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§0. Introduction

This is a continuation of our previcus paper [11.

Let Q be the field of rational numbers, Q., be the maximum abelian
extension of @, i.e., the total cyclotomic field, and M be the maximum
unramified Galois extension of Q.. Let Q% denote the maximum tamely
ramified abelian extension of Q, i.e., the field obtained by adjoining to @ the
p-th roots of unity, where p runs over all prime numbers, and M* be the
maximum unramified Galois extension of @¢. Furthermore, let 3, be the
composite of M* and Q., so that @, M,cM. Our result in this paper is
summarized as the following

THEOREM 3. Let p>5 be a prime number and r be a positive integer.
Then, there exist infinitely many linearly independent Galois extensions of
Q.; (resp. M) contained in M having PSL.(Z|p"Z) as the Galois group over
Q. (resp. M,).

We shall now explain the background of this thecrem. Unramified
abelian extensions of Q., or more generally, those of k., the maximum
abelian extension of an algebraic number field % of finite degree over Q, have
been investigated in Cornell [3] and Brumer [2]. Uchida [18] determined the
structure of the Galois group of the maximum unramified solvable extension
of k., where %k is as above (a special case of his results). As for non-
solvable unramified extensions of 3, we showed, in our previous paper [1],
that there exist infinitely many linearly independent unramified Galois ex-
tensions of M, having A., the alternating group of degree =, as the Galois
group over M,, where 7 is any odd integer ([1] Theorem 2). Thus, Theorem
3 is a new result about the non-solvable unramified extensions of Q,, and
M,. (The group PSL,(Z/p"Z) is non-solvable for p and r as above.)

We shall sketch the idea to construct those extensions of Q, and M, in
Theorem 3. Let p, 7 be as in Theorem 3 and F be an elliptic eutve over Q.
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Let K/ denote the field obtained by adjoining to Q the “z-coordinates™ of
the p™-division points on £. We shall obtain the extensions of Q,, (resp. M)
in Theorem 3 as the composite of K’rand Q. (resp. M,) by suitably choosing
a family of elliptic curves over Q. The most important property of our
elliptic curve is that it is isomorphic (over a quadratic extension of Q,) to a
Tate curve over Q, with the period “divisible by p"”. (Q, denotes the field
of p-adic numbers.) By using this and some other special properties, we can
show that K/-Q, (resp. K}-M,) is unramified over Q,, (resp. M,). We can
also determine the Galois group of K/-Q,, (resp. Ki-M,) over Q,, (resp. M,)
by using the precise results on the rational points on meodular curves by
Serre, Mazur, and Momose. To show the infinite existence, we choose
infinitely many elliptic curves suitably. The main tools are Cebotarev’s
density theorem, a classical result of the theory of complex multiplication,
and some properties of the group SL.(Z,) mainly due to Serre.

The author wishes to express his sincere gratitude to Professor F.
Momose for his help and encouragement, especially for providing him with
the theory of the rational points on modular curves.

This paper is a part of the author’s doctoral dissertation submitted to
Tokyo University {(1985). He wishes to express his sincere gratitude to
Professor Yasutaka Thara for his advice and encouragement.

Notation. Z and Q denote the ring of rational integers and the field of
rational numbers respectively. For a prime number p, Z,, Q,, and F, denote
the ring of p-adic integers, the field of p-adic numbers, and the prime field
Z|pZ, respectively.

When a field K is a finite or an infinite Galois extension of a field %, the
Galois group of K over k is denoted by Gal(K/k).

§1. Some preliminaries

In this section we introduce elliptic curves defined over Q, which we
shall use throughout this paper.

Let p>5 be a prime number and n be a positive integer. Let E;,, be
the elliptic curve defined by the following Weierstrass equation ;

Eiw: v'=42"— .33.7'(%) T—— i)
jm)—12° ~ j(n)—12°

(1) == {03 L+ 3 e=(T1),
(ep) P
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As j(n) € Q and j(n) 0, 12°, B, is actually an elliptic curve defined over Q
with the modular invariant j(n). Until the end of § 8, for the sake of sim-
plicity, we write j{(n) =7 and E;.,=E,.

Here, we summarize some fundamental properties of E; as the following

LEMMA 1. (i) Over the unramified quadratic extension of Q,, E; X Q,
(4]

s isomorphic to a Tate curve over Q,.

(ii) The elliptic curve E; has good reduction at 3.

(i) Let L(+D,3) be @ rational prime. Then, E; has potential good re-
duction at l. The prime | is a bad prime of E; if and only if | is ramified
in K, the field obtained by adjoining to Q all coordinates of the 3-diviston
points on E,. The field K ts explicitly given as

K,=Q(/ =38, 1, V2 (1 +8) (8+20 p' — 1)),
where p is a root of the equation

1 1
2) x2+{—~——+1}x———+1——~0.
| 3(ep)” 3(ep)”
Proor. (i) We use the notation of Néron-Tate (cf. e.g. Tate [17]).
Then, we have

A= 263 jz
(7—12)*’
— —19. 39
cy=12 gz—lzm.

