such that

Wz ; &)=

X

F@)= 2 Gl 2+ v=1 4,0).

Let >0 be large enough so that D={x'eR"™'; |2'|<#} contains V (w
sometimes regard V as a subset of R*!). Set

- . 1
i 2 if 0t 5
6(ty=
(160 + 46— 1221+ 48)  if t>%.
Then W(z’; &’) is holomorphic on a neighborhood of
{(z'; §)eCm '8 &, &0 >y =, &%
VH{(,8)eC™ 18" |yl <a(x’|)}

in €C**x 8, where S is a complex neighborhood of S*-2 {cf. §1 of [12]).
Choosing sufficiently small a,=4, so that 2|a,|<6(dis(V,3D)) (here dis
denotes the distance in Euclidean norm), we set
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G(xl,v Z’ ; & ZZ R Vi Gy(xl,- w/) W(z/_’ll)/ ; 5,)dlU,.

Then by deforming paths of integration, G becomes a section of B0y sz, «5
on a neighborhood of

{0,2; &)eYxS*?; a'eV, <y, eH>y"—<y, &%,
Let I'; be an open cone containing /7; such that
U 'Y= U I's
and that the volume of ["°N/"% is zero for j#k. Set
Fen2's €)=\ Glo,2; &)da@),
rynsn-2

where do(¢’) denotes the volume element of S*%. Then F,; defines a
section of Ay, on V++—11750. Put

=R\ T,
j=t

We decompose 4, into the union of closed cones 4,,--+,4,, so that the
convex hull of 4,, is proper and that the volume of 4,4, is zero for
v# u, and set

Fols, )=\ G, 23 £)do()).
doyNSN-2

Then F,, defines a section of Jlm&u on V++ =171, with I,,=int(4,,)°.

We can prove that the inverse formula for curvilinear wave expansion

(Theorem 1.1.8 of [12]) also applies to BOy 5, by expressing sections of

DOy, as a sum of boundary values of holomorphic functions. Hence as

a section of B, x, on V we have

J P k3 -
f(x): Zle(xly x,+ ’\/—1 F_,O)‘:“ ElFO.,(x,, x,+ ’\/—1 [—10;0).
i= v=
Now let us show that G is extended to a section of B0y siz,x5 0N 2
neighborhood of
{0,2,8)eYxS"*; 2'eV,y =0, &S" *"Ni}.

Choose arbitrary 2<V and & =J,nS"°. Then by Lemma 1.5 there exist
¢>0 and sections H, (j=1,--+, 5) of POy s, on {0,2)€Y; [2/—%| <
Imz'€V;} such that



Boundary value problems for systems 193

F@)= 3 H o'+ V=1 V,0)

J

=)

on {(0,2')eN; |#'"—4%'| <e}, where V, are open cones with &¢& V5. Then
using Proposition 1.9 and deforming paths of integration, we can verify
that G(x,, 2/, &’) is extended to a section of BOy.z1i,~5 on a neighborhood
of (%, &) (cf. [3]). Thus each F,, is extended to a section of BOy 4 . ona
neighborhood of V, i.e. a section of JZN, w, on V+4+/—18"%co. This com-
pletes the proof of (i).

Now let us prove (ii) by induction on J. The statement for J=2
follows from Proposition 1.7. Assume J=3. Since

— J_l —
—F iz, 2+~ =11 ,0)= > Fia, '+ =11,00,
=

. I—
the support of SP(b(F;)) is contained in Vx V~1U1(F§?ﬂl“§)00. Let I'}
i=1

be an open convex cone such that I";el'J&l’;. Then by virtue of (i) there
exist sections G, of JN!M on V4 =1({+I")0 such that

Then since
S PG ), o+ VI TH0) =0,
there exist sections Fj, of jLw“ on V+—=1{"+74)0 such that
FrtG=SF,  FutFu,=0 (1<jks/-1)

by virtue of the induction hypothesis. Set F, ,=—F, ,=—G, for j=1,---,
J—1. Then we get

M=
o
&5

Il
:—‘
=

F,=

k

]

1

This completes the proof.
In the same way we get the following:

PROPOSITION 1.11. Suppose M, N,M are Euclidean spaces. Let I”; be
open convex cones of R*™' and I,V be bounded open sets of R and R
respectively.

(1) If fis a section of By, on IXV such that supp(sp.(f)) is con-

A
tatned im the interior of (IX V)X v ~1< U f?>00, them there exist sections
j=1
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F; (j=1,---,J) of J,,,+ on (IXV)+—1T,0 such that
fe)= £ Filo, o' +v=110).
(i1) Let F; be sections of j_h on (IXV)+ Vv —=1TI,0 such that
£ F o, o'+ VFIT0)=0

in DBy (IXV). Then for any subcone I'&rl;, there exist sections I of
Ay, on IXV)+~=T5+11)0 such that

J
Fj:1§1ij’ ij+ij:0 (1§j,k§J)-

Now we are ready to prove the injectivity of a. First let us micro-
localize @. The following proposition follows from the definitions of Cyix,
and CNIM+-

PROPOSITION 1.12. There exists a Dx-linear homomorphism
@ CN|M+ -—> C;NIM+

compatible with «: O%’N.M+—>@N,M+.
THEOREM 1.1. a: CN,M+—>5N|M+ 18 injective.

PROOF. We may assume that M, N, M are Euclidean spaces. We shall
prove that a is injective at z*=(0, v—1&’00)=S¥Y with £ =S*% Let f
be a germ of Cyy, at «* such that a(f)=0. Expressing the stalk Cuix, .o+
as a Cech cohomology group as in the proof of Lemma 1.5, we can take a
section F of BOg, on {(x,2)eM; |2]<e, |2'|<e,Imz'el'} with an open
convex cone I” containing &’ such that sp.(b.(F))=f on a neighborhood of
z* in SE¥M. Since Sp(5(F|y))=0 on a neighborhood of z* in S}Y, by virtue
of Proposition 1.10 there exist § with 0<d=e, open convex cones /7, -, I;
containing &', and sections F; of BOy iz, on {(0,2)eY; [2/|<d, Imz' e},
such that

ij{y/ERn—i; <Z//, é/><0}¢® (j:l’...,J)
and that
B(Fiy)ZE(Fx)+ +B(FJ)

on {(0,2’)N; |z’|<38}. Since b is injective and the sections of BOg,
have unique continuation property with respect to 2/,
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(16) F(xl’ z/):FI(xl; z/)+ b +FJ(x1) z/)

holds as sections of By, on a neighborhood of {(0,z/)cY; |2’ <8, Imz’
el in M with Do=I"NI - NI";. Note that I, contains £’. Choosing
a>0 so that 2a <6(9/12) and a <4/4, put C={'=C*"'; |z'|<5/2, y' =aé’}. Set

Gz, 2" ; E’)ZSCF(% w )Wz —w’; &)dw'.

Then G becomes a section of POz, s on a neighborhood in M xS of
{(w, 2/ ;€)M XS™; || <e, || <6/4, <y, £ >y — <y, €53, By (1.6) we get

Gz, 2" &)= éSCFj(% w)Wi(z'—w’; &)dw’

on a neighborhood in M xS of {(0,2"; &)e Y xS 2, 2] <d/4, <y, &> >y
—<y, 0% o

Choose &;&l7,nS** with <&}, £&><0. Take ¢; such that 0<2¢,<—
<&;,&> and 2¢,<6(5/12). By deforming C for each j so that Im C=c¢;&; if
{Re C]<4§/8, we see that G is extended to a section of BOx,«5 on a neigh-
borhood of {(x,,2"; & )eM X S*2; |, <&, [2/| <&, |€/~&| <8} in M xS with
some §'>0 since y’ =0—c,&; satisfies ', &> >y"2—<y’, &% Set

Fia, 2)= SJG(xl, 2 &)dole)

with 4={'eS"?; |¢—~¢&|<¢’/2). Then F, is a section of BOz, on
{(z,,2")eM ; |2,]<d’,12’|<d’}. On the other hand by virtue of the inverse
formula for curvilinear wave expansion, SP (b, (Fy))=sp.(b.(F)) holds on a
neighborhood of z* in S¥M. Thus we get S=sp, (b, (F))=0 at z*. This
completes the proof.

THEOREM 1.2. a: QEN.M+—>.@N.,M+ 18 1mjective.

PROOF. Let f be a germ of DByw, at £ N such that a(f)=0 at &
Then since a(spi(f))=0 we get sp,(f)=0on (zry,5)"42) in view of Theorem
1.1, which implies that f is a germ of POy, at & in view of Proposition
1.8. The restriction of & to BOys, |y is obviously injective. Hence we get
f=0. This completes the proof.

§2. Formulation of boundary value problems
2.1. Non-characteristic boundary value problem for systems

It is well-known (cf. Kashiwara [5]) that systems of linear partial
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differential equations with holomorphic coefficients on a complex manifold
X is nothing but sheaves of coherent modules over 9y. (Hereafter we
simply call them systems.) For a system ¥, we denote its characteristic
variety (in 7*X) by SS(H). A complex submanifold Y of X is called
non-characteristic for M if C;”-;X/\SS(ﬂ{):Qﬁ, where T;‘X denotes the
conormal bundle of Y with its zero-section removed. When Y is non-
characteristic for ., the tangential system My of  to Y is defined by

L%{Y:QY~X®QXL%:u%/(f1ﬂ+ JI_fd:/—%) i

where Dy_x=Di([iDx+ - +[aDx) as a (Dy, Dy)-bimodule if Y={zeX;
fi(z)= --+ =f4(2)=0} with holomorphic functions f,,---,fs. Then My be-
comes a coherent Dy-module. In general, for a sheaf &F of 9 r-modules,
R Homo (M, F) is a complex of sheaves whose j-th cohomology group is
Exth (M, F) (R Hom denotes the right derived functor of Hom). In par-
ticular Homo (M, F) is the sheaf of F-solutions of M.

