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Existence of the wawve operators in long range scattering:
The case of parabolic operators

By PL. MUTHURAMALINGAM

(Communicated by H. Fujita)

Abstract. . Existence of the wave operators is proved for operators of
the form ho(P)+W,+W,(Q, P) on L*R") where h, is a smooth real valued
function on B*, W, is a short range perturbation and W.(Q, P) a smooth
long range perturbation. Our case includes hy(&)=E&i+&, for & in B% Note
that dethf(&)=0 for all &. ‘

§1. Introduction.

One of the ways of analysing spectral properties of differential operators
on L*(R") is by doing scattering theory [1, 2]. In scattering theory the new
geometric method of Enss is well established; see [3, 4] and references there-
in. In [5] we developed Enss’ Theory for a class of simply characteristic
operators with short range potentials. In [6] a stationary theory was
already established for simply characteristic operators with short range
potentials. We want to extend Enss’ Theory to simply characteristic
operators with long range potentials. To the best of our knowledge the ex-
istence of the wave operators for this case is not known. The aim of this
article is to fill this gap.

Existence of the wave operators in long rang scattering is known [1, 2,
7,8,9,10,11]. The authors of [1,2,7,8,9,10] exclusively deal with the
operator P*+W,+W.(Q, P). [11] treats general operators of the form
Bo(P)+W,+WL(Q, P) with the condition {£:det h{(§)=0}<R". While this
condition on Hy=h,(P) is good enough for elliptic and hyperbolic operators
it exeludes the simplest parabolic operator Pi+ P, on L*(R?).

In this article the main ideas are taken from [11, 12].

§2. Statement of the result.

For the free and total Hamlltomans H, and Hon Lz(R”) we 1mpose the
following assumptions Al, -- -, A4,
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Al: hy:R"—R is a C~function such that %, and all its derivatives are of
atmost polynomial growth.

Let @, P denote the position and momentum operators on L*R") given
by @=(Q:, + -+, Qu), P=(Py ---, P), (@;f)(x)=2;f(x), P;=—1iD;, D;=0d[ox;.
Put Hy=h,(P). Note that by the assumption Al the operator H, maps S
into itself where, S=S(R") is the Schwartz space of rapidly decreasing
funections.

A2: (The short range condition) W, is an operator with ScDom W, and
for some >0 the operator W,o(P)(1+Q%"*” is bounded for each ¢ in
Cy(R™). Here Cy(R") is the space of all infinitely differentiable functions
on R" with compact support.

A3: (The long range condition) W,:R*XR'—R is a C= function and
there exists some d in (0, 1] such that

ES!lIgID;’DgWL(x, &)|<K(B, a, B)(1+|x) 12

holds for any bounded subset B of R". Here and hereafter the letter K
denotes generic constants. Define the operator W (@, P) by

[(W.(@, Pifllg)= (27r)‘”’25d§f (€)W 1(q, &) explig-£]

where £ =% f, the Fourier transform of £, is given by
7 @)=z dy f1y) expl—iy-€).

Also Dom W, >S. [This may impose some growth restrictions on & of
Wz, &)1

A4: (The self adjointness). The operator H=H,+ W,+ W .(Q, P) which is
defined at least on S is symmetric and has a self adjoint extension denoted
by the same letter H.

Now denote by U, and V, the free and total evolutions given by
U,=exp[—1itH,], V,=exp[—itH].

Define G={¢in R": Vh,(&)>0}.
Now we have

THEOREM 2.1. Let the above conditions be satisfied. Then there exists a
C= function X:R X R"—~R so that for fin F* L¥G) we have
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(i) 2. f=s-lim V¥exp[ —tX (¢, P)1f exists

(ii) 12.1=IS1

(iii) V.2, .f=2.U.f for all real s.

(iv) Q. fe 4.(H), the absolutely continuous subspace for H.

We prove the theorem in § 3 using the techniques of (i) non-stationary
phase (Theorem XI. 14 of [1] or Lemma A.1 of [11]) and (ii) oscillatory
integerals [131.