So, v,(4)>0, v,(c,) =0, where v, is the p-adic additive valuation normalized
as v,(p)=1. Therefore, E; has multiplicative reduction at p. So, by the
general theory of Tate curves (cf. e.g. Serre [14], Tate [17]), over the
unramified quadratic extension of Q,, E; (QX) Q, is isomorphic to the Tate curve

over Q, with modular invariant j(&)).
(ii) As is easily verified, E; is isomorphic over Q to the elliptic curve &
over Q defined by the equation
N 6632 N 6
E: = J+23 _ .7+2 ’
vy U1 | 2(j—12)

so E; has good reduction at 3.
(ili) Asj is l-integral, i.e., v,(j) >0, E; has potential good reduction at [,
and by the criterion of Néron-Ogg-Safarevié (cf. e.g. Serre-Tate [16] 1), [ is
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a bad prime of E; if and only if [ is ramified in K;. Now, let & ¢ be the fol-
lowing elliptic curve;

Eu: B+ +2 =3 payz Q).
Then, by simple calculations, we get

sn) = LETELY,

so that E; is isomorphic (over Q(u, v/2 u(¢+8)8+20 =) to £,. The
fact that K,=0Q(v'—3, ¢, V2 u(* +8)(8+20 ' — /) holds in the “generic”
case is proved in Igusa [7] §4. The proof of our special case is the same as
that.

§2. Construction of unramified extensions over Q.

In the rest of this paper, let p>5 be a prime number and = be a fixed
positive integer. Our aim in this section is to prove the following

THEOREM 1. There exists an unramified Galois extension F of Qu, such
that Gal(F'|Q,) =PSL,(Z/p"Z).

The proof of Theorem 1 is rather long and requires somewhat long pre-
liminaries. Let n be a positive integer and E, =K., be the elliptic curve
defined in § 1. Let K (resp. K’) denote the field obtained by adjoining to Q
all coordinates (resp. the “z-coordinates™) of the p’-division points on E,.
The fields K and K’ are Galois extensions of Q and K’ is a subfield of K. We
shall obtain the field F in Theorem 1 as the composite of K’ and Q. by
suitably choosing n.

2.1. Unramifiedness of K'Q,;/Q.,

In this subsection, we shall show that K'Q.,/Q.; is unramified under some
additional conditions. We need the following

1) Use the equivalence

le+2)(c—2) _ p(eP+28
c+1 o1

+

c+4 c—2\
er1 e >—0

) <:>{#2—cp+(c+2)}</ﬂ+

and put
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LEMMA 2 (Y. Ihara). Letk be an algebraic number field of finite degree
over Q, k., be the maximum abelian extension of k, and K be a finite Galots
extension of k. Then, Kk./k. s unramified if and only if, for any prime
divisor of K its decomposition group in K|k is commutative.

This lemma was communicated to the author by Y. Thara. For the proof,
see [1].

PRrOPOSITION 1. Let K’ be as before. Assume that n is odd and p’|n.
Then, K'Q,/Q.; ts an unramified Galois extension.

Proor. By Lemma 2, it suffices to show that
(o) K'Q,/@Q, is an abelian extension

for every rational prime I. (We consider K’ is contained in Q,) If [ is
unramified in K7, the extension K'Q,/Q; is cyclic, hence abelian. Therefore,
we only have to verify the condition (C;) for the primes which are ramified

in K’. Such primes are, by the criterion of Néron—Ogg-éafarevié, contained
in the set {p} U {the bad primes of E}.

(i) I=p. By Lemma 1, E;®Q Q,=E(qg), where k is the unramified quad-
Q k
ratic extension of @, and E{q) =G./q% (¢ € pZ,) is a Tate curve over @,. The
invariants 7 and q are related by the well-known fermula

(3) J=1/q+744+196884 ¢+ - - -.

Therefore, if the field obtained by adjoining to Q, all ccordinates of the -
division points on E(q) is an abelian extension of @, then, Kk is also an
abelian extension of Q,. Especially the extension K'Q,/Q, is abelian. So we
may assume that E, @ Q. is a Tate curve over Q,.

As n is odd, it follows from (1) that j-(—ep)*=1 mod p*. Therefore,
j-(—ep)*™ € (Z¥)”"”". By the assumption that p’|n, it follows easily that

(%) JE Q.

On the other hand, put u=7-¢9. Then, u=1 mod ¢, by 3). As v,(g)=—v,{J)
=3n, ue (2", especially

(%%) u€(Z¥e.

