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Splitting singular fibers in good torus fibrations

By Masaaki Ue

Torus fibrations defined in [M1] form a class of 4-manifolds which
includes elliptic surfaces. A good torus fibration is defined as a torus fibra-
tion f: M— B such that at each singular point in M, the germ f is smoothly
(-+)-equivalent to the germ at 0 of the function 2727 or z72%: C*—C, with
m-+n>1([M2]). The diffeomorphism type of a good torus fibration f: M—
S? with at least one singular fiber such that every singular fiber is of type If
or a twin is determined in [M2] in the case when o(M)-£0 and in [I] in the
case when ¢(M)=0. Moishezon showed (Theorem 8a, Lemma 6 in [Mo]) that
every minimal analytic singular fiber is diffeomorphic (in fact deformable) to
a sum of fibers of type I;. This fact can be proved topologically when the
number of divisors in the fiber is not so large (Lemma 1-8). Moishezon used
this fact to give the classification of the diffeomorphism types of the elliptic
surfaces over CP* ([K1}, [Mo]). Therefore as a first step to determine the dif-
feomorphism types of other good torus fibrations over S? it is natural to
consider whether non-analytic fibers can be blown down to sums of simpler
fibers or not. In this paper we will prove that every singular fiber is blown
down to a sum of fibers of type I+ and Twins after performing a connected
sum with at most 2 copies of CP?or —CP? In fact every good singular fiber
except for twins can be transformed by blowing-ups and downs to some ana-
lytic fiber. Furthermore non-analytic fibers of type D can be transformed
(after performing blowing-ups and downs) to extra sums of fibers of type If,
which are essentially non-analytic. However we will show that some of non-
analytic fibers of type E and D themselves cannot be blown down to sums of
fibers of type I¥ and Twins. This implies that a non-analytic version of
Moishezon’s theorem for analytic singular fibers ({[Mo]) does not necessarily
hold. But we can prove that if M is a 1-connected good torus fibration over
S? without multiple fibers and non-analytic fibers of type D, then a connected
sum of M and at most one copy of CP* or —CP? is diffeomorphic to a con-
nected sum of some copies of + CP? (Theorem 2).

In this paper we will consider all the manifolds and maps in the smooth
category. We will denote CP? and — CP? by P and @ respectively. All the
diffeomorphisms will be assumed to be orientation-preserving.
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§1. Classification of reduced good singular fibers

In [M2] good singular fibers are classified into classes of type A, E, and
D. The simplest fiber is the one of type I# which is an immersed S® with one
self-intersection with intersection number +1. The second one is called a
twin singular fiber which consists of two embedded S¥s intersecting each
other twice such that one of the intersection number is +4-1 and the other is
—1((M2]). In this paper all the twin singular fibers will be assumed to be
non-multiple and denoted by the common symbol Tw.

DerFiNtTION 1. If 2 regular neighborhood of a singular fiber F is diffeo-
morphic to a connected-sum of a regular neighborhood of another singular
fiber F’ and some P’s, §’s, and/or S?x S¥s, then we say that F is blown
down to F’,

DrFINITION 2. If a regular neighborhood of a singular fiber F is diffeo-
morphic to a torus fibration over ID* which contains singular fibers of type
I (and Tw’s) and contains no other singular fibers, then we say that F is
splittable to a sum of fibers of type I (and Tw’s). If the numbers of fibers of
type I7, I7, and Tw’s are a, b, and c respectively, then we denote the sum of
such fibers by eI} +bI7 +cTw. (More detailed description will be given in
§2)

REMARK 1. The blowing down precesses defined above includes a
natural blowing down of a divisor of a singular fiber with self-intersection 0
or 1. But we need later more general ones for non-analytic singular fibers
in the proof of Theorem 1.

Remark 2. It is shown in [Mo] that any relatively minimal analytic
singular fiber is deformable to a sum of fibers of type I+’s. However, in the
cases of non-analytic fibers of type E and D with which we will be concerned,
it seems difficult to formulate “deformations”. The boundary of the regular
neighborhood of such fiber is a T%-bundle over S' with a trace of monodromy
=2, which contains only one non-separating incompressible torus up to iso-
topy (a fiber). Hence if we replace a regular neighborhood of a fiber of type
Eor D in a torus fibration by another fibration with the same boundary,
then the resulting manifold still admits a torus fibering structure since any
gluing map is up to isotopy a fiber map with respect to the T*-bundle struc-
tures induced by the two pieces.

