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On removable singularities of stationary harmonic maps

By Shoichird TAKAKUWA

(Communicated by A. Hattori)

§ 6. Introduction

Let M and N be Riemannian manifolds of dimension m and #n re-
spectively. For each smooth map u: M—N the energy functional E{u)
of u is defined by

0.1) E(u).—_gM dul*d V.

A smooth map w of M into N is called a smooth harmonic map if u is
a critical point of the energy functional E, that is, for every smooth
one-parameter family u, of C*(M, N) with u,=u,

d

— FE(u, =0.
dt (24 t=0 0

The Euler-Lagrange equation for the functional E is written as

(0.2) du+ 3 g9 A.(Diu, Dyu)=0.

This is a nonlinear elliptic system for the smooth maps of M into N.
Among the problems on harmenic maps the existence problem is the
most important one. It is the problem on the solvability of equation
(0.2). The standard approach in analysis to solve nonlinear equations
such as (0.2) is divided into two steps. The first step is the construction
of ‘weak solutions’ for the equation. The second step is the regularity
problem for the weak solutions, that is, to discuss whether the weak
solutions are actually smooth solutions. Usually, weak solutions are
defined in the space of distributions. For equation (0.2), a map u: M—N
is called a weak solution (or weakly harmonic map) if w belongs to the
space H“*M, N)NL=(M, N) of Sobolev maps having bounded image and
satisfies (0.2) in distribution sense. As for the regularity problem for
the weakly harmonic maps, various results have been known (see [1], [5]).
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For instance, Hildebrandt-Kaul-Widman [56] proved that a weakly har-
monic map with sufficiently small oscillation is a smooth harmonic map.
As a corollary, a continuous weakly harmonic map is smooth.

It seems impossible to define in general a critical point of E as a
functional on H“}M, N)NL=(M, N), while a critical point of E as a
functional on C=(M, N) is well defined. Since smooth harmonic maps are
defined to be critical points of K as a functional on C=(M, N), it is
natural to consider weakly harmonic maps which are also, in some sense,
critical points of E as a functional on H"*(M, N)N L*(M, N). One example
js the case when u is an energy minimizing map, that is, « attains the
minimum of the functional E on the class H"*(M, N)N L=(M, N). Another
example is the case when u is a stationary harmonic map which has
been defined rather recently (for the definition, see Section 1). In both
examples, it is easily seen u is a weakly harmonic map. In 1948, Morrey
[7] showed that if m=dim M=2, then every energy minimizing map is
a smooth harmonic map. In the case m is greater than two, Schoen-
Uhlenbeck [11] proved that an energy minimizing map « : M—N is smooth
outside a closed subset S whose Hausdorff dimension is less than or equal
to n—3. And they provided us a mechanism which can lower the
Hausdorff dimension of S. As for stationary harmonic maps, Schoen [10]
showed that if m=dim M =2, then every stationary harmonic map is a
smooth harmonic map. However, regularity problem on stationary har-
monic maps are hardly understood in dimension greater than two. In
general, Price stated in [8] without explicit proof that stationary har-
monic maps satisfy the important inequality called the monotonicity
Sormula.

In this paper we show that every stationary harmonic map of M into
N with locally L™ integrable gradient can not have isolated singular
points. When m=dim M=2, the theorem is contained in the result by
Sacks-Uhlenbeck in [9]. Their proof relies upon techniques from complex
function theory of one variable. Our proof makes use of the monoto-
nicity formula. And also, our theorem may be considered as an extension
of the regularity result [11] for energy minimizing maps to stationary
harmonic maps. In [12] our theorem is stated for the special case when
M is an open set of Euclidean space R™. Our proof is somewhat simpli-
fied than that of [12].

In Section 1 we recall the definitions of weakly harmonic and station-
ary harmonic maps and state our main theorem. In Section 2 we prove
an a-priori estimate of C* harmonic maps under a certain assumption on
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local integrability of its gradient. Our method is similar to that of
Uhlenbeck [13]. In Section 3 the monotonicity formula for stationary
harmonic maps is proved following the idea of Price [8]. In Section 4
we prove our main theorem. In the final section we obtain several corol-
laries derived from our main theorem and from the result of Schoen-
Uhlenbeck [11].

