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Existence of singular solutions and null solutions
for linear partial differential operators

By Sunao OucHI

(Communicated by H. Komatsu)

Let P(2,0) be a linear partial differential operator with coeflicients
holomorphice in U, UcC"", and K={®(z)=0} be a nonsingular hypersur-
face in U. In the present paper we study the equation

(0.1) Pz, 0)u(z)=f(2),

where f{z) is holomorphic on U—K.

One of our two main results in this paper is that there is a solution
#(z) to (0.1) with singularity on K and we get a bound of the growth
order of u(z) near K. We obtain it, by using the localization P, x, and
the characteristic indices oy, 0, introduced in [14], [15] (Theorems 1.4 and
1.5).

The other one is the existence of null solutions for P(x, 8)u(x)=0 in
the real domain (Theorem 1.8), which is an application of the first result.
Most parts of the contents of this paper have been announced in [14].

§1. Notations and summary.

Let C**! be the (n+1)-dimensional complex space; 2=1(2,, 24, **+, 2.) =
(2o, 21, 2”) ={2,, 2’) denotes its point while &=(&, &, -+, &) =&, &) is the
variable dual to &. We shall use the notation 8=(d, 0y, - -, 8,) =0, 3'),
9;=0/0.. The multi-index a=(a, ), -+ -, @)= (@, &) is an (n-+1)-tuple of
nonnegative integers, |a|=a,ta;+ - +a, and 0= (0,)%(0,)%- - - (3,)*=
(6,)%(3")*. TFor a real number a, [¢] means its integral part. N is the
set of natural numbers and Z is the set of integers. For a linear partial
differential operator A(z,d), A(z, &) denotes its total symbol.

Let P(z,8) be a linear partial differential operator of order m whose
coefficients are holomorphic in an open set U of C**' containing z=0.
Let K={@(2)=0} be a nonsingular complex hypersurface through z=0,
that is, @(0)=0, d@(0)=0. First let us define s,,06,, and P, intro-



458 Sunao OucHI

duced in [14],[15]. For simplicity, we may choose the coordinate so that
@(z) =2, hence K={z,=0}. Put

P(z,0)=
(1.1) k

Pk(z, a) =

P]‘(z, 6),

M= L03

A (2, ) (00)"7,

i

Il
=3

where Pi(z, &) (4..(z, &)) is homogeneous in & (resp. &) with degree k
(resp. l). We develop 4,,(2, &) with respect to 2, at 2,=0:

(1.2) Az, &) = g A2, )2
Put

d,=min{l+j; A, ;(#, &) =0},
(L3) Ji=min{j; l+j=d,, A;,;(z/, &) =0},
Lkzdk_Jk, J—'——-Jm, L:Lm.

If Pz, &) =0,d,=J,=—L,=+co. Now we give

DEFINITION 1.1. We call A, (2,9) the localization on K of Pz, 0),
which is denoted by Pk

We put
(1.4) oy=max{l, (dn—di)/(m—k); 0<k<m—1]}
and, moreover, if o,=1,

(1.5) { o =max{l, (J.—J,)/(m—k); ke B},
B={k; d—d,=m—Fk, kxm}.

DEFINITION 1.2. We call o, the first characteristic index of K, and
gy, the (1.1)-characteristic index of K for Plz,?d).

REMARK 1.3. Other characteristic indices and localizations have been
defined in [13], [14],[15]. 0, is called the first subcharacteristic index in
[14].

We prepare some function spaces:
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@(U — K)={the space of all holomorphic functions on the univer-
sal covering space of U—K},
O U—K)={flz)c O(U~K); for any a, B there are constants 4, ;
) and ¢ such that for 2 € U—K with a<argz,<8,
_|f@I <A explolz ),
Own(U—K)={fz) e O(U—K); for any @, there are constants
A, s and ¢ such that for z€ U— K with a<larg z,<8,
| /() |<A.,p exp(c|log 20{°)}.

Now let us consider
(L7) P(z, 0)u(z)=f(z),
where f(z) € O(U—K). Let us assume
(1.8) Proc,x0(0, &)= An 1,40, &) =0.
We may assume by coordinate transformation,
(1.8) An,1,0(0, &) e =10, 0 20.
Thus we deal with the problem

(1.9) { P(z, 0)u(z)=f12),
(0.)"u(20, 0, 2”) =42y, 2”) for 0<h<L—1,

where f(z) € O(U—~K), gulzs, 2”) € O((U—K) N {2,=0}).
We have:

THEOREM 1.4. Under condition (1.8), there is a solution u(z)e O(Q—
K) of (1.9), where 2 is a neighbourhood of z=0 which is independent of
f(z) and ¢z, 0,2").

Moreover, let ¢,(z,0,2")=0 for 0<h<L—1. Then
(8) if o:>1 and f(z) €O, (U—K), ulz) is actually in O, _,(2—K),
(b) if oy=1 and f(z)e@m_%l)(U—K), u(2) is actually in @(0,61,1)(!)—[{).

Thus we have
THEOREM 1.5. If P x.o?, &) is noncharacteristic for some & at 2’=0

((1.8) holds), then there is a solution u(z) ¢ @(.Q—K) to (1.7}, and (a) and
(b) wn Theorem 1.4 hold.
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REMARK 1.6. We have defined Py g0, 05, 61,; int [15] by another method
without using special coordinates. These definitions are invariant under
coordinate transformations. The condition (1.8) is equivalent to that the
principal symbol of P, does not identically vanish as a function in the
cotangent-space at z=0.

REMARK 1.7. Equations (1.7) and (1.9) were investigated by many
authors. The existence of u(z) was studied in [2],[3], [4], [5], [20] for
operators with constant multiple characteristics. For less restrictive
operators, we refer to [7], [17],[18],[19]. But the condition (1.8) is much
weaker than those assumed in above-mentioned papers. For example,
Theorem 1.4 is applicable to operators with the principal symbol vanishing
on K, such as

(1.10) Pz, 0)=(2,)%(8,)*(0,)%-+a(2)(8,)°+lower order terms.

The behaviour near K of homogeneous solutions with singularity on
K was investigated in [11], [12].

We also show the existence of null solutions in real domains. ILet x
denote the point in R*. Let Kp={x e UzCR""; @¢(x)=0} be a nonsingular
real analytic hypersurface in B*** which is characteristic for P(x, d), where
@(x) is a real valued analytic function in an open set U containing =0,
with @(0)=0 and d@(0)>0. So @(x) is holomorphically extended in a
complex neighbourhood of the origin. We can assume Kp={x,=0} by
means of a coordinate transformation. We have:

THEOREM 1.8. Assume that (1.8) holds and ord. A, . ,(*/,9)=L>1.
Then there is a function u(x), which is C* in a neighbourhood w of =0
and analytic except on Ky, such that

Pz, 0)u(x) =0
(1.11) supp. u(x) C{x € w; 2,>0},
supp. u(x) > {x=0}.

REMARK 1.9. The existence of null solutions was shown for operators
with simple characteristics in [6], [9], [10]. Null solutions were constructed
for operators with constant multiple characteristics in [1],[8]. The pre-

vious results were generalized in [16],[19]. But Theorem 1.8 covers all
the above-mentioned results.

Although we shall show Theorems 14 and 1.8 in the following
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sections, let us here sketch the outline of proofs. First we note that

1 flet, ')

(1.12) flz)= 271 Sr ({—log 2,) “

and

(1.13) (C—logz) "= 1. S exp(—2L)(z0)(log 2)d2.
211 Jao

Here I' is a path enclosing once {=log 2, and C(¢) is a path which starts
from oo exp(i0) and goes around 2=0 once and ends at co exp(i(f+27)).
0 depends on arg({—log z,). So

(L14)  fla)=(2 m’)—zgrdcj (202165, 2') expl(— AC) log AdA.

ci

Hence in order to solve (1.9) we proceed to the construction of (2, Z,{)
satisfying formally

P(z,0)v(z, 2, {)=(20)"""m""f(e", '),

(1.15)
{ (3,)"0(2,, 0, 27, 2, ) =(20) pu(e’, 27)  for 0<h<L-—1,

where constant d,—m appears so that we may choose S(0)=0 in (1.16)
below. This is not essential, for we may replace f(z) by ()" *=f(2).
In §2 we construet v(z, 4, () in the form

I3
2

)
/Un,x(z,r 2! C)(ZO)Z-*-S’

v&(z/r 2’ C)’

¢

N/

=3

™

n=

!\ vn,s(z,’ 2’ C):

8

j oo A= 3
(1.16)

XS]

5N

(m,5)

where v,(2/, 2,£) is a meromorphic function in 2 and 4(n,s) is a finite
set determined by = and s. In §3 we investigate the finite set 4(n,s).
The set 4(n,s) gives us information of the distribution and multiplicity
of poles of w,(#,2,(). It is used for estimation. In §4 we estimate
v5(2', 4, £).

