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§0. Introduction

In this article we extend Kawai’s method [12] giving a global real
analytic solution of the equation P(D)u=f with constant coefficients to the
case of unbounded domains.

As is well known, the complicated structure of the topological vector
space «Z(£2) of real analytic functions on an open set 2 CR" long prevented
the study of the surjectivity of the operator P(D): &/ (2)—</(2) by the
duality method even for a convex £, and it is rather recently that this
difficulty has been overcome by the introduction of some additional tech-
niques, especially of Hérmander’s Phragmén-Lindeléf type principle [5] (see
the survey article by Cattabriga [3] for further references on this line).

On the other hand, Kawai’s idea, which we retake here, is to abandon
the topological vector space structure and to give the renaissance to the
classical representation formula for the solutions by way of the fundamental
solution: For illustration let P(D) be elliptic, and take f(x)e «/(2) on a
bounded 2. Then we can choose an extension f of f as a hyperfunction with
support in 2. Let E(x) be a fundamental solution of P(D). Then

(0.1) u=f« E

will satisfy P(D)u=f on R*, hence P(D)ul,=f on 2. Besides, the analytic
singularity of f, which is limited in 82 by the construction, will remain
there even after the convolution by E by virtue of the regularity of the
latter. Thus u|, will be a required global real analytic solution. By the
introduction of the consideration of S.S. (singular spectrum) in place of
the mere analytic singular support, this argument can be refined to give
a global existence theorem for locally hyperbolic operators on bounded
domains with some geometric condition.

Here we try to consider an unbounded domain 2. Let again P(D) be
elliptic, and take fc #(2). This time we can extend f to an exponentially
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decreasing Fourier hyperfunction f, that is, we can find a set of defining
functions {F(2)}/_, for f:

©0.2) ()= 2 Fy(x+il',0)

such that F,(z)=O(e~*"™*) locally uniformly in Im z on some wedge R*+il’,.
The exponential type 6 can be arbitrarily preassigned. Thus if we choose §
greater than the exponential type of the growth order of the fundamental
solution E(x), then we can again calculate the convolution (0.1). Notice
that the integration for the hyperfunctions is performed on a path deformed
into the complex domain and the decay condition for F(2) in (0.2) is assured
only on such a path: We may choose F,(z) analytically prolongeable to the
real points where f(x) itself is real analytic, but we cannot assert the decay
of F(x) on the real axis.

In order to refine this argument we need to introduce some generalized
classes of Fourier hyperfunctions and study their S.8. at infinity. We list
up in § 1 the definitions and the necessary properties of these new classes of
Fourier hyperfunctions. The outline of the justification of the whole theory
of Fourier hyperfunctions and the proofs to the extended part are given in
the Appendix. Employing them we give in §2 a global existence theorem
for locally hyperbolic operators which extends Kawai’s main result to the
case of unbounded domains. In §3 we also refine the method of Kawai,
and improve his result even for bounded domains. Namely, for a locally
hyperbolic operator P(D), we show P(D)«/(Q)=/(2) under “pointwise”
geometric condition about the local propagation cones at the boundary
points of £, whereas Kawai assumed it “uniformly” in some sense (see
Theorem 3.5).

A short announcement of the main results in § 2 has been given in [10].
We extract here the schematic description of the principle of micro-localiza-
tion of the given “global” problem:

(0.3) P(D)oA()=4(2).
M localization

04) P(DYue FEY: wl c H@)1F ¢ BT flo e D).
> micro-localization o

(0.5) For any £ € §"* there exists a neighborhood 4 5 & such that

P(D)Y{u e Z(R™); ulp e M’(Q)}—F%(R")D{fe B(R™); 5.8.fcoR2 x d}.

1 stratification

(0.6) There exists a stratification S*"*=5_!. . .15, such that
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P(D)u e Z(R"); ulp e LD} +{uec B(R™); S.8. fCIQX(H . N A}
S{fe BR); SS. fCadx(Z . ND}.

The final step has been newly introduced in this article (see § 3).
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§ 1. Fourier hyperfunctions with growth or decay of type [s, 3].

As in the classical theory of Fourier hyperfunctions (see Kawai [11]),
we introduce the directional compactification of R" by the points at infinity:

D =R 187,

and its complex neighborhood D"4-iR”. Recall that by the definition of the
topology of D* a (real) neighborhood of a point aeo € D* at infinity contains
a truncated part of a cone I" containing the direction a and the correspond-
ing points at infinity:

(C'N{x|>RHLH{xco; x e IIN\JO}}.

(A complex neighborhood of ¢dco contains the direct product of such a set
with i{|y|<e} for some ¢>0.)

DermniTioN 1.1, Let s>0, ¢ R be constants. For an open set UC
D*+-iR" we put

(1.1 O(U)={F()e®(UNC"); VK U, ¥e>0, sup [F(2)|e~CraiRezl’ < 4 o},
ZERNC?

and let @°7 denote the corresponding sheaf on D"+iR*. (Here K< U implies
that the closure of K in D”, which is compact but not necessarily in C*, is
contained in U. Note that the growth (or decay if 6<<0) condition is mean-
ingful only if U contains a point at infinity, hence 0*|g.=0.)
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It is clear that (1.1) itself is the section module of @ on U. Concern-
ing this sheaf we prepare an analogue of the Oka-Cartan cohomology
vanishing theorem.

DerFINITION 1.2. We say that an open set Uc D*+iR" is pseudo-convex
if there exists a continuous plurisubharmonic function ¢(2) on UNC" satis-
fying the following properties:

1) For any Ke U, ¢(z) is bounded on KN C*;

2) For any ¢>0 the set {ze UN C"; ¢(2)<c} is relatively compact in U.

THEOREM 1.3. Let UC D"+iR" be pseudo-convex in the sense of the above
definition. Assume further that UM C" is contained in a set of the form

(1.2) C(C,, C):={ze C"; |Im 2| <C|Re 2|+ C,}
with some positive constants C;<min{l, tan-%(z/4s)} and C,. Then we have
(1.3) H*(U, ¢°**)=0 for p>1.

RemARk. In this article it suffices to consider the open set U whose
trace to C* is contained in C,(0, C;)={Imz|<C,}. We need the above
general case when we treat the modified Fourier hyperfunctions.

We can calculate these cohomology groups by way of a d-complex of
section modules of some fine sheaves with the same growth or decay
property as above. Similarly we can translate the Martineau-Harvey
duality and the Malgrange theorem to our case:

THEOREM 1.4. Let KC D"4iR" be a compact set admitting a fundamental
system of neighborhoods of open sets as described in the above theorem. Then
for a neighborhood U of K we have
(1.4) Hy(U, §*)=0  for p#n,

(1.5) Hy(U, &*))=0"(KY .
Here @ denotes the sheaf on D"+iR" defined by the following section
modules:
(1.6) G U)={F(2) e 0(UNC"); YK U, 3%&>0 _
such that sup |F(2)e?*Fe'< + o0},
zeKnCn

The duality (1.5) holds in the sense of an (FS)-(DFS) space pair by the
naturally induced topologies.

THEOREM 1.5. Let UC D"+iR"* be any open set such that UNC" is con-
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tained in C, of (1.2). Then we have
HYU, §°%=0.

For the proof of these theorems see the Appendix. Thus by the
standard argument for the foundation of the theory of hyperfunctions (see
the sketch given in the Appendix; for more in detail see e.g. Komatsu [13]
or Kaneko [9] for expository references), we can deduce from these results
the following

THEOREM AND DEFINITION 1.6. D" becomes a purely n-codimensional
subset of D" +1iR" with respect to 0°° (that is, #%.(0*°)=0 for p#*=n). We put
250 =#.(0*%) and call it the sheaf of Fourier hyperfunctions of the growth
(or decay) type O(e*+V), or “type [s, )" imitating the notation of entire
function theory. It is a flabby sheaf on D".

Because 0°%)¢.=0, 2*°|z. agrees with the sheaf # of usual hyperfunc-
tions. Thus the flabbiness of 2% implies in particular the following

CoRrOLLARY 1.7. The natural restriction mapping from 2°°%D") to #(R™)
{or more generally to #(2) for any open subset 2 CR") is surjective. That is,
an element f € Z(R") can always be extended to an element f € 2°°(D").

Recall that by the general property of flabby sheaves we can always
choose the extension such that supp fCsupp f. (Here and in the sequel the
double bar denotes the closure in D" of a subset of R* in order to be dis-
tinguished from the usual closure in R®, denoted by the simple bar.)

RemaArRk. The classical Fourier hyperfunction introduced by M. Sato
and discussed by T. Kawai [11] corresponds to s=1, §=0. The case s=1
and §<0 is called rapidly decreasing Fourier hyperfunctions and effectively
employed by the author (e.g. in [8]) after M. Sato’s suggestion. The case
s=1, §>0 is contained in the theory of Fourier ultra-hyperfunctions of
Park-Morimoto [17]; Up to this growth type the Fourier image can be inter-
preted by their theory. For the growth type with s>1, >0 we have not
yet an established theory of Fourier transformation. In the sequel we will
employ them only in relation with the convolution operation.