By (*) and (x%), it follows that q € (Q¥)*".
Therefore, we see that KQ,=Q,{,,r), where {,- i3 a primitive p"-th root of
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unity. Hence, KQ,/Q, is an abelian extension and especially the condition
(C,) is satisfied for I=np.

(ii) 1: a bad prime of E; ({+p). By Lemma 1, /8 and E; has potential
good reduction at [. Let (E;),~ denote the group of all points of p-power
order on E;. Then, Gal(Q,/Q!") acts naturally on (E;),~ and we get a repre-
sentation p;;

Pr: Gal (QI/Q;”) ———"Aut (EJ) pszLZ (Zp) H

where Q;" denotes the maximum unramified extension of Q,. Let L be the sub-
extension of @, over Q" corresponding to the subgroup Ker 0:cGal{Q,/Qy).
Let K; and ¢ be as in Lemma 1. We may consider K and K, are contained
in Q.. Then, by a result of Ogg ([13] Proposition in II. See also Serre-Tate
[16]12.) and by Lemma 1,

L=KQ =K, 0y =0 (¢, V2 u(1£+8) (8+20 15— 1)).
Therefore, if we put
Ly=Q1" (1),

which is an abelian extension of Q,, then, [L :L,]=1 or 2.

Case 1 [L:L]=1,i.e., L=L, Inthiscase, L/Q, is an abelian extension.
Therefore, K’Q,/Q, is an abelian extension.

Case 2 [L:L,]=2. Let o denote the generator of Gal(L/L,). Then, as
o°=1, we have p;(0)’=1. On the other hand, as {°=¢*'*1 for any p™-th
root of unity ¢ (m=1,2, ---), we have det p,(c)=1. It follows that p;(o)=
+1. Hence, K’Q}", which is nothing but the subextension of @, over Q"
corresponding to the subgroup o7*({%1}) ©Gal(Q,/Q}"), is either L, or Q.
Therefore, K'Q;"/Q, is an abelian extension and especially the condition (C))
is satisfied for the bad primes of E,.

This completes the proof of Proposition 1.

2.2. The Galois group of K’Q,, over Q,;
In this subsection we shall prove the following
PROPOSITION 2. Let K be as before and assume that

{ pln
n:odd (n=11 mod 16 if p=5).
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Then, Gal(K'Q.4/Q.:) =PSL.(Z|p'Z).

Proor. Let K,~ denote the field obtained by adjoining to Q all coor-
dinates of the points of p-power order on E;. We shall show that

( * ) Gal(KPmQab/Qab) :SLZ(ZP)‘

Then, the proposition follows at once from this. Here we quote the follow-
ing

LEMMA 3 (Serre [14] Ch. IV 3.4. Lemma 3). Let X be a closed subgroup
of Sl.(Z,) whose image in SLy(F,) its SLy(F,). Assume p>5. Then, X=
SL.(Z,).

By this lemma, to show (%) it suffices to verify

() Gal(K,/Q) =GLa(F,),

where K, denotes the field obtained by adjoining to Q all coordinates of the
p-division points on .

To verify (x)/, we apply general results to Gal(K,/Q). Here, we briefly
summarize them. In general, let E be an arbitrary elliptic curve defined
over Q, p=>5 be a prime number, and E, denote the group of the p-division
points on E. Then, Gal(Q/Q) acts naturally on E, and we get a representa-
tion o, ;

0,: Gal(Q/Q) ——Aut E,=GL,(F,).

For the sake of simplicity, fix an isomorphism from Aut E, to GL.(F,) and
identify the former with the latter. The field corresponding to the subgroup
Ker p,cGal(Q/Q) is nothing but the field obtained by adjoining to Q all
coordinates of the p-division points on E. Then, it is known that we have
the following five cases for Im p,, the image of p, (cf. e.g. Mazur [10]).

(i) Imp,=GLy(F,).

(ii) The group Im p, is contained in a Borel subgroup. In this case, if
p=11or >17, E has potential good reduction at all rational primes except 2
(Mazur [11] Corollary 4.4).

(iiii The group Im p, is contained in the normalizer of a split Cartan
subgroup. In this case, if p=11 or >17, E has potential good reduction at
all rational primes except 2 (Momose [12] Proposition 3.1).

(iv) The group Im p, is contained in the normalizer of a non-split
Cartan subgroup.
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(v) The group Im p, is conjugate to a subgroup of the inverse image
of HCPGL,(F,) in GL,(F,), where H is isomorphic to S,, the symmetric group
of degree 4.

Now we go back to the proof of Proposition 2. We apply the above
results to our special case E=F,.