The author wishes to thank his thesis adviser Professor Atsushi
Inoue for many valuable conservations.

§1. Statement of results

Let (M, g) and (N, h) be Riemannian manifolds of dimension m and
n respectively. We may assume without loss of generality that (N, k)
is isometrically imbedded in Euclidean space R*. For p=1, let H**(M, R*)
be the Sobolev space of maps u:M—>R* whose component functions
belong to L* together with their first derivatives.

For a C* map u: M—N the energy density e(u) of u is defined by

where dV =det{g,;)"?dx is the volume element of (M, g). For the func-
tional E the Euler-Lagrange equation is

(L.1) twin)= 3 g¥e) Az (Datla), Dautw)),  a=1, -+,
where for y € N, A,=(A%) is the second fundamental form of N in R* at
y. Equation (1.1) is a quasilinear elliptic system.

DEFINITION 1.1. A smooth map u of M into N is called a harmonic
map if u satisfies equation (1.1).

From the definition of the functional E, it is seen that the natural
class of maps u for which E(u) is defined consists of those which are
bounded and have first derivatives in L% This is written as
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M=T(M, N)=H"*(M, N)n L=(M, N),
where

HYM, N)={uc H*M, R*): u(x)eN ae. €M},
and L>(M, N) is defined similarly.

DEFINITION 1.2. A map u:M—N is called a weakly harmonic map
if wecm and u satisfies

(1.2) jM $ > g¥(DauDyp*+ As(Da, DAV =0,

a=1i,j=1

for all »e C7(M, RY).

We consider the critical points of the functional £ in M. We want

to call w €M a ecritical point of E if u satisfies
d
_oii-E(ut) t=o—0

for every variation u, of u. However, since 9t is only defined as a sub-
set of the Hilbert space, the above definition has no clear meaning.
Thus, we have to restrict the class of variations u, of % to be considered.
There are two basic classes of variations which one would like to perform
on a map #EM The first is defined by a map »cCy(M, R*). Given
such 7 we consider the map u+¢». However, the map w+ty is not in
9 in general. To correct this deficiency we projeet u+iyp onto N. More
precisely, we choose a small tubular neighborhood UcR* of N and let
Il :U—N be the nearest point projection. Since » has bounded image,
we have u(x)+t-p(x) €U for sufficiently small £€ R and almost all z¢ M.
Thus, we get a variation u,=Ilo(u+tp). There is the second type of
variations which one can consider. This is a variation by reparametriza-
tion of M; that is, given one-parameter family F,: M—M of diffeomor-
phisms which are equal to the identity outside a compact subset of M
and satisfy F,=tid., we set u,=uoF,.

DEFINITION 1.3. A map u:M—N is called a stationary harmonic
map if wEM and u is eritical with respect to both types of variations
described above.

REMARK 14. (1) It can be seen without much difficulty that w is
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weakly harmonic map if and only if u is eritical with respect to the
first type of the variations; that is, for each » ¢ Cy (M, RY), w satisfies

-—@-E(ut) =0 where u,=Ilo(u+1n).

dt t=0
(2) If a weakly harmonic map is proved to be continuous, then it is a
smooth harmonie map ({41, [5]).
(3) By (1) and Definition 1.3, a stationary harmonic map is weakly har-
monic, but the converse is not known. It is known that a continuous
weakly harmonic map is a stationary harmonic map (see [10]).

For a weakly harmonic map u:M—N, a point x € M is called a re-
gular point of w if u is continuous in a neighborhood of z. Otherwise
a point x is called a singular potnt of u.

Our main result is as follows.

MAIN THEOREM. Let M, N be Riemannian manifolds and let m=
dim M>8. Suppose that wcMm(M, N) is a stationary harmonic map
satisfying

(1.3) XD |du|™dV <oo for any compact subset D of M.

Then, u can mot have tsolated singular points.

REMARK 1.5. (1) In case m=2, the above theorem is proved by
Sacks-Uhlenbeck [9] for any weakly harmonic map. Furthermore, Schoen
[10] showed that if m=2, a stationary harmonic map is always a smooth
harmonic map.