We construct a solution u(z) of (1.9) by integrating v(z, 2, {) in 1 and
{. Put

117 oHe 0= ;1—.5 exp(— 1) (z)**s(2/, 2, €) log 2d,
271 Joew
(118) /U:Lk,s(z’ C) - Z ’l);k(z, C>’

8€4(n,s)
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S(n)

(1.19) Ve O=3 % vz

=0 s=

Then we have

(1.20) wlz) = 27%& Viz, 0)dc.

In §5 we integrate v,(2/, 2, () in 2, get v¥(z,{) and estimate it. In
§6 we show convergence of V(z,{) in (1.19). In §7 we perform inte-
gration in 2, show that u{z) defined by (1.20) is a solution of (1.9) and
complete the proofs of Theorems 1.4 and 1.8.

Finally, we note that different constants appearing in the following
will be denoted by the same symbols, A, B,C, -.-.

§2. Construction of a formal solution.
In §2 we construet v(z, 2, {) satisfying formally

g [ PEdIvind D=t )

(0,) (20, 0, 2”7, 2, ) =(2,)%ps(e%, 2”) for 0<h<L—1
(see (1.15)). A solution u(z) of (1.9) will be obtained after we integrate
v(z, 4, () in 2 and ¢, multiplying functions in 2 and {. Let us recall (1.8,

namely, that Py, x, is noncharacteristic with respect to 9, at 2/=0.
Let us rewrite P(z,9) in another form. Put

(2.2) { MO)={(k,1,5); du—(1+7) —m+k=0, Ay, ;(Z, &) =0, kxm},
Mr)={k, L5}, dn—({1+7)—m+k=—r, A, (2, &)=x0}, (r0),

A=A(z,0)= ¥ A2, 0)(2)(0)"",
(2.3) 4, 4
B,=B,(2,0)= 3 = Apui(#,0')(2)(0.)*,
(1,5 My
and
(2.4) B=B(z,3)=A+ ¥ B..

r<0

Then we have

(2.5) P=P(z,5)=B+ 20 B..
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So we construct v(z, 4, ()= i v.(2, 2, () in the following way:
n=0

(26}, [ Bl e )
(8ol o= (20) (5, 27)  for 0<h<L—1,

(2.6) 0 { B4 B, + - - + B+ - - + Bywo=0,
(al)hvn+1|z1=0=0 for 0<h<L-1.

463

If such v,(z,2,¢) (n=0,1, ---) are found, then v(z, 4, {)= i va(2, 4, §) for-

mally satisfies (2.1).
Now we try to construct v.(z, 4, {) in the form

S{n)

(2.7) va(2, 2, 0)= T (2)""0u,(#, 4, C).

g=—co

Let us derive equations to be satisfied by v,.(2/, 2, {) (n>0, —co <s<S(n)).

First we claim

LEMMA 2.1. The following relations hold true:

(2.8) B, ((z0) w(2)) = (20)* "=~ B,(2)w(2'),
(2.9) ' A((z)w(#))=(zo) " "F(m —L; ) A(Qw(?'),
where
F(p;2)=22-1)(2=2)---(A—p+1),  F(0;4)=1,
2.10) B)= > Flk—li2 A, ),
AQ)= 2 F(L—1l;2—(m—L))An.Z,?).

PrOOF. We have

(20) Ar,1,5(2, 0)(00) " ((20) w (&) = F (b —1; A)(20)* ™" Ap 52, )

Hence we get (2.8) and (2.9). [

w(z').

Substituting v, to (2.6) and using Lemma 2.1, we see that v,, should

satisfy the following:
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Fm—L; 2+8)A(A+8) Vi1, + 2 B (A+8—1)Vn11,0-r

(211) + rz::O Br('z'*'s_/r)/vn—r,s—r=51¢+1,063,0f<e§’ Z,),

(al)hvn+l,a(0; z”, '27 C):5n+1,063,0¢h(egy z”)
for 0<h<L-—1, where 0,; is Kronecker’s delta.

Thus we have equations for v,.(¢, 4, {).

It follows from (1.8)’ that v, (2, 4, {) are successively determined from
(2.11) in a neighbourhood 2’ of 2’=0 which is independent of = and s,
and S(n)=max(0, n—1). Obviously v,.(#, 2,{) is a meromorphic function
in A

Let us represent v, , concretely. We introduce some notations. Let
G(2)g denote the solution w(z/, 4, {) to the equation

{ AQw(Z, 2, ) =gz, 2,0),

2.12
(2.12) (@)'w(0, 2”7, 2,()=0 for 0<h<L—L.

For linear operators C; (1<:<p), f[ C; means C,C;---C,. Put
M¥(s, ) ={3=(s, 1 52, (s, -+ o 1 52
(2.18) S (—dutlitjitm—k)=s, Ay, ;,(&, &)50  for 1gigp},
=1
M*(s)= U M*(s, p).

0 is an element in (NU{OV?*. (k, L, 7:) € 0 means that the triple (%, 1, 7,)
appears in 0 as d={((ky, l5, 51), - - -, (Ki, 1, Ji), + - -, (B, Ly 30))-
We have from (2.11), if (n+1,s)>(0,0),

@14)  up.=—F(m—L; 2+5)7G(a+s) { S B+5— 11001
<
+ i_: Br(2+s'—r)vn—r.s—r }:
which yields the following:

PROPOSITION 2.2. v,. has a representation in the form

(2.15) Vao= 2 (=1)"0, (n,8)%(0,0),

S€ 4(n,s)

where
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7

H F(k,'—li; 2+S—(7‘1+7‘2+ M +/ri))

-
=

v ="
(2.16)
w,= 11 Crp, i AFs—(Totrit - 73] )Wo

Cin i N=G)As (2, ), wey=F(m—L; 2)vo,,

w& (z,’ 2’ C)’

.
<

F(m—L;X'{_S_(Iro‘{"T]‘{— e +'ri))

o,

ro=0, 1;= —dn+l+7i+m—k; for i>1 and 4(n,s) is a finite subset of
M*(s).

Proor. Let n=0. Then we have from (2.10) and (2.14)

Vo,=—F(m—L;2+s)7 2

<0 {(kl,ll,jl)eM(rl)

=F(m—L: 48" 5 [{ D Bl z+s—o~1)ck1,,1,j1(z+s)}
1041031 "1

<0

F(l{?l—l1 5 2-{-8—7‘1) Ckyll:jl('z_{_s)}vovs_rl

XF(m—L; A+s—r)""

X{ > ( Z F(lﬂz—lz; 2+8—’l"1““’l"2)Ckz,zz,jz(l—{-S—T;))’UD’S_H_Q}]
r9<0 \(kg,lg,d9) € Mirg)
= ¥ Fim—L; 14+s)" F(m—L; 2+s—n)~

T1s7T2

x{ S Fll—ly; b s— 1) Flla—lo; A+s—1—72)
(kq1slq,91) € M(7y)

Uigylg.ig) € M(73)

X Cklyllvjl(x_*_ S>Ck2,12,j2(2+ S ——‘/rl)fvo,s—rl—rz} .

By repeating this argument, we have (2.15) and (2.16) for n=0. Assume
that v,, is represented as in (2.15) and (2.16), if n< N or if n=N-+1
and s>S4-1. Then it follows from (2.14) that vy, s is also represented
in the form (2.15) and (2.16). [

The set 4(m,s) is investigated in §3. We note that w,(2/, 4, {) is the
solution to the equations

2.17) { AQwi(2, 2, Q) =fle", 2),
(0.)* w0, 2", 2, O)=F(m—L; gy(et, 2”) for 0<h<L—1.

Now let us derive another representation of v, from Proposition 2.2
to use in later sections. Put for d€ 4(n,s)
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B(+Y ):{ (kn li,ji)ea and ki—li>m_L}y
B(0, 5):{ (k L 75 )65 k —l;<m—L and r,=0},
Define
Fy )= N Flki—li—m+L;2—m+L—(r+---+r)),
i€B(+,0)
(2.19) Fz(z)_—— H F(m—'L—k,—l‘l,;l_ki'*“li_(’rl‘{" ---}—’I‘,—)),
{€B(%,8)
Fg(z): X B]E—013> F(m—L~k,+l,; Z—IC,—{‘Z,—(TI’*' A +1",~)),
i€ N
(2.20) Hy(A)= [L F(m—L; 2= (rok 1ot - +7)
and

221)  wi(Z, 20 ={ ﬁF(k;—li; Abs— (I ot - - +73) }wé(z’, 20

We note that if o,=1, then ;>0 and B(—, 6§)=B(0, 6) U B(x, d).
Thus we have:

PROPOSITION 2.3. ,(?, 2, {) is represented in the form

(2.22) (2, 4, O)=wi (2, 4, Q) Hy(2+s),

and, moreover, if o,=1,

/ — Fiy(2-+s) /
(2.238) (7, 2,0)= Fim—L 218 Fod s\ Faats) ws(7, 2, {).

§3. The Set 4(n,s).