For later use we need the representation of the space 2%%(Q)=

n(C", @+ for QD" by boundary values. First we give an intuitive ex-
planation for the reader not familiar with the theory of hyperfunctions: f(x)
€ @ () means that f(x) has a boundary value expression

an @)= 3 Fa+il0).
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Here I'; is an open convex cone with vertex at 0 and Fy(z) € 0°(2+il",0),
that is, a section of #** on an infinitesimal wedge of the type 2+il",0: Note
that by an infinitesimal wedge of the type 2+iI",0 we mean an open subset
UcQ+il'; of D*+iR™ such that for any K= and any proper subcone
4,1 ; there exists ¢>>0 such that

UD(K+id) N (D" +ifly|<eD);

By a proper subcone 4;,&I’; we mean another open convex cone 4, with
vertex at 0 such that 4,N{ly|=1}=7";N{y|=1}. Note that such U conserves
a fixed “breadth” in the variables y=Im z up to the points at infinity con-
tained in £. This is one of the main differences between Fourier hyper-
functions and ordinary hyperfunctions: If we forget the growth (decay)
condition of Fy(2) in (1.7), then we obtain an ordinary hyperfunction on
2N R* which is, by definition, equal to the restriction f(x)|,,z.. Note how-
ever, that in a boundary value expression of an ordinary hyperfunction on
2NR", the defining functions Fy(2) may grow arbitrarily when |Re z|—>co
and their domains of definition may diminish the “breadth” in the variables
Imz as [Rez]—>oo. Thus the extendibility in Corollary 1.6 means that we
can improve the boundary value expression to make satisfy these two
additional properties.

We should well notice the rather surprising fact that any f ¢ Z(R") (e.g.
e® ¢ #(R)) can be extended to a “rapidly” decreasing f (e.g. e*=F,(x-+i0)
—F_(x—10) with exponentially decreasing F.(z)). Note however that the
defining functions may decrease only along the level surface Im z=const.
#0; Even if all the F,(2), hence f, may be continued up to the real axis,
they may have an arbitrarily given large growth there.

Now we give a precise mathematical interpretation to the boundary
value representation (1.7). We put

0 Q+il)=1lim &**(U),
128

where U runs all the infinitesimal wedges of the type £2+il’0. Then we
introduce the direct sum of C-linear spaces

X=@ 6(Q+il0),
r

where I’ runs all the open convex cones (including half spaces or even R").
As usual we naturally identify an element F(z) e G°%(2+41iI0) with the cor-
responding one in X. Then we consider the C-linear subspace Y of X
generated by all the elements of the form
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F(2)+F(2)—Fy2); Ffz)e @ Q+il'0) (1<j<3)

such that I'"NI,DI, and that Fi(2)+F (z)=F(z) holds on a common
domain of definition. Finally we let

25Dy =X]Y

be our definition of the space of Fourier hyperfunctions of the type [s, §] on
2 by way of the boundary value representations. We denote by F(x--il0)
the element of 2%%(f) defined by F(2) ¢ X.

LEemMma 1.8, We have X|Y=H%D"+iR"* 0°%. The isomorphism h is
given as follows: Given F(x+il'0) € X we choose 5%, 7}, - - -, 7" € R" such that,
putting EV={y e R*; {y, y’>>0} we have

U E7"=R"J0}, (E’er,
=0 =1

and that 7, ---,y" have positive orientation. Then we choose a complex
neighborhood U of 2, put U;=UN(Q+iE"), j=0, - - -, n, and finally put

MEx+il)=F@UANUN--- A\U,,

where the right hand side represents the cohomology class of HYU, G%%)
defined by F(2)e 0> UNU,N---NU,) via the n-cocycle of the relative
covering ({U, U,, - - -, U,},{U,, - - -, U,}) of the pair (U, UNQ). The inverse
mapping of h is given as follows: Choose 1°, 7', - - -, " € R" satisfying \_J"., E"’
=R"\{0}. Choose a neighborhood U of 2 which is pseudo-convex in the sense
of Definition 1.2 and put U, as above. Then we let an n-cocycle

SE@UAUA---NOA--- N\,
correspond to

STF(x+il'0), where I'y=(\E".
Jj=0 k+j
The proof of this lemma can be literally obtained from the correspond-
ing assertion for ordinary hyperfunctions (see e.g. Kaneko [9bis], Theorem
7.1.7).
The sheaf of real analytic functions in our sense should be by definition
P?:= (%% ,.. We have

THEOREM 1.9. We have the nctural injective sheaf homomorphism %
=2,
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By the intuitive expression, f(x) e #°%(2) corresponds to the element
f(x+i'0) € 2°%(Q2) with any I". It is clear that the imbedding is compatible
with the ordinary one &/=—% on R". The injectivity follows also from
that of the latter.

TaEorREM 1.10. We have H'(Q,P*%)=0 for any open subset QcCD".
Hence the quotient sheaf 2°°/7°° is flabby and we have (2%°/P*%)(Q)=
253 P(2).

This theorem follows from Theorem 1.3 and the variant of the Grauert
theorem on the construction of a fundamental system of pseudoconvex
neighborhoods of a real open set (see Kawai [11], Theorem 2.1.6). From
theorem 1.10 by the routine argument follows the possibility of decompo-
sition of the singular support:

Cororrary 1.11. Let f(x) e 29%Q) and assume that sing supp f is cov-
ered by a finite number of closed subsets X', j=1, ---, N. Then we can
find fi(x) e 2°%Q), j=1, - - -, N such that

f=fi+---+fy;  singsuppf,CX’.

Here sing supp f naturally means the support of fmod #°? as a section
of the quotient sheaf 2%°/#*? on L.

Next we extend the notion of micro-analyticity to these classes of
Fourier hyperfunctions.

DerinITION 1.12. We say that f(x) € 2°%(Q) is micro-analytic at (a, &) €
£2x8*'if we can choose a local boundary value expression (1.7) of f on a
neighborhood of ¢ such that I';N{{y, £<0}* 2 for all j. The subset of
2% 8! of the points where f is not micro-analytic is called the singular
spectrum (S.S.) of f and denoted by S.S.*’f (or simply by S.S. f if there may be
no confusion).

S.S.2%f is by definition a closed subset of 2xXS8""'. Note that if a € R?,
the growth condition on F(z) becomes void and the above definition is
compatible with the usual notion of micro-analyticity or S.S. for ordinary
hyperfunctions. As usual we write also (a, iédxo) in place of (g, &) in order
to specify the character of the vector & If, however, a is at infinity, the
available local coordinate transformations are not so ample.

Note also that S.S. depends on the growth type considered: Already
the “real analyticity” at infinity contained the growth condition. Consider
for example the “Fourier hyperfunction” e® of one variable. For the choice
§>1,6>0 or s=1, §>1 (especially as a Fourier ultra-hyperfunction) it is
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naturally considered as an element of 2%(D) and even of #°%(D) with the
unique defining function e?. Thus it contains no S.S. For the other classes
(and especially as a classical Fourier hyperfunction), however, it requires a
suitable interpretation (regularization as a generalized function) at 4 co,
and whatever this interpretation may be, its boundary value expression (or
singular spectral decomposition) at + oo requires two terms F.(2) and the
S.S. contains the two points {(+ oo, +idxco)}.

Though the definition of S.S. employs a local boundary value expres-
sion, we can always obtain a global boundary value expression (or singular
spectral decomposition) corresponding to the decomposition of S.S. The
following is a little weakened variant of the assertion of this type:

TueorEM L13. Let f be a section of 2°° defined on a neighborhood of a
compact set KC D" Assume that

(1.8) S8 fe D xiInt(I'y U - - - UT'ydxoo .
Then we can find F(z) e 0 (K+iI",0) such that

N

f&) =3 F(x-+il' 0)

=
and that each Fy(2) can be extended as a section of 0°° to o neighborhood of
every point x for which
1.9 S.S.ofN{x}Xildxco =0
(hence o fortiori if f is real analytic at x). Here

I'; ={£;<y,6>=0 for Yy e I';}

denotes the dual cone of I'; (and also represents its intersection with the unit
sphere); Int denotes the interior, and Fy(2) € 0+(K+iI",0) implies that Fy(2) ¢
O*(Q;+1I",0) for some neighborhood 2,DK.

This theorem can be deduced by means of the following variant of the
curvilinear Radon decomposition of the delta function:

o=[ Wi 0)do;
(1.10) s

W, 0)=_"=D! (A—ixe) " — (1 —ixe)" (' —(x0)) 1o
R (—2ri)" (x+i(x* — (xw)") +i0)"

This is simply the product of the usual decomposition formula (a particular
case of Example 1.2.5 of Chapter Il in S-K-K [18]) by the damping factor
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e'=@+7m% which takes the value 1 at 0. The integral for w converges by the
(FS)-topology of 2%%D") in the variable x. Further, for an open convex
cone 4 we put

(1.1 Wiz d4)=[ Wi odo.

This becomes an element of @°~(D*-+i40) for any >0, hence its boundary
value defines an element of 2°-%D") which will be denoted by W.(x, 4°).
For fe 2°°(D") we can define the “convolution” fx W, (x, 4°)e 2°%D")
directly by way of the defining function as the boundary value of
{f(x), Wz—x, 4°)), € §*%(D"+i40), where {, > denotes the inner product of
the duality (1.5). Choosing for 4° the components of a decomposition of
S ! by closed convex pyramids we can thus obtain the corresponding
singular spectral decomposition of f. Further, we can show that this
“convolution” can be calculated locally by way of the local boundary value
expression of f at least modulo the real analytic ambiguity (mod &%), hence
follows the additional regularity property for F;(2) in Theorem 1.13. (For
further details see the Appendix.)

