J. Fac. Sei. Univ. Tokyo
Sect. IA, Math.
32 (1985), 287-317.

Microlocal boundary value problem for Fuchsian operators, I

F.mild microfunctions and uniqueness thearem——
By Toshinori QAU

Abstract. The sheaf of F-mild microfunctions is constructed as a
microlocalization of the sheaf of F-mild hyperfunctions introduced
previously by the author. Microlocal boundary value problem is formu-
lated in the framework of F-mild microfunctions for microdifferential
(i.e. analytic pseudodifferential) operators of Fuchsian type, and the
uniqueness of solutions is proved.
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Introduction

Kataoka [4] formulated the theory of microlocal boundary value problem
when the boundary is non-characteristic: He introduced the notion of mild
hyperfunctions, which is a sheaf of hyperfunctions defined on one side of
the boundary having boundary values as hyperfunctions on the boundary.
Microlocalizing the sheaf of mild hyperfunctions he defined the sheaf E wines
(we call it the sheaf of mild microfunctions in this paper) on the purely
imaginary cosphere bundle 4/ —1S*N of the boundary N. Microlocal
boundary value problem is neatly formulated in the framework of mild
microfunctions for microdifferential operators with respect to which N is
non-characteristic. Such formulation of microlocal boundary value problem



288 Toshinori OAxU

is especially useful when one studies the regularity (or singularity) of solu-
tions of boundary value problem even if the operator under consideration is
a partial differential operator. In fact, applying this theory Kataoka [5]
studied the propagation of regularity up to the boundary for semi-hyperbolic
or diffractive operators.

On the other hand, the present author introduced in [8] the sheaf of
F-mild hyperfunctions as a generalization of that of mild hyperfunctions.
F-mild hyperfunctions are, roughly speaking, hyperfunctions defined on one
side of the boundary which have boundary values as hyperfunctions on the
boundary defined in a natural way through their defining functions. Being
developed by means of the usual theory of hyperfunctions and microfunctions
and of the curvilinear wave expansion (Radon transformation) for holomor-
phic functions, the theory of F-mild hyperfunctions is more elementary than
that of mild hyperfunctions.

In this paper, microlocalizing the sheaf of F-mild hyperfunctions, we
introduce the sheaf of F-mild microfunctions on v —1S*N. We study prop-
erties of the sheaf of F-mild microfunctions by reducing them to microfunc-
tions with a real analytic parameter through some (singular) coordinate
transformation: The sheaf of F-mild microfunctions is a soft sheaf; suitable
classes of microdifferential operators and of quantized contact transforma-
tions act on this sheaf; an F-mild microfunction u(x) has the boundary value
u(+0, x) as a microfunction on v/ —1S8*N; the sheaf of mild microfunctions
is a subsheaf of that of F-mild microfunctions.

Using the sheaf of F-mild microfunctions we formulate microlocal
boundary value problem for Fuchsian microdifferential operators. We use
the notation M=R"3x=(x, ') with *'=(x,, ---,x,), N={xeM; x,=0},
D=(D, D), D'=(D,, ---, D,) with D,=3/3x,. A microdifferential operator
P1is called a Fuchsian operator of type (k, m) with respect to x, if it is written
in the form

P=xiD+Ax, Dxi "Dyt - - - + Ay, D)DP*+ - -+ A,(x, D),

where k£ and m are integers such that 0<k<m, A, is an operator of order<j
such that A;(0)=A4,(0, x/, D) is of order<0 if 1<j<k. The roots of the
equation

0=1): - - Q= m+ D+ o ALONTAA—1)- - -A—m+ D)+ - - -
+ O ALONEIA—T)- - (A mt k1) =0

with respect to 2 are called the characteristic exponents of Pat x* ¢ v/ —1S*N,
where ¢, denotes the homogeneous part of order 0. These notions were
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introduced by Tahara [10] as a generalization of Fuchsian partial differential
operators defined by Baouendi-Goulaouic [1]. Boundary value problem for
such P is to find an F-mild microfunction u satisfying

Pu=f, (Du)(+0, ¥)=v,(x) OZv<m—k—1)

for a given F-mild microfunction f and given microfunctions v,. The case of
k=0 corresponds to the case where N is non-characteristic with respect to P.
Hence this formulation is a generalization of the microlocal non-characteris-
tic boundary value problem.

We prove the uniqueness of solutions of this boundary value problem
under the assumption that none of the characteristic exponents is an
integer=m—*k. (Generally, this assumption is necessary as is seen by the
equation x,D,6(x,)=0.)

TIn order to prove this uniqueness theorem, we reduce F-mild microfunc-
tions to mild microfunctions by a suitable change of the variable x,, and
apply the quantized Legendre transformation, which exchanges the variable
x, and a holomorphic parameter {,, in accordance with [4]: The quantized
Legendre transform of P has regular singularities at {;=co. Hence we can
apply the argument of canonical forms of operators with regular singularities
studied previously by the author ([6]). The uniqueness theorem follows from
this argument.

For Fuchsian partial differential operators, this uniqueness theorem was
proved by the author ([8]) by completely different method based on analytic
functionals. On the other hand, microlocal Cauchy problem (i.e. two-sided
boundary value problem) was first studied by Tahara [10]; he proved the
well-posedness of Cauchy problem in the framework of microfunctions with
a real analytic parameter x; for Fuchsian microdifferential operators whose
principal symbols are of the form x!D7. Uniqueness of solution of microlocal
Cauchy problem was proved by the author ([7]) for general Fuchsian micro-
differential operators. Our uniqueness theorem generalizes these previous
results.

In subsequent papers we shall study the solvability of the microlocal
boundary value problem for semihyperbolic Fuchsian microdifferential oper-
ators and also study the propagation of regularity of solutions.

§1. Sheaf of F-mild hyperfunctions and its microlocalization
1.1. F-mild hyperfunctions

First let us recall the notion of F-mild hyperfunctions introduced by
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Oaku [8]. Since we are interested in local (or microlocal) properties, we
restrict our consideration to M =R" 5 x=(x,, x) with ' =(x,, - - -, x,) instead
of general real analytic manifolds. Set X=C"3 z=(z,2) with2'=(z,,- - -,2,),
N={xeM; x,=0}, Y={zeX; 2,=0}, M.,={xeM; 2,20}, int M.={xeM;
x,>0). Let ¢:int M,—M be the natural embedding and consider the sheaf
By, =(tst ' By)y, where %, denotes the sheaf of hyperfunctions on M,
The sheaf #,,, is, roughly speaking, the sheaf of hyperfunctions defined on
the positive side of N, and was introduced by Kataoka [4]. The sheaf of
F-mild hyperfunctions is a subsheaf of %, , defined as follows.

DeFintTION 1.1 (Oaku [8]). Let u be a germ of &y, at X N. Then u
is called F-mild (from the positive side of N) at % if and only if u has an ex-
pression as a sum of boundary values of holomorphic functions as follows:

(1) u(x)= 3. Fx, &'+ V=1I0)

on {xeint M, ;|x—x|<e}, where J is a positive integer, ¢ is a positive number,
I'; is an open convex cone (with vertex at the origin) in R*Y, and F; is a
holomorphic function defined on a neighborhood (in C*) of

(2) D& T'je)={z=(2,2)eC";|2—%|<e,Rez=0,Imz=0,Imz' el'}.