DerFINITION 3. A good singular fiber is said to be reduced if it contains
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no divisor of self-intersection number 0 or -1 which intersects other divisors
at most 2 points. (It may be possible to perform extra blowing down processes,
but then the resulting fiber is no longer a good one.)

ProPosITION 1. A reduced good singular fiber of type E or D is repre-
senied by one of the following diagrams. (The number on the vertex de-
notes the multiplicity of the corresponding divisor and the sign on the edge
denotes the intersection number of the divisors represented by the vertices ad-
jacent to the edge.

Type E’k:
{2

5 —
3]

where [il denotes the i-th linear branch, m is the multiplicity of the divisor
corresponding to the vertex of valency 3 and m=3, 4, and 6 for k=6,7, and 8
respectively.

In the cases of type E below, the vertices on the right ends of the linear
branches coincide with the vertices of valency 3 in the above diagram.

Type Ef: Each linear branch is either 1 + 2 + 3 (type 1) or
1 - 3 (type 2).

Type E;: Each linear branch is either 1 — 2 — 3 (typel) or
1+ 3 (type 2). Type E; is dual (all the signs reversed) to type Es.

Type Ef: The first linear branch is either 2__* 4 (type 1) or 2 — 4
(type 2), the other ones are either 1+ 2 * 8 * 4 (type 1) or 1 - 4
(type 2). . _

Type E;7: dual to E; as in E,.

Type Ei: The first linear branch iseither 1L+ 2 + 38 + 4 + 5
(type D) or L~ 8 (type 2), the second one is either 2 + 4 + 6 (type 1) or

2 — 6 (type 2), and the third one is either >t & (type ) or 378 (iype

2).

+ 6

Type E_'"g . dual to Ez.
Type Di: A graph of the form
1 1

~&_ 2 s 2 e ______. eje/3‘

where ¢, &, &, &, £,= =+, and the number of the edges with sign ¢ is k.
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Proor. Case of E~,§. By Theorem 3.1 in [M2], one of the linear branches
is of the form

My &y My~ """ T T TTTIETIITITTS n &g n (n:3, 4, 6)
such that
(* ) 1=(n9 ml):(mly mz): s z(mv—ly m,,):m,,,
() _@§=(51n+52m2)/m1, — O3 =(e;m+-em;)[my, - - -, —Ol=em,_,/m, are

all integers with absolute value >2 since the graph is reduced. Then it
follows that

n+m,>2m,, my+m,>2my, - -+, m, ;+m,>2m,_,, m, ;>2m,=2,

and hence m,>m,>- - - >m,, n>m,-+m,=m,+1. Thenin the case of E., each
branch must be of the form 1 ¢ 2 ¢ 3 op1 ¢ 3 gndin the first case
e=¢ by (x) and (xx). In the case of n=6 (E,), the linear edge given above
must satisfy 6>m,>--->m,_,>2>m,=1. By considering (x) and (xx), we
can see that the branch must be of type 1 or 2 given above. The proof of
the cases of other linear branches are easier. Then by the classification
given in Theorem 3.1 in [M2] the above cases give all the possible combina-
tions of linear branches for type E (It suffices to consider the integrability
conditions for the self-intersection numbers of the divisors coresponding to
the vertices of valency 8.). The cases of type D are proved similarly.

REMARK 3. A reduced non-multiple singular fiber of type A is either a
Kodaira’s singularity of type ,I, ([Ko]) or ,I, with opposite orientation, or a
twin (Theorem 6.3 in [M2]).

Notations. (1) We will denote the singular fiber of type E: in which
the first linear branch is of type i,, the second one is of type i,, and the third
one is of type i, by E: (i, i,, i,) where k=6, 7, 8, e==+, and i, (s=1,2,3)=1or
2 as in Proposition 1.

(2) We will denote the singular fiber of type D; for £>1 by

Di(1) if e=e,=e,=e,=e=1, D;(1) if ¢,=¢,—e,—=¢,—e— —1
D#(2) if e=1, one of &,’s is —1, and the others are 1,
D;(2) if e=—1, one of &,’s is 1, and the others are —1,
D~+(8) if e=1, one of ¢;’s is 1, and the others are —1,
D;(8) if e=—1, one of ¢/s is —1, and the others are 1,

D~;§(4) if e=1,¢=¢,=1,g,=¢,=—1, or g, =¢,= —1, g,=¢,=1,
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D;(@) if e=—1, a=g=1,6=¢=—10r s;=e,=—1, g=¢,=1,
D) if e=1, a=g=g=t,=—1, D;() ife=—1, =g =g =e,=1,
Di(6) if e=1, g=6=1, g=g=—~1, 0r e,=e,=—1, g, =¢,=1,

D) if e=—1g=6=1=e,=—1 0r g;=g,= —1, g;=¢,=1.