Case 1 p=11or >17. Asj is not p-integral, E, does not have potential
good reduction at p. Therefore, for our E,, the cases (ii) and (iii) do not
cccur. We shall exclude the cases (iv) and (v). We have shown in the proof
of Proposition 1 that the invariant ¢ of E; belongs to (QF)?. Therefore,
o,(I) is conjugate to the subgroup

(" )] =eFs),

where I is the inertia group of an extension of p to Q (Serre [15] 1.12.
Corollary). Therefore, p,(I) is a eyclic group of order p—1 (>10) so that
the case (v) does not occur. Assume that the case (iv) occurs. Then, the
subgroup o,(I) of Im p, is contained in the normalizer of a non-split Cartan
subgroup. Then, by Proposition 14 of Serre [15], p,(I) is contained in a non-
split Cartan subgroup, which is impossible. So the case (iv) does not occur.
Thus we have verified ().

Case 2 p=5,7,13. We shall exclude the cases (ii)~(v). By the same
argument as in the proof of Case 1, the case (iv) does not occur. To exclude
the cases (ii), (iii), and (v), we use the following lemma, which is a part of
Proposition 19 in Serre [15].

LEMMA 4 (Serre). Let p>5 be a prime number and GCGLy(F,) be a
subgroup satisfying the following conditions :

(1) det: G——FF is surjective.

(2) @G is not contained tn the normalizer of any non-split Cartan sub-
group.

Assume that G contains an element s; such that Tr(s)’—4-det(s,) &
(F¥)? and Tr(s;)#0. Then, G=GLy(F,), or the tmage of G in PGL,(F,) is
1somorphic to A; or S, or As. (A, denotes the alternating group of degree n.)

Assume further that G contains an element s, such that

w= Mq&o, 1,2, 4 and w'—3u+1+0.

det(s,)

Then, G :GLz(Fp) .



Unramified Galots extensions 405

We apply this lemma to Im p,. (Note that Im p, satisfies the condition (1),
because E; is defined over Q.) In general, for a good prime [ of E,, let ¢,
be the Frobenius automorphism of an extension of I to Q and put =,=
0,{01) € GLy(F,). Ubp to conjugacy, x, is uniquely determined by L.

(a) p=>5. Itis easily verified that [=17 is a good prime of E;. Then,
by simple caleculations,

(the number of F-rational points on E; mod 17)=12.
So we have

Tr{zy)=1+17—12=1,
det (77:17) - 17 - 2,
TI‘(7L‘17)2—4 det<ﬁ17) =3 $ (F;k)z,

Tr(zy,)? 3 uf—3

=\ =3 —3u-+1+0.

det(ms VT
Put s;=s,=n,. Then, they satisfy the conditions in Lemma 4. Thus, Im p;=
GL.(F;) and ()’ is verified.

(b) p=7,13. By the same argument as in the proof of Case 1, the case
(v) does not occur. Therefore, to exclude the cases (ii) and (iii), it suffices
to show the existence of s, € Imp, satisfying the condition in Lemma 4.
(Note that by the general results on Im p, summarized before, the image of
Im p, in PGL,(F,) is isomorphic neither to A4, nor to A;.)

By Lemma 1 (ii}, [=38 is a good prime of E,. Then, by simple calculations,

(the number of F,-rational points on E;mod 3)= { 3 .- p=T
6 --- p=13.
So we have
T
1+3—6=—2 --. p=13,
det(m;) =3 p="7,13,

Tr(m,)*—4det(r,) = { 8 (FF? .- p=T
5 (F)? +-- p=13.

Therefore, s,=r, satisfies the condition in Lemma 4. Thus Im p,=GL,(F,)
and (x) is verified.
This completes the proof of Proposition 2.
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2.3. Proof of Theorem 1

Let n be a positive integer satisfying the conditions in Proposition 2.
Let K’ be as before and put F=K’Q,,. Then, by Propositions 1 and 2, F'is
an unramified Galois extension of Q, having PSL,(Z/p"Z) as the Galois
group over Q..

§ 3. Construction of unramified extensions over },

As before, let M* be the maximum unramified Galois extension of Qi
and M,=M!Q,,. Our aim in this section is to prove the following

THEOREM 2. There exists an unramified Galois extension E of M, such
that Gal(E|M,)=PSL,(Z/p"Z).

In this section, let # be a positive integer satisfying the conditions in
Proposition 2, namely,

(C) { T

7 odd (=11 mod 16 if p=5),
and E;=E;,, be the elliptic curve defined in § 1. Let K and K’ be the Galois
extensions of Q defined in §2. In §2 we have proved that K’Q,, is an un-
ramified Galois extension of Q,, having PSL.(Z/p"Z) as the Galois group
over Q.. The field E in Theorem 2 shall be obtained as the composite of K’
and M,.

3.1. Some lemmas

In this subsection we shall prove some lemmas, which we need to prove
Theorem 2.

LEMMA 5. Let K, be the field obtained by adjoining to @ all coordinates
of the 3-division points on E;. Then, there exists only one prime divisor of
K, lying above 2, and its inertia group is & cyclic group of order 4.