In this section we investigate the set 4(n,s) appearing in the sum-
mation (2.15) in Proposition 2.2. Let # A denote the cardinal number of
a set A. Now recall the definition of the set M*(s, p) ((2.13)). We put

(8.1) 4(n, s, p)=4(n, s) M*(s, p),
and for d¢ M*(s)
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A(+,0)={i; (k;, l;, 5} €9 and 7,>0},
(3.2) A0, 0)={i;(k; l;, ;) €0 and r,=0},
A('—, g :{’L, (ki’ L Jw) €0 and /ri<0},

where r,=—dn+l;+j:+m—k; (1>1) and 7,=0. Let us define

(3'3) A= Z Ty A= — Z Tis
i€ A(+,0) i€ A(~,8)
(3.4) b=% A(+,3), c=%A(0,0),

(3.5) w= i)o",-, p¥= max g, py= min g, £= max |gl
i=0

0<i<p 0<i<p 0<i<p

First we prepare the following:
LEMMA 3.1 For é€ d(n,s, ») ({n,s)x(0,0)),
(3.6) a,—a_=Ss,
a,+b+c=n.

ProoF. The equality (3.6) is obvious. Let us show (3.7) by induction
on n and s. We note that n>s and recall (2.14). If »=0, then s<0
and 7,<0. So we have (8.7) for n=0. Assume that (3.7) is valid for
0<n<N and for n=N+1 and s>S+1. It follows from (2.14) that (3.7)
is also valid for n=N-+1 and s=S. []

We also have:

PROPOSITION 3.2. For 6€ 4(n,s,p), the following holds;
(i) o=pe>—a_=—(n—s)+b+c, and if s<0, then p,<s.
(ii) m—(b+e)=a,>p*>0, and if s>0, then p*>s.
(iii) r<max(a,,a.)< max(n,n—s), 0<p—p<2n—s and O<p*—u,<
2n—s.
(iv) p<n—s, b+c< min(n, n—s) and b< min(n/2, n—s).
(v) There is a constant A such that

JiFget - +.7p£A(’n+]3D

ProoF. The first equality in (i) follows from (3.5), (3.6) and (3.7).
In view of the fact that g,=a,—a_=s, we have g, <sif s<0. We also
get (ii) similarly. Since n>a, and n—s>a_, we have (iii).

Let us show (iv) and (v). We have p=#A(+, 8)+#A4(0, 0) +#A(—, J)
=b+c+iA(—, 0 =n—a,+$A(—, 0)<n—a,+a_=n—s. Since b+c=n—a,
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=n—s—a_, b+e< min(n, n—s) and b<n—s. We also have 2b<a +b+
¢=n. Hence b<n/2. Finally, j,+75,+ - +j,=s+ i(dm—li—m—!—ki)gs—i—
Cp<s+Cin—s)<A(n+is). [

ProroSITION 3.8. There are constants A and B independent of n
and s such that t4(n,s)<AB""!,

Proor. In view of (iv) in Proposition 3.2, we have 4(n, s) :Usd(n, s, D).
p=1

We note that s=r,+r+---+7, rn>—(0,—1)(m—k;) and for any + the
set {(k,1,7); —dn+{+5)+m—Fk=r, A, ;(#, &)=0} is finite and its cardinal
number is bounded by a constant independent of . So #4{(n,s, p)<<AC".
Hence £4(n, s)<AB**. [

PROPOSITION 3.4. Let o= 11 (ks i, ji) € 4(n, s, p). If o>1, then
§=1

(3.8) > (m—k)=a_f(s,—1)+e.
If 6,=1, then
(3.9) min—s)>d= Y, (m—k;)> max{0, n/2—s}.

1€ A(0,8)

PROOF. Let o,>1. We have a_g(al—l){ 5 (m—k,.)}. If i € A(0, ),

1€ A(—,08)
then m>k;. Hence 3 (m—k;)> S (m—k)+ T (m—k)>a_f(c—1)+e.
i=1 i€ A(—,0) 1€ A(0,8)
Let o,=1. We have m($A(0,0))> 25 (m—Fk;)>4A4(0,d). Since
i€ A(0,8)
b+ec=n—s and b<n/2, we have n/2—s<c=4A(0,0)<n—s. Hence we
obtain (3.9). [

Next we study the function H,(y), which determines the distribution
of poles of v,(2, 2, () (see (2.20) and (2.22)). Put

(3.10) ol = 11 (=) = T = 0
m—L—

where i7, if isj. We have Hy(w)= 1T hy(p—3).

Put

(3.11) (I1=ﬁ'{ﬁ'i; a;=1}, qzzﬁ'{ﬂi; a; >2}

and



Existence of singular solutions 469

(3.12) N(@@)=p+1—(0:+2q).
Then we have:
PROPOSITION 3.5. The following holds;

(3.13) N(8)<2{(n—8)+ e} — (2b+0),

(3.14) N(3)<2{n—(b+e)—p*}+e.

Proposition 3.5 will be used in §5 in order to estimate the function
v¥(z, {) defined by (1.17), which is given in terms of v,(#, 4, {).

To show Proposition 8.5, we introduce another notion: doubly count-
ing nuwmber of finite sequences. Let A be a finite sequence {a;} (0<{i<q).
Put

Y
=
_Q
+
Q

flo)= 11 w—a)= 1T @w—a) T @—a)s axa, (%), a2

=0 i=1 i=¢’+1

Then we define N (A)=¢+2¢”, which we call the doubly counting
number of A.

LEMMA 38.6. Let a,=0, a;=c+co+---+e; for 1<i<q, where c,;€Z
and A={a;} (0<i<q). Then

(3.15) NyA) = —2a4+q—2c4—c+1,
(3.16) NA)>2a%+q—2c¢*—c+1,
where
a¥= &1?3 sy Cg= 01212} Wy Cy= — cjzgoc,-, c*= cjz>ocj and c¢=4#{i;c;=0}.

ProoF. Let us show (3.15). First we assume that ¢;%0 for 1<i<q.
If all ¢;=1 or —1, then N {A)>—2a,+a,+1. If €= (or —mny), M EN,
put ai’j:ai_l—}—j (resp. a,_—7) for 1<j<n;—1 and A={ay, @11, @1, - - -, i

-+, a,. Then NyA)>~2a,+a,+1. Since il (n;—1)=c*+cy—q, we have

Ny(A)+c*+ce—qg>No(A)>—2a,+0a,+1. Hence Ny(A)=—2ax+q—2cx
+1. If ¢x0, we replace ¢ by g—c. Thus N {A)>—2ax+q—2ce—c+1.
We can also get (3.16) in a similar way. []

PROOF OF PROPOSITION 3.5. Put A(6)={x} (0<i<p). Let us show
(3.13). By Lemma 3.6, we have -
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(8.17) Ny A(0))=—2px+p—2a_—c+1.

Therefore N(0)=p+1—N,(A(0))<2(a, —s+py)+c=2{(n—s8)+pe}—(2b+c).
In the same way we have (3.14) from (3.16). []

What we have shown in this section will be used in the following
sections.

§4. Estimates.

Here in §4 we give estimates of w;(#/,2,{). The operator that we
consider contain a parameter A. So we need estimates with 1. We
employ the majorants used in Hamada [4], Hamada, Leray and Wagschal
[6], Komatsu {8] and Wagschal [20]. First we summarize the properties
of those majorants without proof. For details we refer to the above
papers, in particular, [8]. The same symbols A4, B, C, - - -ete. denote vari-
ous constants indifferently like in other sections.

From now on, we always assume that 0<r<R/'<R. Unlike other
sections, in this section z means z2={(2,, 2, -+ -, 2,) €C™ and 2'=(2, 2, - - -, 2,).
For formal power series a(z) and b(z), a(z)<b(z) means that each Taylor
coefficient of b(z) bounds the absolute value of the corresponding coef-
ficient of a(z).

PropPOSITION 4.1 (Wagschal). Let O(t) be a formal power series in
one variable t such that O(t)>0 and

(4.1) (R —t)8(t) >0.

Then for derivatives, O (t)=(d[dt)O(t) for 7=0,1, ---, we have
(4.2) B9 (t) K R'OY* ) (¢t)

and

(4.3) (R—28)709(t) K (R—R)7'O9(¢).

In the sequel we put t=pz,+2,+---+2, with a constant p>1 to be
defermined later. We assume that ©(¢) satisfies the conditions in Prop-
osition 4.1 and that all coefficients are holomorphic on {z¢ C*;|z:|<R}.

ProOPOSITION 4.2 (Wagschal). Let

(4.4) Alz,0)= % af2)o°

laj<m,ay<my
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be a linear partial differential operator. Then there is a constant A in-
dependent of O(t) and p>1 such that if

(4.5) %(2)<O9(t),

then

(4.6) A(z, 0)u(z) K Ap™OY*™(¢).
Put

6@ (t)=Fk!/(r—t)*" for k>0,
(4.7) {

0<k>(k):S‘a<k+l>(s)ds for k<O0.

o

We note that
(4.8) (d/dt)'0™(t)=6""(t)

and that if £>0, then #%(f) satisfies the conditions in Proposition 4.1.
But if k<0, 0% (t) does not satisfy them. Let us employ, according to

41

: Y AT
(4.9) B.(t) -——(-th)—ﬁ (),

which satisfies the conditions in Proposition 4.1. We have:
ProposiTION 4.3. (a) If k<l, then

(4.10) OGP KOFTF(L).