If 2=0, ﬁg( §)) andL D;(j) in the above~representations are identical and de-
noted by Dy(j). Dy(6) is identical to D(4).

§2. Framed link pictures of the sums of [*’s

The monodromy of a singular fiber F is represented by the matrix A (up
to conjugate) such that the boundary of the regular neighborhood F is dif-
feomorphic to T%x[0, 1]/(x, 1) ~ (A(x), 0) and A(S'x{x}, {x} x S)=(S*x {x},
{#}x8")A. This description for the monodromy is identical to the one given
in [M2]. A regular neighborhood of a singular fiber of type I is diffeomorphic
to T*x D* with a 2-handle of framing F1 (a vanishing cycle) attached along
a simple loop on T% X, CT* X 8D* as in Figure 1 ([K2], [H]). Hence a sum of
singular fibers of type I is diffeomorphic to 7% x D* with the corresponding
vanishing cycles attached. 1If their attaching curves are represented by a,m
+cil, -+, agm+c,l, where a,;m-+c¢;l corresponds to I:¢, and they are put in
numerical order from the front to the back of Figure 1, then the total mono-
dromy is represented by the matrix

Figure 1
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a(h arals )aral §)an vherea=(E §) e

0 1
_ . 1+1\,., {1Fac =&
a,d,—b,c;=1. Tt depends only on +(a;, ¢;) since A(O 1>A ! __( ¢ 1% ac)

for Az(? g) with ed—bc=1. The framing of the curve am-cl corre-

sponding to It in Figure 1is —ac—e. We will denote the above sum of I}’s
by ((as, ¢).ps - -+ (s ¢).,)- This representation determines the diffeomorph-
ism types of the sum of I7. (But the representation itself is not unique.)

Levma 1. The sum 2I7 with monodromy conjugate to (g —B is diffeo-
morphic to D* with a 2-handle attached along a left-handed trefoil knot in 3D*
with framing 0 and is represented as ((1, 0)_, (0, 1)_).

Lemma 2. 3I7 with monodromy conjugate to <(1) ~é> is represented by

the following:
(1, 0)_, (1, 0)_, (0, 1).) which is represented by the following link picture,

L5

or equivalently,
2( ) 2

Proors oF LEMMAS 1, 2. Suppose that the monodromy of 3I7 of type
1o ’ s : . 0 —1 1+ac —at
((a, ), (a, ¢)., (", c”)_) is conjugate to (1 0). Then ( & 1—ac> X
1+a'c " . 0 —1\/1—a"¢” "

< " 1— a/cl>—<1 0)( —”  1+a” c”)’ Compare the trace of the
left side with the one of the right side to obtain 2—(ac’—a’c)=a"*+c"
Therefore we see that ac’ —a’c=+1 and (¢, ¢)=(%£1, 0) or (0, £1), or ac’=
a’c, a’=+1, and ¢’=+1. Then elementary calculus shows that the type is
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either ((1,0)_, (1, 1)_, (0, 1)) or ((1,0)_, (0, 1)_, (1, 0)_) up to the changes of the
basis (including the cyclic permutations of the orders of the terms). Further-
more we can replace (q, ¢)_(0, 1)_ by (0, 1)_(a, c—a)_ by an elementary trans-

. . I+ec —a*\/1 0\ _ /1 0\/1+alc—a) —a’
formation since ( e 1—ac)<1 1>_(1 1>< (c—ay l—a(c——a))‘

Hence the above two representations are equivalent. The case of 2I7 is
proved similarly. The link pictures are easily derived by Kirby calculus
[Ki]. In fact the second picture in Lemma 2 is transformed to the first one
by a handle-sliding.