Now let us return to the original situation of §1.

PROPOSITION 2.1. Let G be a coherent D x-module defined on o neigh-
borhood 2 in X of an open subset U of N. Assume that YN is non-
characteristic for M. Then for any jEZ there exists on U an isomor-
phism

Exth (M, Brie,) —> Exthy(Hy, B) .
PROOF. Put M_=M\M,. Then from the exact sequence
0 —> 3 (BO)y —> BOly —> BOypz, —> 0
we get a triangle (cf. [1])

R Homo (H, '3 (BO)ly)

(2.1) / \+1

R Homs (M, BOly)——> R Home (M, BOy5,).

First let us show
(2.2) R dlomg (M, "5 (BO)|y)=0.

For this purpose let us take XXX as a complexification of X. If z=
24+ 1y is a local coordinate system of X, then (z, ) is the correspond-
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ing one of XXX, where w is the copy of 2, and X is embedded to XX X
by the map z-—(z,2). Let z be the projection of XxX to X defined by
n(z,w)=z. Let M° be a complexification of M in XXX and f be the
restriction of z to M° Let %, § be complexifications of z, y. Then (%, 9)
is also a local coordinate system of XX X with z=%++/~1§, w=2—+v —17,
and (z,2’,w’) is a local coordinate system of MC. Set

f*ﬂ:@‘ﬁcﬁ;(@fﬂg)‘yfﬂﬂ s

Qz&mxt@m/<=®ﬂ€<%> 4 e —h@m(%)).

2 n

Then Théoréme 3.1.4 of Tajima [30] implies
(2.3) R Jlomosze( f* M, By)=RI 3(R Homae (M, Ox)Swsl1]
=R Homg (M, BO).

Let us show that -=dx, is hyperbolic for f*.9 in the sense of Xashiwara-
Schapira [11]. A point of T%M€¢ is written as

w¥=(2,2"; VoIgde V=1, de> + v =14E,dg")
=(@,2"; v—1ndz+ *;—<§/+ V=17, dz">+ %(—5' ++/ =17, dw’)
with (2,2 )eRXC", p=(p, 7)€ R", & = R"'. On the other hand we have
S M (&, 7', w5 §d a3+, d2' ) e THMC ; (%, 27, <C, d2>) =SS(H)} .

Take a vector §=(dz,d¢,3 )= C*x C*x C™' such that |dz| <e¢, |3l’| <e, |62']
<¢,Re(0;)=-+1 with ¢>0. If ¢ is small enough, there exists ¢>0 (inde-
pendent of x* when 2* moves over a compact subset of T%M¢) such that

€*+10ESS(f* M) if 0<t<e. In fact if x*+10eSS(f* M), then & — /=19’
=2t6¢" holds and

z:((% ) 132, (VT i 6C)d T+ <§(s’+ VI )t dz>>
belongs to SS(HM). Since

1 7 S U AN - 24
!?(S T\/—l‘q )Ttoc

<2ct=2¢|v =1 5, +13L]

and Y is non-characteristic for .54, 2z* does not belong to SS(HM) if ¢ and
¢ are small enough. Thus *dx, is hyperbolic for f* M. We get (2.2) from
(2.3) and Corollary 2.2.2 of [11]. From (2.1) and (2.2) we get an isomorphism
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2.4) R Homo (H, BOly) —> R Homo (M, BOvz.,).
Next let us consider the exact sequence
0 —> Oxlsg —> BO — (zzx)xCO — 0;

here C© is the sheaf on S%¥X of microfunctions with holomorphic param-
eters 2/, and nmgzyx is the projection of SEX to M. From this exact

sequence we get
2.5) R Ilomo (M, Ox)ly —> R Homo (M, BO)Iy

since SEXNSS(HM)=¢@ on a neighborhood of £NY. By the Cauchy-
Kovalevskaja theorem due to Kashiwara (Theorem 2.5.16 of [5]), we have

(2.6) R Yloma o, Oy —> R Homo(Hy, Or).

Combining (2.4)-(2.6) we get an isomorphism

@1 R omo (M, BOyz,) —> R Homoy(Hy, Or).

Applying to this the functor BRI yQwy[n—1] we get finally
R Homa (M, Bai,) —> R Homa(Hy, Br).

This completes the proof.

REMARK. (2.2) can also be proved by using the sheaf Cy_ ix of
Kataoka [12].

THEOREM 2.1. Under the same assumption as in Proposition 2.1, for
any jEZ there exists on U a homomorphism

EXtéI)X(ﬂ; QN!M,,_) - gxﬁq)y(ﬂy; DBy).
In particular there exists on U an injective homomorphism
r . ﬂom@){(ﬂy ‘@NIJI_*_) —_—> ﬂomfpy(m}’; QBN) .

PROOF. This is an immediate consequence of Theorem 1.2 and Prop-
osition 2.1.

Let us microlocalize this formulation.

PROPOSITION 2.2. Under the same assumption as in Proposition 2.1
there exists on {(zwyy) {U) an isomorphism
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R Homo (M, Crix,) —> R FHomo(Hy, Cr),
where Cy denotes the sheaf on StY of microfunctions.
PROOF. From (2.7) we get
R omo (M, Cy.x0,) = R Homo (M, R 55,1 ((mryv) B Oy i ) ) Qeonln—1]
=R 53 v((myy) (R Homo (M, BOyiz ) Qosn—1]
= RI sy (7)) (R Homoy ( My, O))*Quxln—1]
=R Homg (HMy, Cy).

This completes the proof.
From this proposition and Theorem 1.1 we get the following:

THEOREM 2.2. Under the same assumption as in Proposition 2.1, for
any jEZ there exists on (ryy) {(U) a homomorphism

Extly (M, Cri,) —> Extlo (T, C)

compatible with the one in Theorem 2.1. In particular there exists on
(zyy) ™MU) an injective homomorphism

7 ﬂomQX(j%; CNJM,I_) - ﬂOWZg)Y(j%Y; Cw)
compatible with the y in Theorem 2.1.

A natural map T*XxM—T*M associated with the embedding M —X
induces a map g

p: SEX\SEX — S%M.
Put L,=(ru ) (M,)CSiM. Then there exists a natural homomorphism
¢ 2 (Cul,) — Culo1cz,

such that ¢(sp.(f))=sp(f) for a section f of By, lu,=Buly,, where Cy
denotes the sheaf on S X of microfunctions and sp: z-'By,—Cy is the
spectral map. More concretely ¢ is defined as follows (cf. Komatsu [16]) :
Suppose a germ u(x) of Cy, at a*=(%, v/ —1&'0)e L, is defined by u=
sp.(b.(F')), where F is a section of B0 on {(z,2)eM ;Imz T, |z—3| <e}
with an open convex cone I” of R*! and ¢>0. Then there exist holomor-
phic functions F.(2) on {z X; Imz2’'el, |x—4&| <e, +Imz, >0} such that

F(x, 2')=F(x,++—10,2" )= F_(z,— v/ —10,2').
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Set [.={yeR"; +y4,>0,y’l'}. Then a germ ¢(u) of p(Culo-1z,,) at
z* is defined by

Hu)=sp(F(z+~v—11,.0)—F_(x+~—11.0)).

COROLLARY 2.1. Let f be a germ of Homgy(M, Cyix,) at =
(&, v—1&'c0) with 5=(0,%)EN and £ =S™% Assume that y(f) vanishes
on a neighborhood of x*. Then there exists ¢>0 such that ¢(f) vanishes
on (v, V—1E0)eSEX; 0<a<e, [a'— 3| <e, &€ R, [§—&'| <s} as a section
of Homg (M, Cy).

COROLLARY 2.2. If Y is mon-characteristic for M and if My is
microlocally hypoelliptic at z*<S%Y, i.e. Homo, (My, Cx)e=0, then the
conclusion of Corollary 2.1 holds. Moreover if My is hypoelliptic, i.e.
FHomo, (My, Byl Ay)=0, then there is an tsomorphism

ﬂomgx(ﬂ, @X)LV —fj; ﬂ[onmX(ﬂ’l, QNUII_(_) .

2.2. F-mild hyperfunctions

We clarify the meaning of the boundary value homomorphism y of
Theorem 2.1 using F-mild hyperfunctions introduced by Oaku [21, 22].

DEFINITION 2.1 ([21,22]). Let z be an admissible local coordinate system
of X. Thena germ f of By, at £ N is called F-mild at & if and only
if fis written in the form

f:b+(F1)+ s +b(F)

on {xe€ M, ; |x— | <e}, where F, is holomorphic on a neighborhood in X of

D&, ,e)={z€X; |z—&|<¢, Rez, =20, Imz,=0, Imz'el;}

with ¢>0 and an open cone I'; of R*!for j=1,---,J. Here F; is regarded
as a section of P$O;, by the composition of natural homomorphisms Oylz
—BCOy and BOz—PBOx,. F-mildness does not depend neither on local
coordinate system nor on the choice of M. The subsheaf of By, con-

sisting of its sections which are F-mild at each point of N is denoted by

P
NIM .

DEFINITION 2.2. BA= KT (Oxly) Qay,
JlA = ((QV/Y)*(@XI Y\.V)) | SyY-

There are homomorphisms 3: _@Ae.@wh and 3: jﬂ——nﬂ"mﬁ induced
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by Oxly—>POyiz,. By virtue gf Lemmas 1.3 and 1.4, there exists an injec-
tive homomorphism b, : A4— PB4 such that Fob,=boS by the same argu-
ment as in [19, 20].