For an open set U of N, %#%,,,(U) denotes the set of sections of %y,
over U which are F-mild at each point of U. Then %%, constitutes a
subsheaf of #,,, and its sections are called F-mild hyperfunctions. Note
that we used the notation £%,,, instead of %%, in [8]. We sometimes
abbreviate %%, to #7. The notion of F-mildness is invariant under local
(real analytic) coordinate transformations which preserve N and M, (Prop-
osition 1 of [8]).

DeFiNiTION 1.2 ([8]). The homomorphism of ‘boundary values’ b: %%, .
—%y 1s defined as follows: If u(x) is an F-mild hyperfunction defined on a
neighborhood of £ ¢ N and has an expression (1), then

b)) =u(+0, &)= 3 F0, ¥+ /=17 0) e (B,: .

By virtue of the edge of the wedge theorem for F-mild hyperfunctions
(Theorem 1 of [8]), u(+0, x') is well-defined (independent of the choice of ex-
pression (1)).

We denote by 44 the restriction to N of the sheaf on M of hyperfunctions
which have x, as a real analytic parameter.
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LemMMA 1.3. The sheaf homomorphism o: %%,y,—~%*, where a(u)(x)=
w(x?, &), is well-defined and injective, and o(u) satisfies a(u)(—x, x)=
a(u)(x,, x'). Conversely, if a section f of #* over a subset UCN satisfies
f(—x, x)=Ff(x;, X'), there exists a unique section u of #%,,, over U such that

a(w)=f.

Proor. The well-definedness is proved in Proposition 3 of [8] and the
injectivity of « is obvious because %%, is a subsheaf of % ,,. Let us
prove the latter part of the statement. Let f € #4(U) satisfy f(— x,, )= f(x).
Suppose that f has an expression

F@= 33 Giw, &+ V=1L

on a neighborhood (in M) of % € U, where G,(2) is holomorphic on a neigh-
borhood of

D(%, e, [)={2=(z2, 2) € C"; |z—&|<e, Im 2,=0,Im 2’ "},

and I}, ¢, J are as in Definition 1.1. Set

Hy(2)= %(zel, 2)+Gy(—z, ).

Since f(—x,, x')=f(x), we have
f@)= 3 Hx, ¥ +v=1T0).

Tt is easy to see that F,(2)=H(4/ %, Z) is a well-defined holomorphic function
on a neighborhood of D, (%, ¢, I';) for some ¢>0. Set

u(x)= 3 Fyw, ¥ +V=100).

Then u(x) is an F-mild hyperfunction defined on a neighborhood of £ and
u(x?, )=f(x) holds. Since « is injective, there exists a unique F-mild hyper-
function u over U such that a(u)=1.

PrROPOSITION 1.4. The sheaf &%y, of F-mild hyperfunctions is a soft
sheaf on N.

Proor. Let Z be a closed set of N and u(x) be an F-mild hyperfunction
defined on a neighborhood of Z. Then f(x)=u(x}, x') is a section of Z* defined
on a neighborhood of Z. Since #* is a soft sheaf (cf. Lemma 1.7), there
exists a section g of #4 over N such that f=g on Z. Since f(—x,, x)=f(x)
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on Z, we have f(x)=(g(x)+ g(—x, &'))/2 on Z. By the preceding lemma,
there exists an F-mild hyperfunction v on N such that v(x?, x)=(g(x)+
g(—x, x))/2. Since a(v)=f=a(u) on Z, we get vy=u on Z. This completes
the proof.

1.2. F-mild microfunctions

We shall microlocalize the sheaf #%,,,. Let v —1S*M and v —1S*N
be the purely imaginary cosphere bundles of M and N respectively and
my: ¥ —1S*M-—->M and 7,: 4/ —1S*N—N be the canonical projections. Let

o:V—18*M|y— v —-1S§M—>+—18*N

be the canonical map; i.e. p(0, ¥/, ¥V —1&o0)=(x/, ¥y —1& o) where £=(§, &)
e R* with & e R"'—{0}. The p-singular spectrum of an F-mild hyperfunc-
tion is defined as follows.

DerinNiTION 1.5 ([8]). For an F-mild hyperfunction z on an open set U
of N, its p-singular spectrum p-SS(u) is the closed subset of z3(U) defined as
follows: A point x*=(%, ¥ —1&’c0) of 75'(U) is not contained in p-SS(u) if
and only if u(x) has an expression (1) on a neighborhood of % with & ¢ I' =
{geR 4 y,&>=0forany y e} for j=1, ---, .

We identify /' —1S*N with N X+ =152 where S"-?denotes the (n—2)-
dimensional sphere. For open connected sets UCN and 4CS*?, we asso-
ciate a C-vector space {u e #7(U); p-SS@)N(UXV —=14)=0} to Ux+/—14.
This correspondence defines a presheaf on ¥/ —1S*N. The sheaf associated
with this presheaf is denoted by o7*F.

DEerintTioN 1.6, The sheaf €%, is defined by
%§}M+:ﬂ&1g§[ﬂl+/ﬂ*F .

Sections of €%, are called F-mild microfunctions. Let sp: 25 %% 4, —C5 %,
be the canonical homomorphism (spectral map).

We set 4= p (¥ xlz) With Z=+—18*M|,—+—1SiM, where %, denotes
the sheaf on v —1S*M of microfunctions and p, denotes the direct image
with proper supports. Then the following lemma follows from the flabbiness
of €y

LemMa 1.7. (i) For a closed set K of N and a compact set 4 of S 2,
there is a canonical isomorphism by the spectral map,

FUE XV —1D)=BK)[{uec BYK); SSW)Np (K XV —1d)= 21,
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where SS(u) denotes the singular spectrum of u. In paraticular, there is an
exact sequence

00— y ly—> B> 1 F —>0

where <, denotes the sheaf of real analytic functions on M.
(i) The sheaf %* is a soft sheaf on v/ —1S*N,

Lemma 1.8, There exists an injective sheaf homomorphism a: €%, ,—€*
defined by a(sp(f))=sp(e(f)) for each section f of B*. For each section u of
E s (W(— 2y, )= a(u)(x) holds. Conversely, if a section v of ¥* over UcC
v —=18*N satisfies v(—x;, x)=1(x), then there exists a unique section u of
€% u. over U such that a(u)=v.

Proor. For a section f of %7, p-SS(f)=o(SS(x(f))) holds (see Definition
3 and Proposition 4 of [8]). Hence the injective sheaf homomorphism
o of €% i, to €4 is well-defined by virtue of Definition 1.6 and Lemma 1.7 (i).
Let ve ©* satisfy v(—x,, x)=uv(x). For each point x* of U, there exists a
germ g of #* at z(x*) such that v=sp(g) on a neighborhood of x*. There
exists a germ f of %7 at n(x*) such that a(f)=(g(x)+ g(—x,, x))/2. Since
v(x)=sp((g(x)+ g(—xy, x))/2) holds by virtue of the assumption, sp(f) satis-
fies a(sp(f))=v on a neighborhood of x*. Since « is injective, there exists a
unique section u of €%, over U such that e(uj=v.

Prorosition 1.9.  For a closed set K of N and o compact set 4 of S™2,

Ehu (KX —=14)
=X u (K {ue By (K); p-SS)NK XV —=14)= D).