Lemma 3. Suppose that 4I7 with representation ((1,0)_, (e, ¢)_, (¢, ¢/)_,

(0, 1).) has the monodromy conjugate to (-i _(1)> Then 417 is diffeomorphic

to the following: ((a, ¢), (@', )= ((0, 1), (1, 0)) and

2
4] = f
-1
0

(s
G

Proor. The proof is similar to the proofs of Lemmas 1 and 2, so we
omit it.

or equivalently,

REMARK 4. There are “dual” statements for 217 with monodromy con-

jugate to (_i é), 3I7 with monodromy conjugate to (_(1) é), and 41}
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with monodromy conjugate to (_g _%) corresponding to Lemma 1, 2, and

3. The singularities in Lemma 1, (case 2 of) Lemma 2, and (case 1 of)
Lemma 3 are Kodaira’s singularities of type II, I1I, and IV with opposite
orientation. We will denote them (and their regular neighborhoods) by I1_,

III_, IV_ respectively.

§3. Main Theorem

We will prove that every good singular fiber is stably blown down (i.e.,
blown down after connected sum with some P’s or @’s) to a sum of I}"’s except
for type A. The cases of type A are already treated in [M2] so we omit them.
The singular fiber with all the signs on the edges + (vesp. —) is analytic (resp.
anti-analytic) each of which is blown down to a sum of I;’s (resp. I7’s) by [Mo].
The other fibers are called non-analytic. We denote the analytic fibers by
Kodaira’s descriptions in [Ko]. The anti-analytic ones are represented by
the corresponding symbols for the analytic ones with — added.

TaeorREM 1. Reduced good singular fibers of type E and D are stably
blown down to sums of I¥’s as follows (We only describe the cases of E* and
D*. The dual statements for E- and D- are obtained by exchanging all the
signs and replacing all the P’s (Q's) by @’s (P’s). The corresponding framed
links are obtained by changing all the crossings and the signs of the framings. )

(1) E.
(1) E;Q,1,D)=IV*=8I;,
(2) Eir(1, 1, 24P=IV_34Q, @) Ei(,1,242Q=IV*¢P,

(3) Ei(1,2,2=IV_$2Q,
(4) E;(2,2,2=IV_¢P,

where IV_=A41I7.

(5) E:(, 1, D=III*=917,

(6) Er21,1)=II1_46Q,

(7) Er1,2, 1)=III_$4Q,

(8) Ex2, 2 D)4P=III_$2P43Q, E:2, 2, D3Q=III_$P34Q,
(8) EF @2, 2, )i4Q=IIT*42P,

(9) E:;(1,2 2)=IIT#S*x S,

(10) E7 (2,2, 2)=1III_42P,
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where 1IT_=3I;.
a1y E:Q,1, )=II*=10l;,
12) E:(1,1,2)=II_#P47Q,
13) E:(1, 2, 1)=II }P#6Q,
(14) E:(Q,2,2)=II_42P% 5Q,
a5) E:x@2, 1, 1)=II_tP#3Q,
16) Ex(2,1,2)=II_328*x 52,
a7 Ex@2,2, 1)=II_12P4Q,
(18) Ef(2,2,2)=II_#3P,
where II_=2I;.

an b.

D, for k>1.
19) Di()=If=@6+hI1,
(20) Di(2#2P=N.$4@Q), (20) Di(Q4Q=I#4P,
@21) D;(3)=N.£2Q, 1) Di(3)43Q=1I43P,
(22) Di(®9§P=N,430, (22) D;(9)£2Q=I}42P,

(23) Di(5)tP=N42P4Q, D;(5)4Q=N4P#2Q,
(23) D;(5)44Q=1I;44P,
(24) D;(8)4P=N.43Q, (24") D;(6)42Q=1I}42P,

where Ny,=(k—1)I;+51; which is represented by the framed link in
Figure 2.

D, for k=0
19), DV)=I}=6I;.
(20), Dy(2)43P=1I;43Q, @0), Dy24Q=I4P,
1), Dy34P=I}4Q, 21), Dy(3)43Q=I;43P,
(22), Dy(4)§2P=I} §2P, (22), Dy(4)#2Q=I:42P,

‘(23)0 150(5) ZISK— =6I;.
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N for k Z 2.

(3}2

Figure 2

Proor. It suffices to prove for E* and D*.

(=]

-3

D)5,
/\9_) £3Q4P.
_/

We denote the last framed link by F86.
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(3) 1

1+ 2 o+ 3/ = F642P4Q.

1

On the other hand we have:
Levma 4. F632P=IV_}Q.

Proor. (blow down)
F642P = (\/ O =

C/@;—) * $Q=1V.4Q (Lomma 3)

Thus we obtain (2) and (3).
Case (1) and case (4) (dual to (1)) are proved by [Mo].