LEMMA 2.1. §: j"ﬁj’mm and B: .@Aﬂ.@mm are injective.

PROOF. The injectivity of the first homomorphism is obvious. Hence
let us prove the injectivity of the second one. Let f bea germ of B4 at
0 N. Then by expressing B4 by a Cech cohomology group we can take
holomorphic functions F; defined on a neighborhood in X of {(0,2))eY;
[2|<e,Imz’e€l’;} with open convex cones /", of R™' such that f=b,(F))
+ s +by(F;). Suppose 5(f)=0 and let I"; be an open subcone of I”;, Then
by virtue of Proposition 1.10 there exist sections F,, of B0y, #, on {(0,2")
ey |zl <e, Imz 17+ I";} such that

J
2.8) Fy= S Fu  FatFu=0 (=j,k=J).
Take a;=1"; so that 2|a,| <8(¢/4) and set
J
Flay2'; &)= 3 S F i@y, w) W' —w’ ; &)dw'
Jj=1 Cj

with chains C;={"eC*™"; |2'|<¢/2,y =a,}. Then F defines a holomorphic
function on a neighborhood in Xx S of

{0,27,8) e Y82 |a'| <ef4, <y, &> >y — <y, £%.
On the other hand it follows from (2.8) that

Flz,2'; &Y= S Foe, w)Y W' —w'; &)dw’
i<kJej-cy

defines a section of BOy.5 5,5 on a neighborhood of {(0,2,&)e Y xS*™*;
|2'| <e/4}. By the unigue continuation property of £O, F becomes holomor-
phic on a neighborhood in Xx S of {(x,2,&)elM xS*1; 0<%, <4, || <3}
with some §>0.

Let 4,,---, 4, be open convex cones of R”! such that \U4,=R"! and

v=1

4."n4,=@ for v+ p and set

~

Gulo, 2)=\  Fla,2'; £)do(@).

d,nsn-
Then G, defines a section of A+ on {(0, )N ; |2/| <e/4}-+ /=T int 4° and

f= é b.(G,) holds. Moreover, each G, is also holomorphic on a neighborhood
v=1
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of {{xy,2); 0<x,<9,|2'| <8}, and we have
3 b(G)=A()=0.

This implies G,+ --- +G,=0 on a neighborhood of {(z,2"); 0< 2, <4, |2’| <&}
since b is injective. Let V, be an open cone such that V,&4°. Then by
virtue of the edge of the wedge theorem for F-mild hyperfunctions {The-
orem 1 of [21]), there exist holomorphic functions G,, on a neighborhood
of D.(0, V,+V,,¢) with ¢ >0 such that
G=3C,, Gu+Gu=0 (1=, u=n).
pg=1
This implies

f: Ele(Gy): yz;le(Gy‘a) :O .
This completes the proof.

In view of this lemma we can regard B4 as a §ubsheaf of _@N, Mo
Then it is easy to see that a(By ) is contained in F.

PROPOSITION 2.3. « induces an injective homomorphism
o@Nlﬁz+/£§iM+ - —(BN:MJ-@A .

PROOF. Let f be a germ of By, at &N such that a(f)e(.@");.
Using an admissible local coordinate system z we may assume £=0. There
exist sections F; of BO0;, on {(z;,2'); |#] <e, [2'|<e,Imz'€l";} with ¢>0

J ~
and open cones ['; such that f=3b.(F,). Since a(f)c P4, we can assume

=
that there exist holomorphic functions G, on a neighborhood in X of {(0,2")
eY; |2|<e,Imz =V,} with open cones V, such that

ko
a(f)= ZB(G).

Put

Flz, 2 ; '51):-‘%‘18 Fle, w)WE' —w'; )dw’,
~

C;
k
Gz, 2", S’)zkzog Gul, w)W(E —w'; £)dw’,
=1J0y,

where C; and C, are chains as in the proof of Lemma 2.1. Since

S b(F)= 235G,

Jj=1
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Proposition 1.10 implies that H=F—G is a section of @@wglmxg on a
neighborhood of {(0,2',&)e Y xS™?; |2/{<ef4). Let 4,,---, 4, be as in the
proof of Lemma 2.1 and set

oo, )=\ Gle,2 )o@,

dynSn=

W, 2)=\  H,2 €)del@),

4,n87-

and f,=g,+h,. Then £, and g, are sections of A u, and of A4 respectively
on {(0,2)eN; |&'|<e/4}++/—1int 4°0 and h, is a section of DOy, on
{(0,z"ye N; |2’| <¢/4}. Hence g, becomes holomorphic on a neighborhood of
D.(0, 4;,9) with some >0 for any open cone 4'c4° by virtue of the
unique continuation property of CO. In view of the inverse formula of
curvilinear wave expansion we get

= 36,000 = 2b.00.)+ T b.(h).

Since
o £,0.00))= S b= % G5~ blg.)=a(F)—alf) =0,
and « is injective, we get
f=Eb.9.).
Hence f is F-mild at £=0. This completes the proof.

Let M be a coherent 9 ,-module defined on a complex neighborhood
2cX of UCN such that YN 2 is non-characteristic for .. Since
DBiw S0 Byiu, = By (this isomorphism is induced by the boundary value
map for F-mild hyperfunctions (cf. [21])), there is a natural homomorphism

Jos ﬂ[OMQX(ﬂ’Z, vamq) > ﬂOWI@y(j%Y, o(BN) .
THEOREM 2.3. Let M be as above. Then we have
ﬂOMQX(ﬂ, QN|M+/£B§/|M+):O;

and hence

ﬂomg)X(j%; Qf\'\M,},) :ﬂomsv,y(‘j%; QMM+) .

Moreover the homomorphism y of Theorem 2.1 coincides with y,.

PROOF. By (2.4) and (2.5) we get
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R ﬂommx(ﬂ, @4) %Rﬂomg)((ﬂ, -@NIJI+)y
and hence
Rﬂorngx(ﬁ%, -(BNIM*_/@A):O-
Combined with Proposition 2.3 this implies
ﬂOYnQX(«%; ~=CBN1M+/=@§HM+):0'

Next let us show that y coincides with 7,. Note that B4 0, PA = By,
Hence there is a homomorphism

7' : ﬂfomQX(j%, @4) - ﬂonw)y(j%y; fBN) .

This " coincides with the one induced by the isomorphism

R Homa (S, Oxly) —> R Homoy (Hy, Or).

Consider the commutative diagram

oma (M, Blu,)——> Home (M, B> Homoy(My, Br)

ﬁk ) ﬁk T

a

Homo (M, Byw,)——> Homo (M, Brix,) -

Since 7,=7"ca, and y=7 o3 'oa, we get 7,=7°8. This completes the proof.

REMARK. Kataoka has proved that Homg,(H, ﬁ?lv;m):ﬂ{om_@;f(ﬁ%,
Byiw,) holds under the above assumption, where By, is the sheaf of

mild hyperfunctions (cf. [13]). Since By, isa proper subsheaf of DBiw,
(ef. [21]), the second equality of Theorem 2.3 is contained in his result.

COROLLARY 2.3. The boundary value homomorphism y of Theorem
2.1 is independent of the choice of M, and hence 7 is well-defined for any
real analytic mawifold M, with 1-codimensional real analytic boundary N.

2.3. Fuchsian systems of partial differential equations

Let z=(z,,2’) be an admissible local coordinate system of X. We use
the notation D,=(D,,, D,), D.,=(D,,, -+, D,,) with D, =0/dz;. Let ODyx be
the sheaf of rings consisting of the sections of Dy|y commuting with 2,
(i.e. not containing D, ). We denote by ODs[D,] the sheaf of sections of
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Dx|x which are polynomials of D, with coefficients in ODy. It is easy
to see that ODy and ODz[D,] are well-defined as sheaves on M not de-
pending on z. In fact, if Z is another admissible local coordinate system,
we have relations of the form

(29) 21:95‘1(21), Z]:(‘D](Z) (.7.:2; Tt %) s
and hence
2 O¢y X 0o, -
DZI_EI”GZ"Déky l)z]-‘—kzzz azj Dék (.?“2; ,7’2/).

Let P be an mXm matrix whose components are sections of 09D ;[ D,]
on a neighborhood 2CM of UCN. After Tahara [29] P is called a
Fuchsion system {with respect to M,) if P is written in the form

P=a(z)(2.D, I,,— Az, D."))

by an admissible local coordinate system 2, where a(z) is a non-vanishing
holomorphic funetion, 7, is the mXm unit matrix, A=(4,;,) is a matrix
of sections of O9D; such that

(A1) (400,27, D,)) is of order =<0, i.e. equals a matrix Ayz’)
of holomorphic functions.

{A.2) There exist integers n,,---,n, such that A;{z, D,) is of
order =n;,—mn;+1.

The eigenvalues of A,z"), which we denote by 2,(2"),-+, 1.(2’) counting
their multiplicities, are called the characteristic etgenvalues of P. The
notion of Fuchsian systems and the matrix A4, are independent of admis-
sible local coordinate systems. In fact, if 2 is another admissible local
coordinate system, then we get

n
lezlzcl(él)éngl +21 Z)Cj(z)ng
j=2

with ¢,(0)=1, and hence

2D, Ln— A=c\(2)(2. D L—ci(2) (A~ 2, 3 ¢,(5)Dy, 1)

i=2
In the sequel we also assume
(A.3) ey --ifeYeZ if i#j and (0,2)eU.

We define an m-dimensional complex vector bundle L(4,) on UCN as
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follows: Let z=%++/—1yand 2=%++/—1 7 be admissible local coordinate
systems. Then each point of L(A4;) is written as (dx,)4c with a column
vector ¢c=C™; two points (dx,)4¢ and (d%,)4¢ in the same fiber define a
same point if and only if

- dil >A0<x')~
c-(-—dxl 0) ¢.