Proor. Since there is an exact sequence

0—>{ue B (K); p-SSW) N (K XV —=14)=3}—>B7(K)
"—)(g{vylu+(K>< «/——1 4y,

we have only to show the surjectivity of the last homomorphism. Let u be
an F-mild microfunction on K X+ —14. Then by Lemma 1.7 (i) there exists
a section g of #4 over K such that sp(g)=a(u) on K X+ —14. Note sp((g(x)
+g(—x, x))/2)=a(u) holds on K X+ —14. There exists a section f of B over
K such that a(f)=(g(x)+ g(—x,, x))/2 on K by virtue of Lemma 1.3. Since
spla(f))=a(u) holds on KX+ —14, we get sp(f)=u. This completes the
proof.

COROLLARY 1.10. There is a short exact sequence
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O’—_>=52{M(N—)ggf’vmﬁ_“"ﬂiv*(gfvm.f—*o .
ProrosiTioN 1.11.  The sheaf €%, is a soft sheaf on ¥/ —1S*N.

Proor. Let u be an F-mild microfunction on a closed set Z of
~/—18*N. Since %“ is a soft sheaf, there exists a section v of ¥4 over
~/—18*N such that v=ca(u) on Z. There exists a section w of %,,, over
V=18*N such that e(w)(x)=W(x)+1(—x, x))/2. Since a(w)=a(w) on Z,
w=u holds on Z. This completes the proof.

ProposiTiON 1.12. The sheaf €%y, is invariant under local coordinate
transformations which preserve N and M,.

Proor. Let z=¢(w) be a local coordinate transformation of X defined
by

z=pW)=y(Ww, z,=pw) @2Zj<n)

on a neighborhood 2 of 0 in X=C". We assume that ¢ preserves N, M., 0,

and the orientation of N; i.e. ¢ (w)eR for ue QNR* and 2<j<n, ¥(W)>0
for ue 2 N R", ¢(0)=0, and det(@p/ow)(0)>0. The map ¢ induces a local

coordinate transformation ¢* of +—1S*N so that ¢*(u/,vV—1yc0)=

(&', ¥ =18 o), where x'=¢(0, u’) and

p=3 Bie (=2 --,m).
i=2 aui

Since det(9¢’/ow’) does not vanish on a neighborhood of 0 (¢'=(¢;, - - -, 0.),
¢* is well-defined on a neighborhood of z3'(0).

Now let f(x)=F(x,, ¥’ ++—1I0) be an F-mild hyperfunction, where F'
is holomorphic on a neighborhood of D,(0, I, ¢) with an open convex cone
T of R*~tand ¢>0. In view of Definitions 1.5 and 1.6, it suffices to show that
f(o(w)) is also F-mild at 0 and

¢ (oSS (fle@ Nz (O {0} x v =100 .

Let <1 be a compactly contained subcone. By virtue of Lemma 1 of [8],
F is holomorphic on

(3) {e=x+v =1y e C; [2|<c, yi<cly'[(x+c|¥'), ¥y e I'}
with some ¢>0. Put w=u-++—1v with u,ve R*. Then we have
{yi(uy, w/)_\’fl(u)!éclvll ’

and hence
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( 4 ) IIm ¢1(u1, w,)lé Cul! U,l9 Re Gpl(ub w’)ZO

for some C independent of w=(u,, w’) with |w|<§ and w,=u,=0. Set

V= {v’=(vz, L U)ERT U= f ow, ©)y; G=2, ---, n),
=2 0z;

Y=, ~-,yn)el”’}.

Then for any open subcone V’< V, there exists ¢’ >0 such that Im (o(w)) € I
for any w=_(u,, w’) with |w|<§, u,=0, Imw’' ¢ V' since

J=

y= 3 %(t»)vjwqul|v'|>+0<|v't2>
2 0w;

for w=(u;, w) with 4,20 and i=2, ---, n. In view of (4) there exists ¢>0
such that ¢(w) is contained in the set (8) if |w|<le, w, =1, =0, and Im (w’) € V".
Thus flp(w)=F(p(u,, w'++/ —1 V' 0)) is also F-mild at 0 and

o-S8(f(p(w)) N 77 (0) C{0} X v/ —1 V°e0
holds since V'« V is arbitrary. Noting that

so*({O}xfﬁV%@:{O}xﬁ"it( ow’ <o>)vooo

0z’

ow

=0)xv=1((ZL @) V) =i}y =110,

we get
o*(0-SS(f(p())) N 7510) {0} X I"° 00
since ['<[ is arbitrary. This completes the proof.

ProrposiTioN 1.13. The sheaf homomorphism b: %%, . —%y defined in
Definition 1.2 induces a sheaf homomorphism

b: €%y, —%y

so that b(sp(f))=sp(b(f)) for any F-mild hyperfunction f. Morecver, b is in-
variant under local coordinate transformations of M preserving N and M.,.

Proor. The first statement follows immediately from Definitions 1.2 and
1.6 and the fact that SS(b(f))C p-SS(f) holds for any F-mild hyperfunction f.
The last statement can be proved in the same way as in the proof of Propo-
sition 1.12.
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1.3. Action of microdifferential operators on F-mild microfunctions

Now we introduce a class of microdifferential operators which act on
CRin,. Let &z be the sheaf of microdifferential operators (of finite order)
associated with the projection of X to Y;i.e. £, 1s the sheaf of rings of
microdifferential operators A(z,, 2/, D’) having z, as a holomorphic parameter
(cf. [9, Chapter II]); here we write D'=D,.=(D,, - - -, D,) with D,=D, =3d/5z,.
We regard €y, as a sheaf on the cotangent bundle T#Y of Y by restricting
it to a neighborhood of z,=0, and also regard v—1S*N=NXx+—18""% as
a subset of T*Y. Let &4,,[D.] be the sheaf of rings of polynomials of D,
with coefficients in €,,. Note that for any point x* of +/—1S*N, a germ
of &x,v[D;] at x* can be regarded as a microdifferential operator defined on
a neighborhood of p~*(x*). In particular, sections of &y,[D,] act on €4 as
sheaf homomorphisms. We define the action of &4, [D,] on €%, through
its action on ¥“.

PropositioN 1.14.  The sheaf of rings &x,v[Dy] acts on €%y, so that
a(A(x, D, )u(x))= A(x2, &, D, )a(u)(x) for a section A of &,, over UC/—1S*N
and a section u of €%, over U.

Proor. Since A((—=x), «, D )e(u)(—x,, x)y=A(x, &', D,)a(u)(x) holds,
there exists a wunique section v of %%, over U such that «{v)(x)=
A2, &/, D )a(u)(x) by virtue of Lemma 1.8. Hence v=A(x, D,)u is well-
defined. If B is another section of €4, over U, we have

a(B(Aw)=B(x}, ', D ya(Au)=B(x}, x', D,)A(x}, ', D, )eluw)
=(BA)x}, &', D,)a(uy=a((BA)u) .

Thus B(Au)=(BA)u holds and &y, acts on ¢%,,,.. Since the sheaf 2; of
partial differential operators with analytic coefficients acts on %7%,,,, the
sheaf of rings &€4,7[D,] acts on €%,,,. This completes the proof.

Next let us describe the action of ¢,,[D,] on €%, concretely employ-
ing methods of Kashiwara-Kawai [3] and Bony-Schapira [2]. Let A(x, D,)
=>,<mAs(x, D) be a germ of &5,y at x*=(0, v —1dx,c0) ¢ ¥ — 1 S*N, where
A; is homogeneous of order j with j, me Z. There is a constant ¢, with

0<c,<1lsuch that A(z, D,)is a microdifferential operator defined on a neigh-
borhood of

(l)o={(2, C,) eCXx T*Cn—l; C,:(CZ, e, Cn) e Cn—l_{o},
2]y 1210 [E1<alE] (=2, -+, n—1D}.