(b) If k=0, then |

(4.11) 0(j+k)(t)<<@§,j)(t)<< @%0(:41:)“).
(e) If k<0 and R'>2r, then

k
(4'12) 0(j+k)<t) & @,ﬁ”(t) & (_R%;Tﬁ(i-t-k)@).

For the proof of Propositions 4.1-4.3 we refer to [8]. Now we in-
vestigate estimates of functions with a parameter A.

PROPOSITION 4.4. Let L(z,0) be a linear partial differential operator
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of order m and assume that the order with respect to 0, is less than or
equal to m,.. Suppose that u(z, 1)L exp(c|djz)0(t). Then there is a con-
stant A such that

(4.18) Lz, 0)u(z, 1)< Ap™ exp(c[,llz,){pé (el 2])*O™P(¢) }
Proor. In view of Proposition 4.1, we have
a,(2)o"u(z, 1)< Cop eXp(c[Zlzl){pﬂz:)lal(c[,?])”@“’)(t)}.
So we have

Liz, 0)u (2, ) <Co™ expld ) 3 { )

fal=0 \p+q

(2176wt}

lai

& Ap™ exp(dle) { ) (c[Zl)”@"""’)(t)}. =

=0

Let L(2;2,0) be an operator with a parameter 2 of the form

8

(4.14) L{2;2,0)= 3, ¥Ln_,(z9),

.
Il

where ord.L,._,(z, 8)<m—7, La(z, ) =(3,)"+ f;lAj(z, @)(0,)" and ord.A,(z, )
<j. We have:

PROPOSITION 4.5. There are constants C, y and p independent of O(t)
such that if

(4.15) { Li2;2,0)u(z, 2) < exp(r|4j2,)0™(t),
(@) 'u(z, D)le0=0 for 0<h<m—1,
then
(4.16) u(z, )< C exp(r|Aiz,)0(t).
Proor. Let L%_(z,8) and Af(z, @) be majorant differential operators
of L._;(#,0) and A,z 0') respectively, that is, each coefficient of
L%_2,0) (A¥(2,@)) is a majorant of the corresponding coefficient of

L.,_;z,0) (resp. A;(z,0)).
Let us consider a differential inequality

4.17) @) Ulz, > i |AFLE (2, 0)Ulz, 2)

+ é A;k(z, 6’)(81)’"‘1'U(z, A+ exp(rlzlzl)@(m)(t).
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It is our purpose to find out a solution Ulz, 1) =Cexp(r|ijz)@(t) to (4.17)

for suitable C,y and p. If Ulz, 2) exists, then u(z, 1) K Ulz, 4).
First we have, from Proposition 4.4,

L2(z,0) exp(212)6(t) < A explyiAlao™{ S (120°6=(1) ).
Hence
(418) 3 IA'LE- (2. 9){explri Az (1)
<A explriil) T (5 1o )laren— ().
In the same way, we have
(4.19) % Atla, )00 explr1212)0(0)

<A explrl2i) T, (T 07 )riah e

and
420) )| explrA2)6) | = exprizk){ T (' )omirizlo= ),
So we have only to show the existence of C,y and p such that
(4.21) C (@@W*P) (t)r”p'”"“>>CA< z:;1 rp‘jp’”“j>@(’”"’)(t)

+ CA( o O 1) 40, 6™11).

Let o>1 and 70>1. Then 3 (7p)~<(ro—1)~* and 3 p~i<(o—1) In
i=1 i=1
order to make (4.21) hold, we choose C,y and ¢ so that

w22) (7)o" =CA 0 (ro—1)+CA 0 l(p—1)+ 3,

First we take p so that (?)p"‘"’/2>Ap"‘"/ (0—1) and fix p. Next we take

C and 7y so that C<7g>p”‘""/2>CA o"l(ro—1)+6,, Thus (4.21) is valid for
these C, 7 and p. This completes the proof. []

In the same way we have
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COROLLARY 4.6. ' There are constants C,y and p independent of O(t)
and £ (E>0) such that if |p|<E and

(4.23) { L{2+7; 2, 0)u(z, )< exp(r(2]+8)2)0™ (),
. 0)"u(z, A.ee=0 for 0<h<m—1,

then

. u(e, ) < C exp(y(21+7)2,)0(2).

We apply Propositions 4.4, 4.5 and Corollary 4.6 to w; in the rep-
resentation of v,, (see (2.15)-(2.16)). Let us recall that z denotes the
point (2, 2')=1(2y, %5 -+, 2,) €EC" in this section. Let us assume that in
(2.6), and (2.17)

(4.25) { Jlet, 2) <m(Q)O(2),

ou(e’, 2) Km(L)Bo(t)].,co for 0L -1

LEMMA 47. Under the condition (4.25), the solution w, to (2.17)
satisfies

(4.26) wo(2, 4, §) K Am() (1+]2)" " exp(r|212)84(?),

where y is a constant with the property stated in Proposition 4.5 for
L(2; 2,0)=A().

PROOF. By putting @e=wo—Fm—L: 2) { E: (zmo,,/hz},

we have

A Wy=F(e*, 2) + F(m—L; 2) fle, 2),

(4.27) { h
(03)"ws].,.o=0 for 0<h<L—1.

Hence from Proposition 4.5, @, Am(C)(1+]2)" % exp(y|2|2)0,(t). So we
have (4.26). [

For w;(z, 4, {) in (2.16), we have:
ProrosiTION 4.8. Assume (4.25). Then the following estimate holds:
(4.28) wy(2, 4, ) K Am (L) B*H* (L +| )T .
X exp(ri+sl+)z) | X (2+sl+e0% ),
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where 1(0)=l,+1,+---+1, and A, B,y and p are independent of m,s, 4,0
and k= max |ry+ri+ .- +7;| (see (8.5)).

0<i<p

Proor. First we note |A+s—(r+7i+ - +7i)|<L[A+s|+£. Put

(4.29) wa,k_—‘{ .13‘ Cki,li,ji(x'i"s—' (rotrit--- 'f"ri—l))}'wo-
Then we want to show

(4.30) Wy 1 L AMQ)CP Bkt it Hip(1 4 |2[)™
Ul gttt

xexpirllitslenz) & (i+slrareli ),

- —Lp+1—Fk)

Let k=p in (4.29). By Lemmas 4.1, 4.7 and Proposition 4.4 we have

A 15200 Am Q) Bin(14]2])"* exp<r<u+s1+x>zx>{ Z <u+s!+x>*@if""”(t>}
<A@ B0 explr(+al+e)z)| 3 (245076 0]

Hence we have, by Corollary 4.6,
Ckp,zp.jp(z"'s_ (PoF1i -+ o 7o) Wy
I
<AmQ Bir(L+2)"" exply(a-+sl-+) ) 2 (sl +6)76077 ")

Thus we have (4.30) for k=p. If (4.29) is valid for k=K-+1, then we
can also show that (4.30) is valid for k=K. Therefore (4.30) holds for
k=1. In view of (v) in Proposition 3.2 this implies that (4.28) holds. []

PROPOSITION 4.9. Assume (4.25). Then, for a small neighbourhood
& of 2=0 we have

(4.31) |ws (2, 2, Ol <Am(Q) B**"* (1+]2)" " exp(r|2+sfjz])

¢

Z: (12+sl+x)’<l(a)—r)z}.

r=

X (@L))™

Proor. It follows from Proposition 4.8 that for 0<t<7/2, the ine-
qualities

0" ) < Armrr gumrebi () < A7(I(5) — 7)1/ (pL)!

—pL
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hold. In view of (iii) in Proposition 3.2, we have (4.31) from (4.28). []
For w¥(z, 2,{) defined by (2.21), we have

PROPOSITION 4.10. Assume (4.25). Then, for a small neighbourhood
Q" of z=0, it holds that

(4.32)  |w¥(z, 4, Q)|I<Am(C) B** 1 14+{2)™ % exp(y|A+sllz: ) (pL)!) ™
X { ’if,: (28] k)@= (1(5) —7')!},

where k(d)=

@

k..

.
=1

§5. Integration I.

We proceed to constructing a solution u(2) (or u(z)) in Theorem 1.4
(resp. Theorem 1.8). As stated in §1, we will construct it by integrating
v(z,4,) in 2 and ¢ (see (1.17)-(1.20)). Firstly in this section we perform
integration in 1:

(5.1) vz, =1 S (%0)*** exp(—2L)vs(2’, 2, C) log 2d2
271 Jo-s
:_____eXp(s:C) S exp(— ({— log z)) ) wi (2, p—s, )
27t Je

Xlog(p—s)[Hy(p) dpg  (p=2+s3),

{see (1.17)), where the path C will be determined later and C-—s means
its translation by s. The purpose of this section is to study the behaviour
of v#(z,{) as a funetion of t={— logz. In particular we shall obtain
estimates of v¥(z, {) as t={—log z,—>oc0 in some sector.