(Note that %, depends only on z;.) Set M=DE D3P, where D% is the
sheaf consisting of the row vectors with components in Dy.

THEOREM 2.4. Under the above assumptions, there exist injective
sheaf homomorphisms (boundary value maps)

7 ﬂ[omgx(ﬂ’l, =(BN|M+) —> By cL(A4,)
7 Homo (M, Cyin,) —> CaQclmny) " LLA)

on U and on (zyy) (U) respectively, and these 7’s commute with spectral
MaAPSs.

In order to prove this theorem we introduce an extension ring of
ODyly. For a moment let us assume that there exists a holomorphic
function f on X such that Y={f=0}, M={Im =0}, and that df+0 on X.
Put

XX X={(z,w)e XX X; fz)=f(w)}

and let m;: XX,X—X be the projection to the first component. Let
O%% be the sheaf of (n—1)-forms with respect to the fiber coordinates
of =, with coefficients in Oy, sx-  We denote by 4y the diagonal set of
Yx Y.

DEFINITION 2.3.  ODpia=IH 5O [y xr) -

Identifying 4y with Y we regard Oy .z as a sheaf on Y. It is easy
to see that O%"ly.r does not depend on f. Hence OJy, 5 is well-defined
without the assumption of existence of f. By the same argument as in
§1, we have

I O9T Ry r)=0  (#En—1).

By the same argument as in [11] we can verify that 0Dy 7 has a ring
structure by virtue of residue maps. Note that

@Y:iz:ﬂz;l(@;?’x@_)})[Dx]IYxY): @@YW[DJ

is the sheaf of polynomials of D, with coefficients in Oz, independent
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of f and 2z, and contains Dy|y as a subring.

Let 9% be the sheaf on X of linear partial differential operators of
possibly infinite order with holomorphic coefficients. Then the sheaf OD%
of sections of 9%|y commuting with f is cohomologically defined by

OD7=HEHOLP)

Hence ODy,y is an extension ring of O9D%|y since the ring structure of
O9% is also defined through residue maps (cf. [11] and [8]).

LEMMA 2.2. DOy, has a structure of ODy,z-module compatible
with that of ODg-module.

PROOF. To distinguish the first and second components put X=X=
X,, etc. Using the residue map

R(z.), 083 In—1] —> O
we get homomorphisms
ODr 2@cBOuly=RI 1, (Ol r)[n— 110 B0, v,
—> RI'j (BOGL, vy )In—1]
= RT 1 (RD s (O820) ) [0) Qi
—> RI4(R(z) {(O852) r[n]Qws

— RI'3(Ox)[11Qws= BOy,
and in the same way,

ODria®cl 5 (BO2)y —> I'u (BOx),
where M_=M\J,. Since
BOy i, =(BOT 5 (BO))y
these homomorphisms induce
@@mf[@c«@@mzh — B0z, .

We can verify that B0y .z, becomes an O Dy z-module by this homo-
morphism. Since the action of ODF is defined in the same way (cf. [8,
Chap. III]) the actions of OD% and of ODy,z are compatible with each
other. This completes the proof.

Now let us give a concrete description of @@y.;,. For this purpose
fixing an admissible local coordinate system 2, we may regard X as a
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Stein open set of C™. Let w=(w,,w’) bea copy of 2. Then (2, w’) serves
as a local coordinate system of X% ,X. Let U, be a Stein neighborhood
of 4, in YXY and set

U,={0,2/,wYeU,; z;#w}  (j=2,-,n),
CL]:{UM U?}'”yUn}) CU/:{U%".;UH}~
Then by virtue of Lemma 1.3 we have

ODyia(Y)=lim H* {Umod U5 O Iy <)
1

<1im (T(U, O35 o)l § (U, 0858 |ear))

Uy
where U= fn\ U, and U]A:k(\ U,, and U, runs on Stein neighborhoods of 4y
Jj=1 +7

J

in YXY. For a=(ay, -,a,)eN"" with N={0,1,2,--+} set

"o kG 1' a;!
0w >_]-H:2<27z\/—1 (—wj,eitt )

Using Laurent series we can identify O9y,z(Y) with the set of the func-
tions of the form

(2.10) 2 a.(2)0.(2—w'),
aeNn-1
where a,(z) are holomorphic on a neighborhood of Y in X, and this series
converges on a neighborhocd of U in Xx,X. We write an element A
defined by (2.10) as
A= 3 a.2)D5
aeyn-1
with D =D3%---D%. Note that for any ¢>0 and any K&Y there exist
C>0 and >0 such that

sIal

a!l

la.(2)|=C

for any z with |z,/]<é and z’€K, and a=N""'. Hence we get

PROPOSITION 2.4. Each section of ODyz over a Stein open set 2 of
Y is uniquely expressed in the form

Az D)= 3 Az D.),

where A, satisfy the following conditions :
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(1) Afz,C') is holomorphic on a neighborhood of 2XC**' in XX
C" ', and homogeneous of order j with respect to .
(i1) For any K&Y and >0 there exist C>0 and 6>0 such that

Jor any §
A4, Ol =S el
holds if |z,1<6,z2’ €K, and 'eC" .

Thus Oy 5 contains the formal differential operators introduced by
Tahara (Proposition 1.1.9 of [29]).

PRrROOF OF THEOREM 2.4. First let us fix a local coordinate system z
around z<U as above. Then by Theorem 1.3.6 of [29], there exists an
invertible matrix Q=0Q(z, D,.) of germs of ODy,z at £ such that

Q 'z D, I,— A)Q=2.D, I,— 4,
Q0,2", D,)=1,

(2.11)

as matrices of germs of Py 5. In fact Tahara proves that such Q satisfy-
ing (2.11) exists uniguely as a matrix of formal differential operators.
Since his proof of the uniqueness of Q also applies to ODy 5, such Q is
unique as a matrix of @Dy z.

Let us show that there exists an isomorphism

7 ﬂ[om_cpx(ﬂ @NIM_\L) :; o@fv@cL(Ao) .

Let u be a column vector of m germs of _C.BN, x, at & such that Pu=0.
Since .@N.M+ is an 09y z-module, it follows from (2.11)

D, (x7*0Q ™ u(2)) =0
Hence by Proposition 2.1 % is written in the form
(2.12) u=Q(z{v(z"))

uniquely with a column vector » of germs vy, -+, v, of Byat &. We put
Fuw)=(dz) v e ByRQcL{A,). Thus we have defined an isomorphism 7 with
respect to z.

Let us prove that this ¥ is independent of 2. For this purpose, we
may assume that 4, is a diagonal matrix in view of (A.3). Let 3 be

another admissible local coordinate system around & with the relations
(2.9). Then (2.11) is written in the form
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Q‘1<c1(21)21D§1+21 3 e,210;,— A)Q

3

:(51(21)21D51‘|‘51 ) 2Cj(2)Dz_,-"Ao(</)/(2)) 5

J

i

here ¢=(¢Jy, ") is the inverse transformation of ¢=(p,, -, ¢,). First let
us assume ¢;{(z;)==2,, 1. e. ¢;=1. Then there exists a diagonal matrix R of
invertible sections of O9y. 5 such that

R‘1<21D;1+21jécj(z)DEj—Ao(gb’(z)))R:ZIDZL—AO(gb’(O, z')),
and that R(0,2’, D;)=1I,. In particular we have
(2.13) (2:D,,— Ao(2"))R=R(2,D; — A(¢" (0, 2'))).
Since

(QR)™(2,D;,+ zz ¢,(#)Ds— AYQR=2.D;,— A(¢'(0, 7)) ,
the above u is written as
(2.14) u=QR(210Y “*0p(z"),

and 7 is the boundary value of w with respect to 2. By (2.12) and (2.14)
we have

(2.15) v(x") =7 REGW IG5,

Replacing the condition (i) of Proposition 2.4 by a weaker one that
A(2,{) is holomorphic (and homogeneous of order j in ') on the intersec-
tion of M,xC"* and a neighborhood of 2xC" !, we get an extension
ring JJ}Y}.@ of ODy,5. The operator

S___ 2 Sj(é, Dgy):z;Ao(z)'(2))Rz;10(¢'(0,5'>)
j=0

is a diagonal matrix of sections of J@Yiﬁ+. From (2.13) we get

0 LA _
(55— + L2y, )s=0,
where (6/02,)S=[%,,S]. Hence each component of S becomes a section of
ODy.». On the other hand, using Leibniz’s formula we can verify that
the j-th homogeneous part S,(%, %, D;) tends to 0 if =1, and to I, if j=
0 as #,>0 tends to 0. Hence we have v=S7 with S(0,2',D;)=1I,. Re-
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stricting this relation to x,=0 (note that both v and S? can be regarded
as ‘sections of _@A), we get v(z')=v(¢’(0, ")). Thus 7 is invariant under a
local coordinate transformation (2.9) if ¢i(z,)==z;.

Next let us assume ¢,(z)=z2, for j=2,---,n. There exists a diagonal
matrix R of non-vanishing holomorphic functions such that R(0,2')=I,
and that

R_1(21D51_01(21)_1/‘10(2/))1‘2:51D21“A0(2/)~
Let u,v,? be as above. Then we have
, , ~ , :El Aolzty
v(x')=x740 " Ry (8 ) = <7> RBRo(z').
Ly
Restricting this relation to z,=0 we get

v(m’)z(jii (0))""(”@(@’).

This proves that 7 is independent of z. By Theorem 1.1 y=7joa satisfies
the statements of the theorem. Since C wu, is also an ODy z-module, the
statement for Cyy, follows from the above argument and Theorem 1.2.
This completes the proof of Theorem 2.4.