Then A is developed formally
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A=Y a (2D,

where the multi-index & runs on the set {&'=(a, -, @) e Z""; &, =0
(=2, --.,n—1), | |=a,+ -+ +a,<m}. The kernel function K(z, w’) of A
is defined by

Kz, w)= 3 a 0.,

where
@a’(w,) = szg(wZ) tet @an(wn)
with
1 v!
D)= : =0,1,2,.--),
® 2ay/ —1 (—ty+ e )
1 1
O, (t)=— i logt ——1, =2 -.).
i e pr s TR LA )

It is easy to see that K(z, w’) is a (multi-valued) analytic function on
2=z, w)e C"xXC""; |z|<cy |2/|< 0y, |w,]<C7Y, 0<|w, [<cpjw,]
=2, -, n—l)}
with some C>0. Put
I'={y e R y,>0¢l|yl/2 (j=2,---,n—1}.

Now let u be a germ of %%, at x*. Then in view of the softness of
%%, x. we can find a holomorphic function F defined on a neighborhood of
D,(0, ¢;, I') such that u=sp(F(x,, ®++/—170)) at x* with some ¢, such that
0<¢e,<min(c,, C™Y). Choosing a so that 0<a<c,,/6n, we put

Y={zeC""; z,=+—1a},
Q'={zeC" Y |z|+ctz,— vV —1a|<2ac¢},
RQ=0"NR+4-11).
For each 2/ e, let 7: T"'—»Q (where T '=(R/Z)*"' is the (n—1)-
dimensional torus) be a chain such that
( i ) T(SZ, s San 0) € 2 fOI‘ any (827 Tty sn—l) € Tn_z s
(it) w' e7 and |z]<c, imply (2, w' —2) e 2,,

1 dw’ .
e e e P
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Then we set
(A),F(2)= j K(z, 2 —w)F(z, w)duw .
T

This depends neither on the choice of 7 satisfying (i)-(iii) nor on the choice
of the branch of K(z, 2 —w’) (it is easy to see that such a 7 exists). Since £
is ¢,—2-flat in the sense of [2] with diameter smaller than C-! and since Fis
holomorphic in a neighborhood of {x, ¢ R; 0<x,<c¢,/2} X 2, we can verify that
(A).F is also holomorphic in a neighborhood of this set and that the germ
sp((A) F(xy, x’++/=1I'0)) of €%y, at x* is independent of a by applying the
argument of [2] to the variables 2.

ProposrtioN 1.15. In the above situation, sp((A).F(x;, ¥’ ++ —1I"0)
coincides with Au(x) as a germ of €%, at x*.

Proor. Since F(2, 2’) is holomorphic on a neighborhood of {z,=x, ¢ R;

(A(z, 2, D) F(z, 2)=((A).F), )

is also holomorphic in a neighborhood of this set. Moreover, in view of
Theorem 3.10 of [3], (A, F)(x2, x’++/ —1I'0) coincides with A(x2, «/, D,)a(w)
as a germ of ¥4 at x* (« is defined in Lemma 1.8). Hence the statement of
this proposition follows from Lemma 1.8 since

a(sp((A)F(x, X' ++/ =1 0)=A(x%, %/, D, )a(w) = a(Au)
holds.

1.4. Quantized contact transformations

Now let us introduce a class of quantized contact transformations act-
ing on €%y, and &y, [D,] (see [9] for the definition of quantized contact
transformations). Let + be a canonical transformation of v —1.S*M defined
on a neighborhood of p~(x*) with x* € ¥/ —1S*N which preserves x,. Let
(3, 7) be a copy of (x, £&). Then the transformation (y, 7)=1(x, &) is defined
by

y1=€01(x, S)le s
yj=¢.7(x! "S) (j=2’ ""n’)a
7]k=11’k(x9 S) (kzly Y n)

with the relations
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{e oe}={ds ¥} =0
{¢f7 wk}=‘5]k (],k:l, -«-,n),

where d;, is Kronecker’s § and

- (995 9¢e _ Oy 3%) ot
i Orb= et AP Rt 4l N C.
tenod=2, <a;~: ox, ox, 98,

From these relations, it follows that ¢, and +; (j=2, -- -, n) do not depend
on & (hence we write ¢,=¢/(x, &) ete.), ¥, is written in the form - (x, &)=
&+ (x, &), and that the transformation (¥, 7)=+/(x/, &) defined by

V=00, 2, &), n,=9,0,%,&) (=2, ---,n)

is a canonical transformation of 4/ —1 S*N defined on a neighborhood of x*.
Let & be the sheaf on T*X of microdifferential operators.
There exists a quantized contact transformation

/28 (w_léax)lrl(m-:—)éax}fi(m ’

where U is a neighborhood of x* in 4/ —18S*N. In fact, we can choose ¥ so
that ¥(y,)=x, in view of the argument of the proof of Theorem 3.3.3 of [9,
Chapter II]. Then the relations

%, ¥(D)]=—1, [x, ¥(D,)]=0 (=2 ---,m)

hold, where we use the notation [4, B]== AB—BA for operators A and B.
Hence we can put

(5) {Z{T(yj)-——PJ(x, Dx’)7 W(Dyj)_—_QJ(xs Dx') (JZZ, M "n),
W(Dzu) = Ql(xy Dz) = Dz; + Q{(x, -Dx') »
where D,, denotes (D,,, - - -, D,,). In particular, we can guarantee that ¥ is

defined on p~(U) with a neighborhood U of x* and that ¥ induces a quan-
tized contact transformation ¥ associated with + defined by

¥(y)=P(0,x, D), ¥'(D,)=Q[0,«, D) (j=2,---,n).
Moreover we get the following proposition easily.
ProprosrTioN 1.16. ¥ induces isomorphisms
Ui " Eyypp—>6 1)r

and
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T '€ 2y D)—58 5,y [D)]
on a neighborhood U of x*.

In order to describe the action of ¥ on %%, ., let us denote by L(x, ¥) a
kernel function of ¥.

ProposiTioN 1.17. ¥ induces a sheaf isomorphism
W: w,—lgﬁmt*, =~ > g;IM+
defined on a neighborhood of x* and compatible with the action of &,,[D.];
ie., V(Aw)="(A)¥(u) for a section u of €%, and a section A of &,,[D].
Proor. L=L(x,y) satisfies the equations
(yi—x)L=0,
(yj_Pj(x5 Dz’))LZO (]:2’ "'an’)’
(Dy1+Dx1+ Q;(x: Dz’))L: 0 s
(Dyj+Qj(x3 D:c’))L:O (]:27 . '7n)'

Hence L is written in the form

L(x5 y) = 5(3’1 e xl)L/(x: y,) s
where the support of L’ as a microfunction is contained in
{(x3 y,’ vV — 1 (é; 77/)00); y,-=goj(x, Sl)a ni= _WJ'(x’ 5/) (]=2, R n)a
Sl + 11’;(“:; 5’) = O}
and L’ satisfies
(y;—~Pyx, D)L (x, y)=0 =2,---,n),
(D.,+Qi(x, D)L (x, y)=0,
(Dy,+Qx, D YL (x,y)=0  (j=2,---,n).
Put
a(L)(x, ) =0(y,— 2 )L/ (x}, &', ¥') .
Then a(L) satisfies
(yi— xl)a(L)(x’ y) =0,
(yj—'Pj(xfa x,’ D.r’))a(L)(x> y)=0 (]:2’ ttty n) s
(Dy1 + D.’El + 2x1Q;(x%: x,y Dz’))a(L)(xy y) =0 ’
(Dy,+ @, &, D )alL)(x, )=0  (j=2,---,n).
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Hence a(L) is a kernel function of the quantized contact transformation a(¥)
defined by

oz(w')(y,)le ’ a(w‘)(y.]):PJ(xi x/, Dx') ) (J=2a ) n) ’
(6) a(TXDy,)=D,,+2x,Q1(x}, «', D),
(TXD,,)=Qx%, x', D) (J=2,---,m.