Proor. By Lemma 1,

K, =0 (v =38, u, V2 (1F+8)8F20 ' — 1)),

where ¢ is a root of the equation (2). First, we shall show that K,/Q is a
Galois extension such that Gal(K,/Q)=D,, the dihedral group of order 8, and

that K,/Q(+/—3) is a cyclic extension of degree 4. In fact, as
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Q(r)=0(V a), a=1+18(ep)"—27 (ep)”,

Q(z) is an imaginary quadratic field in which the prime 8 is unramified.

Therefore, Q(x) N Q(v'—8)=Q. Let o, denote the generator of Gal(Q(x)/Q)
and put

a=2p (1 +8)(8+20 pf°—pf).
Then, by simple calculations, we can show

(=3)°

(g—1)%
(Using that po=(u+2)(x—1)7", we obtain easily that (#*+8)70=38% (1*—2
+4)(z—1)"° and (8420 g —p)0= — 8 8+20 1P — ) (1 —1)=) From this, it
follows that K; is the Galois closure of Q(¢, v/ «) over Q. Therefore, [K,: Q]
=8and [K,:Q(v —3)]=4. Let = denote the generator of Gal(K./Q (¢, v « ))
and o€Gal(K,/Q(v/'—3)) be an extension of the generator of
Gal(Q(v/ =3, #)/Q(v/ —3)). Then, it can be easily shown that

o= Q.

=1, o¢*=1, ror =07},

which means Gal(K,/Q)=D, and K,/Q(+/—38) is a cyclic extension of degree
4,

Now, since ep=1mod4, (¢p)"=1or 5 or 9 or 13mod 16. In any case, it
is easily verified that ¢ =8 mod 16. Therefore, the rational prime 2 ramifies
in Q(z). Thus, the prime p=(2) of Q (v —3) ramifies in Q(x, v —3). Since
K,/Q(v'—3) is cyclic, p is totally ramified in K,/Q (v —3). This completes
the proof of Lemma 5.

COROLLARY. The prime 2 is wildly ramzified in K'|Q.

PRrOOF. We may consider K, K/, and K, are all contained in Q,. Then,
by a result of Ogg quoted in the proof of Proposition 1,

KQy =K Q= Q3" (u, V2 p (18 +8) (8420 12— 7).

By Lemma 5, KQ¢"/0y" is a cyclic extension of degree 4. As K/K’ is at most
a quadratic extension, the corollary follows at once.

Let K’ denote the field obtained by adjoining to Q@ the “z-coordinates”
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of the p-division points on E;. The field K} is nothing but the field K’ in
the case that »r=1.

LEMMA 6. Gal(K/M,/M,)=PSLy(F,).

Proor. In the proof of Proposition 2, we have already seen that
Gal(K!/Q) =GL,(F,)/{x1}. Since Q({,) is the maximum abelian subextension
of K over Q, it follows that Gal(KQ./Q%)=PSL:(F,). Thus, we see that
KQu,NnM'=Q%. This follows from the facts that PSL,(F,) is a simple
group, 2 is wildly ramified in K}Q: (Corollary to Lemma 5), and M*/Q is
only tamely ramified. Therefore, Gal(K/M'|M')=PS1,(F,). As M,/M* is
abelian, the lemma follows at once.

3.2. Proof of Theorem 2

Put E=K’M, Then, by Proposition 1, E/M, is an unramified Galois ex-
tension. We shall show that

(%) Gal(E/M,) =PSL,(Z/p'Z).

We have already seen that Gal(K,»Q,:/Q.;) =S1,(Z,), where K, denotes the
field obtained by adjoining to Q all coordinates of the points of p-power
order on E;. (Refer to the proof of Proposition 2.) Therefore, to verify («),
it is enough to show that K,»Q., N M,=Q,. Fix a p-adic coordinate system
of E; and identify Gal(K,~Q,;/Q.) with SL,(Z,). Let N be the normal sub-
group of SL,(Z,) corresponding to the Galois subextension K,-Q, N M, of
K,=Q,, over Q,. We shall show that N=SL.(Z,).
Put N=NTI(p), where

a=d=1 modp}'

F(p):{<(cl (bi>€ SL;(Z,) b=¢=0 mod p

Then, N/I"(p) is a normal subgroup of SL,(Z,)/I(p)=SLs(F,). Therefore, it
follows easily that N/I'(p)={1} or {1} or SLy(F,). If N/I'(p)={1} or {1},
NcI'(p){+1}. This means that K,=Q,NM,DK;Q., i.e., M,DK;Q,. This
contradicts Lemma 6. So, N/I'(p)=SL,(F,). Hence, N=SL,(Z,) by Lemma
3 and the proof is completed.

§4. Infinite existence
Our purpose in this section is to prove the following

THEOREM 3. There exist infinitely many lineary independent Galois
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extensions of Qu (resp. My) contained in M having PSL,(Z|p"Z) as the Galois
group over Qg (resp. My).

