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Remarks on necessary conditions for the existence of
global real analytic solutions of linear partial
differential equations on a compact set

By Akira KANEKO

§0. Introduction

Let P(D) denote a linear partial differential operator with constant
coefficients and .o/ the sheaf of germs of real analytic functions on R".
The problem of finding a necessary and sufficient condition for the global
solvability P(D).«/(K)=_/(K) on a compact set KCR" seems to be open.
Though it is much easier than the problem of the global solvability
P(D)o7(Q)=7(2) on an open set QCR", it requires some non-trivial
necessary condition unlike the case of C-solutions. Since we can apply
the closed range theorem to the space .o/(K), the abstract necessary and
sufficient condition is that *P(D).Z[K] is closed in Z[K], where Z[K]
denotes the dual space of .o/ (K) and is in fact the space of hyperfunc-
tions with supports in K. A sufficient condition for this is that we have

(0.1) f€ Z(R"), supp‘P(D)fcK = suppfCK,

and in particular a convex compact set satisfies this condition for any
P(D) (see e.g. Komatsu [10]). However, as far as we know we do not
know yet if this is also necessary for the closedness of ‘P (D) #Z[K] in
FIK 1

In these notes we derive some concrete necessary conditions for
P(D).«/(K)=./(K) directly from our results on continuation of real
analytic solutions. (See Theorems 1.1-1.3. See also Theorem 2.1 for a
result concerning systems.) We believe that our method is new and so
are some of the results itself. It is Prof. G. Bratti who first taught us
the possibility of such applications of the theorems on continuation of
real analytic solutions (see Bratti and Trevisan [1]).
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§1. Study for single operators

We first show the following theorem which is an analogue to the
corresponding result for C~(Q) (see e.g. Hérmander [3], Corollary 3.7.1).
It is very plausible that it is already written somewhere though we could
not find it.

THEOREM 11. If P(D)</(K)=./(K) for any K, then P(D) must be
must be elliptic.

Note that the converse assertion of this theorem follows from the
sufficient condition (0.1) and can also be proved directly with use of the
fundamental solution.

Theorem 1.1 follows from the following more concrete result:

LEMMA 12. If P(D)/(K)=./(K) for K={1<|z|<2}, then P(D)
must be elliptic.

PROOF OF LEMMA. As is easily seen we have P(D) «/(K)=.(K) if
and only if we have q(D).o/(K)=./(K) for every irreducible factor q of
P. Therefore we may suppose that P is irreducible. As a special ele-
ment of .o/(K) we choose the standard fundamental solution E(x) of the
Laplacian A on R*. Assume that

PD)u=FE on K.
Put L={jz|<2}. Let [u]€ B(L) be any extension of u as a hyperfunction
to L. Then we have
PD)[u]=E+w,
where v is a hyperfunction with support in {|z] <1}, hence
AP(D)[u]=PD)Alu]=06+Av.

On the other hand, on K, Au is a real analytic solution of P(D)(Au)=0.
Therefore if P(D) is not elliptic, then by Theorem 8 of Kaneko [5] on
continuation of real analytie solutions, Au can be continued to an element
SE€A(L). Thus w=A[u]—f becomes a hyperfunetion with support in
lw} <1 satisfying

P(D)w=0d-+Av.

If we apply the Fourier transformation to both sides, then we obtain an
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identity between entire functions (of certain growth characterized by the
Paley-Wiener type theorem for hyperfunctions with compact support which
we do not need for the moment):

(L.1) P w(C)=1—(L+-- - +L3)0(Q).

Since P(¢) is by the assumption a non-elliptic polynomial, we must have
n>2, hence the set of the common zeros

e PO=C+---+=0}

is non-void. But (L.1) gives a contradiction on any point of this set.
Thus P must be elliptie. q.e.d.

Next we consider an operator P(D) whose principal part is the partial
Laplacian:

(1.2) PD)=D:+---+D:_,+lower order terms.
It contains e.g. the heat equation with the time variable z,. Let n>3.