«(¥y induces a sheaf isomorphism
a(T): /G-

on a neighborhood of x* by
() @)= [ el Duoddy= [ L6, «, y)vtw, y)dy

There exists a unique sheaf homomorphism
. - F 3
Ty’ 1%N151+—>(5N1M+

defined on a neighborhood of x* such that «(¥'(w))=a(¥)(a(w)) for any section
u of €%,,. Since a(¥) is an isomorphism, the injectivity of ¥ follows from
that of @. Let us show that ¥ is surjective. Let uw be a section of €%,
defined on a neighborhood of (x*). Then there exists a section v of ¥“
defined on a neighborhood of x* such that a(¥)v)=a(v). In view of (7), we
get

() (— %5, &) = a(@)(—x,, 2)=cu)(x) .

By the injectivity of a(¥), v{ —x;, ¥)=uv(x) holds. Hence there exists a sec-
tion w of %%, such that a(w)=v, and ¥(w)=u holds. Thus the sheaf
homomorphism

.1 -1coF F
WW gN}M.I_—)%ﬁNIM.;.

is an isomorphism on a neighborhood of x*.
Let A=A(x, D,) be a section of &4,, on a neighborhood of x*. Then we
have

(8) aT (Aw) =¥ WA ¥, Dy)elw))
=a(T)A®W Y, Dy )T ) e(w)
=T (A)x}, &/, D-)al¥(w))
=a(T (A (w)) .
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In fact we can verify a(TYA(Y v, D,)=P(A)(x% x', D,) using the relations
(5) and (6). From (8) we get T'(Aw)=T(4)¥(v).
On the other hand, we get from (6)

2x,0(T (D, u(y))) =2x:0(F)(D,, )5, ¥))
=a(¥)(2:(D,, )5, ) =a(T)Dy,a(w)) =l T)D, Jor(¥ W)
=(D,,+2x,Qi(x}, &', D.)a(¥ (W))(x)
=2x/(D,, ¥ W), ) +2x,Q1(x1, ', D) (W), x)
=2x,0((D;,+ Qi(%, D )¥ (w)(x))=2x,0(¥ (D, )¥ (w)) .

Hence setting
v=a(¥'(Dy,u))—a(¥(D,)¥ ()

‘we get x,u(x)=0. Since bicharacteristics of the operator x, are fibers of p,
the support of v is a union of fibers of p. Thus we get v=0 and hence

YDy, u)=¥(D,)¥(w)

because the support of v as a section of ¥, is proper with respect to p.
Hence ¥ is compatible with the action of &4,+[D,]. This completes the proof.

Since L'(0, x', ') satisfies

(yj —PJ'(O’ x,a Dx’))L,(O’ x,3 y,) =0 s
(Dyj+ Qj(oy x,a Dz'))LI(O’ x,’ y’):O (]=2> tt Sty n) )

it is a kernel function of the quantized contact transformation ¥’. We define
a sheaf isomorphism

R e T
so that
)= [ L0, ¥, y)0()dy
for a section v of ¥, on a neighborhood of /(x*).

PropositioN 1.18. The homomorphism b: €%, —~%x is compatible with
¥ and ¥7; i.e., b(T(w)=""(b(w)) holds for any section u of €%,,, on a neigh-
borhood of '(x*).

Proor. Since b{a(w))=b(u) holds, we get
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b () =bla@ @) =b ([ LG, , y)atu)(, ¥)dy )
= j L0, &/, ¥)ee(u)©0, y)dy =¥ (bla(u)) =¥ (b(w)) .
This completes the proof.
1.5. Relation between F-mild microfunctions and mild microfunc-
tions

We shall relate the sheaf of F-mild microfunctions to that of mild micro-
functions of Kataoka [4]. This subsection is a preliminary part of the proof
of the uniqueness theorem of Section 2. First let us recall the definition of
the sheaf €y, of mild microfunctions in accordance with [4]. Put

SEX —SEX={0,x, {, ¥ —18)o0); ¥’ e "1, € C, § e R —{0}},
SEX=(SEX—-SEX)UW —185*Nx{eo})
={(0, &, (€, ¥ —18)00); ¥ e R, {; € CU {0}, & e R —{0}}
and let
: SEX—SEX——>v/—-18*N,
@ SEX>——>/ —18*N
be the canonical projections. The sheaf €3, is defined by
(g;;u(: i*((gmﬂs}*\,X—s*}X) s
where i: S(X —SiX—>S: X" is the natural embedding. Let
t*: G, —8EX={0,«, ¢, ¥V —18&)0) € S X —S%X; Re{;=0}—>v/ —1S%Y

be the canonical projection. Then the sheaf €. of mild microfunctions
is defined by

%N]M-;- :((‘+)*(%M+{X) n ((g;;xx]J-_ls*zvx(m)))/l*(gmx s

where v —1S*N X {co} is identified with ¥/ —1S*N. Note that €, is an
& xv[Dy]-module.

Let #y,,, be the sheaf of mild hyperfunctions (on the positive side of N)
and let /%, be the sheaf associated with the presheaf

UV =T 4—>{f & £y, (U); p-SS(DN(U x+/=14)=2}
for open connected sets U of N and 4 of S"~%. It is easy to see that p-SS(f)
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colncides with «SS(f) defined in {4] for mild hyperfunctions f in view of the
proof of Lemma 2 of [8]. Hence by virtue of Proposition 2.1.21 of [4], there
exists an exact sequence

. i .
(9) 0_'9%1)51Aw1+—“>71'1v gzvm“—")(gwmu—’O s

where the last homomorphism is defined by sp(ext(f)) for sections f of %y,
and ext(f)= Y(x,)f(x) is the canonical extension of f defined in [4] (note that
ext(f) is a section of #, with support contained in M,). From this exact
sequence, we get the following proposition immediately.

ProposIitioN 1.19. There exists a natural injective sheaf homomorphism
12 Coiw,—>C5, such that j(splext(f)))=sp(f) for any mild hyperfunction f,
where sp(f) denotes the F-mild microfunction corresponding to F-mild hyper-
function f.

ProposrrioN 1.20. For any integer q=2, there exists a unique sheaf
homomorphism

/v pF 2
ﬁ . gNlIPI+'—>(gN1M+

such that B'(sp(f(x)))=splext(f(xf, x'))) holds for any F-mild hyperfunction f.
Moreover, § is injective, and

(10) Axf, &', D,)§' (w)= ' (Alx, D,)u)

holds for a section A of &x,, over UC+/—18*N and a section u of €%,y over
U.