§3. Proof of Theorem 2.1.

Following [12] we make a time dependent cut off on the long range
potential W,. Choose x, in C*(R"), a real valued function, such that x%,=0
for |x|<1 and 1 for |x|>2. Define W(t, x, &) by

(1) W it, z, &) =xo(log {EDx/O)W i (x, §)

where (t>=(1+t)". From the assumption A3 it is easy to see that for
0, in (0,90)

(2) sup |DiDIW (t, @, &)|<K(B, a, B)<E)™14 7"

£in B

for bounded sets B of B*. Now without loss of generality we can assume
that é,et 1,1/2,1/8, -+ -}
Choose the positive integer m, such that

(3) Moo <1< (My+1) B,
Now define Y(m, t, &) for m=1, -- -, m,, t=0 by
Y(0,t, &) =0
(4) Y(m, ¢, &) :g:dTW(T, hUE) + Yim—1, 7, &), £)
X(t, &) =thy(&) + Y(me, ¢, ).

LemumA 3.1.
(1) For any bounded subset B of R* we have

sup |DiY(m, t, &)|<K(B, m, a)<{t)* .

£inB

(i) lim Y(mo, t+s, &) — Y(m,, t, & =0 for each s in R, § in R".

t—=o0

Proor. (i) The proof is by induction on m. For m=0 it is clear. As-
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sume the result for m—1. Now when |a| =0 the result is obvious for m.
So assume |a|>1. Put

Z=Z(z, § =chi(E) + Yiim—1,1, )
so that
(5) Y(m,t, &) =j:dr Wie, Z. ).

Now by the induction hypothesis we have, for £ in B,
(6) |Dg Z(z, §)|< Kla){z).

By induction on |a| we can easily prove that DHW(z, Z(z, £), &)} is a finite
linear combination of terms of the form W, ,(z, Z, &) DaZ- - - D%+Z where

(a) Wi,i(z-’ z, S):DgD; W(Tv xz, S)

(b) 1<itg i<

(e) The product DuZ-..D%Z may or may not appear. If it appears, then
(d) k<|z] ‘

{e) 1< ad, - e <] a).

Now for any typical term W, (z, Z, £)DuZ- --D%*Z we have using (2)
and (6)

(7) Sup |Ws (e, Z,§)-DpZ- - - D32 |<K{z)™s.
inB

Now the result follows from (5) and (7).
(ii} Clearly for ¢ in R" we get
| Y(mo, t+s, &) — Y (my, t, &) |
= || e wie ehite)+ Yimo—1,7,9), 8)| < K@) ety
The result easily follows since ltljg S:ﬂdt(r)“”f’:O. Q.E.D.
LEMMA 3.2.
(i) If B is any bounded subset of R* and m>1 then

sup [DHY(m, ¢, §)— ¥(m—1,1, &)} |<K(B, m, a){ty=n.

(ii) For B as in (i) we have
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sup | Wit, X4(t, &), &) — Wit, thi(§) + Yiime—1, 1, &), §) | K(B)KE)™ ™™,

£in B

(iii) For any given b>0 choose t,=t,(b) >0 such that 2/log {toy=b. Then
for t>t, and any g in L*R") we get, with F(M) denoting the indicator
function of the set M,

I[W.(Q, P)— Wiz, Q, P)lgl| <{1+ % F(QI<H) Wi (@, P)gl.-

ProoF. (i) For m=1 the result follows by Lemma 3.1 (1). For m>2,
clearly

Y(m,t, & —Y(m—1%5§)
=" ac . dot(v.7) (e, chife) + o Vilm—1,2.8)+ (1) Yifm—2,7.8), 8]
X[Yi(m—1,1,&—Yim—2,1, 8]

Now the proof follows by induction on m by using the techniques of the
proof of Lemma 8.1 (i).
(ii) Follows from (i) by writing

W (t, thi(€) + Yi(ma, 1, £), &) — W(t, thi(g) + Ye(me—1,2,£),§)
=L aoT(V. ) . 14€)+ 0 YKo ,£) + (L) Vo1, .), &)
X[Yi(mo, t, &) — Yi(mo—1,¢, £)].
(ifi) From the equation (1) we see that
W@, P)=W(t, Q, P =[1—1(@ log /<) 1W.(@, P).