REMARK. If we can take and fix an admissible local coordinate system
over U, then Theorem 2.4 holds even if we replace (A.3) with a weaker
condition

(A.3) 22" )= 2,z Z\{0} for any ¢, 7 and (0,z)eU.

COROLLARY 2.3. Under the same assumptions as Theorem 2.4 the
same concluston as Corollary 2.1 holds.

For the later use let us consider a singular coordinate transformation :
Let 2z be an admissible local coordinate system around Z< U and set

,’21:,21 » 2]':2]' (j:2)'“;n)
with a positive integer k. Then P=2,D, I,—A is transformed into
1
k

Hence P is also a Fuchsian system with characteristic eigenvalues k2,, -,
k2n. Set SN=9D7/D2P. Then we easily get

P: Zngllm“A(éi Z/, Dg:).

PROPOSITION 2.5. [In the chove situation let w be « ssction of
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Homge (M, Byis,) (resp. Homa (M, Crxin,)). Assume k(A;—2)EZ for i#]
and that r(u)=(dx)*v with ve(By)™ (resp. (Cx)™). Then G=u(z%, 1) is a

section of ﬂomgx(ﬂ,a@N,ﬁ,+) (resp. ﬂ[om@X(ﬂ?l, Cwix,) and we have y(i)
=(d&,)*4op.

§3. Propagation of micro-analyticity up to the boundary
3.1. Micro-hyperbolic systems and main results
First let us define the notion of (relative) micro-hyperbolicity. Let
H: THT*X) =™ T(T*X)
be the Hamilton map defined by
8, v>=<dw, v NH()>

for veT(T*X), 0 TH(T*X), where w= f}lcjdzj is the fundamental 1-form
=

on T*X (z is a local coordinate system of X and ¢ is its dual variable).
Let z=z++/—1y be an admissible local coordinate system of X. Then
fy=dz, = T*(T*X) is invariant up to positive constant under the change of
admissible local coordinate systems. It is easy to see that H(4,) = T(T*X)
belongs to T{T*X|s) with T*X!;,:T*XigM. For a point z* and subsets

S, V of T*X we denote by C(S; V) the normal cone of S along V at z*
after Kashiwara-Schapira (Definition 1.1.1 of [11]). Note that C.(S: V) is
a closed cone of the tangent space T,{T*X) of T*X at z*. We denote by
&y the sheaf on T*X of microdifferential operators of finite order.

DEFINITION 8.1. A coherent &y -module .54 defined on a neighborhood
of ¥ T Xy in T*X is called micro-hyperbolic relative to M, in the
direction <= TX(T*X) at 2* if and only if

H) ¢ ColSupp(INT* X |5, 5 THX).

REMARK. (i) Let z be an admissible local coordinate system. Then
M is micro-hyperbolic relative to M, in the direction d,=dz, at z* if and
only if there exist an open neighborhood U of z* in T*Xls and an open
cone I’ in T J{T*Xlz)={{z, 2 ; w)e RXC" 'xC" containing (0,0; —1,0,
-++,0) such that

(UNTRX)+ DN UNSupp(MINT* Xz, =@ .

(ii) If ¢ TH(T*X) is micro-hyperbolic for .94 in the sense of [11],
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then M is micro-hyperbolic relative to M. in the direction ¢ at x*.

(iii) Assume that M is a single equation Pu=0 with a microdif-
ferential operator P defined on a neighborhood of z*=(%, v—1&)&TX|x.
Assume moreover that the principal symbol of P is written in the form
a(P)z,{)=2ip(z,{), where k is a nonnegative integer, and »(z,{) is a holo-
morphic function such that p(#,{;, v —1&’) is not identically zero as a
function of ;. Then .M is micro-hyperbolic relative to M, in the direc-
tion 6, at «* if and only if there exists ¢>0 such that

p(x, vV ~1&—(,0,:-,0)#0

whenever z€ R", |z— 2| <¢,2,>0,8€ R, |6—£] <e,0<t<e. In fact, this as-
sertion follows from the local version of Bochner’s tube theorem due to
Kashiwara and Komatsu (cf. [15]) applied to 1/p(2% 2/,0) (cf. [31],[2].

In this section we sometimes identify S¥ X with f‘}‘,X =T%*X\0. We de-
note by n: T*X—X and p: T*X|,—T*Y the canonical projections. Note
that Cy, is supported by Ly\JL, with Ly=S5M|y and L,=S§M|,,.

THEOREM 3.1. Let z* be a point of f”};Y and M be a coherent 9D y-
module defined on a neighborhood of zyy(x*). Assume the following con-
ditions :

(C.1) TEX el SS(INT*X|7,)=0,
where cl denotes the closure in T*X.

(€C2) ExQi-10,a ' M is micro-hyperbolic relative to M, in the
direction O,=dz, at each point of p " x*)NTHX.

(C.3)  If z is an admissible local coordinate system of X around
awr(2*) and (=, () is the dual variable of z with £, being
the fiber coordinate of p, then

p @ )INCISS(INNT* X 5, ) T, 2¥) €p™H(z*) ; Rel =0}

holds. (This condition is independent of z.)
Under these conditions we have

R ﬂOm.‘Dx(ﬂ) FLO(CM_'_)).Z*:O .

We shall prove this theorem in Sect. 3.3. Using this theorem we
shall prove some results on the propagation of micro-analyticity of solu-
tions up to the boundary. For this purpose we first prove the following:

LEMMA 3.1. Let M be a coherent Dy-module defined on a neighborhood
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of €N satisfying (C.1). Then there exists a neighborhood V of & in M
such that the homomorphism
¢ ﬂOMQ)X(j%; CM+)(L+ — P*(ﬂomgx(ﬂ%, CM){;)‘RL.Q)

18 njective on LNz 7)) HV).

PROOF. Let 2z be an admissible local coordinate system around £=0
and set Y, ={ieX: 2,=1, M,={x,2YeM : x>}, Ny={zeM; z,=t} for
t>0. By (C.1) there exists ¢>0 such that Y, is non-characteristic for M
if 0<t<c. Fix such ¢t and put L,=S8SiM |y, K.=SyMly, Let

7t (YAN)JUL, — Y,
. (YAN)UK, — 1,
g: YAN, — (YAN,)UK,
be canonical maps. Set
Bo= AN BOwly),  BE=HOxlr)),
A= BOulyan Ny H=(Oxlyw s,
Co=Ii M (BOgly)),  Ci=Hw (Oxlr,)
Since the arguments iin §1 apply to these sheaves, there exist injective
homomorphisms
b : jt — z',_l.@t, b4 At > it P
and surjective homomorphisms
sp: B, —> C,,  spt: i Bt — Ct,

and Propositions 1.7 and 1.10 are also valid for _@t. By the same argument
as the proof of Theorem 1.1 we can prove that there exists an injective
D y-linear homomorphism

a; L CM+|LL — (.

The homomorphism Oyly,»BOsly, induces 5, : CaC,

Let f be a germ of Homa, (M, Cy.,) at y*=(§, v—1& )L, Let
us take a system of generators w;,---,u, of M over Dy and put f,=r(u,).
Then f; is a germ of Cy, at y*. From (2.5) we get an isomorphism

Homg (M, C# = FHomg (M, C.
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Hence there exists a germ g, of C# at y* such that a,(f;)=p.g,;). There
exists a section F of FO on

{(@,2)eM ; |2, —t|<e, |2/ —§'| <e,Imz' €I}

with an open cone I'cR! containing & and an >0 such that Ji=sp, (b (F})
at y*. On the other hand we may assume that there exists a section G
of Oxly, on {(¢,2)eY,; [2'—9'| <e,Imz’ I} such that

9, =SpAbAHE) .
From a;(fj):/gz(gj) we get
sp:(bi(Fly,— G))=0

at y*. Hence by the .@, version of Proposition 1.10 there exist sections
F, (v=1,-+,v) of BOgly, on {(t,2YY,; |2/—§'|<d,Imz2’el,} witha >0
and open cones /', containing & such that

oy e R <y 85 <0 @,
F—G=3F,.
y=1
Choosing a>0 so that 2a<6#(5/12) and a<d/4, set

Pla, ' €)=\ Flo,w)We'—w' ; &)du,

Gloy 2 5 &)= Sca(xl, W)W —w'; &)dw’
with C={z'eC™'; [2'|<6/2,y =af’} and set
n, £~ 2 7
Fo= Plo 2 €)40@),  Go=\ G e €20,

where 4={¢'eS"?; |¢—&'|<c¢} with sufficiently small ¢>0. Then the
same argument as the proof of Theorem 1.1 implies that F,—G, is a sec-
tion of BO on {(x,2)eM; |z, —1t]<§,|2'| <8’} for some 6'>0. By the
unique continuation property of CO, G, becomes holomorphic on a neigh-
borhood of

{(my, 2YEM ;5 |2, —t| <&, |2/ —§/| <8, Imz' eI}
with some open cone I’ containing £. Hence we get

fj:Sp+(b+(F)) =sp. (b {F) =sD.(b.(Gy))
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at y*. By virtue of the local version of Bochner’s tube theorem (cf.
Komatsu [15]) there exists an open cone 7 in R” containing ["CR* =
{0} x R"! such that G, is holomorphic on

D(y, e, N={zeC"; |a,—t|<e, |2'—§'| </, Imze [}

with some ¢ >0.
Assume ¢(f)=0 on p y*). Then we have

SP(Golz -+ =1 10))=¢(f;)=0

on a neighborhood of p~!(y*). By the flabbiness of ) there exist holomor-
phic functions G, (v=1,--+,,) on ID(§,¢’, ) with open convex cones I,CR"
containing &’ such that

LN{0,y); <y, <0+ g,

Hence we get
Yo
Fi=8p:b.(Go))= EISP+(b+(GuIﬂ)) =0,
and consequently f=0, at y*. This completes the proof.