Proor. In view of the exact sequence (9), it is easy to see that g is
uniquely determined and injective (see Proposition 2 of [8]). Let us verify
(10). We may assume that U is a neighborhood of x*=(0, v —1dx,c0) ¢
~/—1S8*N and that A is defined on a neighborhood of w, in the notation in
Subsection 1.3. Hereafter we use the notation in Subsection 1.3. There
exists a holomorphic function F defined on a neighborhood of D,(0,¢, ")
with 0<c¢,;<{¢, and

F:{y,eRn_x;yn>COlyjl/2 (j:29 DY n)}

such that sp(F(x,, ¥ ++/ —17I'0))=u at x*. Then from the definition of the
canonical extension, we get

(W) =sp(Y(x)F(xf, x'++/—110)) ;
here Y denotes the Heaviside function, and Y{x)F(x?, ¥’ ++ —110) denotes
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the boundary value of the hyperfunction Y(x)F(x{,z’) with respect to holo-
morphic parameters 2. Note that Y(x))F(xf, ) is well-defined on

{(xy, 2) e RXC™ 715 [, 7=Zc[2, 2| <ef2, Im2 e} .

Let 2,, 3, 2, K, 7 be as in Subsection 1.3 and set
Gl 2)= | K(at, 2, 2 —w)(Y()F(xt, w)du,
7
H(z)= J' Kz, 2 —w)F(z, w)dw .
7

Then G(x,, 2’) is a hyperfunction with holomorphic parameters 2’ defined on
{xi € R; |x,]9<cof2} X 82

and H(2) is holomorphic on {z, € C;|z|<c,/2} X 2. By virtue of Theorem 3.10
of [3], we get

A(xt, ', D)F (W) =A@, «/, D) sp(Y(x)F(xt, '+ —110))
=sp(G(x,, x,+m roy.

On the other hand it follows from Proposition 1.15 that
B(A(x, D,)u)=sp(Y(x)H(xl, ¥ ++/—110)) .
Since Y(x)H(x?, 2")=G{x,, 2), we get
Alxt, o, Do) (w)=p'(Au) .
This completes the proof.

REMARK. In the same way as in the proof of this proposition, we can
show that the inclusion %y, C€%x, is compatible with the action of
Exr[Di].

§2. Fuchsian microdifferential operators and uniqueness theorem

2.1. Definitions and statement of the uniqueness theorem

Tahara [10] introduced Fuchsian microdifferential operators as a gener-
alization of Fuchsian partial differential operators defined by Baouendi-
Goulaouic [1]. In this section we give a uniqueness theorem in the microlocal
boundary value problem for Fuchsian microdifferential operators. This
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generalizes our previous result for Fuchsian partial differential operators
(Theorem 2 of [8]).

Let us begin with definitions: A section P of &4,,[D,] over an open
subset U of ¥ —1S*N is called a Fuchsian operator of type (k, m) with respect
to x, if it is written in the form:

(11) P:Q(x’ Dz’)(fo;nx—*_Al(x, Dz’)xf—ngi—l T
+Ak(x, Dz')D.le_k+Ak+1(x’ Dz')D;ﬂ;k—l Tt +Am(x’ Dx’)) »

here k, m are integers, @ and A, are sections of &y, over U satisfying the
following conditions:
(1) 0<Zk<m, :
(i1) the order of A/(x, D,) is at most j for j=1, ---, m,
(iii) the order of A 0, x/, D,) is at most 0 for j=1, - - -, k&,
(iv) @ is elliptic on p~*(U) when it is regarded as a microdifferential
operator on p~(U).
For a point x* of U, we define the indicial polynomial e(2, P, x*) of P at x* by

e(d, P, x*)=22—1)- - -(A—m<+1)
+0(A0, &, D)E*)A—1)- - -A—m+2)+ - - -

where o, denotes the homogeneous part of order j.

Levma 2.1, Let P be a Fuchsian operator of type (k, m) with respect to
x,.. Then P is written in the form (11) in a unique way.

Proor. P is a polynomial of degree m with respect to D,, and the coef-
ficient of D is Q(x, D,)xf. Since the principal symbol (@) of @ does not
vanish, & and @ are uniquely determined. Since the coefficient of D{ in Pis
QA ;x? with p=max(0, j—m-k), A, is also determined uniquely. This com-
pletes the proof.

ProposiTION 2.2. Let P be given by (11) with the conditions (1)-(iv). Let
(3, D) =1(x, &) be a contact transformation of ¥ —1S*M defined on a neigh-
borhood of p~ ('~ (x*)) preserving x,, where <’ is the canonical transformation
of ¥ —18*N induced by +, and let ¥ be a quantized contact transformation
associated with +r such that ¥(y)=x,. Then ¥(P) is slso a Fuchsian operator
of type (k, m), and the indicial polynomial e(2, U(P), '~ (x*)) satisfies

(2, U(P), ' (x*)=eQ2, P, x*).
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Proor. We may assume that ¥ is defined by the relations (5) in Subsec-
tion 1.4 with x* replaced by 4 ~!(x*). Then ¥(P) is written in the form

T(P)=¥(Q)x¥D,,+ Qi(x, D))"+ ¥ (A)xi(D,,+ Qilx, D))"
+ -+ TAND.,+Qix, D) F - +T(AL) .
It is easy to see that ¥(Q) is elliptic on p (v '(x*)) and that ¥'(A)) satisfies

conditions (ii) and (iti). Since D,, and Q! commute, we have

0.+ =33 (7)@w-pz,.

v=0
Hence ¥(P) is written in the form
U(P)=U(Q)x*Dr+Bxt*Dr4 ... +B,Dr*+..-+B,),

where B, is a section of &,,, on a neighborhood of 4'~(x*) of order at most
J such that

BJ'(O, x/’ Dx’):Aj(O: x,y Dz’) (]=17 Tt k) .

Thus ¥(P) is also a Fuchsian operator of type (k, m) and its indicial polyno-
mial at ' ~(x*) coincides with that of P at x*. This completes the proof.

Now let us state the uniqueness theorem.

TueoreM 2.3. Let P be a Fuchsian microdifferential operator of type (k, m)
with respect to x, defined on a neighborhood of x* ¢ v —=18*N. Suppose that
ey, P, x*)+0 for any integer v=m—*k. Under these assumptions, if u is an
F-mild microfunction defined on a neighborhood of x* satisfying

Pu=0, bDu)=0 (0<v<m—k-—1)

on a neighborhood of x* (here b denotes the homomorphism defined in Proposi-
tion 1.13), then u vanishes on a neighborhood of x*.

We shall prove this theorem in the next subsection.

REMARK. We have proved this theorem in [8] when P is a Fuchsian
partial differential operator, and have proved in [7] the uniqueness theorem
of the Cauchy problem (in the framework of microfunctions with a real
analytic parameter x,) for Fuchsian microdifferential operators. Theorem 2.3
generalizes these two results.
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2.2. Proof of the uniqueness theorem

Now we begin the proof of Theorem 2.3. Let P and u satisfy the assump-
tions of Theorem 2.3. We assume, without loss of generality, that x*=
(0, v—1dx,). By virtue of Lemma 3 of [8], there exists a germ &’ of Cris
at x* such that u(x)=x7*u/(x), and Px7 *u’=0 holds. It is easy to see that
Px7* is a Fuchsian operator of type (m, m) with the indicial polynomial

e(d, Px™ %, x*y=e(l4+m—Ek, P, x*).