Employing the boundary value expression given by Theorem 1.13, we
can define the convolution operation between two general Fourier hyper-
functions satisfying suitable growth and decay conditions:

DeriNiTION AND LEMmA 1.14. Let f(x) e 2%%(D"), g(x)e 2°-%(D") and
assume that §>6>0. Then, choosing boundary value expression f(x)=
¥ Fix+il')0), glx)=2"%_, G(x+14,0) for each, we can define f« g by

@y Few=3|[  Fe-06.0d]

2z +1(T 5+ 45)0

Here 5, € 4, is such that G({) is defined on Im{=y,. The result becomes an
element of 2°7(D™), where

§’'=3 if s<1,

5! — 55’ ‘
5= (5/1/(3—1)_51/(5.‘@)3_1 lf s>1.

(1.13)

It does not depend on the choice of the paths of integration nor the boundary
value representations employed.

The integral in the bracket converges for ze D"+ip.+il';0 in the
ordinary sense and does not depend on the choice of 5. Hence by the
analytic continuation it becomes an element of @' (D*-+i(I";+i4,)0). The
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verification of the growth condition follows from the following elementary
calculation:

(G+9)z—wl —(—wl < —elwp+— OFIE=2) .,
a1 (&2« =)
g—e!w|8+[(5,1,(8_1) Oy +0@)| =1

Note that the constant §” for s>>1 also approaches § as §¥—>co. The inde-
pendence of the total result fxg from the boundary value expressions
follows immediately from the following weakened variant of the edge of the
wedge theorem of Martineau’s type (see the Appendix for the proof):

LemuMA 1.15. Assume that
N
=1

as an element of 2°°(D"). Then for any choice of 4, I"; we can find sections
H;(2) € 0>%D"+i(4,+4,)0), anti-symmetric in j, k=1, - - -, N, such that

(1.15) Fie)=3, Hu(2) in G*(D*+id0), j=1,---,N.
k=1
The S.S. of the result of the convolution can be estimated as follows:
TaeorEM 1.16. Let fe 25%(D"), g € 2°~Y(D") be as above. Then we have

(116) S8.5fxgC{(x+y, &) e D"X 8™ (x,8) € S.8., (3, §) € S.8. g}

Here for x, vy € D" the sum x-+Yy represents the following:
1) x-yin the usual sense if x,y ¢ R"*;
2) xocoty=xco if ye R
3) xoo+tyoo={(tx+(1—8)y)oo; 0Lt 1} if x and —y are not of the same
direction;
4) xoo -+ {(—x)oo=D".

To prove this theorem we can apply the elementary proof employing
the defining functions of the usual estimation formula for S.S. fx g for a pair
of hyperfunctions one of which has compact support (see e.g. Kaneko [9],
pp. 72-73). The outline is the following: Every term of the right hand side
of (1.12) obviously has the S.S. in D" X i(I";+4,)°dxco =D" X i(I'; N 45 )dxco.
Moreover, if we employ there as the boundary value representations of f, g
those supplied by Theorem 1.13, then Fy(2) resp. G(2) can also be extended to
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a neighborhood of x as a section of #*% resp. #*~% if 5.5."f N {x}+i[";dxoco
=@ resp. S.5.9gN{x}+id;dxco=@. Let us then deform the path of this
integral beyond the real axis to the imaginary direction —I"; on a neighbor-
hood of such points as the latter condition holds. Let xe D" be a point
which satisfy S.5.°fN{x—w}+il'Jdxco =@ every time if S.S.5gN{w}+
id; dxoo = for each fixed w € D*. Then if w runs along the above deformed
path the integrand F;(z— w)G(w) becomes holomorphic on a complex neigh-
borhood of x and there satisfies uniformly an estimate like (1.14). Thus we
see that

S.8.57 Fy(x+il',0) x Gla+id,0)C{(x+y, ifdxoo); &€ I N 42,
SSofN{x)+ilSdaco D, S.8.57gN {y}+idldxco =D} .

Refining the singular spectral decomposition we finally obtain the above
estimate (1.16).

Finally we introduce the sheaf of Fourier microfunctions on D" X S*!
associated with our class.

DerFINITION 1.17. We define the sheaf %%’ of Fourier microfunctions of
the growth (decay) type [s, 5] on D*XS8""! as the one associated with the
presheaf

117 D* X 8" DR XA—-27(D[{f e 29%(2); S.S.fNQAX 4=} .

We can easily verify that the section modules (1.15) give rise to a
presheaf on D™ X 8"! which satisfies the axiom (F I) of sheaves (that is, the
localizability of the uniqueness of a section). However, the axiom (F II)
(that is, the localizability of the construction of a section) is far less obvious.
Anyway we can prove the following

THEOREM 1.18. %#*° becomes a flabby sheaf. If 4 is connected, then
(1.17) gives the section module F**(Q2 X 4) itself.

From the flabbiness of #°° we can obtain the following valuable con-
sequence:

CoroLLarY 1.19. Let f(x) € 2°(2) and suppose that S.S.°fc| Y., X7,
where X7 are closed subsets of 2xXS"'. Then we can find f, € 2°%8) such
that

f:f1++f1\; S~S'S’5ijXj (]:1, "',N)'

Combining this decomposition with Theorem 1.13 (which is already
accurate in itself if N=1 because of the uniqueness of the single defining
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function), we can strengthen the latter as follows:

CororLarY 1.20. Let f(x) € 2%Q) and suppose that
(1.18) S8fCRXi(IYU--- UlMy)dxoo .
Then we can find Fiz)e 0°(Q2+iI",0) such that

f<x>=j§ Fy(x+il',0)

and that each F{z) satisfies the same regularity condition as described in
Theorem 1.13.9

The proof of Theorem 1.18 requires a good preparation on the theory of
Fourier hyperfunctions with hyperfunction parameters . Since we do not
need the exact flabbiness of #*? at infinity for the application in this
article, we send it to a forthcoming paper and adopt instead the following
substitute which means the flabbiness of ¥ =%?{guyg-~: and the softness of
Tt 25).

Proros1TioN 1.21. Let f(x) € 2°%(2) and suppose that S.8.”’fC| i, X7,
where X7 are closed subsets of 2 8. Then for any neighborhood W’ of
XIN(S¥ix 8 Y in ST XS we can find f; € 2°(2) such that

f=fi+ - +fy; SSfc(XINR XS HLIW/.

This proposition can be proved rather easily by means of the known
flabbiness of the sheaf € of ordinary microfunctions and the Radon decom-
position (1.10). We do it in detail in the Appendix.

REMARK. The notion of S.S. of Fourier hyperfunctions at infinity was
first introduced by Kaneko [7]. There an analogue for Sato’s fundamental
theorem on the micro-analyticity of solutions to a noncharacteristic direc-
tion is discussed. On the other hand, Lieutenant [15] considered S.S. at
infinity for the sheaf extension of # to D" without growth condition. It
corresponds to consider in the boundary value expression (1.7) only the
uniformity of the “breadth” for the domain of definition of Fy(2) up to the
points at infinity of £, and abandon the growth condition on Fy(z). Here
the growth condition is important for us because our main purpose is to
give an interpretation to the classical representation formula (0.1) for

1) This assertion can be proved in a way as elementary as Theorem 1.13 by virtue
of de Roever’s subtle argument [25] without relying on Corollary 1.19.
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solutions. It is possible, however, that the discussion without growth con-
dition may be more adapted to the original problem of the global existence
of real analytic solutions. In fact, as the study of Hérmander [5] reveals,
the essential ponit of this problem lies in what extent we can enlarge the
complex neighborhood (to. each direction i&dxco). Cf. also Lieutenant [14]
in this respect. The study in this line will require a fairly different tool
(e.g. the semiglobal existence of holomorphic solutions in an infinitesimal
wedge for pseudo-differential operators with constant coefficients obtained
as the factors of P(D)).

§ 2. Global existence of real analytic solutions on unbounded
domains for locally hyperbolic operators.

Now we enter into the main subject. To illustrate our basic idea we
first give an abstract type theorem on the global existence of real analytic
solutions which is extracted from the argument of Kawai [12] and adapted
to the case of unbounded domains.

TuEOREM 2.1. Assume that P(D) admits a set of fundamenital solutions
Ei(x) e 25D, j=1, - - -, N for some s, § satisfying the following estimate:

.1 SSHE(x)c{OixS*™'U U  Kix{&,

§EN(Pr)nSn—1

where P, is the principal part of P, N(P,)={¢e R"; P,(§)=0}, KICR" is a
closed cone with vertex at 0 depending on £ in an upper semi-continuous way
(see Remark below) and K1 denotes its closure in D*. Let QCR" be a con-
nected open set and let 502 denote its boundary in D" (that is, there contained
also the accumulation points of £ at infinity). Assume that we have the
covering by closed subsets (or “decomposition” not necessarily disjoint to each
other as more fitted to the intuition):

2.2) 5Ox S =) X7
j=1
such that
(2.3) (a, &) € X/ implies either P,(£)+0 or {a}+ KDN2=2 .

(Here the meaning of the vector sum in D" is as in Theorem 1.16.) Then we
have P(D)o/(02)= /().

Remark. If we employ the convention that K{={0} for ¢ satisfying
P, (£)=0 (which represents the fact that P(D) is microlocally elliptic there



Global analytic solutions on unbounded domain 323

and is well concordant with the notation), then the condition (2.3) can be
simplified as follows:

2.3y (a, &) e X7 implies ({a}+KHNR2=D .

In the sequel we shall mainly employ this simplified form for our geometric
condition.