(2) In the above theorem, condition (1.3) is crucial. Indeed, if m=3,
the equator map

u,: B={x ¢ R™: |z|<1} —> S

defined by u.(x)=(x/|z|,0) is a stationary harmonic map with isolated
singularity at the origin (see Appendix). However, u, does not satisfy
condition (1.3).

§2. The gradient estimate

In this section we prove the following
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THEOREM 2.1. Suppose that u € C*B,p, N) is ¢ harmonic map of
(B, g) into N, where B;y={x € R™: |z|<2R} and the Riemannian metric
g satisfies

(2.7) A0 S(g)<2(0;)  for some 2=1.

There exists >0 depending only on m, A, N such that if
2.2) j |duldV <eo,

Ber
then u satisfies the inequality

(2.3) sup ldu]zgclR‘"‘s |duldV,
Bp Bor
where C, depends only on m, A, N, the Ricci curvature of (Bag, g).

We make several preparations to prove this theorem.

PROPOSITION 2.2. If u is a C?® harmonic map of M into N, then we
have
2.4) |[dul4(|du]) =Q(du) =Y Ric¥ (u*0*, u*6~)
"
—'Z <RN(ZII*€,~, u*e,’)u*ei, u*6j>,
where {e;} and {0*} denote orthonormal frames for TM and T*N respec-
tively, uy, and u* are the differential and the pullback of u respectively,

Rie*(-, -) is the Ricci curvature temsor of M amd RY(-,-) denotes the
Riemannian curvature tensor of N.

Proor. The Bochner formula for harmonic maps (see [1] for its
proof) is

2.5) %Ae(u)z[Vdulz—l-Q(du).
By simple computation we have
(2.6) %Ae(u):-;-Aldu]z:!duld(]du[)+]Vldu|]2.

We differentiate the both sides of the identity |du|*=(du, du) to obtain
[du|Vidu|=(du, Vdu).



Harmonic maps 379

Using the Schwarz inequality, we have
|dul|V|dul|=|(du, Vdu)| < |du||Vdul.

Dividing by |du],

(2.7) |Vidul| < |Vdul

holds. By (2.5), (2.6) and (2.7), we obtain

1duu<1du1>=—§—de(u)—wxdunzz—zl—AeW)—Wduiz

=Q(du). Q.E.D.

Suppose that u is a C? harmonic map of (B, g) into N and the
Riemannian metric g on B, satisfies condition (2.1). For simplicity we
assume R=1. The general case can be proved by the coordinate trans-

formation : x—x/R. From Proposition 2.2
|duld|du|= T Rie/ (w6, u*6) — 3, (RN (Ui, Uss) Ui, Usils)
- .
> —aldul*— K|dul*,

1,7

where
a=n-sup{|Rie*(x) (€, &)| : (z, &) € T*B, [£]=1},
K=m?suple(y) : v €Im(u)},

and x(y) is the sectional curvature of N at y. Dividing by |du|, we
have

dldu| = —aldu]— K|dul®.

Setting b=K|du|* and regarding b as known function, we can write the
above inequality as

Af+(a+b)f=0 in B,

for f=|du|.
If b is in L*? for some p>m/2 in this inequality, Theorem 2.1 is
derived from the following de Diorgi-Nash-Moser theorem ([4, § 8.6]).

PrOPOSITION 2.3. Let Q be a bounded domain in R™ and let g be a
Riemannian metric on £ satisfying (2.1). Let a>0 be a constant and
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be L*(Q) for some p>m/2. Suppose that fc H"*(Q) is nonnegative and
satisfies weakly

(2.8) df+(a+b)f=0 in Q.
Then, for each Q' < Q the following inequality holds.
(2.9) sup fchzd-mL v,
o
where d=dist(’,02) and C, depends only on m,p,a,2 diam(Q) and
6] 2o

However, in our case b is assumed to be in L™?, so we cannot apply
the above theorem directly. We need the following lemma.

LEMMA 2.4. Suppose that g is a Riemannian metric on B, satisfy-
ing condition (2.1) for some comstant 2=1. Let a>0 be a constant and
be L™*(B,). And suppose that & H"*(B,)N LB, is nonnegative and
satisfies (2.8) weakly. Then, for each ¢>2, there exists a comstant ¢, =
g(m, ) >0 such that if bl ne, e, then,

A1 LBy =Gl 1l 1%(By)>

holds where C; depends only on m, q, 2 and a.