We will study integration of v¥{z, {) with respect to ¢ in §7.

Now we define the paths C(4), C(+) and C(—): Put

Ci(0)={p=|plexp(if) ; R<|p|< + oo},
(5.2) Co(0) ={#=R explip); 6<p<0+27},
Co(0) ={u=|plexp(i(0+27)); R<|p|<+ oo},
and C(0)=C,(0) UC.(0) UC;(6), C{0) is a path which starts at coexp(if) on

C.(0), goes around the origin on C,(0) and ends at coexp(i(§+27)). R
will be suitably chosen (see Figure 5.1). Put
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{ Ci—)={p=8—1; —o<EL1Y,

(5.3) Co(—)={p=147i; —1<c<L1},
Co(—)={p=E+1; —c0<EL]],
and
Ci+)={p=E+1; —1<E< + 0},
(5.4) { Col+)={pg=—1+7i; —1<c<L1},
Co(+)={p=E—1; —1<E< + oo}

C(~)=Ci(=) UCu—) UCs(—) (C(+)=Ci(+) UCs(+) UCs(+)) is a path which
starts at —oo on C,(—) (resp. +oo on Cj(+)), passes along C.,(—) (resp.
along Cy(+)) and ends at —oo on Cy(—) (resp. +oo on Cy(+)) (see Figure
5.2).

0 B

Figure 5.1

Figure 5.2
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Putting C=C{f), R>r= max|y]| (see (3.5)) in (5.1) and (5.2) and

0<i<p
t={~— log z,, we have

(65) v c>=%p<*ﬁ§ exp(—tu)wi () log(u—s)/H, () dz,
Tl c(8)

where
(5.6) wi(p)=wk @, p—s, ).

v¥(z,{) will be also denoted by v#{t).
Now in order to study v¥(z,{) (=v¥({)), we investigate a function

M ~1
67 ot=| exp(—tmu( I (—a)) loglu—a) dn
c(g) =1
where w(g) is an entire function of p subject to
(5.8) lw(p) <A(gl+d)" explelu]),
where a, a;€ R, N is a positive integer and R in C(0) is chosen so that
R>r*=max {{a,|, [as}, - - -, [axl, la ]}
Put . ,
(5.9) S(Ry, Bs,a, B)={t € C'; Ri<|t|< Ry, a<arg t<p}.

For v(t) we have the following:

PROPOSITION 5.1. (i) w(t) €@ (t]>¢).
(ii) For t€ S(R,, R:, a, 8) (R,>¢), there are constants A and B such that

(5.10) () | < ABYt¥ e N1/ M1,
where A depends on S(Ry, R;, «, 8) and B depends on R; and R,.

ProoF. By varying ¢ in C(6), we have (i). Let us show (ii). We
divide v(t) into two parts:

v<t>:5 + j =v0(t) + 0 (t).
cler  Jejerucys

Assume that |arg¢|<z/2 and put =0 and R=M+r*+1 in C{6). We
have
M -1
o) <A expl(Ro+ R R+ R( T |n—al) e

2

< At CH+ NI M.
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Here we make use of z¥< exp(x)N! for >0 and |log(p—a)|<AR and
of

T <o)

ﬁl (F““h))

max
lej=R

For wv,(t), if Ret>R,>¢, then we have

b (t)] gA&Z exp(— (Re t)¢)|w(e)] ‘ ﬁ (r—as) Fd”‘
Hence

wt)t3A<Mz>-1§:’exp<—<R1~em><ﬂ+d)N dp

gA(M!)“Z”r exp(— (Ri—e)pe) (" +d) dp
< ABY¢*N1/M!.

Thus it has been shown that (5.10) is valid for a=— B=n/2. By varying
6 in C(0) and by the same method, we can show that (5.10) is also valid

for any « and B. []
Let us apply Proposition 5.1 to v¥(t)=v¥(z, (). Put for small ¢>0
(5.11) Q.==x,7); rlal<e, 2 €2},

where 7 and £’ are the same as in Proposition 4.10. We have from
Proposition 4.10 the following:

PROPOSITION 5.2. (i) w¥(t) is holomorphic in {(2,0);2€ £, {C—log 2|

el
(i) For {—logz,€S(Ry, By, B) (Ri>¢) and 2€ 2, we have

512 (ol Q< Am(Q lexpeli B (5 (m—ki) )1

where A depends on S(Ry, Rs, a, 8) and B depends only on R, and R..

Proor. (i) follows from (i) in Proposition 5.1. Let us show (ii). It
follows from (5.5) and Proposition 4.10 that by putting k¥*=d=« and
M=(m—L)(p-+1), which is the degree of H,(x), we have

|v ()| < Am(L)| exp(sC) 1B**'* ((pL) 1 M1) 7 CH O
x{ im(r+k(5)—l(5))!(l(6)—r)! }

=0
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Since M+k(0)+r<Cln-+|s) and &(0)!/(pL) 1M <C*/(pm—k())!, we have
(5.12). [

We obtain estimates of v}(t)=v¥(2,{) in bounded sets in ¢-space by
Proposition 5.2. We need information on the behaviour of v¥(t) as t—oco.
Put for R,>¢ and neZ,

(5.13) { (R, n)={(z0); 2€ 2., Ret>=R, |arg t -2 nx|<x/2},
(R, n)={(z20);2€ 2, Ret<—R,, |arg t — 2n+1)z|<z/2},
where t={—log z,.

Let us obtain estimates for v§(t) in Q% (R;, n). We need the infor-
mation of poles of H,(¢). We return to (5.5) and (3.10). Put

hilg)= ..H_ (e — ;) H (2—f),
(5.14) {ija;=1} {i3a;>2}
{ i) = I (e—F)=,
and
(5.15) { Hi(p)=hi(p)hi(g—1)- - -hilg—(m—L)+1),
() =hi(p)h3(p—1)- - -Bi(p—(m—L)+1)

We have H,(¢)=H;(p)Hi ().
First let us deduce estimates for v¥(t) in 2% (R;, n). Define

1

(516)  Lit)=5—

Sm) exp(—tp)wi (- pa) Hy(+ ) 7 log (g —s+p24) dpe

and

(5.17) J+<t>=%j exp(— )W (i -+ o) H(p+ 114) ~ log (1 — s+ 1) dpe,
Tl JO(+)

where p,= min g; (see (3.5)). We note that

0<i<p

(5.18) v¥(t) =v¥ (2, {) = exp(sC—tuy) 1. (t)
and
(5.19) Hi(—0/0,+pe) L. (8)=J . ().

First we estimate J_(t) and next I,(t) by using (5.19). So we have
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an estimate of v¥(f) in (R, n) from (5.18).

PROPOSITION 5.3. Suppose that Ret>7>¢ and |argt—2nz|<z/2
neZ). Then for z€ &,,

(5.20) IO I<Am(Q)B " exp(t)k(6)!/ (pL)!{(g:+2 ) 1"

holds, where A depends on n and 7, B depends on 7, and g, g. are those
n (3.11).

Proor. From Proposition 4.10, and by deforming the path C(6), 6=
—2nz, to C(4), we have

621 1J.0)1<An@B (L) £ 10) =] exp(—Relty) +lep)
X ] )OO L )] e,

where we have made use of |log{z—s—+p) <Ai(gl+lpsl+£) and A4,
depends on n€ Z. If Ret>7, we get

(5.22) SC(+)eXp(—Re(t/t)+E!ﬂi){(l/!H—iﬂ*l+K)”"“””“”+""’L’“/H§(ﬂ+/z*)}ldm
<CD"*" exp(t]) (r+k(0) —1(8) + m—L+1)! #Selcl(g)!Hé(ﬂ-w*)l“‘
Since on C(-) it holds that
[Hi(pe 4 p4) | SCD* D@ ™", §= i +2¢s,
and §<C(n+|s)), we have (5.20) from (5.21) and (5.22). []
Next let us estimate I, (t). We put

i
(5.23) Hi(p+py) = gl (g—ri),
where 1= {Z (@;—2) and 0<r;<2n—s by Proposition 3.2. By (5.19),
q‘,;ai>2)
we have
1
5:24)  Hi~0foct ) L) =(—1{ 1L @, +<) |L(O=T.8)

I, ;{t), where

-

By integrating (5.24), we have I (t)=

7
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(5.25) I+,0(t)=(—1)‘S;exp(—t;(t—t,_,))dtz_l

[ expl—ralta—ta) @t exp(—riiti—t) T ()t

(5.26) Lm(t)=S’_exp(—ﬁ(t—tl_,))dt,_]

Yive
. S eXp(—Tj+z(tj+2_tj+1))dtj+l

7

X gt”l exp(— 77:i+1(t:i+1 - tj) "—Tj(tj '_77) )dt’.{i;—;[-i»l(6/8‘5 +7) }I+ (?)