THEOREM 3.2. Let M be a coherent Dg-module defined on a neigh-
borhood of mwxlU) with an open set U of SEM such that Y is non-
characteristic for M. Suppose moreover that M satisfies (C.2) and (C.3)
of Theorem 3.1 for any x*<UNSYY. Under these assumptions if fis a
section of Homg (M, Cy,) on U such that ¢(f) vanishes on p *(UNL,),
then y(f) vanishes as a section of Homg, ( My, Cy) on UNS}Y.

PRrROOF. This follows immediately from Theorem 3.1 and Lemma 3.1.

COROLLARY 3.1. Suppose that M satisfies the conditions of Theorem
3.2 with U=(ry,z) {V), where V is an open set of M. Let f be a section
of Homg AM, Ay) on VNM,, where Ay denotes the sheaf on M of real
analytic functions. Then f 1is wuniquely continued to a section of
Homg (M, Ox) on a neighborhood in X of VANN.

The following example was suggested to us by a problem posed by
G. Zampieri {(communicated by K. Kataoka).

Example 3.1. We use the notation (2, w)eC"xC?¢ with z=x-++v/—1y
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and z2=(z;,2’)eCxC" ', Let { and 6 be the variables dual to z and to w
respectively. Let P=P(z,w,D,, D,) be a linear partial differential operator
with holomorphic coefficients defined on a neighborhood of (0,0), and assume
that {(z, w); 2,=0} is non-characteristic for P. Assume, moreover, that
there exist C, ¢>0 such that the principal symbol ¢(P)z,w,{,f) never
vanishes if z=(z,,z)eRXxC"!' with {z{<e and 2,>0, |w|<e, {=C" and

g C? with £,#0,(0,/C.1 <e (=2, ,n—1),10:/0,| <e (k=1,--+,d), and if
Im<%>>c(§[lmz,.|+j§; Im< §,>|+§1 )

Under these assumptions, suppose that a hyperfunction u{x, w) with holo-
morphic parameters w satisfies

(7%
Ca

Pz, w, D, Dy)u(z, w)=0
on {{z,w)e BR"xC*; |z <e, lwl<e, 2;,>0}. Then wu(x, w) is micro-analytic on
oz, w, v—1<,dayo e/ —1S¥HR*"XC?; |2 <3, |w] <3,
%,>0,p=(p, 7 )ERX R | —(0,-++,0,1){ <}

for some >0, if and only if the boundary values Diu(+0, z’, w)(0Sv=
ord P—1), which are hyperfunctions with holomorphic parameters w, are
micro-analytic at (0,0, v —1dx,c0) &~/ —1S*(R* 'x C%. In fact, it is easy
to verify that the system

Pz, w, D;, Dy)u= U=cro=m——y=0

_9

010,

satisfies the conditions of Theorem 3.2. A typical example is
P=D7 + Dy +---+ Dy, +(lower order terms)

with (z, w)e R"x C*® and a positive integer m.

Now let P be a Fuchsian system defined on a neighborhood of 7, z(U)
with an open set U of SEM satisfying (A.1)-(A.3) and set M =D/ DLP.
The determinant det P is defined by

(det P)(Z, C) :det(ZIC1Im_ (Uni—nj+1(Aij)(z: C/))) b

where ¢; denotes the principal symbol of order j (cf. Sato-Kashiwara [24]).

THEOREM 3.3. In addition to the above assumptions, assume that

(det P)(x, Cl) '\/‘_1 5/)¢O
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whenever (x, v —1&)YeUNL. and Rel,<0. Let f be o section of
Floma (M, Cu,) on U such that ¢(f) vanishes on p ™ (UNL.). Then y(f)
ECxQel(ryr) *L(Ay) vanishes on UNSLY,

PROOF. We fix 2*€UNS%Y and take an admissible local coordinate
system z around z,5(2*). We transform P into P by a singular coordinate
transformation

z=% and z;=%; (§=2,--,n)

with an integer k=wm such that k(1,—21,)eZ for i+#j. Then det P is
written in the form

=~ 5 1, Py
(det P)(zy ) t —k_21C15ij‘_—O'ni—nj+l(Aij)(2f;2 ;C ))

1l
(o5
@

TN

=k""2'D(Z, 0

with a monic polynomial p in g, with coefficients holomorphic in (z,¢').
Thus M=DE DD satisfies (C.1). Applying the local Bochner theorem to
~2k a7

p(%,2,8) we can verify (C.2)(cf. Kaneko [2]). Now let us verify (C.3).
By the continuity of the roots of the equation #(3,2)=0 in £,, we have

{0 %) € p (@ N elSS(T) N T* X r,)
T, %) 5 o, 2*)=0}C{(Zy, ) ; Rel,=0}.

Thus we have verified (C.3). From Theorem 3.1, Lemmsa 3.1 and Proposi-
tion 2.5 it follows that 7(f) vanishes on a neighborhood of z*. This
completes the proof.

REMARK. (i) If we fix a local coordinate system, Theorem 3.3 is
also valid if we replace the condition (A.3) with a weaker one (A.3) (cf.§2).

(ii) A single equation Pu=0 with regular singularities in a weak
sense (cf. Kashiwara-Oshima [10]) is equivalent to a Fuchsian system (cf.
Tahara [29]). Hence Theorem 3.3 also holds for such equations.

3.2. Prolongation theorem

In order to prove Theorem 3.1 we modify the prolongation theorem
for cohomology groups in the complex domain due to Kashiwara-Schapira
[11] so as to apply to cohomology groups with B coefficients. In
this section we restrict our attention to FEuclidean spaces and put X=
C'o2=(z,2)=2++v—1y, M=RxC" ', Y={0}xC"'. We use the notion
and notation in [11]. Let G be a proper convex closed cone in M with
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vertex at the origin. Then X and M are equipped with G-topology as
follows: An open subset U of X (or of M)v is called G-open if and only
if 24+-GCU holds for any 2z U. A subset D of X (or of M) is called G-
round if and only if

(z+ON(w—-GcCD
for any z,weD. For a G-round open set DC X we put
EG; D)=HHDXD; O%%)

with Z={(z,w)€ XX X; w—2zeG}, where O is the sheaf of holomorphic
n-forms with respect to w. &(G; D) becomes a ring. In order to specify
the topology we denote by 2, the subset 2 of X equipped with G-topology,
and by ¢¢: X—X;, ¢g: M—M, the identity maps. First let us show an
analogue of Theorem 3.2.4 of [11].

PROPOSITION 38.1. Let G be a proper convex closed cone in M and let
2,CQ be two G-open sets in M. Let D be a bounded G-round open set in
X such that Q\2,CD. Suppose that there exists an open convex set w of
M such that

oM\ =, (0+GNLNDC o, 0D 2,M0D.

Then RIp0,((¢5)BO) is well-defined in the derived category of the abelian
category of the sheaves of E(G; D)-modules on £.

PROOF. First let us show that Hpo(2; BO) is an E(G; D)-module
for any keZ. Set O={cX; (v,2)€Q} and G={izeF; (x,2)=2, or
y:#0}. Then O and J, are G-open sets in X and O\J,=Q\ 2, holds. Hence
we obtain

Ho(2; BOY=HEL (2; Oy).

2\2p

Theorem 3.2.1 of [11] implies that Hjo(2; BO) is an (G ; D)-module.
Secondly note that for any open convex set o of 7,

H'(w; $O)Y=0 (v>0)

holds (see the remark after Lemma 1.1).

By virtue of these facts the proof of Theorem 3.2.4 of [11] still works
if we replace Oy with L0, and pseudo-convex open sets in X by open
convex sets in M. This completes the proof.

Let @ be an open convex cone of TM (i.e. its fiber Q(z) at each point
z of M is a convex cone). Then an open set 2 of I is called locally Q-flat
at zeM if
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C,(M\2; DNQR)=3 ;

and a locally closed set ZCM is called Q-flat on an open set VCM if
there are two open sets 2, 2, which are locally Q-flat at any point in V
such that

V(Q\L)=VNZ.
Note that an extension ring &F of & is defined by
EF=CE i x®0x .y O%%,
and that there is a natural ring homomorphism
E(G; D) — I'DXint G°; &F),
where int G°={{; Re <, 2> <0 for any 2 G\{0}} (cf. [11]). Let
M:0e—EG; DY e EG; D)Vt vev «— E(G; D)7 <—0

be a bounded complex of free &(G; D)-modules of finite rank. Then we
denote by SS(M’) the closure in DXint G°CT*X of

{*=(2,0)eDXint G° ; E2Q e ;M is exact}.

THEOREM 3.4. Let G be a proper comvex closed cone in M, and D a
bounded G-round open set in X. Let M be a bounded complex of free
E(G: D)-modules of finite rank. Put D'=DNM and let {2}osi<: be a
family of open sets of M. We assume the following :

(a) There is an open convex cone R of TD' such that R(z)+ @ and
R()DG\{0) for any z€D' and that either 2, or 2, is R-flat on D’.

() cl(R\R2)CD’, where cl denotes the closure in M.

(¢) There is an open convex set oM such that

oN(2\2)=0g, (0+G)N2 Co, cl(R)NoD' Cw.

(&) ‘Qto:,g 2, holds for any t, with 0<6,<1, and tQ 2,Ccl(2,,) holds
0 o

for any t, with 0=%,<1.