Now, using the support property of y,, we conclude the proof.
Q.E.D.

Now we introduce an evolution concentrated in a fixed compact subset in
the momentum representation. For any real valued C* function ¢: R"—R
define

P(€) =ho(€)¢(&)
Wip, t,x,& =Wt x, §o@)

Y(go,m t, &)= Sdz‘ Wie, 7, 7¢’ (€) + Yilp, m—1,7, &), §)
X(p, t,8) =t¢E)+ Yo, mot, &)

Note that if p=1then X(¢, t, §) =X (¢, &§). Now we restrict our attention
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when ¢ € C(R").

LEMMA 8.3. Let o€ Cy(R") be real valued, ¢, Wip, ---), Y, --),
X{op, - --) be as above. Then

(1) SgplD%Y(so,m,t,E)lsK(m,aKtY‘% Jor m=1, ---,m,
(ii) sup | D[ Y{p, m. 1, €)= Ylp, m—1, ¢, &) ]| <K(m, a)ty*—"

Jor m=1,---, m,
(i) sup |Wip, ¢, Xto, t, ), &) — Wip, t, t¢/ (€) + Yip, me—1, 1, &), £)]
: < Kty mot b
(iv) Sup Dt X(p, t, &) |<K(a){t).

(v)  Suppose Bis an open set such that =1 on B. Then X o, t, 5)=X{(t, &
for &in B.

Proor. For (i), (ii), and (iii) use the techniques in the proofs of Lemma
3.1, 8.2. The proof of (iv) is clear by (i). For (v) clearly it suffices to show

D Y(p,m,t,&=DiY(m,t & foré&in B, |a|>0 and each m.

For this we use induction on m. For m=0 it is clear. Assume the result to
be true for m—1. Then

Y(p, m, t, & :ﬁdr Wi, e’ (€)+ Yilp, m—1,7, &), §)p)
:S:df Wie, chi(&) + Yio, m—1,7,£), & for £in B

:Stdr Wiz, thi(&)+ Yiim—1,7, &), £) for £in B. Here we

have used the induetion hypothesis
=Y(m,t,&) for £in B.

So clearly D¢ Y(p, m, t,&)=D% Y(m, t, &) for & in B. Q.E.D.
Now define the two evolutions Z,, Z, , by

(9) {Z«ﬂ,t@):exp[*iX(so»t,S)l Z,(¢)=exp[—iX(t, £)]
Zo=2,P), Z,:=2Z,P).

LEMMA 3.4. Let f€S be such that f € C3(G). Choose a real valued @ in
C(G) such that o=1 on some open neighborhood of supp f. Then

(1) s-lim V}Z,f exists iff s-lim V¥ Z,, f exists

10 t—oco
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(ii)  if either limit exists then s-lim V}Z,f=s-lim V}¥Z,.f.

{—=co t—oo

PROOF. Follows from Lemma 8.8 (v) since Z,/=Z, .f. Q.E.D.

LEmMMA 3.5. Let f, ¢ be as in Lemma 3.4. Then
= i |
at L vx2z,, ! :
Sl lEdt o fl <o

Proor. Note that

(10) o(PVf=f, Zosf=2:f.
Clearly (Z,.f)" € C2(G) and so Z, .f € ScDom H.
Thus we get

iV, %{V?‘Z«m £}

:{Ho+ Ws+ WL(Q, P)}th,tf

—{Hy(P)+ W(p, t, td/(P)+ Yi(p, me—1,¢t, P), P)}Z,.f
=W.Zf+[W.Q P)—W(t,Q, P)1Z.f

+[Wt, Q, P)—W(t, Xilo, t, P), PY1Z,.f

+Z[Wip, t, Xblop, t, P), P)— Wi, £, t¢/(P)+ Yi(p, me—1, ¢, P), P)1f.