7

for 1<5<I-1,
and

(5.27) I, ()= exp(—n(—P)I.(7),

where 7>e.
Now we have the following:
PROPOSITION 5.4. For (z,) € 25(F, n)
(5.28) 0¥ (2, Q) |<Am(C) B**"' | exp(t]+ (s — )0 |

Xzt (3 m—F) )

holds. A depends on 7 and n, and B depends only on ¥.
Proor. It follows from (5.24)-(5.27) that for (z,{) € 2%(7. n),

(529 JACIES Nt R Rt
HLL (T oft)]

In view of Proposition 5.2 and (5.18), we have

5:30) {1 @+ ) | <am@B 0=t (£ m—kd )

I Ui=g+1

Noting I=(m—L)N(d) and N(§)=p+1—¢,—2¢,, we have from Proposition
5.3, for (2, 0)c 257, n)
(5.31) [, o)< Am(Q) B "¢ —F [ exp(¢)k(0)!/((m—L)N(3))! (pL)!
X{(p+1—N@)-*
< Am(Q Bt —F [0 exp(it) [ £ m—Fo ).

=
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Thus we have from (5.29)-(5.31)
5:32) L)< Am(QB (L4t —F) 2 exp(e) /(£ (m—k) ).
We have (5.28) from (5.18). []

In order to get an estimate of v¥(f)=v¥(2,{) in 2° (%, n), we put

(5.33) I_<t>=—2-1—.j exp(—tu)wk (g4 %) Hy (i -+ %) log (pr—s -+ ) d,
Ty JC(=)

538 J(O=5[  exp(—tpwt (u-t ) Hilut ) loglu—s+ i

Then we have

(5.35) v¥(t) =¥ (2, {) = exp(sC—tp*)I_(t)

and

(5.36) HE(—0f0,+p*)I_(t) =J_(¢).

By a method similar to that used for I,(f) and J.(f), we have:
PROPOSITION 5.5. For (2, ()€ 2% (7, n)
(5.37) 0¥ (2, OI<Am(Q) B+ exp(it] + (s — %)) |
x|z 1t=2 e [( £ m—te) )1

holds. A depends on 7 and n, and B depends on 7.
Thus we have, from Propositions 3.4, 3.5, 5.2, 5.4 and 5.5, the following :
THEOREM 5.6. Let o,>1. (i) If (2,8 € &5 (F, n),

(5.38) [ (2, OI<Am(E) B ! exp(t]+ (s — ) Ol 2o
x|t ‘("”—L)(2("—3+#:)—(2b+c))/F(a_/ (6:—1)+c+1).

Gi) If (20 € Q° (7 n),

(5.39)  |v¥(z, OI<Am()B " exp(t]+ (s —p*) )|z
X|g|mm@n—bme=t0 T [(g,—1) 4 e+ 1).

A and B in (5.38) and (5.39) have the same properties as in Propositions
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54 and 5.5.
(i) If (2,0 €{z); 2€ 2, {—log2ESF, B, a, )},
(5.40) |v¥(z, {)|<Am(()| exp(sC)|B"* " [["(@_/(o:—1) +c+1).

In (5.40) A depends on S(7, R, «, B) and B depends only on R, and F.
In (i)-(iii) a_,b and ¢ are those defined by (3.3) and (3.4), I'(x) is the
gamma function and m(C) is the same as in (4.25).

Now let us consider the case o;,=1. We put ¢=0,, and recall (2.23).
Put

(o 10 = F\a+s) /
(5.41) W2, 2, {)= Fin—L: 14 8 Fiits) w, (@, 4, ),
(6:42) Wy () =5 (2, p1=s, Q).

We note that r,>0, ge=0 and p*=s. Furthermore, we put

(5.43) L(t)= 5145 exp(—tp), () Fs(p) " log{e—s)dp,
7Tl JC+)

(5.44) J+(t>=%j exp(—tu)m, () log(e—s)dp,
7Tl JC(H)

(5.45) I-<t>=i.j exp(— tp) s (p2+5) Falpe-+5) log pdp
271 Je—

and

(5.46) J-<t)=-—1—.j exp(—t2)i, (p+s) log pdyp.
271 Je-)

We have

(5.47) v (§) =0} (2, )= exp(sQ) [, (£) = (@) _(t),

(5.48) Fy(—0/0)L, (t)=J. (&), Fa(—0fo,+s)I_(t)=J_().

Now we claim a proposition corresponding to Proposition 5.3:

PROPOSITION 5.7. Suppose (2, () € &5 (F,n). Then

(5.49) | () |< Am(C) B+ exp(t)1(8) thi!(DL)hi,
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where h¥f= 3, (k;—l,—m-+L), h¥= Y (m—L—k+l), A depends on

i€ B(+,5) i€B(x,8)

7 and m, and B depends on 7.

For B(+,0) and B(x,d), we refer to §2. The proof is similar to
that of Proposition 5.8. So we omit it. Corresponding to Theorem 5.6,
we have:

THEOREM 5.8. Let o,=1. (i) For (z,{) € 2% (7, n)

5:50) |0t 1< Am( B expltl+sOltr (S m—te )1
(ii) For (2,{)€ 25(7, n)

651 ot Ol Am@Q B exp{thlafter/( 5 m—k) )1

In (650) and (651) h= Y (m—k), 6=01, t=C— logz, A depends on

i€ B(0,8)

7 and n, and B depends on 7.
(iil) For (2,0)€{(z,0);2€., {—logz¢€S{F Ry, a, p)},

(5:52) okt )< Am(Q)| expls| B[ £ (m—) )1,

where A depends on S(7, Rx, a, 8), B depends on R, and 7. m(l) is the
same as in (4.25).

Proor. Let us show (5.50). We have from (5.48) and (5.49) by the
method in the preceding part of this section

653 L(0)|<Am(Q) B explt)it! o) Y (pL) 1
< 4m(e) B+ exp(tllel [ £ m—k) )L

where h*= ¥ (m—L—k;-+1;). It follows from the definition of ¢,,(=0)

1€ B(0,8)
that for i€ B(0,8), m—L—k;+l,=J—7:,<o;,(m—k;). So h*<¢,,h. Thus
we have (5.50). In the same way we have (5.51). The estimate (5.52)
follows from Propesition 5.2. []

REMARK 5.9. Letd= 3 (m—k,) (see (3.9)). Then Z”:l(m—ki)zdzh.

i¢ 4(0,)

> (m—-lc,-))! replaced by [£1¢/d! in

i=1

So we can get inequalities with | / (
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(5.50) and (5.51) for [¢t|>F7>¢ by choosing other constants A and B.

§6. Convergence.

In this section we show that

61 Ve 0=5 ¥ e
converges, where
(6.2) vE.(2, )= yeo (=1F( Q)

and v¥(z,{) is defined by (5.1).
For R,>7>e¢>0 and a<p, we set

Q7 R, )={(2,0); 2€ 2, t € S(F, Ry @, B)}
(6.8) U{(z,C);2€ 2, Ret>7, a<argt<p},
Q7 Ry, B)=1{(2,0); 2€ 2, teSF, Ro, a, B)}
U{(,{);z€ 2, Ret< -7, a<argt<pgl,

where t={—log 2,, S(7, R., @, 8) is defined by (5.9) and £, is defined by
{5.11) (see Figure 6.1).

\ \ A
(N \ / /
N -
B \ i =K
R \\ } I I/ ‘/4(1\\
t=6 / 7 'R, r =7 \\t =10<\ R,
S~ / v
\

Figure 6.1

Now we assume g,>1. Let us recall Theorem 5.6. Put g;=¢. First
we study the convergence of V{z,{) in Q% (7, R;,a, 8). We give a lemma.
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LEMMA 6.1. The following inequalities hold :

(1) (ol exp €l g m-mrerenmsos < (| exp L+ |gpm- P r=smims,
(i) if s<0, then ’

(1] @xp L) gpmrim=rtsa=boo
<{lz["exp {[+[tfm 0} 12| exp ),
where py, b and ¢ are the same as defined in §3 (see (3.4) and (3.5)).

PROOF. From Proposition 8.2, we have n—s+pe>b+c. Thus (i)
in this lemma holds. g, <s if s<0. Hence

([20|_1[ eXp C!)—s+s—-p,ltl?(m-—L}(n—a—i—,u*—b—c)

<(z[ "l exp &) {|zo] "] exp L[+ [t Ryt ]

Put X=|z[* exp {|+]tF™ ", Y=[t| " and let (¢, ) € 25(F,n). Then
we have from Theorem 5.6 and Lemma 6.1 that if s>0, then

6.4) ¥z, I<Am(C) B***|exp(t|+s0) [ XY/ (a_/(c—1) +c+1)
and that if s<0, then
6.5) |0z, QI<Am(Q) B " exp(t]|z X"t~ Y/ (a_/(c—1) +c+1).