(e) There is an open convex cone Q of TD' containing R such that
2:\2., is Q-flat on a neighborhood of any point of el(Q\Q) for any 0=
t.<t, <1, and that

{2, e T*X; z€cl(2,\2), Re<C, Q) <OINSS(HM) =@

(£) TEXNCUSS(M)) =@, where cl denotes the closure in T*X.
Under these conditions 2,N\D 1is open in Dg and
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RﬂOme(G; D)(LSM'; RF.Qt\.QO(Qt 5 (¢G)*£B@)):O

holds for any 0=t=<1.

PROOF. Condition (c) assures that RI'p,.0,((¢s)=PB0) is well-defined in
the derived category of sheaves of &(G; D)-modules. In view of (e) and
(f) we can verify that for any point 2 of cl(£2,\f;) there exist a proper
convex closed cone G of M such that G'=G, and a neighborhood V of 2
in M, such that G'\{0}C@Q(z) and that

{(2,)eT5X; Red{, G =0,(Rel, )#0NSS(H)=2

for any z€ V. Hence by virtue of the geometric arguments in [11, §4]
we have only to prove the following:

PROPOSITION 3.2. Let G be a proper convex closed cone in M, and D
a bounded G-round open set in X. Let G’ be o proper convex closed cone
of M such that GEG and int G'# @ (here int denotes the interior in M.
Put Q=int G’ and let f be a real valued linear function such that f>0
on G\{0}. Set w={z=Q; flz2)>1} and assume that c{N\w)TD. Let M
be o bounded complex of free E(G; Dy-modules of finite rank satisfying
(f) and

(@) {(z,0); zecl(R\w), Re<{,G"» =0,(Re, { )= 0INSS(M)=0.
Then we have
R Jlome s, py (M, R g\ ,(($6)+ L O))=0.

PROOF. We extend f to a linear function f on X by f()=f(z,, 2')
with z,=Rez,. In view of (f) and (e¢)° we can take a proper convex cone
G in X so that GNM =G, int G+ @ (here int denotes the interior in X),
and that

{2,0); 2€G, f)=1,Re,GH =0, (Re L, )+ 0INSS( M) =@ .
Set O=int G, a={zf; f(z)>1}. Let us show
(3.1) Rﬂ[omaw; ol H, RFE\Z((?SG')*@X)):O-

Fix a point 8 of Qe and let V be a G’-open neighborhood of 2 in X.
Then there exist a point w of Q\@ and a proper convex cone G of X
such that

G'cG'caq, jewrintG'CV.

Note that
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{(2,0; zeN\a, Re<{, G>=0,L#0NSS(H )=

since Re<{, G'>=<0 and {#0 imply (Re’,,Z)#0. Hence from Proposition
181 of [11]

R Home, py( M, RE5 (D5 ($6):0x))=0
follows with @' =w-+int G’. Consequently we get
R Home g, p)( M, RI'535(($6.)Ox));
=lim RHome g, 0y(H", REy (V5 ($6)50x))=0,
where V runs on the system of neighborhoods of % in X,. Thus we have

proved (3.1). Applying the functor RI"; to (3.1) (note that M is closed in
X)) we get

RJ[OWZE(G; D)(:]%', R[’.Q\w((¢ar)*$@))
ERj[O}'ng(G; D)(ﬂl., RF(ﬁ\Z)(\J“I((GbG')*@X))[l]
gRrﬂ(R ﬂomé’(G; D>(ﬂ') RF,@\Z(@@)*@X)))D]:O .

This completes the proof of Proposition 3.2, and at the same time, the
proof of Theorem 3.4.

Note that the arguments in this subsection also apply to the case
where M =R*xC*? with d=2.

3.3. Proof of Theorem 3.1

Let us begin with an expression of global sections of Cy -

LEMMA 3.2. Let U be an open set of SEM with proper convex fibers.
Then we have

I'(U; CM.,_) (v=n—1),

lim HUQNM . ; BO)=
9.z 0 (vEn—1),

and H*(U; Cy,)=0 for v=1; here 2 runs on the system of open neigh-
borhoods of U in M, and Z runs on the closed sets in M such that ZD
T a(U) and that (Q\Z)JU® is o netghborhood of U® in the comonoidal
transform of M with center M.

PROOF. We apply Proposition 1.2.4 of [25] (it is stated without proof
there, while it follows immediately from Lemma 4.1.10 of Kataoka [12]).
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Namely we get
im HYQNM , ; PO)=lim Hy 2 ; BOy y=H" "N U, Cu,).
2.z 2.z

Hence the fact that the flabby dimension of BO,, is n—1 implies the
lemma.

LEMMA 3.3. Let z* be a point of L. Then we have HI(Cx )=0 for
v=1 and

FLO(CM{h)z"‘ (D:n—l)}

lim HZ”,\(Q\%)(Q/\N[.} ; PO =
0 (v=n—1),

where the inductive limit is taken with respect to the family of (2, 2,,2)
satisfying the following: 2 is an open neighborhood of nym(x™) in M, 2,
is an open meighborhood of QNM, in M, and Z is a closed set in M con-
taining QMM such that SEM\U(Q\Z) is a mneighborhood of (x*)* in the
comonoidal transform of M with center M.

PROOF. Let UCSEM be an open neighborhood of 2* with proper
convex fibers. Let 2 and £, be open neighborhoods in M of U and of
UNM, respectively, and let Z be a closed subset of M containing U such
that (NZ)UU® is a neighborhood of U® Taking inductive limits with
respect to the family of (U, 2,2.,7) satisfying the above conditions, we
get a commutative diagram

eolim Hy Y2, BO)—1m Hinow, (25 BOz,)—lim HYR2 ; BOg )~

==

i l I

e=lim B NUs 5 Co )= lim HY " (U 5 Co )=l HY (U5 Cy ) oo

with exact rows. In view of Lemma 3.2 the right and left vertical arrows
are isomorphisms. Hence we get

im Hinona(QNH . ; BOY=lm Hy; " (U Cy )= K (Cu e

When U runs on the system of open neighborhoods of z* the family of
(2, 2.,7) such that (U, 2, 2,,7) satisfies the conditions above is equivalent
to the family described in the statement of the lemma. Hence the above
isomorphism proves Lemma 3.3,

In order to prove Theorem 3.1 we may assume X=C", Y={0}xC",
H=RxC* ', M,=R.xC", etec. Let G, be a proper convex closed cone
in Y and let D be a Gy-round open set in X. Then by virtue of Proposi-
tion 3.1 and Lemma 32, the sheaf C,, restricted to
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UG, D)={(x, v —1&0)eSEM ; xeD,Re{~/—1&,w><0
for any (0, w) e G\ {0}
becomes an &(G,; D)-module. Note that there is a natural homomorphism
D=(D)=&({0}; D) — &E(Gy; D),

and the action of &(G,, D) on Cy,, is compatible with that of D=(D).
Let M be a coherent Dy-module satisfying the assumptions of The-
orem 3.1. Then there is a free resolution
P, P,

0<—ﬂ<——@f{°<——@§‘<—"-<—r.9§:’<——~0

on a neighborhood D of =(x*) in X with matrices P, of sections of Dy on
D. Let G, be a proper convex closed cone such that 2*< U(G,; D) (under
the assumptions of Theorem 3.1 we can of course take G,={0}). We may
assume that D is Gyround. Let M be the complex

P, P,
0 <—"€(Go§ D)NO < 8(Go§ D)NI Dl 6(Go§ D)NT —0,

where P; are regarded as matrices of elements of &(G,; D) by the natural
homomorphism Dx(D)—E(G,; D). Note that SS(HM)HICSS(M) holds since
€ is flat over &y. Hence Theorem 3.1 follows from the following more
general result.

THEOREM 3.5. Let X,M,M,Y be Euclidean spaces as above and let x*
be a point of L,. Let G, be a proper convex closed cone in Y and let D
be a Gyround open set in X. Suppose z¥< U(Gy; D) and that a bounded
complex M of free E(Gy; D)-modules of finite rank satisfies the following
conditions {(¢f. Theorem 3.1):

C.1) TEXNSS(HINT* X |5, ) =B,

(C.2) HO)ECHSHIMINT*X |5, ; ThX) for any y* <o (@")NTEX.
(C.3) p e INlSS(HINT* X 5,) (&, 2%); Rel,=0}.

Uuder these assumptions we have

Rﬂomaao; D)(ﬂ' N ]—'LO(C’M+)}Z*:O~

PROOF. We may assume z¥=(0, — v —1dz,). By (C.1)-{C.3) there are
C, and ¢, with C;>4 and 0<¢,<1/4 such that

(3.2) {zeX; |zlZ4dnclC D,
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(3.3) G\{0}{(0,2") e Y; Imz, <—eo(|Rez’[+[Im2"]}},
(3.4) {(#,2,0eT* Xz, ; 0<a,=Z0,, 2|20, L& C™\ {0},
[Cd = GICBNSS(H) =g,
(3.5) {(,2',0); 0<m=a, 2] =0, [Re | SalIm L,
Im"|=e|ImE,|, ImZ, <0,
Re (i <—CG(|Rel'|+[Im 2" ||[Im L NSS(H) =2,

where we use the notation z=(z,,2"), (=, '), 2 =(z", z,), ete. Let a,b,C
be parameters such that

be,
8CQ ’

(3.6) O<b<%, C=2C, O0<a<da,=a,b)=
and put

Z=Z{b)= {(xh 2YeM; y.= a%(xﬁao)ly”l},

1 , 1
2=0(a, C)= {(xl, 2y 2,.>0,0,+a> R@—(Ix ]+—Eo~yn>,

w1+a>C<ly”l+%oyn>}

with the notation z=z-++—1y,¥ =¥+, ¥r-1). Note that

3.7) {(xl,zﬂ; 2>0, 2| <20, ly'| < 5-a] ©2,
(3.8) {(ocl,z’)eQ; T =a, Y>> — cg }

C{(xl,z/); 0<x, Za,|2’| <8Cu, ly”|<§g—, fyal < 23“ }

We denote by H(a,C) the set of C'-functions h on [0, ] such that

(3.9) ta

0=Zh/ () =G, for 0=Z2,=Z¢a, 2 C

h(0)=0, O0<h(z)=C, for 0<2,=a,
{ <hia).