ProOF. Since f satisfies inequality (2.8) weakly, we have
(2.10) sg“Di FDLAV< aS fcdv+jbfcdv
for all {€ H{*(B,), where the summation convention is understood.

We take (=7°f""" where n€ Cj(B;), 0<7<1and y=1. By the chain
rule ({4, §7]), { is a valid test function and

2.11) DL= (2 — 1) f*~*Df + 20Dy,
By (2.10) and (2.11), we have
@ =D g Df DAV +2{0f gD f DV
<a|wryav [purav.

Using (2.1) and the chain rule, we obtain
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(2.12) 277 15;77Dfrvdv+2§ Fu-1gs D, D, 77dV<aS(77 f?)“’dV+S (nf)dV.

By the Schwarz inequality and (2.1),
|9 D.f Dy < (9D f D;f)*(g"* Din D) < A| Df || D]

holds. Thus, we have

L[ oD v <22y DA DAV +af s VAV -+ [ f YV
=2{ #1071 D7laV +a{ln s 1dV + o vav
g?ﬂvrwwwmmt+fZTiDm?>dv+a§<nﬂ>2dV+ [ptarryav.

Using the relation,
|Dnf 1) P=I9Df7 42/ Dinf7) - Dp—f7Dyl’,

we obtain
L iwsoravse(ie- )] ome g+ (1+2 2 rripgrav
+aS (n ff)de+Sb(77 Fedv.

Applying the arithmetic-geometric mean inequality, we have

277 1 S;D( Y )lZdV§<1+%>5§]D(ﬁf"’)lzdv+[<1+“j?>';_+<l+2£>]

><S f?TIDnIZdV-{-aS(?y f’)ZdV+Sb(77 v,
for any 6>0. Taking d=(2y—1)/2y4(2+7), we obtain

L= §1D< PV <2(247) Sf?fiDnt?dV+aj(nff>?dV+§b<nff>2dv.
=

Applying the Holder inequality to the third term of the right hand side,
we have

2o rav sar ripniav
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+a o PV + olemray([tor17av )",

where v=m/(m—2). From the Sobolev inequality corresponding to the
imbedding : Hy*—~L%, we obtain

218) (T g lustay Jln ) pmaySaf 0 f7aV +20477] 7 Doray,

where S=S(m) is the constant of the Sobolev inequality.
For each ¢>2, we choose i, with »°<q/2<y"*. We take y=r:=»'
and set the cut off function p=7, such that

n(x)=1 if |z|ZR,
771(37) =0 if lxl =R,
where R;=2—(i/2%,), (1=0,1, - -, ).

Thus, we have
27—
(G~ Bl JLF2rmg

<(a-sup [7:/*+2(r:+ 2 sup [ Dy ) | fllor s,
for 1=1,2, - - -edot, 2,, Taking

2r:—1 . i=1,2, - ',?:o}

- .n :
&, = Ini {47328

we obtain the desired result. Q.E.D.

Proor oF THEOREM 2.1. We first consider the case R=1. We recall
that the function f=|du| satisfies the inequality

Af+{a+b) f=0 in B,.

We fix a number ¢>m. From Lemma 24 we have an estimate of
[ fllzesy, under the condition [blimi2;s,=<e¢, Noting the relation b=Kf?,
we obtain a bound of ||b]|,v24,,. We apply Proposition 2.3 with 2=B,.
and 2'=B,; to get the desired result.

For any R>0, we use the scaling argument. We set v(x) =u(Rx).
Applying the coordinate transformation : z—z/R to (2.4), we have

(2.14) 4zldv| = —aldv| - K|dv]? in B,
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where 4, is the Laplacian with respect to the metric g, on B. given by
gz(z)=g(Rx). We remark that the constants a, K, 2 are not changed
under the coordinate transformation. Hence, using the above argument
to (2.14), we obtain the desired result. Q.E.D.

§3. Monotonicity formula

By the definition of stationary harmonic maps the following formula
is proved in [8].