Proor oF TuroreM 2.1. Take f(x) e #(2). Choose an extension fe

2%-%(D") of f with support in 2 and with #>4. In view of Corollary 1.19
(see Remark below) we can decompose f in a way

(@.4) F=3F

such that S.8.-*fIcX’. Put
(2.5) u=S1F B .
=1

By virtue of the assumed estimate for S.S. E? and the assumption on X7, we
can easily see by Theorem 1.16 that f7 x E/ is real analytic in 2 for each J.
Thus ul, is a required real analytic solution of P(D)u=fin £. q.e.d.

ReMARK. If we employ Proposition 1.21 instead of Corollary 1.19, we
employ the additional condition of upper semi-continuity of §+— K{; Its exact
meaning is as follows:

(2.8) For each fixed & ¢ 8", given any ¢>0 there exists >0 such that if
|e—&'|<5, Kin{x|=1} is contained in the e-neighborhood of Ki,N
{lx|=1}

In fact in this case we can only utilize a decomposition (2.4) with
S8 (XN (R XS HIW,

where W/ is any given neighborhood of X'N(S%'XS"™) in ST tXS" .
Note, however, that for a point aoo at infinity the set {aoo}—[—f{:g can inter-
sect 0 R*if and onlyif @ € —Ki. Thus the condition (acc}+K)NR=0 is
stable by a small perturbation of aco € %7 or the cone K{. Therefore under
the above condition (2.6) we can conclude as well that f7 « E is real analytic
in 2. The condition (2.6) is satisfied by all the applications below (and in
fact it will be no essential restriction in view of the closedness of the set
S.S. EY).

Below in the main theorem in the concrete application for locally
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hyperbolic operators, we have simply N=2 and then K}, K} are simply
written + K, respectively. Nevertheless in the above we have adopted a
little generalized formulation with the aim to refine the existence theorem
for operators with reducible localization (see e.g. Example 2.4 below). In this
line we can further localize with respect to & the assumption of the existence
of such a set of fundamental solutions in the following way:

THEOREM 2.1'. Assume that for every point £¢c S ' there exists its
neighborhood 4 in $*~! and a set of micro-local fundamental solutions E*/(x)
€ 2°%D") j=1, ---, N, for some s, § such that

1) P(DYE*(x)—8(x) is micro-analytic in D" X 4;

2) S.SeESH(x)c{0yx4UD X340 | KE9 x {8},

éed

where K7 CR" is a closed cone with vertex at 0 depending on &c4d in an
upper semi-continuous way. Let 2C R* be as above and assume that for every
4 mentioned above there exists a decomposition (covering) by relatively closed
subsets:

2.7 50xd={ ] xi
Jj=1
such that
(2.8 (a, &) € X% implies ({a} -+ K& NR=0 .

Then P(D)/{(Q2)=(2).
To prove this variant we first decompose f into a sum of the form

f= Azf"; S.8.5-"fleS.8.5-0f N D" Xiddxeo
€2
where 4 runs in a finite covering 2 of $*~' consisting of small neighbor-
hoods described in the assumption of the theorem. (Such a decomposition
can be obtained as follows: Since & is a finite covering of the compact
Hausdorff space $"%, for each 4 € 9 we can choose 4’c 4 such that {4’} is a
closed covering of S*~! without common interior points. Then we put

fd:f* Ws(x’ Z/) 3

where W,(x, 4') is defined by (1.11) with 4’ in place of 4°. The above esti-
mate for S.S. follows from Lemma 1.14.) Next we decompose each [ to a
sum 5, f*/ according to the decomposition (2.7), and take

x

(2.9 u= 3 Z‘f IZJ,]' « B4

i€aj=1
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instead of (2.5). Hereafter the proof is the same except that P(D)u— f is not
precisely equal to 0 but becomes an element of #°°(D"). Recall that an
element of #°7"(D") is holomorphic at least in a band |Im z|<e for some ¢>0.
Therefore we can apply the global existence theorem of holomorphic
solutions on a convex complex domain (see e.g. Malgrange [16]), and find a
real analytic function ve /(R") such that P(Dyv=(P(D)u— F)lge. Thus
finally (u—v)], is a desired solution.
Remark that the same argument implies also the following

LEMMA 2.2. Assume that for every point £ € S™7! there exists its neigh-
borhood 4 in S and a set of micro-local fundamental solutions E*¥(x) as in
Theorem 2.1’ but with N,=N and K%’=K/{ independent of 4. Then we can
construct a set of fundamental solutions E’, j=1, - - -, N as in Theorem 2.1.

In fact, this time we solve the equation
P(D)E'=5(x)

employing the micro-local fundamental solutions E*7 as in the above argu-
ment: Choose a decomposition ¥ of S"! by closed pyramids such that
each L e % is contained in some 4=4, as in the assumption of the lemma.
Then put

(2.10) E'=3 Wix, Ly E=7 .

Lecy
Then with the common K{=K{*/, E’ satisfies (2.1). The modification to a
true fundamental solution is just as above.

The assumption that N,=N or K4/=K/{ are independent of 4 is not so
restrictive in practice. In fact in general we can take N=max, N,, and for
4 such that N,<<N we can employ some of K%/ repeatedly provided that we
can make a global upper semi-continuous choice among K¢7’s for different
4. However, the last assumption is not a fortiori obvious even if we limit
our consideration to concrete locally hyperbolic operators as we discuss it
below. Therefore the way of presentation of Theorem 2.1’ may be sub-
stantially more powerful than that of Theorem 2.1 though it is less elegant.

As another application of the above technique of patching microlocal
objects we can construct a fundamental solution with complicated singular
support as in Andersson [1]. In fact, for any choice of j, A1<j, <N,)

2.11) E'= 3 Wdx, L)« E*»iz

Leg

becomes a fundamental solution of P(D) (modulo an element of (D)
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which can be cancelled as above). The S.S. of this E7 has an estimate
similar to (2.1) with K{»7/z instead of K{, except for those directions & ¢ 3L
where it may contain K{*77x {£} for the other elements L’ € & of which ¢ is
also in the boundary.

Now we consider a typical concrete class of operators which admit a
set of fundamental solutions as described in the above abstract theorems.

DerinNiTION 2.3 (Cf. Andersson [1]). We say that an operator P(D) is
locally hyperbolic at £ e §7~' (with the vector v) if there exists a neighbor-
hood 43 & in §™%, a vector v#0 and ¢, >0 such that

(2.12) £ 4, 0<|t|<e, implies P, (&+itv) 0.

We say that P(D) is locally hyperbolic if it is locally hyperbolic at every
Eo e Sn—l.

We list up here some properties of locally hyperbolic operators. For
the details see e.g. the cited article of Andersson. Let (P,):(y) denote the
localization of P,(§) at £§e N(P,). It is by definition the first non-zero
coefficient of the Taylor expansion

2.13) P&+t =(Po)n)t*®+0(*®) .

It is easily seen that the local hyperbolicity of P(D) at & with the vector v
implies the hyperbolicity of the localization (P,).(y) to the direction v. (But
the converse is not necessarily true; see Example 3.1.) Further, the vector
v in the above definition can move in the “normal cone” of the hyperbolic
operator (P,).(n) in the same connected component.? Its dual cone, that is,
the propagation cone of (P,).(y) corresponding to the direction v, is denoted
by K. and is called the local propagation cone of the original operator P(D).
K, is a closed convex proper cone depending on £. Since in these arguments
we can reverse the sign of v ete.,, —K, is also a local propagation cone of
P(D). Further, for those & where the localization is the product of several
hyperbolic operators, we have in general more variety of choice for K, by
taking various combination (the vector sum) among those for the irreducible
factors. (However these choices do not always give rise to local propagation
cones of the original operator. See Example 3.1.) Anyway, we can locally
fix the choice of K, so that the correspondence &— K, is locally upper semi-
continuous. This is obvious from the lower semi-continuity of the open

2) Hence in defining a locally hyperbolic operator we can always assume in addition
that P,(v)=0 as is done in Andersson [1]. However, it is more convenient for us
nct to require this ecndition as is seen below.
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cone in which v can move satisfying the condition (2.12) (with various 4 and
e). We do not know, however, if we can globally fix such a choice of K,.
(This is equivalent to know if there exists a continuous non-vanishing
n-vector field £—uv(§) on N(P,) satisfying (2.12). This question is concerned
with the orientability of N(P,)cS8*%. In fact, K, is nothing but the
“normals” of N(P,)CS§" 'in $*7! at ¢ in the sense that it is the dual cone
of the “tangent cone” of N(P,)C 8" * at & Thus it is very plausible that by
taking a polynomial approximation of the defining function of the imbedding
of Klein’s bottle with self intersection, we can give a counter-example
(though yet we cannot execute this complicated calculus). For generic &
satisfying grad,P,(§)+#0 (that is, for simply characteristic direction £), we
have the natural choice for K, by putting K,=R*grad.P,(§). Here we
content ourselves by giving an example showing that this choice is not
always consistent at the multiply characteristic points to give a coherent
choice for K,.

Example 2.4. Consider the following example of locally hyperbolic
operator:

(2.14) P(D)=P, (D)=Di+D(Di+ Di—Dj) .
We have
grader(é):(gg; E & &L, 258, 255, —25,5),

hence the localization of P,, is linear except for the two following cases:
1) If $1=$2:09 Sg—f‘ﬁ“"ég:o but (539 549 55)#(05 03 0) then

(Pm>§(ﬁ):2772(53’73+§4774"‘§57]5) .
2) ¢ =&=§=£=0 but &0 then (Pm)f('/]):&(??g‘l‘ﬁi—ﬁg) .