THEOREM 1.3. If P(D) /' (K)=./(K) for P(D)in (1.2), then K must
be convex with respect to the hyperplane x,=const. More precisely, for
any ¢

(R*\K)N{z"<c} and (R*\K)N{z.>c}

cannot contain a bounded commected component (as in the figure).
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Proor. Assume that there exists a bounded component L of, say,
(R"\ K) N {x, <0} as is described in the theorem. As in the preceding para-
graph, it suffices to show a contradiction assuming that there exists a
real analytic solution u of P(D)u=FE on K, where E is now a solution of
the second order elliptic equation

(D) E:= DI+ D+ - - - +Di)E=d(z—a)

with 4>0 specified later and a € L. Without loss of generality we can
assume that a=(0, ---, 0, —1). By Theorem 2.12 of Kaneko [7] on con-
tinuation of real analytic solutions which is analogous to the Hartogs
extension theorem for holomorphic functions of several variables, we can
find a real analytic extension f(z) of ¢(D)u on (KUL)N{x,<0}. (See
Corollary 2.14 there. Though the calculus is made for the heat equation
there, it is obviously valid for any operator with the same principal part.
The assumption of convexity of the set L to which we continue the
solution is removed by Kaneko [8].) Thus denoting by [%] a hyperfunction
extension of u to (KUL)N{x,<0}, we obtain this time

PDyw=0d6(x—a)+q(D)v,

where v=P(D)[u]—E and w=q(D)[u]—f are hyperfunctions on z,<0 with
supports in L. Now choose an extension [v] resp. [w] with minimal sup-
port of v resp. w to a hyperfunction on the whole space R". Then we
have

PD)[wl=0{x—a)+q(D)[v]+yg,

where g is a hyperfunction with support in L N{z,=0}, which we assume
to be contained in the (n—1)-dimensional ball |2/|<<A. Apply Fourier
transformation to both sides and put P{{)=q({)=0. Then we obtain

0=¢""+7(C).

As for §({), in view of the Paley-Wiener type theorem we have the follow-
ing estimate: For any >0 there exists C.>0 such that

[9(0)| < Ceeiti+4 =l for £ C?,
where {'=({;,---,{,_,). Thus we obtain

(1.3) Imf>—el{|-AIm | -C/ for P()=q({)=0.
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Reecall here that we have
P =0+---+._,+lower order terms.

Note that for ¢ satisfying ()= C+C+-.-4-£2=0 these lower order
terms are in any case of O(|{;|+---+]{.—:]). Thus we can choose a one
parameter family of common complex zeros of P({), ¢({) such that

C1~10’ C2~ilo’ C3:O(p)”' *s Cn—lZO(p)’ Cn~—7A/22——lp

when p—+4oo. Now if we choose v/ #—1>A, then for these common
zeros the estimate (1.3) gives a contradiction as p—+oo. q.e.d.

§2. Study for systems

Here we give a system version of Theorem 1.1, or rather of the
lemma attached to it. It seems less known as a result.

THEOREM 2.1. Let K={1<|2|<2} and let P(D) be an s,Xs, matriz of
linear differential operators with constant coefficients. Let M denote the
C[D}-module Coker P(D) and let Q(D) be a system of compatibility con-
ditions for P(D). Then

2.1) A (K)o ZE A (K222 A (K

18 exact vf and only if the following two conditions are saiisfied :
1) The C[Dl-module Ext'(M, C[DY)) is either elliptic or 0.
2) Ext M, C[D]) has mo elliptic component.

For the comparison we first examine the solvability in hyperfunctions.
In Palamodov [13] similar consideration is done only for modules of free
dimension <1.

LeMMA 22. Let K and P(D) be as in Theorem 2.1. Then the sequence

3B (K)%—P(ﬂ_@ (K)Hﬂg} (K)’z
is exact if and only if Ext*( M, C[D]) =0.

Proor. Put L={|z]<2}. Let P,(K) ete. denote the space of hyper-
function solutions of @(D)u=0 on K ete. First recall the theorem on
continuation of hyperfunction solutions by Komatsu (see [11], Theorem
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44) according to which every f€ P o(K) can be continued to an element
F € Bo(L) if and only if Ext'(Coker ‘Q, C[D])=0. Note also that by definition
we have Ext!(Coker ‘Q, C[D])=Ext¥ M, C[D]). Therefore if the latter
vanishes we can extend f€ Bo(K) to € Bo(L) and then solve the equation
P(D)u=f on the compact convex set L by means of Komatsu’s existence
theorem ([10], Theorem 3). Then u|x is a required solution. Conversely,
suppose that every f€ Bo(K) can be written as f=P(D)u with u € B(K)».
Choose a hyperfunction extension %€ B(L)* of u. Then f =P(D)% satis-
fies Q(D)f=0 on L, hence serves as an extension of f as a hyperfunction
solution to L. Thus Ext M, C[D]) must be zero. q.e.d.

The following lemma is our essential tool as well as the continuation
theorem of real analytic solutions.