Thus it follows from (i) and (iv) in Propositions 8.2 and 3.3 that if
s>0, then
(6.6) [vi.(2, 0)[<Am(C)B**| exp(t|+sC)|

x{ > X"“"’“Y”/F((n—s—b——c)/(a—l)+1)F(c+1)}
ngf;r:(iyzt:—z)

and that if s<0, then
6.7) |V (2, Q) I<Am(L) B ' exp(t))]2, |
x{ XYL (n—s—b—0)/e—1) + T (e+1)}.

bte<n
2b<n

Hence, in order to get convergence of V(z, {) in 25 (7, n), we consider

6.8) I,:é 5 |zol"B“+"’{ S XY (n—s—b—c)/(c—1) +1)

. 0 s=—co bte<n
2b<n

xrw+n}
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B”*“l exp(s{)|
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Ms
IIM:
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1l
=

x{ 5 X"““”‘”Y”/F((n—s—b—c)/(a—1)+1)F(c+1)}.
bSrI;l’;-nc(fb;LZ—,;—x)

We have the following:

LEMMA 6.2. I, converges and
(6.10) I,<A exp(BX '+ CY+Diz| ")
holds for (z,§) € Q% (F, n).

Proor. We have

IL=3 Blal L.
(6.11) =1

L,:éB»{ > X”"”‘°Y°/Z’((n+s—b—c)/(a—1)+1)F(c+1)}.

bte<n
2<n

Then
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B”°X”‘°Y°/Z"’((b—c)/(a——1) +1) I (c+1)

r-""\
TTMS

3

+
™Ms

2 Bb+cYc/F(c+1)}
xp(BX*'+CY)/[['(s/(c—1)+1).
Hence I, converges and (6.10) holds. []

o
°' 1l
('D =3

For I, we have:

LEMMA 6.3. There is a {* such that for (z, ) € Q5(F, n) with Re {<L¥,
I, converges and

(6.12) I,<A exp(BX"'+CY)
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holds.

Proor. We have from (6.9)

I,= é | exp(sl) [B'I,..,

(6.13) i
Iz,,znng"{ >3 X”“““”‘“Y”/Z’((n—s—b—c)/(o—l)+1)F(c+1)}.

bre<n—s
b<min(n/2,n-s)

We have

2s (nf2]+1—s [n/2] n—s n—8—¢ }

Iz,,g{z > }+ n;ﬂ{ ST

ax=s bteLn—s e=[nf2]—s =0

<Apemp(BX-+07)+ 5 (T8 X2

n=23+1

+1-s-0))le—D+U e+ + 3 YTle+1)} exp(BX™).

e=[n/2]—s

Thus I, ,<AFE’ exp(BX°*+CY). Consequently, if |F exp{[<1/2, then I,
converges and (6.12) holds. [

From Lemmas 6.2 and 6.3, we obtain:

THEOREM 6.4. For (2,{) € Q%(7, Ry a, f) with Re(<L{* V(2,{) con-
verges and

(6.14) |Viz, {)I<Am(C) exp(BX"™'+CY+Dlz,| 7" +[t)

holds. A depends on R, 7,a and B. (*, B,C and D depend on R, and
7, while they are independent of a and .

Proor. It follows from Lemmas 6.2 and 6.3 that Vi(z, {) converges
in 25(7,n») and (6.14) holds there. We have to show convergence of
V(z,£) and its estimate in S(7, R, «, B). It can be done in the same way
from (5.40) in Theorem 5.6. Dependence of the constants mentioned fol-
lows also from Theorem 5.6. [ ]

Now let us consider convergence of V{z,{) in Q°(F, Ry, B). We
return to (5.39). Instead of Lemma 6.1, we have:

LeEMMA 6.5. The following inequalities hold :
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(1) |20 exp(—C) || — log (zy) P mbmomem
<{lz, exp(—0)| + [{ —log (z,) [T} =b=<,

(ii) If s>0,

(7o) [fm— D (rmbme—p)

2o exp(—0) ¢ — log(z
<2 exp(—{)I"{|z, exp(— )|+ —log (&) ") m=e=b=2,

PROOF. Since a,=n—b—c>p*>0 by Proposition 3.2, we have (i).
p*>s if s>0. Hence

|20 eXp(—Q) |+~ — log (z,) 1 m=b=o=s®
<2, exp(—L) P(|2 exp(—{)|-+|{ — log (o) Pm—2) ==, ]

By means of Lemma 6.5, we consider the following I, and I, in-
stead of I, and I, defined by (6.8) and (6.9), in order to investigate con-

vergence of V(z,{) in 2°(% n);

615)  L=% 3 |exp()lBr

08

x{, 5 x=yr ((n—s—b=0)/l—1)+ DI (c+1)}.

2b<n

616)  L=3 3 lalB

x{ = X"“""‘°Y’/F((n—s——b——c)/(o—1)+1)F(c+1)}.

bte<n—s
< min(n/2,n-s)

We have

THEOREM 6.6. There is an r such that if |z|<r and (2,0)¢€
27, Ry, 0, B), them Vi{z,{) converges and

(6.17) [Viz, OI<Am(C) exp(BX°~'+CY+Dlexp(—{) '~ +[¢))

holds. Here A depends on R, 7,a and 8. And B, C and D depend on
R, and 7 they being independent of a and B.

Convergence of I, (or I,) and its estimate are obtained in the same
way as we get Lemma 6.2 (resp. Lemma 6.3). Hence we get Theorem
6.6.

Next we consider the case ¢,=1 and put ¢=o¢,,. Let us recall
Theorem 5.8, Remark 5.9 and .Propositions 3.3 and 3.4. It follows from
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them that for (z,{) € 25, n)

618)  |of.lz O)I<Am(O B exp(tl-+50) | 4T (d+1))

d=max(0,[»/2]—s)

and for (z,§) € 227, n)

619)  0%.(2 O)< Am{) B+ exp{e)izal| £/ T(d+1) .

d=max(0,[n/2]—3)

Put

(6.20) I= i { go B***|exp(s{) I<

d=max(0,[n/2]—s)

6P Pd+1) )}

Let us show convergence of I, which means convergence of V(z,{)
in Q5(7, n).

LEMMA 6.7. There is a C* such that for (z,0) € 25 (7, n) with Re{<L{*
I converges and

(6.21) I< A exp(Bjtf)
holds with constants A and B.

Proor. We have

I=7Y Blexp(sQ)|L,,
(6.22) =

m{n—s)

o~
i
Ms
fr——

Itl‘”‘/F(d+1)}.

d=max(0,[nf2]—s)

Then

L< e ra+sn{ S B

a=0 n=[d/ml+s

<AC di (B|tI")/I"(d+1) < AC® exp(Blt]).

Hence, if |Cexpl|<1/2, I converges and (6.21) holds. []
Finally let us study V(z,&) in 2 (7, n). Put

(6.23) =3 { 3 Bzl

8= (d:max(o,[n/z]—s)

e+ 1))}.

We have the following:
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) LEMMA 6.8. There is an r such that for (2,0) € 25 (F, n) with |z|<r,
I converges and
(6.24) I< A exp(B|t])
holds with constants A and B.
The proof is the same as that of Lemma 6.7. Thus we obtain

THEOREM 6.9. Let 0,=1. There are * and r such that for (2,0) €
257, Be, a0, B) with Rel<C*, and for (2,0 € 2°(F, Ry, o, B) with |z,|<r,
Viz,{) converges and

(6.25) [Viz, {)|<Am(C) exp(Blt]) (6=0y,)

holds. A depends on R, 7,« and 8. B depends on R, and is independent
of a and B.

ProOF. Since |V(z, {)|<Am(Q) exp()] or | V(z, {)|<Am(C) exp(t) I, we
have (6.25). Dependence of constants follows from Theorem 5.8. []

§7. Integration II.

In §7 we perform integration in ¢ for V(z, ), construct

(8 ue)= o | Vie 0z,

2r

and complete the proof of Theorems 1.4 and 1.8.
Put z,=|z|exp(if), 0=arg 2, and take R, and R, so that 7<R,<R,.
Let us define paths I'(+) and I'(—) in {-space. Firstly we put

Iy (+)={{=C*+ip; if 620, 0<9<0, if <0, 6<9<0},
(7.2) I'y(+)={{=E+10; log 2|+ Ry <ELLH,
I's(+)={{= log |2,|+10+ R, exp(ip) ; 0< p<2 7},
where (* is the same as in Theorems 6.4 and 6.9. I'(+) is a path which
starts at (*, goes on ['i(+) and I',(+), goes around on I'5(+), goes back
on I'y(+) and I';(+) and ends at {* (see Figure 7.1).
Similarly we put
I'(—)={{=&+ia; —co<E< log |2|+ Ry},
(7.3) Iy(—)={C= log 2o+ Ry-tin; a<n< B},
Iy(—)={{=§+18; —co<&< logla]+ Ry},
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where a<6<f8. I'(—) is a path which starts at —oco+ia on I';(—), goes
on I'.(—) and I'y(—) and ends at —oo+138 (see Figure 7.1).