We have already shown that there exists at least one Galois extension of
0., (or M) satisfying the condition of Theorem 3. To show the infinite ex-
istence, we need some more technical preliminaries.

In this section, let n, (@=1, 2, ---) be positive integers satisfying the
condition (C) in § 3. For such n,, let Ej.,, be the elliptic curve defined in
§ 1. For the sake of simplicity, we write E; in place of Ej,.. Let K"
denote the field obtained by adjoining to Q the ‘““z-coordinates” of the p'-
division points on E; (@=1,2, ---). In (the proof of) Theorem 1 (resp.
Theorem 2), we have seen that K'“Q,,/Q,; (resp. KM,/ M,) is an unramified
Galois extension having PSL.(Z/p"Z) as the Galois group over Q.; (resp. M,).
To prove Theorem 3, we choose 7, (¢=1,2, ---) suitably so that K"“Q.,nN
K'®Q,=0. and K'®M,n K"»M,= M, holds if a+8.

4.1. Preliminaries for proving Theorem 3

In this subsection, we shall show that we can choese n, and n, suitably
so that K79Q, N K'?Q.,=Q., and K'VM,N K'®M,= M, holds (Proposition 3).

For each a>1, let K (resp. K,*) denote the field obtained by adjoin-
ing to Q all coordinates (resp. the “z-coordinates™) of the p-division points
on E; . The field K} is nothing but the field K’ in the case that r=1.
Let %, denote the subextension of K\ over Q corresponding to the center
F* of GLo(F,)=Gal{K{/Q). (See the proof of Proposition 2.)

LEMMA 7. Let 1l be a good prime of E;, and

P—ax+l (0, €Z)

be the characteristic polynomial of the I-th power Frobenius endomorphism
of the reduction of E; atl. Assume that a,=0mod p. Then, the restdue ex-
tension degree of | in k,/Q is at most 2.

Proor. Let { be any prime divisor of K" lying above [, and ¢, denote
the Frobenius automorphism of {. Then,
0,(6) +1-1,=0 in GL,(F,)=Gal{K"/Q),

where p, is as before. (See the proof of Proposition 2.) Therefore, p,(s/)*€ F;.
This means that ¢? is the identity on k.. From this the lemma follows at
once.
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LEMMA 8. There exist infinitely many prime nuwmbers | satisfying the
JSollowing conditions:

(1) The residue extenston degree of [ in k,/Q is neither one nor two.

(ii) The prime I remains prime in Q(v —11) and Qv —2).

(ili) 1=3 mod 4, i.e., I remains prime in Q(+ —1).

Proor. First, assume that p=11. Let L be the composite of the fields
Qv —11), Qv =2), Q(+v/—1), and k,. Since @Q(+v/=p) (=p=1 mod 4) is the
maximum abelian subextension of %, over Q, L/Q is a Galois extension such
that Gal(L/Q)=Z|2ZX Z|2 ZX Z|2 ZX GL,(F,)/F*. Let N, N,, N, and N, be
the normal subgroups of Gal(L/Q) corresponding to the fields Q(v/ —11),
Qv —2), 0(~—1), and k, respectively. Then, it is easy to see that there
exists an element ¢ of Gal(L/Q) such that ¢ N, (1<1<38) and ¢*&N,.
Let C be the conjugacy class of ¢ in Gal(L/Q). Then, by Cebotarev’s density
theorem, there exist infinitely many prime numbers (in fact, with positive
density) whose Frobenius automorphisms (up to conjugacy) belong to C.
These primes satisfy the conditions (i), (ii), and (iii). In the case of p=11,
the lemma is proved similarly.

LEMMA 9. Let 1>13 be a good prime of E; satisfying the conditions
(i), (i), and (iii) of Lemma 8. Let n, and n, be positive integers satisfy-
ing the condition (C) in §38. Choose m, such that (I—1)/2|n, (This is
posstble, for 1=3 mod 4.} Then, K’NKP=Q(L,).

Proor. We first show that the residue extension degree of [ in
k./Q is at most 2. Consider the reduction of E;, at I. By the assumption
that ((—1)/2|n,, (ep)2=+1modl. So, we get j,=7(n,)=—2% or 20° mod I.
As 118, 7,%0, 12° mod I, so that ! is a good prime of E;,. It is known
that —2% (resp. 20°) is the modular invariant of the elliptic curve with
complex multiplication whose endomorphism ring is isomorphic to the
integer ring of Q(+/ —11) (resp. Q(v/—2) (cf. e.g. Fricke [5] p. 396, 443).
By this and the condition (ii), the reduction of E;, at [ is a supersingular
elliptic curve (cf. e.g. Lang [8] Ch. 13 §2). Therefore, the characteristic
polynomial of the I-th power Frobenius endomorphism of the reduction
of E; at lis «*+[ (cf. e.g. Lang [8] Ch. 13 §2). Hence, by Lemma 7,
the residue extension degree of [ in %,/Q is at most 2.