LEMMA 2.8. Let Q be a convex open set. Then (B|A)«(Q2) is a fat
C[D}-module. Here (B|A)x(R2) denotes the space of sections of B|A
with supports compact in 9. ‘

Proor. Let

CIDY 220 D) 225C D}

be exact. We must show that

(BIA) Q)02 (BIA) 5 (2) 225 (B A) (2)2
is also exact. Note that

(BIA)«(Q=(Q/D)(2)=(Q(Dr) NOD\2))[0(D"),

where () denotes the sheaf of Fourier hyperfunctions and O the sheaf of

rapidly decreasing real analytic functions of modified type (see Kawai [9],
pp. 494-495). In the last term Q(D")QQ(D"\Q) is the abbreviation of

{£€Q(D"); floma € O(D"\Q)}. The final equality follows from the cohomology
vanishing theorem for O whose proof may be found e.g. in Saburi [14]

(see Theorem 3.1.5). On account of Lemma 5.1.2 in [9], the Fourier trans-
forms of the elements of the numerator of this quotient space constitute
the space of holomorphic funections on a conical neighborhood |Im i<
d(|Re|+1) of the real axis with the estimate: for any >0 there exists
C.>0 such that
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(2.2) |/ <C. exp (¢]¢]+Hz(Im g) —o|Im ),

and the elements of the denominator with the estimate

(2.3) | F Q)< e,

where 0>0 varies from elements to elements in both cases. Then the
problem reduces to show for any f(C) with the former estimate the latter
estimate assuming it for @(0) f (€). This is a consequence of Malgrange’s
inequality on division for matrices, which is a weaker variant of the
Fundamental Principle of Ehrenpreis-Palamodov. (See Hoérmander [4],
Proposition 7.6.5 and Theorem 7.6.11. We ean apply the proof of the latter
after adjusting a holomorphic weight function of the type exp(—ev/ 1)
and discussing in the domain [Im | <6(|Re {|+1) instead of C™) q.e.d.

LEMMA 24. If M is an elliptic C[D]-module, then MNQ(B|A)w(Q)
is zero. Here the tensor product is over the ring C[D].

Proor. Let M=Coker ‘P(D) be a representation of . In view of
Lemma 2.3 we have the exact sequence

0~ R (B A4 (2)— (B A) 4 Q)0 ZL (B A) (D)

Hence it suffices to show the surjectivity of ‘P(D) in this sequence. By
a theorem of Lech [12], we can find an elliptic single differential operator
q(D) such that ¢(D).M=0. This implies that there exists an s; X s, matrix
R(D) of differential operators such that

q(D)L,="P(D)R(D),

where I, denotes the identity matrix of size s, Hence if E(z) is a funda-
mental solution of ¢(D) which is real analytic outside the origin, then
B(D)E(x)1, serves as a fundamental solution of ‘P(D) in a sense similar
to Ehrenpreis [2] (Section 2 to Chapter VI), which is real analytic outside
the origin. Employing the convolution by this fundamental solution we
can solve 'P(D)u=f in the space (B/A)x(2). Indeed, any element of
(BIA)(2) may be assumed to be defined by f€ B(R*)* with sing suppf
compact, say, contained in the ball |z|<r. If we choose R>0 large,
denote by y: the characteristic function of the bhall |x|<R and put

u=R(D)ELy(1:(@)f ),
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then this is real analytic in {|jz]| <R—7}\sing supp f, hence it defines a
solution of ‘P(D)u=f in (Bl A)«(Q). q.e.d.

Lemma 2.4 is obvious if we assume the Fundamental Principle. In
fact, via the Fourier transformation the space MR (B/A)«(2) becomes
isomorphic to the quotient of the two spaces of holomorphic functions on
the variety N(H) N {|Im ¢|<d6(|Re ¢]+1)} with the estimate (2.2) resp. (2.3).
Sinece this variety reduces to a bounded set for sufficiently small >0 in
case when M is elliptic, this quotient space becomes trivial. Though the
Fundamental Principle of this type can be proved in a way analogous to
the case of PH[K] in Kaneko [6], it requires much more spaces when
detailed out. Therefore we preferred here an easier way.