0
&> £,<0

§3:§4=55:0

g+E-8=0

Figure 1. A symbolic figure of N(P,)NS* ! in Example 2.4.
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Therefore if we wish K, to be upper semi-continuous in &, then the choice K .
=R*grad,P,(¢) for &>0 necessarily imposes the choice K,=— R*grad,P,(¢)
for §,<0. (On the contrary the choice of the direction of the propagation
cone for the factor 7, in case 1) is arbitrary, and we have four possible
choices of upper semi-continuous correspondence &—K,.) Anyway it is true
that in this example we can extend this choice to a global upper semi-
continuous correspondence &—K,.
Now we show

THEOREM 2.5. Let P(D) be locally hyperbolic in the sense of Definition
2.3 and assume that on 4CS™! there exists an upper semi-continuous cor-
respondence & —K, of local propagation cones K,. Then we can construct a
micro-local fundamental solution E(x) e 2°%(D") with some s, § such that

1) P(D)E(x)—d(x) is micro-analytic in D" X 4;

2) S.S.E@c{0yxdUD*xadU | K, x{&).

EEN(PmInd
CoroLLARY 2.6. A locally hyperbolic operator always possesses a set of
micro-local fundamental solutions E*(x) € 2% D"), j=1, - - -, N, as described
in. Theorem 2.1, where K%/, j=1, ---, N, denote all possible upper semi-
continuous correspondences of local propagation cones on 4. (Hence, with
K% there exists always —K{/ among them and for general & the set {K%7}
reduces to =K..)

CoroLLARY 2.7. Let P(D) be locally hyperbolic and assume that there
exists a global upper semi-continuous correspondence €K, of local propaga-
tion cones on S*~'. Then we can construct a pair of fundamental solutions
E=*(x) e 2°(D") satisfying

(2.15) SSE*(x)c{0}xS$™'U U *=K.x{&.
SEN(Pp)NSn—1

Kawai proves in [12] the above Corollary 2.7 employing the Neumann
series as a perturbation from the case of homogeneous operator P, (D) to
which such a “good” fundamental solution can be calculated directly by the
method of plane wave decomposition. Since he considers only bounded
domains, he says nothing about the growth condition of E*(x) as |x|—co.
However, his calculus for the convergence of the Neumann series contains
the accurate estimate even in |x| as it tends to oo. Since his method can
obviously be micro-localized, the proof of Theorem 2.5, hence of Corollary 2.6,
is practically established by him. (It seems however that he did not perceive
that a micro-local fundamental solutions suffice to give the same result on
the global existence of real analytic solutions.) Here we give another proof
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based on the inverse Fourier transformation in view of the self contained-
ness and of the eventual possibility to extend the result for more general
class of operators.

Proor oF THeoREM 2.5. On account of the argument employed in
Lemma 2.2, to prove these assertions it suffices to construct a micro-local
fundamental solution E(x) assuming that 4 is an arbitrarily small neighbor-
hood of a fixed point £°¢ §*~! (See Remark below.). Let v be any vector
satisfying (2.12). Shrinking 4 and diminishing ¢, if necessary, we can
assume that (2.12) holds even for £ in 4 and for 0<[t|<s. Thus

| P, (& —itv)|>ct* if ged, 0<t<e,

with some constants ¢, ¢ (¢ being the maximum of the multiplicity of the
real zeros of P,(&) in 4). Thus we have

| P& —itv)|>cte| g™ if &l|&le d, 0<t<g,lE],
hence
| P,(s—itv)|> Kec|&™? if /gl e d, K|V <t<e|&].

Since P(&) differs from P,,(¢) only by lower order terms, for sufficiently large
K we can find BR>0 such that

@16) |Pe—it)="Clep i geled 1= R, KEFr<i<als].

Now introduce the following n-chain in C*:

2.17) D.={s—iK|g|[""rv; £/|&] e 4, |€|> R},
and put
(2.18) E()=-_1 e

I —__dt.
@y Vo PO ©

This integral converges even in the sense of ultra-distributions. The
meaning of convergence as a hyperfunction is as follows: Replace x by z=
x--iy which belongs to the wedge R*-+il", where " is the open convex cone
determined by I'° N 8§ '=4. (Without loss of generality we can assume that
4 generates a convex cone.) Then we have the estimate

:e—Im 25zeKlill—W‘zv—yégeKlfll_”FIIl—E(y)lfl ,

(2.19) i+

where §(y) is a positive constant depending on y and may be chosen in
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common while y moves in a compact subset of I. Thus the integral con-
verges absolutely and locally uniformly to a holomorphic function E(z) on
R*+il". Then E(x)is nothing but its boundary value E(x+iI'0). From this
interpretation we see at once

(2.20) SS8.E(x)cR x].

We need, however, to interpret E(x) as an element of 2°%D") for some s, 5,
and improve (2.20) as such. Consider (2.19) again. We have

|ei?t|< Clem0mmidi if Kls!i—wlx!g 5(2y> 1],

hence the contribution of this part of integral to the defining function E(2)
is bounded (with the bound depending on y). The remaining part is an
integral on the bounded region

ISlS(%(xD”,

hence it is majorated by

2
C"<—2£Ixf) ’leK<2K/a<y))ﬂ—x|xm.

This shows that if we choose s>y, §>0, then E(x) e 2°%D") and (2.20) can
be replaced by

2.21) S.8.E(x)cD*x 4.

Now we show that E(x) is a micro-local fundamental solution of P(D)
in D*X4 (in the sense of the assertion 1) in our theorem). If we apply
P(D) to E(x), we obtain
(2.22) P(D)E(x):f etidr .

Dg
On the other hand, if we put
(2.23) f(x)=j e'*tdg, where d,={feR*;¢/|¢|ed,|¢|>R},
4R

then §(x)—f(x) :j e""*df becomes micro-analytic in D* x 4. (As usual we
R™\dp

can show this by decomposing R"\4; by proper cones and estimating the
S.S. of each part of integral.) Now by the Cauchy-Poincaré theorem the
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difference between (2.22) and (2.23) is an integral on the “lateral” n-chain
f "t dt, where
Lp

Le={§—itv; ((§/\¢]€ 94, |§|=F) or (§|=R, £/|§|e 1)), 0<t<K[¢[V4},

with the natural orientation induced from that of R* and the t-axis. Hence
its S.S. is contained in D" X34 as is seen again by the decomposition of the
chain. Thus the assertion 1) is proved.

We show finally the fine estimate 2). Let now &° denote any point in 4.
Let 7>>0 be an arbitrarily small constant and put

eix;

E(x)= —_—
) pratienzi-soi<ry P(E)

By the same argument as above we see that E(x)— E,(x) is micro-analytic to
the directions in {£ € §"~!;|6—&°|<r}. Thus to see the propagation of S.S.
with the direction component £° it suffices to examine E/ (x). Let x be
limited in the domain

(2.24) (xy Up<—T|x].

(More precisely, let z=x-+iy run in R*+i[" with the above limitation to the
real part.) Then for {=&—itv we have

Ieiziiée-“’!xl—?ﬁ .

Thus by the Cauchy-Poincaré theorem we can deform the path of integral
from the original one

{e—itv; t=K[&[', |&|€|—&|<T, |§|>R}

to a new one which goes linearly away from the real axis plus the lateral
part

{g—itv; t=¢l§], [618] —&°|<T, [§|= R}
U{s—itv; (&/1§]—8|=T7, [§]=R) or (&/1§]|—£°I<T, [§|=R)),
Klgpn<t<el|&l}.

Let us denote by E(2) resp. E/(2) the part of E(z) defined by the integral
on the first resp. second component of this new path. As boundary values
for y—0 along I, these holomorphic functions obviously define hyperfunc-
tions on the domain (2.24), and even sections of 2°° on the domain of D*
augmented by the corresponding points at infinity. (Notice however that
they do not separately define hyperfunctions globally on R™.)
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Now as for the integral for E/(z) we can let y run in the set
ly|<ef|x]|.

Hence E/(z) becomes a holomorphic function in such a complex neighbor-
hood of (2.24) and is bounded apart from the finite boundary points. As for
E’”(2), by dividing the path as usual we can see that S.S.E'(x) contains only
the directions in {ée §"7!;|§—§&°|=7}. Thus we have shown

S.8.E(x) N D* X {&}=8.8.2E(x) N D* X {&}c{{x, vp=—7|x[} x{&} .

Since 7 >0 is arbitrary, we obtain

{(2.25) S.S.E(x) N D™ x {&}{<x, v) >0} X {£% .

Now we let v move in the normal cone I'; of (P,):(y) containing v, that is,
the open convex cone whose dual equals to K,. Since the correspondence
&—1I", is lower semi-continuous, any element of K,, can be attained by a
continuous vector field v(¢) on 4 which deforms the original constant vector
field v continuously on a neighborhood of &. In view of the Cauchy-
Poincaré theorem, formula (2.18) remains valid during this deformation.
Therefore the above argument applies to the deformed path. Thus we can
finally replace (2.25) by

SSHE@ND x{E}C () {(x v) =0t (&)=K.x{&}.

Since £° € 4 is arbitrary, this is just the estimate 2) of our theorem. g.e.d.