Now, assume that the lemma does not hold, i.e., K’NKP20Q(,).
The field K" N K® is a Galois extension of Q(Z,), and Gal(K*/Q(Z,)) =SL,(F,)
(@=1,2). Since {£1}is the unique non-trivial normal subgroup of SL.(F,),
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it follows that K/V=K/® and k,=k,. This is a contradiction, for the
residue extension degrees of I in k,/Q and k./Q are different. Therefore,
KPNKP=0(C,).

PRrROPOSITION 3. Letl, n, and n, be as in Lemma 9. Then, K'MQ,N
K'®Q,=0, and K'*M,NK'®M,=M,.

Proor. Let K denote the field obtained by adjoining to Q all
coordinates of the points of p-power order on E; (a=1,2). Then, it
suffices to show that K'Q, N K?Q.,=0. and KO M, N K& M,= M,, namely,
the canonical injections

Gal(KPK2Q,4/Qu)—Gal( KD Qo /Qus) X Gal( KL Q[ Qus)
and
Gal(KLK® M,/ M) ——Gal(K® M,| M,) X Gal(K® M,/ M)

are both surjective. The groups Gal(K®Q.,/Q.;) and Gal(K&M,/M,) («
=1, 2) are all isomorphic to SL,(Z,). (See the proof of Proposition 2 and
3.2.) Therefore, by Lemma 10 of Serre [15], it suffices to verify that
Gal(KPKPQ,/0u) =SLy(F,) X SLy(F,) and  Gal(K"KP M,/ M,) =SLs(F;) X
SLy(F,).

By Lemma 9, Gal(K"K®/Q(Z,)) =SLs(F,) X SLy(F,). Since the abelian-
ized group of SL,(F,) XSL,(F,) is trivial, Gal(K{"K{Q.;/Qu)=SLy(F,) X
SL,(F,). Let N be the normal subgroup of SLs(F,) X SL.(F,) corresponding
to the Galois subextension KPK®Q,NM, of K{°KPQ., over Qu. By
Lemma 6, N satisfies the condition of Lemma 10 below. Thus, N=SL.(F,)
X SL(F,), so that KPK®Q, N M,=Q.;. Therefore, Gal(K{"KM,/M,)=
SL,(F,) X SL,(F,), and the proof is completed.

LEMMA 10. Let N be a normal subgroup of SLy(F,) XSLy(F,) which
is contaimed mneither in {1} XSL.(F,) mor in SLu(F,)x{x1}. Then,
N:SL2<FP> XSLz(Fp).

Proor. First, let N be the image of N under the canonical pro-
jection from SL,(F,) X SL.(F,) to PSL,(F,) X PSL,(F,}. By the assumption
on N and the well-known fact that PSL,(F,) is a simple group, it follows
easily that either N=PSL,(F,) X PSL,(F,) or the projections to the first
and the second components (of PSL,(F,) X PSL,(F,)) are both bijective on
N. But the latter is impossible. In fact, assume that the latter ocecurs.
Choose an element (o), 0,) € N such that o,#1. Then, (z, 03){(oy, 02)(7, 62) 7
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=(ro,v7%, 0;) € N for any ¢ €PSL,(F,). Hence, by the bijectivity of the
projection to the second component, zg,c7'=¢, for any ¢ € PSLy(F,). There-
fore, o, is contained in the center of PSIL,(F,), a contradiction. So,
N=PSLy(F,) XPSLy(F,). Then, SL,(F,) X SLy(F,) =N-{+1} x{£1}. In partic-
ular, SL,(F,) XSLy(F,)/N is abelian. Since the abelianized group of SL,(F,)
X SL,(F,) is trivial, N=SL,(F,) X SLy(F,).

4.2. Proof of Theorem 3

We determine a sequence of positive integers n, (@=1,2, ---) in the
following manner. First, let n, be any positive integer satisfying the
condition (C) in §8. Let [,>>13 be a good prime of E; satisfying the
conditions in Lemma 8. Let n, be a positive integer satisfying the condition
(C) in §3 and ({,—1)/2|n, Suppose that n,, ---,n, and I, ---,1,_, have
been already chosen. Then, let 1,>>13 be a good prime of E; satistying
the conditions in Lemma 8. (The field %, in condition (i) should be replaced
by k.) Let m.,; be a positive integer satisfying the eondition (C) in §3
and

L—1 =1  I,—1
2 2 2

Mgy

Then, by Proposition 3, K’“Q, N K'**Q.,,=0Q., and K’“M,n K"*®M,=M,
(@#p). Thus, K’“Q, (@=1,2, - --) (resp. KM, (@=1,2, ---)) is a sequence
of infinitely many lineary independent Galois extensions of Q,, (resp. M,)
contained in M having PSL,(Z/p"Z) as the Galois group over Q., (resp.
M,). This completes the proof of Theorem 3.