PROPOSITION 3.1 (The first variation formula). Let w€M(M, N) be a
stationary harmonic map. Suppose that F,:M—M 1s a one-parameter
Family of diffeomorphisms which are equal to the identity outside some
compact set and with F,=id. If X is the variation vector field of {F},
then we have

(3.1) _%E(uom)‘t :—gM(Idu[“’divX—Zé (du(¥, X), dule)»)dV =0,

where {e;} is an orthonormal frame of TM.

For z€ M, p>0 we denote by B(x, o) the geodesic ball of M with
the center z and the radius p. We set

Ejﬁ(u):g dudV.

B(z,p)

THEOREM 3.2 (The monotonicity formula). Let z,€ M and R>0.
Suppose that the distance from x, to the cut locus or the boundary oM
is at least R. Let u€m(B(x, R), N) be a stationary harmonic map.
Then, there exists a constant A=A{m, g)=0 such that for each x € B(x, R/2)
and 0<s<p<R/2

(32)  etrptmEz(u) —etoa " E(u) gzg et~ Dau*dV,

B(z,p)—B(2,0)
holds where r is the geodesic radial coordinate on B(x, R[2).
ProoF. We choose a one-parameter family F, satisfying

d gl =g

X-_-— Ft
dt le=o or
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where £ C7(R). Let {3/or, e, ---, ¢,_,} be an orthonormal frame of TM.
From (3.1), we have

(3.3) L{ \du*div XdV=25M<du(Va,a,X), du(d/or)>dV
+2 ’"g L{ (du(V, X), dule)>dV.
We remark
Vo X= Er)—

and

Vo2, ) =a,~,-+j (s, 0)ds,

0
where s,.J:D,<V,eiaL, e, y=(r, ).
r

Since [e;;| depends only on C? norm of the metric g, we can take A such
that

A= max supile;(x)| : x € Bw, B)}<oo.

Thus, we have

m—1
divX=(V, X, ;a%.>+ S (V. X, e
i=1

=+ T &V, D ey
i=1 or
Zgre+e Y (1-n)
(3.4) divX =& r+mé—(m—1)Aér

T VX, dule)y= T &V, eduled, dufe)

T 0+ ) dule)|[dute;)|
<& T iduled P+ SreA T (1duled [+ |dule) ),
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85 T du(V.X), dule)>SE(dul*~ Dl + (m—1) dgridul
From (3.4), (3.5) and (3.3), we obtain
(3.6) S{du{z(f’aﬂ—i—mé— (m—1)Agr)dV
nguD,uaZngdu]zH(m—l)]du12/15r)dv.
We choose, for =€ [0, o]
§(r)=¢&.(r)=9p(r/7)
where ¢ € C5[0, o) satistying
o(r)=1re[0,1], p(r)=0 r€[1+4, o) (6>0), ¢'(r)<0.

Then,
7o (Elr)) = —rEilr),
T
holds. Thus,
v a
—zglp,uu( 2 s,)dvg—wu{f( 2 &)dV
+(m—Z)S]dulzfrdV—?»(m—1)(1+5)/Iz-§|du[?é,dV.
2r :T SID,uP&dV§r aaf SldulZErdV-(m—Z)S]dulede
+3(m—1)(1+6)/er!du|?Eth.
@7 2 ai Xxp,uxzsrdvgr 662' glduizé,dV—}—(2—m)5!du]2§dV

+3(m——1)/1(1+6)r§{du[2§rdV.

We set A=6(m—1)4 as 4. By multiplying e®r*™ in (3.7), we have,
for any 01
—aa—(e/“z-z""jldu]?&dV)gZeA‘z-z"”‘a'SlD,u}?S,dV.

T ot
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By integrating from r=¢ to t=p and taking the limit 6—0, the desired
result (3.2) follows. Q.E.D.

When the metric ¢ is flat, /=0 and so is 4. Hence, we have the
following.

COROLLARY 8.3. Let 2 be an open set of R™ and uem(R, N) be a
stationary harmonic map. For each x,€ Q2 and 0<o<p<dist(x, 85), we
have the following equality.

(3.8) ,oMj ;du[de—oz—mS
3(370,9)

where r=|x—x,).