In the last step we have used (10).
Noting (m,+1)d,>1 and using Lemma 3.3 (iii) we get

12 | @zt Xalp.t, P), P
— Wig. t, 46/ (P)+ Yhlp, mo—1,t, P}, P)}f|| <co.

By observing f € C(G), the short range condition A2 and using the tech-
niques of non-stationary phase (Theorem XI.14 of [1], or Lemma A.1 of
[11]) we conclude

13 [Fatiwzri<ee.

Note that f € CP(G). Now the method of non-stationary phase together
with Lemma 3.2 (iii) gives

(1) [ at Itw.(@. P~ Wit Q. PlIZ.f <o

By (11-14) we are reduced to the study of the evolution of
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(Wt Q, P)—W(t, Xsle, t, P), P)1Z,.f.
Let B be any open set such that
suppfCB and ¢=1on B.
Then X(¢, t, &) =X, &) on B. Clearly

a=inf{| X{(t, §) K>~ : £€ B} >0.

Now choose a real valued » in C7(R") such that »=1 on |z|<a/2 and 0 on

|2|=a. Define fi(¢), f2(t) by

(15)  fi¢, 9)=(2x) ""2Sd€ W(t, q, 8 f ©{Ll—nt{g—Xilp, t, §1)
Xexpli[g-§—Xlp, t, )]

(16) L@ +LO=[W(,Q, P)— W, Xtlp, t, P), P)1Z,.f.

Note that fi(t) can also be written as

filt, @) =(2m)~" j d& Wit, g, OF €)1 —p(t"Ta— X1t §]}
xexp(ifg-§—X{(t, &)]).

By using the last expression for f;, the method of non-stationary phase and
observing ' € C2(G) we conclude that

am [Tat 1A <co.
In Lemma 3.7 we show that
(18) [Tat 1w <co.

Now the result follows by (11-18). Q. E.D.

REMARK 3.6. So far we have used the method of non-stationary phase
as in [11]. At this stage the author of [11] assumes that {&: det Ay (€) =0}
is a proper subset of R"; developes the method of stationary phase (Lemma
A.4 of [11]) ; estimates f3(t, ¢) and thereby [f.(t). In other words in [11],
f2(t) is estimated in the position representation. We shall estimate f£,(f) in
the momentum representation i.e. find f,(t, &), estimate |f,(t, &)| and hence
[/2@). fi(t) of (25) is seen to be fi(t, &) =f.(t, &) exp[iX (¢, t, £)] This slightly
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different approach enables us not to impose any condition on det k!’ (&).
Instead of the method of stationary phase, we employ the techniques of
oscillatory integrals [13].

LEMMA 3.7. (18) holds.

Proor. Let usremark that only for proving this Lemma we introduced
the auxiliary evolution Z; ..
From (15) and (16) we easily see that

19)  folt, @)= 2m)™ Sdéf EHW ¢, g, E)n(t[g—XE g, ¢, &)])
— Wi, Xi(9, ¢, §), &)} explilg-§— X (8, ¢, 8)].

Clearly

(20) 128 =sup{| {falt), 9> |: g€ S, llgl <1}

Now for any ¢ in S we have

@) <A, gy={hlt), 6
= [d2dadz G Wit, 0, 871t La—Xilo, 1, €1
Xexp[—ilg+igt—iX(p, t, &)]
~[asd@ Wi, Xito.t, 8, 7€) expl—iX(p.t, 8]

Now we change the variables in the first summand of RHS of (21). For this
introduce Y(z, 2, &) by

(22) Yit.2,6)= | do Xtlg. t, o2+ (1-p)8)
so that
(23) Xip,t, )—Xlp, t, &) =(1—£)- Y(t, 2 &).