(6)
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@D 59" X SH4Q = /\—0 S £P#50.
S @

We denote the last framed link by F'7.
(7)

(handle-sliding)

@( D $#4Q=1I11_#4Q (Lemma 2).
/ — FT428*x S°.

On the other hand we have:

(8)

Lemma 5. FTEP=III_#Q.

Proor.
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Thus we obtain (6)-(8).

(9)
1 2
2 + 4 -
._*_<1 = $S?x S?=II1_48*x S?.

(10)

42P==1II_42P.

(The cases (5) and (10) are proved by [Mo].)

E;.
(12) 2
1+ 2 + 3 + 4 £ 5 + 6
.3
handle

177

. L sliding = 0
= ﬂ‘ <> 16 = $S* x S*46Q

=II_$P§7¢ (Lemma 2).

2
(13) £+2+3+4+5+§/
\+‘3
handle 0
4 sliding

_ ‘ 460  — S £6Q4P

=II_#6Q#P (Lemma 2).
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2
1 2 3 + 4 + 5 -
g Lt 4+ 5 +6 —

=

= m 2 4257 S§F Xx——>x+y

\/

blow-down 3 times
R
@ #ZSZ X SZ -
U~
0

% #2852 x S*#3Q=11_#2P#5Q  (Lemma 2).

ﬁ

(15) 2
‘ +
1 - 6 ©
L3 =11 3P#3Q.
(16) 2
4 +
1 - 6 *
3 =11 _#28°% S°.
an e
<.+ 3 _I1_$2P4Q.
as) .
'<3 —II_#3P.
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% (The cases (11) and (18) are proved by [Mo].)

D, for k>2.
(20) 1 1 . )
6 4 e + 2)}‘ shdehaidles twice
= +
V \.1
o -2 / * T -4 blow-down
‘ k- 1-times
Q k-1 -4
-1 blow-down
X X y 0 z
0 Yy—>y—2
_2 8h+2)Q =
Z—>2—X

in the 1’st picture

4(k+2Q =

o % oﬁ(k+2)Q-
&

‘We denote the last framed link by FDE (including the case k=1).

1

(21 -t
(21) ‘+\2+ +E_<1 = FDE#2PtkQ .

1 =
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(22)
(23)

ﬁ/{ ) \2( | S*x8*  (k=5)

2 S #4852 % >
E}JC L
@ ¥38'x 8*  (k=4)
#382x S*  (k=3)

Hence

D:(p)§P= mq - ‘@/@‘_ @ $4P$4Q
—/
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\
g

T
ut

id
¢

B(k—2)Q44P

%
O |

#(k—1)Q¥4P=FDk#(k—1)Q44P .
(k=5)

(

-~

D;(5)gP= #3P43Q

(@
@:

#4P$3Q = FDAR4PH3Q .

(%
@)

D,5)¢P= A\~ i@ #4P§2Q — FD344PE2Q .
L 2 AN
Du5P= @)@ 43P5Q

0

= @L—j—g@ $4P#Q=FD2§4P}Q .
—/ \>

Similarly we also have D; (5)4Q=FDk#3P4EQ.

() (
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(24)

Hence

'D; (8)4P= @ c\r LOCi ...... — @3, §2P§20Q
u N’

=@ N i@ 42P#(k+1)Q=FDEs2P}(k+1)Q.
\—/

On the other hand, we can see the following:

LemMa 6. FDRi(R—1)Q#2P =N, #Q for k>1, where N,=(k—1)I] +5I;
is represented as ([k—1](1, 0),, (1, 1)_, (1, 2)_, 3(0, 1)) or equivalently ([k—1]
x1, =1),, 1, 0_, @ 1., 300, 1)), which is transformed by elementary trans-
formations to ([k—1}(1, 0),, (0, 1)_, (1,0)_, (0, 1)_, (1, 0)_, (0, 1)_). ([k—1](1, 0),

L

- k—1 N
means (1,0)_, (1L, 0_, ---,(1,0)_)
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The proof will ke given in §5.

183

This proves the cases (20)-(24) for k>2. The case (19) is proved by [Mo].

(19)-(24) for k=1.
(20)

1+ ’1 -)
1»2”11:05——( $PE3Q .
=

We denote the framed link in the right side by FDY'.

21) 1 1

+ -

¢+ 2 _— =FDV#3P}Q.
1

(22) 1 1
2 +2 *  =FDU§2P42Q.

(23)
1 1
>2;2< = @__D 57 % S?
1 1
24 1 1
2 + 2 " _—FDU#2S'x 8.
1 = !