.

|du ;dezzj 7= D,u|*d,

B(zy,0) B(24,0) —B(g,0)

§4. Proof of Main Theorem

Let ucM(M, N) be a stationary harmonic map satisfying condition
(1.3). For a point x,€ M, we assume there exists a neighborhood V of
@, such that » is continuous in V—{x,}. By Remark 1.4 (2), u is smooth
in V—{z}. We take a normal coordinate with the origin z,, We set
B(p)=B(0, p) and S(p)=2B(p).

From condition (1.3), we get the following estimate.

PROPOSITION 4.1. There exists R,>0 such that for any x € B(R,) — {0},
u satisfies the inequality

4.1) ldu(x)l"éC’Aoc}""S ]du[ZdVéC;,lx]'?(S [dulmdv)”’”.
B(2{z]) B(2}z})
Here R,, C, and C; depend only on m, g, N.

PRoOF. By (L3) the integral j |du|*dV is finite for any r>0.
(r)

Then, the dominated econvergence theorem implies

1im§ |du|d V' =0.
=0 JB(7)
We may choose R,>0 satisfying
X ldu|d V<e,
B(2Ry)

where ¢, is the constant in Theorem 2.1. For each z¢ B(R,)—{0},
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S 1du["‘dV§S \du|"d V <eo.
B(z,lzl) B(2Rg)
Thus, we apply Theorem 2.1 for Bz, |#|) to obtain
[du(x)12§C4lxl“’"X \dul}dV
B(z,iz])

gcm—wS dupdy. QED.
z])

B(2]

For p<R, we set
(4.2) Flo)=eve=| |duldV,
B{p)

where /A is the constant in Theorem 38.2. By Theorem 3.2 we observe
that F' is a non-decreasing function of p. Furthermore, we have

PrROPOSITION 4.2. For any p€ (0, R,), F satisfies
(4.3) F(o/2) < pF(p)
where p € (0,1) is independent of p.

Proor. For each p>0, we denote by w, the average value of u in
Blp). We fix p€ (0, B,]. Using the Stokes theorem in B(p)—B(e) (0<e<p),
we obtain

wsy |, 1dw—e)fdV=| @) Dudsi
B(p)y—Ble) g

—S (—w,) - Aud V.
B(p)— B(¢)

By Lemma 4.1, we have

2fm
S (u—wp)-D,udS]gCGHuHLwe’”‘sd ]du{"‘dV) .
Stg) B(2¢)
Letting ¢ tend to 0 in (4.4) we have
[, qurdv<LTL,
B(p)
where Ilzg \w—a,||Dulds,
8(p)

I,=

S (u—w,) - AudV|.
B(p)
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We note that integral I, exists since w satisfies (1.1) in B{p)—{0}. From
the arithmetic-geometric mean inequality

. 1££X 2 l& _ 2
(4.5) L= 5 S(p)]D,u] dS+2ﬁ S(p)]u w,|"dS,

for any p>0. Since w is a smocoth harmonic map in B{p)—{0}, (1.1) im-
plies

=], w—o)-Adududv|siAl|, [u-olidusdy,

where [|Al.. is the bound of the second fundamental form A of N on the
image of u. Using the arithmetic-geometric mean inequality, we have

Izg—;-jB dupdv+ L HA{PLmlu—wplzldulde-

Applying the Holder and the Sobolev inequality in the second term of
the right hand side, we have
fm /&
2|, taurave L jal(( jaurav (] u—apeay)
2 Bo) B(p)

(m—2)|m

I,

i

2
=2(vesta(], laurav ))| duray,

(4.6) Iz§%(1+SIlAllie§””) f |duray,

where S=S(m) is the constant of the Sobolev inequality corresponding
to the imbedding : H*— L2,
From (4.5), (4.6) and (4.4), we obtain
(1—S|]A||Zos§’"‘)§ }duiZdVgﬁS 1D,u12ds+ij i w,|%dS,
B(p) S(e) ﬂ S(o)