Proor OoF THEOREM 2.1. We examine the following three cases:

a) Ext'(M, C[D]) is neither elliptic nor zero.

b) Ext* M, C[D]) contains an elliptic component.

c) Ext! (I, C[D]) is either elliptic or zero and Ext?(M, C[D]) contains

no elliptic component.
We shall show that in the cases a) and b) (2.1) is not exact, while in the
case ¢) it is exaet. It is the case a) which corresponds to the discussion
of the single operator.

a) By the assumption there exists a non-elliptic non-zero primary
submodule P/(D)C[D}¥ D P(D)C[D]» of Ker @(D) appearing in the primary
decomposition of P(D)C[D]vcKer Q(D) (which is equivalent to the primary
decomposition of Ext'( M, C[D])=Ker Q(D)/P(D)C[DJ*). For this system
P/(D), Q(D) as well serves as the compatibility system because Ker ‘P’(D)C
Ker ‘P(D) by the duality. We have hence

Ext!(Coker ‘P, C[D])=Ker Q(D)/P"(D)C[DY",

and this is a non-elliptic primary module. Let ¢(D) be an element of
Ker Q(D)\ P(D)C[D}. We can assume without loss of generality that

(2.4) q(D)eE P/(D)C[ DY +AC[ D]

If this is not the case, we may replace A by A+x with a suitable p€C
satisfying this property. In fact, if
Ker QD) P'(D)C[DI"+ (A+¢)CLD],
then by applying Q(D) to both sides we see that
Ker Q(D)C P'(D)C[D}' + (A+p) Ker Q(D),
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hence by dividing by P/(D)C{D]" that
Ext!(Coker *P’, C[D]) c (A+p) Ext'(Coker *P’, C[D]).
This implies that
supp Ext'(Coker *P’, C[D]) Nsupp C[D}/(A+u)C[D]=,

where supp denotes the support of the C[D]-module, i.e. the set of com-
plex zeros of the associated prime ideals. We can, however, always choose
¢ € C so that the above intersection is non-void.

Then let E(x) be the standard fundamental solution of A and put
f=q(D)E. Assume that there exists a solution ue A (K)* of P(D)u=f.
Then from the inclusion P/(D)C[D] D P(D)C[D]%, we can find a solution
w € AK) of P/(D)u'=f by a mere algebraic deformation. We have then

P'(D)(Aw) =Af=q(D)AE=0

on K. Since for the system P’(D), Ext(Coker 'P’, C[D]) does not contain
an elliptic component as remarked above, we can apply Theorem 2.3 of
Kaneko [6] to the real analytic solution Aw’ of P’/(D)(Aw/)=0 on K, and

thus find an extension Aw € B (L) of A as a hyperfunction solution to L.
Hence denoting by [w]€ B(L)* any extension of %/ and putting w=A[w]

_Awe B4(L\K), we obtain
P/(D)w=AP'(D)[w]=Af+Av=q(D)d+Av.

Since B4(R") is a faithfully flat C[D]-module (see Komatsu [11], Theorem
4.4) this implies that

q(D) e P'(D)CIDI+AC[D ],

which contradicts to (2.4). Thus (2.1) is not exact in this case.

b) Assume that for any f& A(K) satisfying Q(D)f=0 we can find
u€ A(K) such that P(D)u=f on K. Let @€ B(L) be a hyperfunction
extension of u. Then f=P (D)@ serves as an extension of f as a hyper-
funection solution to L. Thus by the necessary part of the cited theorem
of Kaneko [6] applied to the operator @ we conclude that @ contains no
elliptic component.

c) Let fe A(K) satisfy Q(D)f=0. By the assumption we can find
an extension f€ B(L) such that Q(D)f=0. Consider the sequence
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0—Ext!(.H, C[D)—~C[D}"/P(D)CIDT+*>>C[D]*,
which is exact by definition. When we take the tensor product with
(BIA) (LK) which is C[D]flat by Lemma 2.3, we obtain the exact
sequence

0—Ext'(H, C[D)Q(B/A)x(L\K)
—(BIA)(LNK)/P (D) (B A (LNK 022 (B A (LN K )

Note that f defines an element of the middle term which belongs to
Ker@Q(D). Thus it comes from an element of the first term. Since
Ext'(M, C[D]) is itself 0 or elliptic, this first term is in any case equal
to zero by Lemma 2.4. This implies that f can be written as f=P(D)u
with an element u ¢ $B(L) whose singular support is contained in L\ K.
Thus u|x is a required real analytie solution of P(D)u=f on K. q.e.d.

Theorem 2.1 holds as well for a compact set K such that R*\ K has
non-void bounded connected components with which K constitutes a com-
pact convex set. The proof is just the same. A system version of
Theorem 1.1 itself will require informations on higher extension modules
and further results on continuation of solutions which are not yet well
studied.

The above examples may seem rather particular. We hope however
that such an approach may be refined to give a method to discuss the
necessary condition even for P(D) A(Q)=A(LQ) for open sets 2 from the
standpoint of micro-local analysis.
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