On the other hand, we can see the following:

Levma 7. FD1'#3P-=N}Q.

This follows from Lemma 6 since FD1=FD1’4P (blow-down).
For (23) we see that

@,__D £S?% S P = CC@D 4op
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p X 0 < N m
_ ¢ ﬂ@j §3P— % N\ ) pap—(\ d\—p “y5p
& 7
— FD1'45P.
Similarly we have D 5y @=FD1'$4P#Q.
This proves (20)-(24) for k=1. (19) is proved by [Mo].

Proor or (2), (8), (20)-(24). 1In this paragraph the weights on the ver-
tices denote the self-intersection numbers of the corresponding divisors.

. 3 blow-up
Fi (1,1, 242Q= —%'__—?__—3<~3\__2 12Q =
—2 —1 :
—9 blow-down
-2 -2 -2 = IV*ﬁP

The proofs are similar for the rest cases. First perform blowing-ups by
Q’s to get the linear branches of the form —2---—1 1 and blow down the
P’s on the right side. Every case is reduced to some analytic one which
splits into the sum of I;’s by [Mo]. This also proves (20),-(22), as the dual
of (207),-(22'),.

For type D, we give the alternative proofs using Lemma 8 below, which
give the topological proof of Moishzon’s result ([Mo]) for I§.

(20), . .
: ' ]}
2 = H 2 = 12 490
><1 N « §2Q = Q‘-—// .

We denote the last framed link by FDO.
(21)0 . . 1 1

>%< — FDO42P .
L !
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(22), L~ L

2> _FD0$S*x S~
1 T 1

For these cases we have:

Lemma 8. FDO3P=I#4Q where I¥ =((1, 0)_,,(0, 1)_, (1, 0)_, (0, 1)_,
(1,0, (0, D))=(1,0., 1 1, 1 2., 30, 1).).

The proof will be given in § 5.
This proves (20),-(22),. (19), and (23), are proved by [Mo].

The statements in Theorem 1 for the cases of E and D, give locally best
possible results in the following sense.

QOMPLEMENT To THEOREM 1. (i) Neither Ef(1, 1, 2)£Q, Eg(lll, 24P,
nor EF(2, 2, 1) can be blown down to @ sum of I:’s and Tw’s. (i) Dy(2)§2P,
Dy(3)#2Q, D(DHEP, and D(4)4Q cannot be blown down to sums of I+’s and
Tw’s.

Proor. (i) It suffices to consider E* cases. We consider the euler
number e and Matsumoto’s signature function ¢ of the singular fiber ((M3]).
o(F) for the singular fiber F is defined as o(F)= —4(p)+ Sign(IN) where ¢(B)
is Meyer’s function for the monodromy g of F ([Me]) and Slgn(N) is the
signature of the regular neighborhood N of F ([M3]). We see that e(E*(l 1,2)
=7 and o(E;(1,1,2)=2/3—1+1—8=—7/3 since the monodromy of E; is

(_% (1)) and ¢(( 1 —(1)»:—2/3. Suppose that Er(1, 1, 4Q@=N#aP2bQ

where N=alf +8I7 +7Tw. Then e(N)=«+8+2r=8—a—b, and o(N)=
2Ap—a)/8=—10/3-+b—a. Glue IV=4I; and N together to construct a closed
torus fibration M over S*® in which every singular fiber is of type I# or Tw.
Then e(M)=12—a—b, and o(M)=—8/3—10/3+b—a=—6+b—a. If o(M)
0, then (M) >12 and o(M) is divisible by 8 ([M4]). Therefore (a, b)=(0, 0)
and hence ¢(M)= —6, a contradiction. Therefore s(M)=0. It follows that
(o, b)=(0, 6) since 0<a+b<8, >0, and b>0 (Note that e(IN)>0 since the
monodromy of N is non-trivial.). Thus a+ f-+27=2 and 2(8—«)/3=8/3. But
there are no non-negative integers «, §, and 7 which satisfy the above
equations. Then Ej #@ cannot be blown down to a sum of I;#’s and Tw’s.
Next suppose that Ef(2, 2, )=N #aS? x S* (E#(2, 2, 1) is spin) where N=aI}

+ I +7Tw. e(N)=a+5+2r=7—2a and o(N)=2(8—a)/3=0 (¢(<2 —(1)>):