Thus Px"~* satisfies the assumptions of the theorem with k=m.
Next, let g be an integer such that ¢g=max(m, 2) and that

e(v/q, Px7=*, x*)#0

for any integer v>0. Put v(x)=pg(«'), where §’ is the homomorphism defined
in Proposition 1.20 with this gq. Then vis a germ of €y, at x* and satisfies
an equation

((xlDzl)m_Bl(xy Dz')(xlDzl)m_l— T —Bm(xy Dz’))v(x)ZO H
with
Bj(xs Dz'):Bj,O(x,’ Dz’)_}_ngj,l(x’ Dx') (j:l, Y In) ’

where B, is a germ of &,, at ™ of order at msot 0, B, is a germ of &yy
at x* of order at most j, and

V" —0o(B; X — s — 0 B, oHx*) =0

for any integer v=>0.
By virtue of the above argument and Proposition 1.20, we have only to
prove the following proposition:

PrOPOSITION 2.4.  Assume that a germ u of €y, at x*=(0, 4/ —1dx,) e
' —18*N satisfies an equation Pu=0 with

P=(xle1)m_Al(x> Dz')(xlsz)m_l_ Tt —Am(x’ Dx’) ;
here A, is a germ of &,y at x* such that

Af(x, D)= 3 A, &, Do

with order A; ,<min(j, x) for j=1, ---, m. Assume moreover that

e(, P, x*):”m_go(Ax,o)(x*)vm_x— o —0(An ) (x¥)£0
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for any integer v=0. Then u vanishes on a neighborhood of x*.

Proor. By the definition of the sheaf ., u is the equivalence class
represented by a germ @ of (¢*),%x, x at ¥ in the notation in Subsection 1.5.
Note that i is also a germ of €5, ¢ at {x*} X {co}. Then Pz is a germ of ¢, @y
at x*.

Tn accordance with [4], we apply the quantized Legendre transformation
to Pand 7. Put

U.={&,V—1&x) eV —18*N;|x'|<¢, |§;|<et, (j=2, -- -, n—1)}
with ¢>0 and let
¢ {{ie C}XU—{0, &/, ({,, ¥ —1&)0) e SEX; (x/, ¥ =18 0) e U}

be the natural map. Let &y and &, be the sheaves of microdifferential
operators with the variables x=(x,, x’) and (g, ") respectively, and €0 be the
sheaf on {{;e€ C} XU, of microfunctions with holomorphic parameter Z,.
Then there exists a quantized contact transformation

D: 07 E 585y B Gy >EO
defined on {{; € C} X U, such that

O(x)=—+-1D, Dz, O(x)=x; (j=2, ---,n—-1),
@(xn):xn+DC1CID;n1’
@(Dxl):_\f _1C1Dzn> @(ij):Dz] (j:2> "'yn)'

Set
- (@)
oCs )= @(xll?zllt) ,
D ((x,D,.)"11)
- 0 1
QZ—D41C1Im_‘ - 0 . 1 s
LD(A,)- - - D(A,) D(A,)

where I, denotes the unit matrix of degree m. Since @ represents a mild
microfunction, v is a section of (¥0)™ defined on {{, € C; Re £, >0 or || >~}
% U, with sufficiently small e. Since
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0
v= :
Q 0
O(Pir)

and Pii is a germ of ¢, %y x at x*, w=Qu is a section of (¥0)™ defined on
{¢,e C}x U, if ¢ is small enough.

Our aim is to show that v is a section of (¥0)™ defined on a neighborhood
of C'x{x*}. Hereafter we use the notation I'=(D,, ---, D,) with D;=D,,
forj=2,..-,n, x"=(x, --+,%,_1), and £=¢,. Set

0 . 1 .
B(x, D)= 01
A,---A;, A
and develop B into the form
B(x, D")= g} B(x',D)x;, BJ(«,D)= 2, B, (x', D)x;,.

Then each element of B, , is of order <min(x, m), and @ is written in the form
19 Q=—Dil— 3 B, D)x,+DEDPY(—V=1DD7Y .
Set

Wz, x)
2 x/_— Irl=r ‘L‘-— d

UO(C ’

when {{|<r with r>¢77, and

N 1 u(z, x')
ult x”)~ 27:4/—1.[1:1=r r—{ de

when [{|>r with r>¢"". Then by virtue of Cauchy’s integral formula for
sections of #0, we can ensure that v=uv,+ v, that v, and v, are sections of
(#0)" (independent of r) defined on C X U, and on {{ € P; Re{>0or |{|>&7"}
% U, respectively and that v,(co, x)=0, where P=C U {o0}. Setting r={"},
we can write

13 @=(D.~DL— 3} B..(x", D)%, ~(D.~)D; YW =1<D.Dy.

Hence Q is well-defined on a neighborhood of =0 (i.e. {=00). It follows
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from (13) that Qu, is a section of (¥0)™ on {{ € P; Re {>0 or |¢|>e "} X U, and
satisfies (Qu,)(c0, x}=0. On the other hand,
Qu,=w—Qu,

is a section of (¥0)™ on Cx U,. Hence Qu, is a section of (¥0)™ on P XU,
with (Qu,)(c0, £')=0. This implies Qu;=0. In order to show that v is a
section of (¥0)™ on a neighborhood of C x {x*}, we have only to show that v,
is a section of (¥0)™ defined there. Hence, from now on, we assume that
U=u,

Now set

Q'=—D(LI,— > B, (", D')x,+DLD;Yy(—v —1D;¢
£,0=0
with the same B, , that appeared in (12). Setting t=¢"!, we can write

Q'=(D.—DI,— > B..(x", D')(x,~(zD.— DDy (—~=1D;%) .
£,v=20

Since
order(B, (x”, D')(x,—(tD.— D)D;)(—+—1D;'t))<min(0, m—«x),

@’ has regular singularities along rD,=0 in the sense of [6].

Let 2, - - -, 4, be the roots of the equation e(2, P, x*)=0 with respect to
2. We define an equivalence relation in the set J={1, 2, - - -, m} as follows:
i~jif and only if 2,—2,€ Z. Let

J=JU---Ud,

be the classification of J with respect to this relation with #J,=m, for
s=1,...,r. Set

pe=min{2,+1;ied}  (s=1,---,7).

We can assume by rearranging 1, - - -, 4,, appropriately that y € Z and that
there are integers n(s, 1)=0 (s=1, - -+, r, =1, - - -, m,) such that

0=n(s, l)én(s, 2)§ e gn(s, ms) ’
'21'*‘1:!11, 22+1:#1+n(13 2), R 2m1+1:ﬂ1+n(1, ml) s
)‘m1+1+1:#23 2m1+2+1=ﬂ2+n(2’ 2)3 MY 2m+1=,u7+n(r: mr) .

Note that @ <+ (1, m) <0 follows from the assumption that e(y, P, x*)#0
foranyve N={0,1,2, ---}.
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Using the argument of the proof of Proposition 2.6 of [6], we can find
mXm matrices S(z, 2, D), S'(z, &/, D,, D), B'(r, ', D') of microdifferential
operators of order <0 defined on a neighborhood of t=0, D,=0, (x/, /' — 1 & c0)
=x* such that ¢(S) and ¢,(S”) are invertible there and that

(14) Q'=8'(zD.I,—B/(z,x', D')S*,
ng(’l', x,: D/)':B:;(x,, Dl)fliﬁ'zj if 21—2] [ N s
Bz, ', D))=0 if ,~2,¢N,

4+1 . bl,z‘- . 'bl,.m
o BY0, x*)= : . ) bm‘—l .
0---0 2,+1
with operators B;; and complex numbers b,;; here Bj; denotes the (i, j) ele-
ment of the matrix B’. Thus B’ is decomposed into a direct sum

B,
B,

where Bj is an m,Xm, matrix of operators. The (i, j) element of B, is writ-
ten in the form