Now in the first summand of RHS of (21) interchange 2 and &, then change
AtoA+£and g to g+ Y(E, A+E, &),
Then we get

(24) Chlt), gy = § de §(8) exp[—iX(p. t, £)1filt, £)

where f3(t) is given by
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(25) Filt, €)= dqd2 expliq- AW (t, -+ Y (t, 2+, §), 248
Xt [+ Y(t, 1+&, &) — Xilo, t, 1+8)DF (1+8)
—~Wit, X, . 8), 1)

Note that by (24) and (20) we get

(26) L@ 1< 1A 1

Thus it suffices to analyse f,;(t). For this we use the notion of oscillatory
integral, §6, Chapter 1 of [13]. Note that by Lemma 3.3 (iv) we have

) sup | DEYt, 148, &)1+ DiX(p, 1, 248 |< K.

By using (27) it is easy to see, for each fixed £>1 and &, that
Wit q+ Y(t, A+E, &), i+8EnE"{a+ Yt 2+E 8 —Xi(p, t, 1+8DF(A+€) and
Wit, Yit, A+, &), 2+Ept [Y(t, 2+E, 8 —Xilp, t, A+8]) F(A+€) are both in
A, of Definition 6.1 of [13], as function of g, 4.

So, noting 7(0) =1 we clearly have
(28) Wit, Xtlp. t, &), 1 €)
—osc qudz EUWE, Yt 2+, &), +E)
XYt 2+€ &) — XLlo, t, 2+ENF(3+8).
Now from (25) and (28) we get

29)  filt:&)=] doose [dadi e f @8- (Wit put V0. 146,8),248)

Xt leg+ Y (¢, 2+&, &) — Xle, ¢, 2+8)1}
=1 }ﬁ‘_, Sodp osc qudl e sum of two terms
i=1

where
first term

=D, {W,(t, pq+ Y (¢, 2+€, §), 2+8)
Xt {oq+ Y(t, A+&, & — Xllp, t, A+86)]) f(2+8)}

second term

=t"'D; {W(t, g+ Y (¢, 2+£, §), 2+8) )
X7t log+ Y (t, 1+§, €) = Xilo, t, A+ 6D (A+8)}
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with W;(t, =, §) =D, W, %, §), n;{x)=D,n(x). In the last step we have used
Theorem 6.7, Chapter 1 of [13].

Now apply Theorem 6.4, Chapter 1 of [13] to (29) using (27) to get
(30) sup Ifelt, I <K ()t % for t>1.

Note that for any v=1,2, - --
(31) &= ;,zjo <2kr> G+ 25)F 2 (=1~

Use the above relation (31) in (29) apply Theorems 6.7 ; and 6.4 of Chapter
1 of [13] to see that, remembering (27),

(32) sup |f3lt, &) 167+ - +E K, (f)<t)™ % for t>1.

From (30} and (32) we get
(33) [AOI<SKS)E % for t>1.
The result now easily follows from (26) and (33). Q.E.D.

Now we are ready to prove Theorem 2.1. We prove it for the positive
sign only. For the other sign it is similar.

Proor oF THEOREM 2.1 (i). By Lemma 3.4, 3.5 and the denseness of
C2(G) in LG the result follows.

Proor oF THEOREM 2.1 (ii). Easily follows from (i).

PRrROOF oF THEOREM 2.1 (iii). Follows from (i) and Lemma 3.1 (ii).

PROOF OF THEOREM 2.1 (iv). By Theorem 1 of [14] we have 9(,.(H,) =
S-'L*GF). Now the result follows by (iii). Q. E. D.
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Note added in proof

REMARK 1. After submitting the article we have learned about [15].

Theorem 30.4.1 of [15] is similar to our Theorem 2.1. The techniques of
[15] are similar to ours.

REMARK 2. Taylor’s expansion with an estimate for the remainder

is obtained for
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explity/ (1+p) W (Q) exp[—itv (1+p7)1f
in [16] where W is a smooth long range potential and f a “nice” vector.
In [16] the proof is purely operator theoretic. By improving the method
of [16] we can give a purely operator theoretic proof (without using the

notion of oscillatory integrals) for our main theorem 2.1 (i). The details
will appear in an addendum.
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