ReEMARE. Supplementary explanation will be necessary on the point
why we can do the construction of the fundamental solution micro-locally :
In principle, we first decompose 4 by {4;} and the component of the
J-function as

Ws(x7 A)=Z Ws(xy AZ)

and then put
E(x)=; E(x)x Wi(x, 4),

with micro-local fundamental solutions E,(x) constructed as above on a
neighborhood of 4,, However, if {4} is only locally finite, the final sum may
be infinite as the one for Fourier hyperfunctions. Since we did not give the
detailed theory of Fourier micro-functions £, we cannot employ the
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interpretation as a locally finite sum of its global sections on D" x 4. (Itis
not obvious if we can choose a global representative in Fourier hyperfunc-
tions of thus interpreted sum.) Therefore we must add a remark that we
can always diminish {4,} to a finite covering. This follows from the
following fact combined with the compactness argument: At each boundary
point of 4, we write down all the upper semicontinuous correspondence
£—K, on its sufficiently small neighborhood 4, Then one of them must
coincide on 4N 4, with the correspondence &—K, given in the assumption
of the theorem. There is another way of constructing E(x) on D*xd4: We
first construct a continuous vector field v(§) from the assumption of the
theorem. Then the above proof will give a fundamental solution E(x)
directly on D" x 4. The method of construction of such v(€) is as follows:
The correspondence 42 &1, (the cone in which v can move) being lower
semi-continuous, we can choose a sufficiently fine locally finite covering {4,}
and a corresponding family of open convex cones {I';} such that

ted=>0.Dl, EedNd >0 D01,

Then choose a fixed unit n-vector v, € I'; arbitrarily for every 2, and with a
partition of unity {¢(&)} associated to {4,} put

v©=2 e:lO)v;.

Anyway this remark is not important in our following applications because
we only need the existence of micro-local fundamental solutions in the
sequel.

Now we are ready to assert something on the global existence of real
analytic solutions for locally hyperbolic operators. First we give the
following literal consequences.

TueorEM 2.8. Let P(D) be locally hyperbolic and let E*i(x) ¢ 2% D),
j=1,---, N, be a set of micro-local fundamental solutions as is given by
Corollary 2.6. Let QCR" be a connected open set satisfying the following
geometric condition: For any 4 appearing in the definition of the set {E*(x)}
we can find a decomposition by closed subsets

J— N
(2.26) 20X A=) X*
j=1
such that

(2.27) (a, &) € X7 implies (e} + K2 HNR=0 .
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(Here 0 is, by definition, the closure in D" of the boundary 32 of 2 in R".)
Then we have P(D)s/(2)=o/(2).

To prove this from Theorem 2.1’ it suffices to show that the assumption
of the latter at the points at infinity in 2\ 02 is automatically fulfilled in
our present case. Choose an extension fe 2%?(D") with sing supp fcan.
Then decompose first f into f,+7.. such that

sing supp f/,C02, sing suppf.CiRNSY*.

The equation with the second member f, can be solved as in Theorem 2.1’
on account of our assumption. As for f.., we can decompose it by means of
the curvilinear Radon decomposition (1.10) to a finite sum

fo=>TF4, SS8e¥fic@ERNSTYHYXA,

where 4'C 4 is a compact subset. Therefore it only remains to solve the
equation with the second member f4, and this follows from the following
decomposition replacing (2.27):

LemmA 2.9. Assume that for each & € 4 we have
Ng .
(2.28) N K&7={0}.
j=1

Then there exists a decomposition of S% 1 X 4 into relatively closed subsets Y7,
j=1, ---, N,, such that

2.29) {aco, &) € Y*7 implies ae — K97 .

Proor. We first decompose S$7 1 x 4’ into closed subsets Y?*/ as above.
(This suffices for our present application.) Choose aoco € §%* and £e 4’
arbitrarily. By the assumption (2.28) there exists j such that

ag —K{7.

By the upper semi-continuity of £ K%/, this relation remains to be valid in
some (closed) neighborhood of (aco, &) in $% ' x 4’. Since $% x4’ is a com-
pact set, it can be covered by a finite number of such neighborhoods. Thus
it suffices to classify such closed neighborhoods according to the index j and
take their individual union as Y%7,

Now we decompose 4 by a locally finite family of compact subsets 4'c 4
and construct Y#/ for each 4’ as above. Since for each fixed j {Y%"/}; again
constitutes a locally finite family, their union Y“/ is closed and satisfies
(2.29). q.e.d.
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To finish the proof of Theorem 2.8 it suffices to notice that for a locally
hyperbolic operator the cones K{/ are proper, hence K%/ N —K#%7={0} and
the assumption (2.28) of the above lemma is obviously satisfied.

The same proof based on Corollary 2.7 givés the following

CorOLLARY 2.10. Let P(D) be locally hyperbolic and assume that there
exists a global upper semi-continuous correspondence &— K, of local propaga-
tion cones on S™'. Let  C R* be a connected open set salisfying the following
geometric condition: There exists a decomposition by closed subsets

(2.30) xS =X+UX-
such that
(2.31) (a, &) e X* implies ({a} % Iz) N Q2= respectively.

Then we have P(D)s/(2)=s7/(2).

Remarx. For the present level of our theory we cannot weaken the
geometric condition of the above theorem to the following one posed only on
the finite boundary points 32 of QC D": There exists a decomposition by
closed subsets

N4

(2.26Y P xd=|_) X+’
i=1
such that
2.27yY (a, &) € X7 implies {a}+ K{H)NP=9

(and similarly for Corollary 2.10). In fact, consider e.g. the region in Figure
2a in relation to the operator P(D)=D,. We have +K,={xx>0, x,=0}
for all £e N(P,). Therefore we must choose the plus sign at every finite
boundary point a of 2 in order to have ({a}+K)N2=@. Thus in order to
obtain a decomposition by closed sets, we must choose the same sign even
at the limit point aco € 32. We have, however, 62 N S% =32 NS '={aco}
with ¢=(—1,0) in view of the definition of our compactification D", and
hence ({aco}+K,)N2+ D by the definition of the vector sum given in
Theorem 1.16. Summing up, our domain does not satisfy the geometric
condition of Theorem 2.8 though it does the weakened one (2.26y—(2.27)". 1t
may seem rather paradoxical that on the contrary we can apply our theorem
to the domain in Figure 2b (for which we can employ —K, on a neighbor-
hood of acc). Domains as in Figure 2a will be treated by our theory by
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X, X,
§xl£_x§
am— A H—ax,
Figure 2a Figure 2b

the introduction of more refined compactification of R* depending on the
respective domains.

Related with this is the advantage of the abstract assumption of
Theorem 2.1. It is known that if P(D) possesses a set of micro-local funda-
mental solutions as in Theorem 2.1', then P(D) is necessarily locally
hyperbolic. (For a detailed proof of this fact see Zampieri [22].) Therefore
the abstract form of Theorem 2.1’ has a meaning if we can treat the case
where K, are not necessarily proper. However, in view of the case 4) of
Theorem 1.15 the compactification D* of R" is not adequate for this, and
again various types of compactification related with the operators are
required. We leave these subjects to a forthcoming paper. (See Zampieri
[21] for an example of such study.)

On the contrary, in the case where there are no finite boundary points,
that is £ =R", we have the following

CoRrOLLARY 2.11 (Andersson [2]). Let P(D) be locally hyperbolic. Then
we have P(D)</(R™)=</(R").

Andersson’s proof is apparently similar to ours because he also employs
the decomposition of the second member f in relation to the good property
of the fundamental solution on the propagation of S.S. However he does not
employ the rapidly decreasing extension and hence he has to employ some
approximation procedure instead of the direct calculus of convolution.
Therefore our proof will be more instructive even in this simplest case of
unbounded domain.

§3. Refinement of geometric condition.

Now we try to replace the geometric condition in Theorem 2.8 or in
Corollary 2.10 by the one posed at each point:
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(3.1) For every point (a, £) € 02 X 4 there exists K{/ such that
{a}+ KN Q2 =1;
or respectively
(8.2) For every point (a, £) € 02 X.S"~" we have either
{a}+K)NR=2 or ({a}—K)N2=0.

In fact, in [20] Zampieri has shown that for a locally hyperbolic operator
P(D) the “pointwise” condition (3.2) suffices to prove P(D)«/(2)=/(2) for
convex 2. Since his proof is based on Hérmander’s result [5], the convexity
of 2 is indispensable. Therefore it will be more advantageous to refine
our argument to manage with the above “pointwise” conditions.