— 1). Therefore f=a and hence e(N)=2(«+7+a)="7, which is a contradic-
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tion. This proves the case of E2,2,1). (i) Suppose that Dy(2)42P=
N#aP#bQ where N=al; +8I7 +rTw. Then e(N)=8—a—b and o(N)=—2

+2—a+b (q&((_(l) _g)) :O). Add 6I7 to N to construct a torus fibration

M over S? with e(M)=14—a—b and o(M)=—4—a+b. If o(M)+0,thena+b
<2 and ¢(M)=0 (mod. 8 by [M2]. But there are no such non-negative
integers @ and b. Therefore (M )=0 and hence (e, b)=(0, 4) or (1, 5) (Note
that e(IN)>0.). Inthe first case we have a-§-+2r=4 and 2(8—a)/3=4 and in
the second case we have a+8+2r=2 and 2(8—«)/3=4. DBut there are no
such non-negative integers «, 8, and 7 in either case. This proves the case
for D,(2). The cases of Dy(3) and D,(4) are proved similarly so we omit them.

We do not know whether the results in Theorem 1 in the cases of D;’s
for large k are locally best-possible in general.

§4. Stable diffeomorphism types of good torus fibrations

We consider a (stable) diffeomorphism type of a good torus fibration M
over S* without multiple fibers which contains at least one non-analytic fiber
of type E or D. It suffices to consider the case when every singular fiber of
M is reduced. M itself may permit extra blowing-down processes, but we do
not consider the minimal form of M here. For, there is no canonical minimal
form for a non-analytic good singular fiber in general since some of such
fibers cannot be blown down to sums of I#’s and/or Tw’s and in these cases
the blowing down processes cannot be determined canonically (Complement
to Theorem 1in §3). If all the singular fibers in M can be replaced by the
sum of fibers of type I+ and Tw by Theorem 1, then we say that M is reduci-
ble. The diffeomorphisms given in Theorem 1 induce fiber-preserving diffeo-
morphisms on the boundary of the regular neighborhoods of the fibers up to
isotopy (Remark 2in §3), and hence the replaced new structures are still
torus fibrations. There are many reducible and also many non-reducible
examples (Complement to Theorem 1).

TueoreM 2. Let M be a 1-connected good torus fibration over S* without
multiple fibers which contains at least one singular fiber. Furthermore sup-
pose that M has no non-analytic singular fiber of type D. Then a connected-
sum of M and at most one copy of P or Q is diffeomorphic to the manifold of
the form aP#bQ. More precisely the following ones are of such forms:

(1) M4EP (resp. NQ) if every fiber is analytic (resp. anti-analytic).

(2) Case when M has non-analytic fibers.
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(i) M #P and M§2Q ~(resp. M#Q and M#2P) if every non-analytic fiber
is of type ES (1,1, 2) (resp. E; (1,1, 2)),
(i) M#P and MEQ otherwise.

Proor. We may assume that all the fibers are reduced. Case 1 is
proved by T}~1eorem 11lin [1\~/Ia]. By Theorem 1 the non-splittable fibers in M
are of type Es(1, 1, 2) and E#(2, 2, 1) only. Suppose that M contains at least
one such fiber. Let NC M be the torus fibration over D? which contains all
the non-splittable ~ﬁbers in M and is represented by aE+(1, 1, A+a'Ez1, 1, 2)
+0E/(2, 2, )+V'E7 (2, 2, 1). By successive applications of (2) and (2) in
Theorem 1 we have

(1) @k—DE;{(, 1, 2¢P=4kI; +8(k— DI} $(2k+2)Q,
(k—DE;(1, 1, 2)42Q=4(k—1)I; +8kI; $2(k— 1)Q4P,
(i) 2RE;(1,1, Q#P=4kI; +8kI; $2kQ4P,
2kE; (1, 1, 2#2Q=4kI; + Skl #(2k+2)Q.
Also by (8) we have
Gii) bEF(2, 2, )§P=3bI;#(b+1)P#3bQ,
bE#(2, 2, 1)#Q=3bI; £bP#(3b+1)Q.