I+ Cplane i ¢-plane

log (24} + Lg

e log || + R,

Figure 7.1

Proor oF THEOREM 1.5. We divide the proof into four steps (I)-(IV).
(I) Let us restrict (2, ) in 2.(+)=92%(F, R,, —=/2,57/2). Then from
Theorems 6.4 and 6.9 we notice that for (z,{) € 2.(+) with Re {<(¥,

(7.4) [Vi(z, 0)I<Am(C) exp(@(zo, {)),
where

oy~—1 —{gy—1) .
(7.5) oz, C):{ BXr '+ CY+ Dz +1L—log 2] (6,>1),

Bl — log z)[v1 (0:=1),

X=l|z| " exp{ + [{— log 2™ and Y=[{—log z,/""".
Set I'=I'(+) in (7.1). Then we have

_ 1 _ l o S(n)
no =gl veok=g] (£ ko)
where
(1.7 1.2, C)= LX (20)**° exp(—AL)v. (7, 4, {) log 2dA.
27 Je

By shrinking 2, we have u(z) € &(Q2—{2,=0}).
(II) Let us show P(z, 8)u(z)=(2,)*»""f(2). Since

(7.8) P(z, 8){(z)) "0, .(2/, 2, 0)}
:{F(m—L 248 Al3+5) (2 + DB (1+5) (zo)“”’}vn,s(z’, 20,

(see §2), we have
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(1.9) Pl 0)ulz)=(2 xi)~2j 9> Lexp(—zc)

'+ n,
X {F(m—L; A+8) A(+8) (20) "+ 3 B.(A+3) (zo)“’*’}v,‘,, log 2d2.
Hence

110) Pl ouin == {(

Ms

2 o20)+H( 3 £ e 0)hie

[

where
11 g3 =5 [ exo(— 1) {Fom—L; 249 A0+

+< > B,(A+s) (zo)“”’)}v,,ﬂ_, log 2d 2,

r<0

(112) g2z Q)= T | exp(—20)(B,(2+8)()™ v, log 2di.
We have

037 0= T | exp(—R){Flm—L; 1+8) 40+ 8)0us,

+< S B.(i+s—7) v,,+,,,_,>} (20 7+ log 2d2,

r<0

and

e, 0= T Xcexp( — AO{B, (245 —1)0s o }(2) 7 log 2 dA.

So in view of the equality

il ¢:Lk+1(zr C) + 72 éo ¢’:"(z, C) :f(ei, z/) (zo)“dm—m_

n=—

Thus

(7.13) Plz, d)u(z) ﬁ(zo)dm“’" SrmdCSCeXp(—ZC)(zO)‘f(ei, 2) log 1/2 xi d2

1

=Lt e 2~ log ) dg

27t ro

= (2o)%n ™ f (20, 7).
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For (@) "u(z,, 0, 2") 0<h<L—1} we have

(7.14)  (0)*u(z, 0, 27) = LS ch exp(—22) (z) oulet, 27) log 2/2 7 di
2wy Jre+) c
- ”LS @a(e, 2) (L — log )AL= (20, 2.
2wl Jr+)

Thus, by noting f(z, 2) = (25) %~ ™{(20)" = f (20, ')} = (20)°» "™ f (2, 2/}, We have
the existence of a solution u(z) to the equation (1.9).
(III) Now let us obtain a bound of u(z). First we state

LEMMA 7.1. For z, with |2|<R and a<argz,<p, and {E['(+), we
have

(7.15) |@ (20, {} |< Au s €xD(Bl2e[717")
if o,.>1 and,
(7.16) [@(20, {) 1< A, 5 exp(B|log 2z,[1.1),

if o,=1 with constants A,, and B.

Proor. Let o,>1. We haveon I';{+) and [.(+), X<|z,[ " expl*+
|g*— log 2,/ and Y<[{*— log zo/""". On I(+), X<R{" “+ exp R,
and Y<Ry~*. Hence for € I'(+)|@(z, L)< AL s exp(Blz,[ ).

If 0,=1, then we have (7.16) from (7.5). []

(IV) Now let us proceed to bounds of u(z). Suppose that ¢,(z, 2”)
=0 for 0<h<L—1 and |f(z})|<A.,;exp(Clz,|™"), y=0:—1 and o,>1, for
2¢€ U with a<arg2,<B. Then we can put

(1.17) m({)= A, exp(C exp(—r Re {))
in (4.25). Then we have from Lemma 7.1.

exp(@ (2o, £))m (L) < A, 5 exp(Bl2,| 7+ Clexp(—7r Re {)).
Hence

wle)|SAus | exp(@(z, O)m(Q)dCI< Au.s exp(Blaal ).

If 0,=1 and |f(z, 2)| <A, exp(Bllog z,[), y=0,; for zcU with
a<arg z,<j, then we have from Lemma 7.1 |u(z)|<A. ;exp(B|log z]).
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Thus the proof of Theorem 1.4 is completed. [ ]

ProorF oF THEOREM 1.8. Let us return to (2.1). Since L>1, we can
put

(7.18) (61) hvo (ZO, 0, Z”, 2, C) "—‘5;,,L_1 (Z()) XQD (ec, Z”)

and flet, 2/)=0.

Put 7=2¢. Let us restrict (2,{) € 2.(—)=2°(2¢, R,, —37x/2, 37/2) and
recall Theorems 6.6 and 6.9. First let ¢,>>1. Assume that for (2, 2"} €
Un{z:=0} with |arg 2,|<6,

(7.19) lo(2, 2") 1< A exp(—K]|z|™"), y=0.—1 and K>0.
Then we can put for { with |Im {|<é,

(7.20) m(l) =A exp(—K exp(—7r Re {)).
Pat I'=I"(—),a=0—¢, f=0+¢ (§= arg z,) in (7.1). We have
(7.21) u(z):EL,_S Vi, O)dC.

T JI (=)

LEMMA 7.2. For any 6, with 0<6,<86,, there are a constant K* and
a neighbourhood Q of 2=0, such that if ¢{z, 2") satisfies the estimate
(1.19) for some K>K*, then

(7.22) lu(z)|<A exp(—Blz,| ")

holds for 2€ Q with |arg z,|<6,. Constants A, B and K* and 2 depend
on 8, and B 1s positive.

Proor. First we take ¢ so small that 6,—6,>7=2¢. Then we choose
a small neighbourhood Q. of 2=0, by noting (6.3) and Theorem 6.6. Let
(2,0) € 2.(—). Put t={—logz, and recall (6.17). Put ¥(z, {)=BX"
+CY+Dlexp(—7Q) |+t We have [¥(z,()|<C(tP+exp(y Ret)+1)+
D exp({—7 Re t)|2,|77), where d=max(2y(m—L), m—L, 1), and m(t+ log z,)
< A exp(—K exp(—7y Ret)|z,|"7). Hence if Ret< R, we have

(123)  exp(¥(z,, {))m(l) <A exp(Clt]'+(D—K) exp(—7 Re t)[z] 7).
So if K>K*=D+2, we obtain for a B>0

(7.24) [ V(z, {)| <A exp(C|t]— exp(—7r Re t)|z,]"7 — B|z,| 7).
Thus we get from (7.21)
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(7.25) lu(z) | < A exp(—Blz,|™7).
All constants depend on . So they depend on 6,. [

Next let us consider the case ¢;=1. Put y=g,, if 6,,>1. If 0,,=1,
let 7 be a constant with y>1.
Assume that for (z, 2”) € UN{z,=0} with |arg z,|<8,,

(7.26) lo(2o, 2"”")|< A exp(—K|log z,["), K>O0.
We can put for { with |Im {|<6,
(7.27) m({)=A exp(—K|L]).

We can also define u(z) by (7.21). We have

LEMMA 7.3. For any 0, with 0<60,<0, there are a K* (K*=0, if
o11=1) and neighbourhood £ of z=0 so that: If ¢(2,2") satisfies the
estimate (1.26) for some K>K*, then

(7.28) |u(2)| <A exp(—Bllog z)

holds for z€Q with |arg 2,|<6,. Constants K*, A and B>0, and &
depend on 6.

The proof of Lemma 7.8 is similar to that of Lemma 7.2. We can also
show that 9*u(2)—0 as z,—0 in the sector {z€ Q;|arg z,|<0,} under the
condition (7.19) or (7.26). w(z) satisfies P(z,d)u(z)=0 and (3.)* *u(z,, 0, 2"/)
=¢(2y, 2”) and it decays rapidly in {z€ Q; |arg 2|<6:}. Hence

(7.29) ulw) = { the restriction of u(z) to R", x>0
0; xogo,

is a desired function.

REMARK 7.4. We can show which class of nonquasianalytic functions
u{z) belongs to, by more precise estimates of % (x). That will be discussed
in a fortheomming paper.
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