Replacing ¢, by smaller one if necessary, we may assume that S|A[%e™

<1/2. Thus, we have

47) SB(p)]duIZdV§2‘8Lm tD,ulZdS—i—%L(p)iu—w,,!zds,

for any A>0. By the definition of w, we observe that
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d w2 _S L egQ S _ dw
% Sw)m wfdV=| ju—wldS-2| (w-e)dv( dpﬂ)
:S lu—a,%dS.
S(p)
Thus, (4.7) is rewritten as follows.
2\ d

4 V< dS+(2) L ju—a,p
4.8) SB(p)[du}dV_z,BSsmlD,u[ dS+<ﬁ> - Lm;u oV

We multiply e“?p* ™ in (4.8) and integrate from p/2 to p. By Theorem
3.2, we have

S" Flt)dt<28 g etrrt=m Dultd v

et e
F(0/2) (0/2) <B(F (o) — F(p/2)) +(—27é~)epj lu—o,dV.

Using the Poincaré inequality, we obtain

Flol2)p/2)SBE ()~ Floi2) +(-5 )Pl

Setting 8=4C,p, we have the desired result

F(-%) g(i-gg%)ﬁ’(p). QED.

We next need the following simple lemma.

LEMMA 4.3 (See [4], for the proof). Let F be a non-decreasing func-
tion on an interval (0, R,] satisfying, for all RER,, the inequality

F{tR)<pF(R)+G(R),

where G is also non-decreasing and 0<r, p<<l. Then, for any y€(0,1)
and R<R, we have

F(R)<Cd(R/Ro)*F(By) +G(B"Ey7)],

where Cs=Cilp, t) and a=aly, ©, 1) are positive constants.
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ProOF OF MAIN THEOREM. Applying Lemma 4.3 to (4.3), we have

F(o) ZCyo” for some a>0.

To combine this inequality with (4.1) we obtain
Idu(x) "< Clz| " F(2]z]) < Colx] 72,

for 0<|x|<R, This implies that wu belongs to the Sobolev space
H**(B(R,), R for some p>m. From the Sobolev imbedding theorem :
H'"*»>(C° (p>m), u is continuous in B(R,). Q.E.D.

§5. Some remarks

We first state the following result obtained as a corollary of Main
Theorem.

PROPOSITION 5.1. Let u€ MM, N) be a weakly harmonic map and
let x,€ M. Suppose that there exists p, such that w satisfies the followings:

(1) wu is smooth in B{x, o) —{0}.
) The integral S \du|mdV is finite.
B(zy,00)

(8) For any p€ (0, p], we have

5.1 |, rarrdu@rave<cae=|,  iduav.

B{zg,0)

where r{x) denotes the geodesic distance of x from x, and the constant
Cy 1s independent of p.

Then, % 1s smooth in B(x, p,), that is, %, is a regular point of wu.

PrROOF. We take a normal coordinate with the origin x,. For p€
(0, o], we consider the function

Hi)={, rlor=idui@)dV(a),
B(zy,0)
instead of F in the previous section. By Theorem 2.1, we have

|du (@) "< Cela| H(2|2])

for sufficiently small x. As in the proof of Proposition 4.2, we are able
to derive the following inequality :
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H{p/2)=pH(p)  0<p<],
for sufficiently small p>0. Using Lemma 4.3, we have
H{p) < Cyp” for some a>0.
Then, for sufficiently small z,
ldu () [ < Cuglew| 7,

holds. The Sobolev imbedding theorem : H>*—(C° implies that u is conti-
nuous in B(w,, 0o). Q.E.D.

REMARK 5.2. It seems that the condition (3) in the above proposi-
tion is connected with a property of the Green function of the Laplacian
Of (M’ g)'

We next describe the regularity properties of energy minimizing
maps. A map u of MM, N) is called an energy minimizing map if u
satisfies

Eu)<E{) for any vem(M, N) with v=u on 8.

Obviously, an energy minimizing map is a stationary harmonic map.
Hereafter, we assume that M and N are compact. Schoen-Uhlenbeck
[11] proved the following regularity theorem for energy minimizing maps.

THEOREM 5.3. There exists >0 depending only on m, g, N such
that if an energy minimizing map u € MM, N) salisfies

pz””S dulfdV<e,
B(z,p) )
m a ball Bz, p), then, u is Holder continuous in Bz, p/2).
As a corollary of this theorem we have the following result.