For the sake of the simplicity of the notation, we use the convention that
h{z,)=co for x;>a. For heH(a,C) put
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, 8C,
w=wl(a,b,C, h)= {(xl, e Na, C); y, <h{x,) exp<——b——xl>

b ”
or yn<—ao“(x1+ao)]y }}

(Note that o is open.) Let J be the set of (a,b,C, h) with a,b, C satisfy-
ing (3.6) and k= Hl(a,C). We define an order = in J by

(al} bl; Cl; hl) .Z (a’l} b2; CZ} h/?)
if and only if a;=a, b;<b,, C;=C;, h,= H(a,, C,), and

h (xl)exp< bC° ) hg(xl)exp< SbC ; > for 0=<z,<a,

8C,
%(xﬁal)ghgm)exp( -

Note that in this case 2(a,, C))C Q{a,, C.), wlay, by, Ci, h)Cwla, b, Cs, hy).
We have h{z;)exp(8Cyx,/b)<2h(x;) for z,;=<a and

x1> fOI‘ a1<9€1§0«2

Q\szf\<{(x1,2’)€Q; z:<a, Yn cgz }\{(xl,z’)eﬁ;

C, L1 8C,
©.<a, Iynl<h(x1)exp<%xl>,ly l<3h(x1)exp< b" xl>}>

Hence by virtue of (8.7), (3.8), the family {Q(a, C\w(a,b, C, k)} with (a,b,
C,h)eY (with respect to the order defined above) is equivalent to the
family {ZN(Q\L2.)NM,} with (2, 2., Z) described in Lemma 3.3. In view
of (3.3), (8.6), (3.8), we can verify that 2=2(a,C) and w=w(a,b,C, k) are
Geopen and NwCD. Hence R0, (2; ($5,)+« BO) is well-defined as an
&G,y ; D)-module. By virtue of Lemma 3.3 we have

(3.10) R Homecay ol M, T (Cor,)) on
=lim RHomecs, (M, RI0(2; (96,)+ BONm—1].
In the sequel we shall prove
R Home gy (M, RI g o(2 5 ($6)«BO))=0
for any (a,b,C,h)ed
Let us fix (a,b,C, k)= J and take £,>0 such that 0<{,<a. Put

7 t 2 " 1 2
Q;‘,:{(xl,z JEQ: w> ayath, yatalle|+ly l)<—2—05}
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and w,, =82, N, and for {,<t=<q,
2:,:=80,Vay,.
Now our aim is to show
(8.11) R Jome o o0 (M) RT 2y 50 (2,, 5 ($6,)+ BO)) =0

applying Theorem 3.4. (And then we shall take the inductive limit as
t,—~-+0.) It is easy to see

‘Qto,toz‘gto; Qto,a:mzo»

Qto,h:tg 'Q:O,z for t,=4,
1

cl(@,,.)2> N 2., for ¢,<t,.

toltiy

Put
Dla)={z& X; 0<a,<da, [ys] <co, 42> —e3, yatolls[+]y ) <cl),

. N 4eg .
V=@, )0 5 4, < -G (=20,

and D'(a)=D(a)NM. Then D(a) is G,-round and contained in {|zl <dne D,
and V is convex and G,open. Note that

2. \0,,CD'(a), V(@ \e,) =@
in view of (3.8). We can easily verify
oD (a)Nel(R, ) V.
We define open sets @, R of TD’(a) by

Q(z):{w:(ul,w’)eRxC”‘l; '+ Z" <min<400u1, %09%»
0 Q

v +ié:— <min<—4%ul, %:,—m)} s
R(2)=Q)N\{(us, w') ; vatellu'|+1v"]) <0}

for z=(z,,2’)€D’(a) with the notation w=/(u,;, w’), w;=u;+ —1v;, uw=
(U, ==+, Ug), ¥ ={0y, -+, vu_y). It is obvious that @ and R have convex fibers
and that R(z)DG\{0} for any z=D’(a).

' Let us verify that 2, ,is R-flat on D’(a) and that 2.\, is Q-flat
on D'(a). First note that
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Q. =N N(LPULUZ
with

, ¢
={z,2)ER; 2,> W‘;l;yﬁto},

= (2,2"); yn+co(lx’}+ly”l)<%63},

". t
(xl,vz ) ’ xl> 4Cob yn+t}:

={<x1, 2); Ya< e @t eyl
, 8C,
Q= {(xl,z ); yn<h(x1)exp<T°x1>}-
It is easy to see that 2° is @Q-flat on D’(a), £' is R-flat on D’(a), and that
2% is Q-flat on D’(a) (note that =,>0 on D’ (a)).
Let us verify that £° is Q-flat on 2, N\D’(a). Assume z=(z,,2')€02’

N2,,ND'(a) and w=(u,, w') Q). If 0=u,;<a, we have

Ynhva < - (w +ao)ly” | +4Coly [u— v

b ” ” b o ”
§——ao (s -Fag+udly” | — v |)§—OL0 (@1 +aotul)ly” +v"|
since
’ - ” b, ., b
4G,y | =4Cy(5b+ 1)y l<~—a0 ly”1, o (2 +ao+uy) <e

in view of (3.6). If u,<0, we have

yn+vn<_b“(xl‘f‘ao)ly”{'J!"%?M—Cowlllg_b‘(xl‘f‘ul"‘ao”y”’i"v”!
(223 (423
since (z,,2’)e 2 and y,=b(x,+ay)ly”|/a, imply

” b 4a+ao Co
< 2 Lo
' =" <7

Next let us verify that 2°U2* is Q-flat on D'(a)N@,,. Since £° is Q-
flat, it suffices to show that &' is Q-flat on

= {(xl, 2YeD'(a); y.> %)gly”l}-
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Put f=-—y,+h(z,) exp(8C,x,/b) and

1o
of= 2 9x,

n af
dz,+ 72::2 %, dz;.
Then we have only to show Re<df(z), w>>0 for any z€dQNPNQ and
weQ(z) (cf. [11, §3]). Note that in this case x,<a¢ in view of (8.8) and
(8.9). If %,=0, we have ‘

2Re0f(2), w) = <h’(x1) + %C—"h(ccl))exp <—8303 x1>u1~ Va

B0 1@ s (4G s — a0 )

7

é( 81?" yn—4Coly’l>u120

since ze . If u,<0, we have

16C,¢,
{

0

2Re (3f(2), w>>2<h’(x1)+—8—l?~°h(xl)>u,— 420
in view of (3.6) and (3.9). Thus we have proved that 2,.. is R-flat on
D’(a). Since

2,0\ 2:,,,C 2, \o, ,€2",

¢ty

it follows that £
Let us show

\2 is @-flat on D’(a).

g, ty \ " g, Lo

A)°={{=(,)eRxC""; Re(,w><0 for any weQ(z)}
C{l=(£,0); 181 = —Copu, 19" | S — oy E1 = —2C([&' |~ |9/ )} =4

for any zecl(@,\o,). It suffices to show Q(z)D4°. Suppose w ¢ Qz).
Then at least one of the inequalities appearing in the definition of @ fails.
First assume

v
" >4Cu, .
Cy

|+

If u,=20, take { =4 so that
7.<0, <u/,E>=[u'||&], [&'|=cly.l, 5" =0,
&= —2C(& [+ 19"l I7.]) .

Then we get
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Re <'w, C>:u1§1+ <u/, §,>_ <7}”y 77”>'—,Un7}n
= —2C,(1€’1+ 9’| 192 us+ (4Cocous— ol ) 7] + 12116
=2Cy(co— |y Dinalu:s=0.

If #,<0, we can choose {&4 so that Re<w,{>>0 since —&; can be arbi-

trarily large for {<=4.
In the same way we can choose (&4 so that Re<w,{>=0 if one of

the other inequalities fails since

26C8 o0ty Nz0,  -S—2Ciy| 20
0
for zecl(,\w,). Thus we have Q(z)D4°, and consequently Q(z)°C4 for
zecl(f2,)\w;,).

Hence in view of (3.4) and (3.5) we obtain (3.11) applying Theorem 3.4
to the family {Q, ... Now set

F =R Homey o) (M, BRI 0 u(($6,) BO)) .
Then we have

RI(2;; g‘):RﬂOMmGO; oM, Rrﬂt\wt(‘gz ; (¢Go)*Q@)):0

for any t>0. In particular {H* ' (2.; &)}, satisfies the Mittag-Leffler con-
dition. Hence by Lemma 4.2.5 of [11] we get
Hp(R Homé’(GO; D)(L%.) RF.Q\{:)(‘Q; (¢Go)k‘g3@)))
=H*(2; Fy=lim H"(2,; F)=0
t+0
for any v. In view of (3.10), this completes the proof of Theorem 3.5,
and at the same time, the proof of Theorem 3.1.

“ Notes. (i) Theorems 3.2 and 3.3 are applied to the continuation
problem of real analytic solutions of systems and single Fuchsian partial
differential equations in our forthcoming paper [34], where results of
Kaneko [2] are extended. For this purpose, boundary value problems for
Fuchsian equations are also formulated there.

(ii) Professor Schapira has kindly suggested to us that Theorem 3.1
might be proved more neatly by using the machinery of the recent theory
of Kashiwara-Schapira [32].
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