(We have dual statements for E;5(1, 1, 2) and E;(2, 2, 1) by replacing all the
P’s (@’s) by @’s (P’s) and changing all the signs in (i)-(iii).) This proves case
(2)-G). If (e, @)=(0, 0) or (b, b)=(0, 0), a0, o’ #0, then both N4P and N#@Q
split. If (b, o) (0, 0), then first split E#(2, 2, 1)’s by the blowing-up to obtain
both of new copies of P and @, which appear by the blowing-down processes.
Then use them to split the other E#’s, and hence both N P and N#Q split. If
a’=b=b'=0o0r a=b=0'=0 and M has another non-analytic fiber, then M
itself has the factor P or . Therefore in case (2)-(ii) both M#P and M#Q
are of the form el +8IT +7Tw§aP#bQ. Then by [M2], [M4], [1], and Theorem
11 in [Ma] M is diffeomorphic to a connected sum of some copies of P and @
except for the following cases: (iv) M=al;#bQ, (iv') M=pI;#aP. However
by Theorem 1 every non-analytic fiber is (stably) splittable to a manifold of
the form sIy +tI7uPtvQ such that ©u>0 if i=0 and v>0 if s=0. Hence
neither (iv) nor (iv’) can occur. This proves Theorem 2.

The diffeomorphism types of reducible good torus fibrations over S°
without multiple fibers do not depend on the choices of the gluing maps of
the regular neighborhoods of the singular fibers except for twins obtained
by blowing-downs of fibers of type A and there are no obstructions to con-
structing cross sections (euler class) for such singular fiberings. This follows
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from the corresponding fact about the torus fibrations in which every
singular fiber is either 17 or Tw ([M2]).

The (stable) diffeomorphism types of good torus fibrations for the
general cases will be discussed elsewhere.

01
1. Let M=E;(1, 1,2) with monodromy 8,5,8:8,+E5(1, 2, 2) with mono-
dromy s,8,+D,(4) with monodromy (ss,)’. Then M=2I;$2Q45P+ E;(1,1,2
+Dy4) =617 $Q49P+D(4)="61; + 61, §3Q47P=8Q412P.
2. Let M=E;(2,2,1) with monodromy s;s,+ Dj,_.(5) with monodromy
(5:8,)°8¢™ "1~ (6m-+-5)I; with monodromies

—_——
— -2 -1
S 6m+2$283m 5 *° "y ST 8585, 8oy 81y Sz, "7y S1y S

Examples. Let 312(1 1) and 32=<—]1L (1)>

respectively. Then M=2I} $2Q#P + (6m + 5)I; + D, o(5) = (12m+5) I +
5I;$2P§3Q=(2m—1)P#(10m — DQYTPE8Q=(2m+6)P}(10m-+1)Q.
3. Let M=E;(1, 1, 2) with monodromy (s;s,)’+8I7 with monodromies

S - S

81, Sgy * 5 81, S

respectively. Then M is homeomorphic to 5P#8@Q by Freedman’s Theorem
(IFD). But the diffeomorphism type of M is not determined by Theorem 1
only. It seems that more arguments are necessary to determine the diffeo-
morphism types of non-reducible cases.

§5. Proofs of Lemmas

ProoF or LEMMA 6.
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(D-2. FDE#(k—1)Q42P=the last framed link £3P
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(D-3. In the last framed link, slide a handle «x; to x{=x;—y inductively
(=12, ---,k—1).

XX =X, =Y

The last framed link =

____________ Wo0N.
f " isotopy
o

| o ——
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) k=212
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[k-2]2

successive handle slidings x,—»x,=x,—y
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ix! = (x.-y) (x.-y) = 3-4+2 = 1.

X% (xi V) (xj y) = 3-4+
(1#3).

2

x!7 = 0.
i

Then FDk#(k—1)Q#2P=N4Q.



ing singular fibers

1L
([k—'ll(l: '—'1)+: (17 O)—a (1) 1)—7 3(0: 1)—)

goaws MAVAN
/} lr'hl [k-1] (-Z;vj\ |
OfeFe 1= 1H5)
- )







Splitting singular fibers 197

Thus FDE4(k—1)QE2P=(k— 1)1+ +5I74Q as stated.

Proor oF LEMMA 8.
@) FDosspP
-4




i Ur
0

PRy
= % 9 4Q = ( (’/—\D £Q.
e the last ed link by N,.

We denot

(1,0.,(1,D.,12.,30,1).)
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(II) We prove that ((1,0)_,(0,1D_,(1,0)_, (0, 1)_, (1,0)_, (0, D )=ix.

It suffices to provethat N,=If .

Perform handle-slidings as follows:

1

9
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(%) Xo=x+y+2z4+w—2u)
Yy Yo=y+2z—2u
z|—>|z=2—u
w Wy=w

o) Lo

X+y+z+w

a copy of u

acopyof u
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This proves Lemma 8.
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