We would have to examine first if these “pointwise” conditions imply
the “uniform” conditions (2.8) resp. (2.3) treated in § 2. The problem is to
regroup (a, &) with respect to the index j resp. the sign + in order to con-
struct a decomposition by closed subsets satisfying (2.8) resp. (2.3). At the
end of § 2 we have already seen that if £ is unbounded there are some
difficulties at infinite boundary points. The fact is that even in the case of
bounded £, this passage from “pointwise” to “uniform” is not so simple:
Kawai in his article [12] gave several sufficient conditions which assure this
in the case corresponding to Corollary 2.10. Among them he mentioned
that if 2 has Cl-boundary we can deduce (2.2)-(2.3) from (3.2). It was
pointed out by Zampieri [19], however, that if some of K, is larger than a
finite set of half lines, then a bounded domain with C'-boundary never
satisfies the condition (3.2) itself. More recently, Zampieri constructed even
an example where the pointwise condition (3.2) actually does not imply the
uniform condition of Theorem 2.8:

Example 8.1. Consider
(3.3) P(D)=D:D:— DiD;— Di— D;— D3 D;.
This is locally hyperbolic. In fact, we have
grad. P(8)=(26.8, 2(8—8&)&,, —26,(28+81+8), —26,(281+5)),

hence grad,P(£)#0 except for the two pairs of directions §=(+1,0,0,0) or
£=(0, +1,0,0). The localization at the former is equal to 7;. We see easily
that P(D) is locally hyperbolic at these points with the vector v=(0, =1, 0, 0).
(Note however that v is a characteristic direction of the original operator.)
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The localization at the latter is 7;—#3. Since P(£)=0 solved for &, gives real
roots (&4 (5i4-E1-+H£6D)/ED)Y* on a neighborhood of (0, 1,0, 0), P(D) is
locally hyperbolic there with v=(+1,0,0,0) and the propagation cones
+ K, of yi—1i, where

3.9 K. ={x>|x,], x,=x,=0}, £=(0, £1,0,0)

serve as local propagation cones of P(D). On the other hand, P(&)=0
solved for &, gives

848 [EEE o
g ST JOHE ag o

Therefore on a neighborhood of (0, 1, 0, 0) the four roots may be either
“2 reals and 2 imaginaries” or “4 imaginaries” according to the sign of
£222—¢&i. Hence P(D)is not locally hyperbolic with v=(0, 0, =1, 0) though
its localization is hyperbolic to these directions. Now consider any 2 which
lies in x,4+x,<<0 and of which the boundary possesses a flat part B in
common with the hyperplane x,+x,=0. At any point of this part B the
pointwise geometric condition (38.1) is obviously satisfied. Note however
that for £=(0, =1, 0,0) we have a unique choice for K,, that is, (3.4). There-
fore, if we wish to realize the uniform geometric condition (2.3), we must
choose as K, for each simply characteristic direction &~(0, -1, 0, 0) either
of the half lines parallel to +grad.P(§) which tends to (3.4) but not to the
opposite one as £€—(0, 1,0, 0). But there exists a sequence of such half
lines which always penetrate into 2. In fact, putting &=1, &=0 for
simplicity, we have

grad . P(§)=(2¢, 2(51—&), —26,(26+1), 0),

hence we must choose the plus sign for £>0, §,>0, and then along this half
line we have

xl+x3=2{:1—253—45222\/§§+E§—253—4§§<0 .

Thus we have no way of dividing BXS8*' by closed subsets in order to
satisfy the uniform geometric condition (2.3).

The above example shows that our abstract theorem 2.1 (or 2.1°) does
not suffice to prove Zampieri’s result even for convex £2. Therefore we now
try to improve the abstract theorem in order to compensate this shortage.
For this purpose we consider a stratification on 4CS"~'. This is by defi-
nition a disjoint decomposition of 4 by locally closed subsets &,:

(3.5) A=F 18 .. .8,
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satisfying

= = fergp— =
‘—‘k+1c‘-’k, ‘-‘k—‘—’k\‘-’k+1

for each k. (&,,.,=9 by convention.)

THEOREM 3.2. Assume that P(D) admits a set of micro-local fundamental
solutions E*¥(x), j=1, ---, N,, as described in Theorem 2.1'. Assume that
there exists a stratification (3.5) of each 4 such that for each k, 32 X 5, can be
decomposed into relatively closed subsets

= NA :
(3.6) 30X E,=] X*trI
=1

in such a way that
3.7 (a, &) € X**7 implies {a}+K2HNR=0 .
Then we have P(D)A(Q)=s4(8).

Proor. Let fe #(R") be an extension of f with support in 2, and let
F=>7,f* be a decomposition into finitely many f4e B(R") with S.S. fico
x4', where 4 are some of the neighborhoods on which the micro-local
fundamental solutions E%7 and the stratification (3.5) are assumed to exist,
and 4/« 4. For each fixed 4 we shall find u? e #(R") such that u’ is real
analytic in 2 and that g*:=P(D)u’— f? is real analytic on R". Then u=
37, u? will satisfy P(Dju= f+3,8% We shall see later that for g=3_,8°¢
#(R") we can find a solution ve &/(R") of P(D)v=g rather easily. Thus
{u—1v)|, will be a required solution.

To construct w? we proceed by the induction on k: Assume that we
have obtained a micro-local solution u’* e Z(R*) of P(D)u**=f* on R"X
(AN Z,,) in the following sense.

1) S.S.uttC(RN\ DXL,
9) S.S.(PDutr—fHCaR x (@ NE. ).

We construct u®**! from u** employing the micro-local fundamental solu-
tions as follows. (This argument also shows how to construct the first one
u*’) Put

gd,k+1:P(D)ud,k_IZ‘J .

We have S.S.g#*"'CoQx(d' NE,.). Modul_o' Z(R?) we extend g®**! to
h5E+ e 959-Y(D") such that 8.8 paE+1 50X (4 N E,,). Then by the
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geometric condition we decompose A%**! into the sum of A4**%7 such that,
putting X%/ =X4*/ND*x 4, we have

S.8.5 - Tpa kL= X Tk b (TQ e (Z/ N 5k+2)) .
(As usual these procedures are possible in view of the flabbiness of the sheaf
Z°~% of the corresponding class of Fourier microfunctions. For the treat-

ment not relying on the flabbiness of #*-% at infinity see the end of this
proof.) Now put

Ng
4, % +1 4,7 4,k+1,5
v4 — E47x b4 o,

By the geometric condition the S.S. with the direction components in &,.;
does not propagate into 2. Hence we have

S8yt i c RN @ (AN B )UR XA NEL.,),
where ¢ is the one given by (1.13) via § and . Hence
S.8. (V" ) C(RND XA NE DUDXE NE, ).
Now choose w***! ¢ Z(R") such that
S8 E O X (A N E, L,
SS.wh (RN X (L' NExyr) -

(It suffices to take the component of a decomposition of v***!|z, according
to the above closed covering. Here is necessitated the flabbiness of the
usual sheaf € hence only on R but in a very sharp form.) By the con-
struction we have on R*

P(D)wd,k+1__gd,k+1:(P(D)vd,k+l__hd,k+l)+(hd,k+1_gd,k+1)
+ P(D)(w*k+t —phk 1)
=P(D) (w1 —ph+1) mod <Z(R"),

hence

S.S.(P(Dyw* +1— g4 ) C(RND X (@' N E )N IXE@ NEL.y)
CORX(A NE sy

Hence u***'=u®*—w"**! gatisfies the inductive assumption 1)-2) with &
replaced by £+1. Thus after a finite step we finally obtain a desired micro-
local solution w?.

Now we solve P(D)yu=fe «/(R") for u ¢ «/(R*) under our geometric con-
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dition. Note that we cannot employ the above argument directly, because
by once taking the convolution the Fourier hyperfunction loses the rapidly
decreacing property and it can no more accept the convolution by the
fundamental solutions. However, we can apply Remark after the proof of
Theorem 2.1. That is, if &K%/ is upper semi-continuous, the condition
({acc}+K2)NR2=07 implies ({d/0}+KE)NN=07 for o' and & sufficiently
close to @ and &. Note that we have the pointwise condition (3.1) for every
point at infinity which is not necessarily in 62. (Thisis also a consequence
of our condition (3.6)(3.7); see the proof of Proposition 3.3 below.) There-
fore we can always decompose S~ x4 into relatively closed subsets X%/
for which the uniform condition like (2.2)—(2.3) is valid. The fact that we
can enlarge X% a little allows us to manage with Proposition 1.21 instead
of the flabbiness of R>-% at infinity. The same Remark applies also to
choose A%**! or h%**47 in the above proof. In that case we had better
replace (3.6) by an equivalent condition

(3.6) 00X F USEtxA=1 ] X4+,
j=1

and likewise the definition of X%/ by X4t N(R* X 4)U(S% X 4'), and we
must allow to enlarge 4’ in 4 for so many times as requires the induction
procedure. g.e.d.

In the geometric condition (3.6) we may replace 32 by 00 if we assume
in addition the pointwise geometric condition at points at infinity of 3%,
because we have employed the condition on the part 59\@ only to deduce
the latter. It is not at all obvious if we can do without this additional
condition in the abstract argument (though all are obvious for locally
hyperbolic operators).

Now we give a convenient sufficient condition for bounded 2. In view
of possible later development we discuss a little generalized situation.

PROPOSITION 3.8. Assume that there exists a stratification (3.5) of 4 such
that (at each connected component of E,), the correspondence E—~K{7 is can-
tinuous, that is, we have not only the upper semi-continuity, (cf. (2.6)) but also
the following lower semi-continuity:

(3.8) For each fixed & given any ¢>0 there exists 6>0 such that for |&§—&{<d
and for any x € K%' N {|x|=1} we have dis(x, K{7)<e.

(Note that we do not require that K, remains homeomorphic as § varies in
each connected component of 5,.) Then for bounded 2 under the pointwise
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geometric condition (3.1) we can find a decomposition of (D™\ 2) X &,, hence a
fortiori of 80 X &, by relatively closed subsets as (3.6)-(3.7).

Proor. Let R>0 be a large constant and let By={x e R*; |[x|<R}. Put

(3.9) X ={(a, §) € B\ X Ey; ({0} +KP)N2=2}.

Then this set automatically becomes relatively closed. In fact, assume that
(aV, &) e X457 and (@, EV)—(a@,§) e (Br\2) X &,. Assume xec(a®+K%d)
NQ+#@. Then by the lower semi-continuity (3.8) the set a‘®+ K% for
sufficiently large [ would contain a point in the ¢-neighborhood of x which
should be contained in £ for ¢ small. This is a contradiction.