B'=B@® - -®B.=

(B =(B)if(x, D)erten =m0 if n(s, y=n(s, j),
(B):;;=0 if n(s, )<<n(s, J)

with some (B),;.
We define m X m matrices T=T(z) and E=E(x/, D) by

z.'n(s,l) 0
T:Tyl@"'C_BTT’ Rzli R ],

0 Tn (s,ms)

E—E®. - -OF,,
(Eiy=(B)i(x', D) —d,n(s, i) if n(s, i)=nls, ),
(E);;=0 if n(s, H)<nfs, j)

for s=1,---,rand 1<i,j<m, Then
(15) T-(DI,—~B(c,x', D) =2D.I,—E(x', D)

holds, and the eigenvalues of g(E)(x*) are all g, for s=1, --.,r. From (14)
and (15) we get
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(16) &' =S8S'T(D.I,—E(x', D)T1S*.
We define S and S, by
S(z, #, DYT()=8(z, &', D)= i S.(x, D).
Then it follows from (16) that
Q'(z, &', 8., D')(S(z, x/, D)z
=8'(z, &', 8., D) T (23,1, — E(x’, D))(z®* ") =0 ;
here 3, acts on sections A(z, &/, I') of €.,y with X”={r e C} X Y by
3. A(r, ', DY=[D,, A(z, x’, D).
Replacing the variable ¢ by &, we get
an Q¢ %, 0, DYSE, ), DL P2 =0.
We can develop @ and @’ into the form
Q= 3 Q.. DYDY D,
Q'= 3 Qu., DYDY

RV

using the same @), , both for @ and for @’. The equation (17) is equivalent
to the relations

18) T QuS(—E-sLy=— QS (—E—kLy  (ceN).

A=1 p20

Here sums with respect to v and u converge. We define a formal power
series R(z, x', I) in = whose coefficients are microdifferential operators with
variables x” by

Rz, x,D)=3 B(x', D)z,

£=0

R(x, D)=8+, DX~E)-- - (—E—(x—1)L,).

Then from (18) we get

2 QB (~E—ry=—

2 D QR (—E—i(—=E—r 4D (—E—s+))

for k=0,1,2, -... These relations are equivalent to the equation

(19 Q. %, 9, DYR(C™, «f, D)2 =0
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as a formal power series in {~*. Note that @ acts on formal power series in
¢~ whose coefficients are microdifferential operators since @ is written in
the form (12).

We shall show that B converges in a neighborhood of =0 and defines a
germ of &5,y at x*. Setting

R(Ty x,’ D,)TE(I,’D’) :F(T7 x,} -D,):(Fz'j(r; xly D,))Igi,jgm )
we get from (19)

O(P)C, &', 0, D)F, (C7, %/, D')=0 U=1---,m),

(20) { o0 | =
F A «, D)y=(—38)"'F, (¢, «, D) G,j=1,---,m).

Developing A;, into the form
Ao, D)= 375 Ay, D),
we can write )
O(A)= 3 Auls”, D).+ DEDY(—V=1D,D7.
Set z=Z"* again and put
Cin= 23 Apla”, D)%, +(1—~D)Dy YW =1D;h*
for 0<k<j<m and )

CJ’J = Z Z ijv(x”$ D,)(xn + (1—' TD?)Dgl)v( \ 1 T2DzD;1)K_j( vV — 1 D;l)j
v20 g

for 1<j<m. Then C,, is of order <0 since A, , is of order < min(, j), and
@(P) is written in the form

&(P)=(D,—1)"— 3. ﬁ Cialz, Dz; D))(z*D)*(zD.—~1)"7.
=1 k=0

Thus we can find microdifferential operators V=V{(z, &/, D, D’) and C;=
Cfz, &, D, D) (j=1, ---, m) defined on a neighborhood of {(0, 0dz)} X {x*}
such that V is invertible, C; are of order <0 and that

O(P)=V({(zD.—1)"~C(eD.—)""'—--.—C,).
From this and (20) we get
21) ((z0,—1I,~C(z, x, 3., D’)F(z, X', D')=0,

where
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01 0

Cle,«, D, D)=|: " .
0---0 1
Cm...02 C'1

Using the argument of the proof of Proposition 2.4 of [6], we can find mXm
matrices V'=V'(z, x’, D., D’) and C’(z, &/, D) of microdifferential operators
of order <0 defined on a neighborhood of {(0, 0dz)} x{x*} such that V’ is
invertible and

(22) (TDT— 1)Im- C(T’ x/’ Dr’ Dl) = V,(T7 x,7 Dn D,)(TDrIm— C,(Ty x,> D,)) .
From this and (21) we get
(23) (3, L,—C'(z, &', D'))F(z, &', D')=0.

Hence it follows immediately that R(z, 2/, D’) converges and defines a sec-
tion of €.y on a neighborhood of x*.

Next let us show that R(z, #, I’) is invertible on {0<|z|<¢'}x U, with
some ¢ >0. For this purpose, we define R and R, by

Rz, ', D)= > R(x, D)e*=R(c, ¥, D)T(x)™" .
=0
Then we get by easy calculation
det(o,(R)@) =detar(S)*) [T [T (—p)- - -(—p—nls, D+1),

where S,=8(0, x/, D). We get det(o(Ro)(x*))+#0 since o,(S,)(x*) is invertible,

4, € Z for s=2, and p,+n(1, 7)) <0 for s=1, -- -, m;. Hence R is invertible on

{iz]<¢} x U, with some ¢’. Consequently R is invertible on {0<|z|<¢'} X U..
Since Qu=0, it follows from (22) that

(24) (D I,—C'(z, &', D))v(z7}, x)=0

holds on {|z|<e} X U, with sufficiently small e. On the other hand, we get
from (23)

(zDI,~—C(z, ¥, D) R(z, &', D')c==" 2 = R(z, &, D)c*= 222D, .
From this and (24) we get

tD((R(z, «, D)™ ) (e, 1))
=222 R(e, , D) YeD.L,— C'(z, &', D)z}, #')=0
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on a neighborhood of {0} x{x*}. Hence there exists a column vector a(x’)
of m microfunctions on U, with sufficiently small ¢ such that

v(et, ®)=R(z, &/, D')c"Pa(x’) .
Since v and R are single-valued with respect to z, so is z%a, and
(exp@ry/ —1E(x', D))—I)a(x)=0

holds. We write a(x’) in the form

a,(x’)
o]
a(x’)

with column vectors a,(x’) of m, microfunctions on U, for s=1, ---,r. Then
we have

(25) (exp(2rv/ —1E,(x', D) —I, )a(x)=0 (s=1,---,1).

Since exp(2ry —1E)—1I,, is invertible for s=2, ---, r, we get a,=0 for
§=2, ---,r. Since the eigenvalues of ¢ (E)(x*) are all p, which is a non-
positive integer, it follows from (25)

(26) (El(x,, D’) - ﬂlIml)al(x,) =0 ’
and consequently
P g (2 ) =1" exp((E(x, D')— 1) log t)a,(x) ="a(x) .

Hence we get from (26)

a(x’)
u, x’)=§ Bx, D) " (:)
0
- a,()-
_ éé(x DY—E)- - -(— E—g+1)g" ?
o

é;(x’, DY—E)-- (—E—g+1)g "

.
i1
ob Jx
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Thus v(¢, &) is continued to a section of (¥0)™ on C X U, with sufficiently
small e. Consequently, 7 is a germ of ¢,%yx at x*, and z=0holds on a
neighborhood of x*. This completes the proof of Proposition 2.4 and, at the
same time, completes the proof of Theorem 2.3.
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