§5. Remarks

5.1. Let y be any element of Gal(}M,/M?*) and 7 be any extension of 7 to
M. Then, if F is a subextension of M over M, 7(F) is also a sub-
extension of M over M,, possibly 7(F)#F. But the subextensions K" M,
(@=1,2, ---) of M over M, we have constructed in (the proof of) Theorem
3 are Galois extensions over M, (in fact, Galois over Q). Therefore,
FIK'“M)=K'"“M, (@=1,2, ---). Thus, we have constructed infinitely
many, in a sense, “Gal(M,/M*-independent” Galois subextensions of M
over M, having PSL.(Z/p"Z) as the Galois group over M,.

5.2. Let E be an elliptic curve over Q, p be a prime number, and K,~
denote the field obtained by adjoining to Q all coordinates of the points
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of p-power order on E. In our previous paper [1], we have shown that
K,F,,/F,, is unramified if F has good and supersingular reduction at p,
under some additional conditions. Here, F is a certain algebraic number
field of finite degree over Q. If E does not have complex multiplica-
tion, it is known that Gal(K,~/Q) is isomorphic to an open subgroup of
GL.(Z,) (Serre [14]). Especially, K,=F,:/F.,; is an infinite extension (cf. Sup-
plement). But we can not take F=Q ([1] §4). In this paper, we can take
the field F=Q by using a prime p such that E(%) Q, is isomorphic to a

Tate curve over Q,.

Supplement

Here, we shall give an explicit example of an unramified Galois ex-
tension over an abelian extension of an algebraic number field of finite
degree over Q, by using the points of p-power order on an elliptic curve,
where p is a “supersingular” prime. This is an example of our previous
result (1] §4).

Let E be the following elliptic curve defined over k=Q(v 29) ;
E: y+oy+ey=a’, j=(245—1)%c",
where e= 5_"%@ is a fundamental unit of .. Then, E has everywhere

good reduction over k (an example of Tate cf. Serre [15] 5.10). Let F
be the quadratic number field Q(+v/'—1) and p=T1. For each integer
n>1, let F, be the ray class field of F with conductor (p)*l’, where (p)
and {=(1++/—1) are prime ideals of F. Let K, be the composite of F,
and F%k. Let L, be the field obtained by adjoining to K, all coordinates

of the p*-division points on E. Put K.= D K, and L.= CCJ L,. Then,
n=1 n=1

we can show the following

ProOPOSITION. The field L, is an unramified Galois extension of K,
having SLy(Zjp*Z) as the Galois group over K,. The field L, is an un-
ramified Galois extension of K., having SL,(Z,) as the Galois group over
K.

Proor. As E has everywhere good reduction over k, hence over K,
every prime ideal of K, which is prime to p is unramified in L,. We
shall show that every prime ideal B of K, lying above p is unramified in
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L,, so that the extensions L,/K, and L./K, are unramified. It is enough
to show that (L.)s=(K,)y holds. (For a subfield K of L, K, denotes
the B-completion of K.)

First, as p splits completely in £ and remains prime in F,(Fk)y=F,
=@, the unique unramified quadratic extension of Q,. Therefore, (K,);
=(F,)3Fy, and it is easily verified that the abelian extension (F,)3Fy/Fy
corresponds to the subgroup (—p)2x U™ of F¥ by local classfield theory.
Here, (—p)? denotes the infinite cyclic group generated by —p and

U"=lac F§¥{ a=1 mod (p)"}.

On the other hand, let p; and p, be the two prime ideals of % lying
above p. Then, by simple calculations, we get {7 mod p,, 7 mod p,} ={0, 66},
so that Emecdp, and E mod p, are both supersingular elliptic curves over
F, (Deuring [4] p. 258). Therefore, by a result of Honda ([6] 2,5, See also
[1]1 §4) the formal groups associated to E(k@ k, and E @k) k;, have formal

complex multiplication. More precisely, it is easily verified that their
special elements are both p+ 7% so that they are both isomorphic (over
Z,p) to the Lubin-Tate group over Z.: associated to the prime element
—p of Zp. Here, Z; denotes the integer ring of Q,:. Therefore, by a
result of Lubin-Tate [91, (L,)g/Fs corresponds to the subgroup (—p)Z X U™
of F§. Hence, (L,)y=(K,)s.

It is known that Gal(k(E,)/k)=GL,(F,), where k{E,) denotes the field
obtained by adjoining to k all coordinates of the p-division points on E
(Serre [15] 5.10). Since K, contains {,, it follows that Gal(L,/K,) =
SL.(Z/p*Z) and Gal(L./K.)=SL.(Z,) by Lemma 3, and the proof of Prop-
osition is completed.
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