PROPOSITION 5.4. Let u€ WM, N) be an energy minimizing map and
let S=8(u) be the set of singular points of u. Then,
(1) if the integral j |du|™dV s finite, then the set is empty, that is,
M
% 18 a smooth harmonic map,

(2) if the integral Suldulf’dV 18 finite for some p<<m, then, H,_,(S)
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=0 where H, is the s-dimensional Hausdorff measure.

Proor. (1) From the Holder inequality, we have

pz""L(z'm}du]?dV§c(m)q ]dulmdv>2”".

B(z,0)

Thus, for any z we may choose p>0 small enough to satisfy
pz'"'S dulfdV<e,.
B(z,p)

Using Theorem 5.2, we obtain the desired result.
(2) Theorem 5.2 implies that for any z€ S and p>0

2/p
e,<p2""SB(z |durdv=e(m, p)pz—w’(s |du{"dV> .

B(z,0)

For each 4>0, the family P,={B(x,p):2€ S, 0<p<d} is a covering of
S, where B(x, p) denotes the closed geodesic ball with the center z and
the radius p. From the Besicovitch covering theorem (see [2]), there
exist pairwise disjoint subfamilies P, ---, P, {=I(m)) such that Q,=P, U
---UP, covers S. Hence, we have

P <om, p)sf”j lduldV<elm, ple leuvdv.
UP;

B(z,p)€P;
(5.2) > pmrZe(m, p)s;pj . |[dulPd V<e(m, p)lsf"SMldulpdV.
ues

?(z,p)GQB

By the definition of the Hausdorff measure, we obtain

H,_,(S)Z¢(m, p)ler”SMIdu]Pd V< co.

Similarly, we have

H.(UQu=e(m, )| |duldV.
The dominated convergence theorem implies
lim Su%muvdV:o.

30

Using this in (5.2), we shows that H,_,(S)=0. Q.E.D.
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Furthermore, we apply the same argument as in [11, §5] to get the
following.

PrOPOSITION 5.5. If wecM(M,N) is an energy minimizing map
whose gradient du is in L? for some p<m, then the Hausdorff dimension
of the singular set S of u is at least m—[p]l—1. In particular, if p=m—1,
then every singular point of u is 1solated.

Appendix.
On the equator map

Here we present an example of a stationary harmonic map with
isolated singularity. We consider the equator map

Uu,: B={x € R™: |z|<1}—>S"CR™"*

defined by w,=(x/|z|, 0). Hildebrandt [5] showed that u, is a weakly
harmonic map if m=>=3. Obviously, u, has isolated singularity at the
origin. We state the following result.

ProposiTion A.l. The equator map u, of B into S™ is a stationary
harmonic map for m=3.

Proor. By the definition of stationary harmonic maps and Proposi-
tion 8.1, it is sufficient to show that for every C' vector field X
=3, X'(8/6x;) on B with compaet support, the following first variation
formula holds.

(A.1) SB<1due§2div X—2 3 D,.ueD,.u,,D,.Xde:o.

i7=1

By direct calculation, the left hand side of (A.1) is
§B< (m—3) ||~ div X +2|z|-* i lx,.x,-D,X’)dx.
Applying the Stokes theorem on B—B(e) (0<<e<1), we obtain
j B_B(E)<<m—3) 01 div X+2jai~ 3 x,.xjp,.Xf>dx

%,1=

=—(m=1 ol *(X—X(0))-nds,

9B(g)
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where n is the outward unit normal vector of 9B(s). We estimate the
right hand side of this equality as

LB( J2{(X—X(0))-ndS | < vol(S™)en~* supl X— X(0)!

3B(e)

Letting ¢ tend to 0, we show the formula (A.1). Q.ED.

Furthermore, Jiger-Kaul [6] proved the following result, which is
concerned with the stability of u, as a critical point of the energy funec-
tional E.

PrOPOSITION A.2. (1) The equator map u, is an wunstable critical
potnt of E for 8<m=<6.

(2) For m=17, u, attains the absolute minimum of the energy func-
tional E on the class {u € H**(B, S™ : u=u, on 3B}.
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