Next, for a compact subset 4’ C 4 we try to decompose (D*\Int(By)) X 4’
by closed subsets. (Note that the set which we obtain from (3.9) by replacing
By by D" is not necessarily closed: For example, for a ¢ K\ Int(K%7), the
set ta— K%7 may be disjoint of 2 for each ¢>0 though its limit aco — K%/
agrees with the whole D) Suppose (¢, £®)e §* 'x4’. Then in view of
the pointwise geometric condition (3.1) we can find j such that ¢ ¢ — K%i.
In fact, choose a € 92 and b ¢ 2 such that a®//a—b. (This is possible if Q is
bounded, or more generally if ¢®co § 32.) We must have ({a}+K4)N2=3
for some j. Hence b &{a}+ K, that is, a® & —K%{. By the upper semi-
continuity of §—K%7, we can find a closed neighborhood 4,«, of £® and ",
of ¢ guch that

ag —K{$7 for acl, o, &€dion.

Note that if R is sufficiently large, then we have
(3.10)  a& —K% implies (ta+K*)NR=¢ for R<t< +oo.

Again by the upper semi-continuity of &¢—K$7/ we can assume that (3.10)
holds with the same R for a ¢y, £ €4d,». Now we cover §”"'x 4’ by a
finite number of closed neighborhoods I”,« X 4, like this. Let R=R(4’) be
the maximum of R’s attached to them. Just as in the proof of Lemma 2.9
we can find closed subsets Y*/, j=1, - - -, N, of (D"\Int (B)) X 4’ such that

(a, &) e Y¥7 implies (a+ KZ)NR=7 .
Now let 4’ run in a loeally finite closed covering of 4, and put

X8I = J (X35 NV (Bruy X AN U (Y N(D* X F))) .
¥

This becomes a closed subset of (D™\ 2) x4 because the union in the right
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hand side is locally finite. Thus it gives the required decomposition. g.e.d.

From these arguments we can deduce in particular the global existence
theorem for locally hyperbolic operators on bounded domain under the
pointwise condition (3.1). Recall that on $*' there always exists a stratifi-
cation as follows: Put

(3.11) E,={cec 8" deg(P,):(n)=Fk}, k=0,1,.--,m,

where deg(P,):(n) denotes the degree of the localization of P,(§) at £ 5, is
a locally closed subset of $*~'. In fact, in view of the expansion

Pm(s‘*_tn):Pm(E)'*_nV&Pm(E)t—}’ ct e _'_(WVE)um(‘E) A >
~ we have
B,={€e 8" (V) P(5)=0 for j<k—1, and (3V)"P,(§)£0} .

Especially &, is nothing but the set of non-characteristic directions of P(D)
and &, that of simply characteristic ones. From 5, on there may be some
void Z,’s. Then we omit them and re-index the rest. Then we have obvi-
ously (3.5) for any 48"~ by the strata 4N &, with a fixed M<m.

LEmMA 3.4. Along the strata (3.11) of the above stratification the cor-
respondence £— K, is lower semi-continuous.

Proor. Let us denote the localization (4V.)* P, (&) by Q(n; &). It suffices
to consider & in a small neighborhood 4 for which Q(y; &) is hyperbolic to a
fixed vector v, and hence K, =I'(Q(y; &), v)°, where I'(Q(y; &), v) denotes the
connected component of R™\ N(Q(y; £)) containing v (which is well known to
be a convex proper cone). Thus the problem is reduced to the following:
Let Q(y; &) be a family of homogeneous operators of a fixed degree depending
continuously on the parameter £, Assume that Q(y; &) are hyperbolic to the
direction v=(1, 0, - --,0). Then the propagation cone K, of Q(z; &) satisfies
the condition (3.8) of lower semi-continuity.

Put I".=I"(Q(y; §), v). Passing to the dual cones we can rewrite the
condition (3.8) as follows:

(3.12) For each unit vector x satisfying —{x}° NI\ =, given any ¢>0 we
can find 6>0 such that for |£—£°|<6 we have —4.(x)° N[, =2.

Here {x}° resp. 4.(x)° denotes the dual cone of the half line {tx;¢{>0}
resp. the cone generated by the e-neighborhood of x in the unit sphere. For
7 € R*'let o(y; £) be the maximal root of the algebraic equation Qz,7; &)
=0 for z. Then I, is generated by the vectors (z(7'; £),7), |7|=1. The
assertion —{x}° NI ;=9 implies that
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(x, (€, 9)>=0  for |y/|=1.

Since @1, 0, - -+, 0; )0 by assumption, the root z{(y’; §) is continuous in
(7'; &), hence given ¢>0 we can find >0 such that for |§—£°|<é we have

&, (58, 7)»>—e  for|y|=1,
that is, the cone (y; (x, 7)< —¢) does not intersect 7’,. q.e.d.

Summing up, for a bounded domain 2 we can conclude this article by
the following rather agreeable result:

THEOREM 3.5. Let P(D) be locally hyperbolic and let Q be bounded.
Assume that for a set of micro-local fundamental solutions {E*7} (resp. a pair
of global “good fundamental solutions” E*) the pointwise geometric condition
(8.1) (resp. (3.2)) is satisfied in relation to the local propagation cones K27
(resp. +K,). Then we have P(D)</(Q)=<(0).

Finvan REMARKS. 1) For convex £ Zampieri [20] proves in fact a
stronger assertion by assuming (3.1) not for the local propagation cone of
P, itself but for that of each (local) irreducible component of P,, (and by this
refined form he has succeeded in proving also the necessity of the geometric
condition when the localizations are at most of order 2). His result cannot
be entirely covered by the mere enlargement of the possibility of choice of
K, since it can treat an operator which is locally a product of locally hyper-
bolic factors but not in itself locally hyperbolic. Here we will only mention
that a suitable decomposition of P(D) would allow us to prove his result
from our viewpoint. In fact, we could employ an argument similar to the
proof of Theorem 3.2 in order to solve the equation successively by its
factors. This process is in fact practicable for a homogeneous operator
P(D)=P,(D). (Inthat case the condition (3.6) should be replaced by

3.6)" (DD X Fy=1 ) X4¥1.,
=1

The generalized form of Proposition 3.3 assumes this application.)® We do
not know yet, however, how to decompose P(D) itself when it has lower

3) This was a misunderstanding of the author. In fact, solving e.g. Pi(D)PyDyu=f
successively, we first obtain Py(D)u=F=E, by the fundamental solution E; of P,
and the right-hand side has S.8. extended over D™\ 2 in general. However, we may
here replace the left-hand side by an extension of f=E;jo with minimal support.
Hence a condition like (8.6) for each factor will be sufficient. But we here leave
Proposition 3.3 as it is because its generalized form may still have some interest.
The author is grateful to the referee for pointing out this.
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order parts. (And we should notice that for £ not necessarily convex we do
not know yet a priori whether P(D)+/(2)=s/(2) is equivalent to P,(D)s/(2)
=.7({2) or not.)

2) The discussion of the necessary condition for the global existence
from our (i.e. micro-local or non-topological) point of view is a chalenging
problem. As far as we know, there is yet no theory applicable to the con-
verse implication of the arrow (0.4)=>(0.3) given in the introduction.

Appendix: On the foundation of Fourier hyperfunctions of type [s, 3]

Here we give briefly the proofs to the theorems on the foundation of
our new class of Fourier hyperfunctions listed up in § 1. In the general line
we follow the argument of Kawai [11], but we adopt simplifications intro-
duced afterwards mainly by T. Oshima. Note that we can always assume
5=0. In fact, the multiplication by exp(—d(z*+1)*”?) induces a sheaf iso-
morphism between @* and @*° on the complex neighborhood C(C;, C,) of
D", where

(1.2)bis CL(C, C={ze C*;|Im z|<C\|Re 2|+ C,;}
(0< C,<min{1, tan~z/4s)}, C,>0).

Nevertheless we shall retain the suffix § (which is assumed to be equal to
zero in the sequel) in order to keep the identity of the symbol. On the
contrary we cannot reduce the parameter s to 1. (A real analytic coordinate
transformation of the type x°—>x changes the topological structure of the
product D*X R*~D"-+iR* when it is continued to the complex neighbor-
hood.)

First we let f;;?oc denote the sheaf of germs of local L,-functions on
D"+iR" obeying the same growth (or decay) condition as (1.1) for @5, That
is, for UCD"+iR", f(2) eE;;?oC(U) implies that for any K U and for any
e>0

f(z)e= O+ on € L(KNCT) .

(As is well known, for f(z) € 0(UN C*) the estimates by seminorms of L,- and
of maximum type are equivalent on account of the arbitrariness of K< U and
£>0.) Then we let Ly2@» denote the sheaf of germs of (0, p)-forms with
coefficients in ~§;§oc. Finally we let 23i%? denote the domain of the o-
operator L~§;;’§3’1’>—+L~§;§§2>p+”, that is, the subsheaf consisting of those germs
fe E;;%ﬁ’” such that of, calculated in the sense of distributions, belong to
I:;;;’,S‘c”“". Since the multiplication by bounded C'-functions with bounded
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first order derivatives conserves the domain of 3, £5%? is a fine sheaf on
D" +iR" as well as L30P or a fortiori L),

ProrosiTioNn A.l. Let UCD"4-iR™ be a pseudo-convex (in the sense of
Definition 1.2) open set such that UN C™ is contained in a set C{(C,, C,) of the
form (1.2)bis. Then we have the following exact sequence of section modules:

(A 0—>0HU)—>Z31(U)—"> 2500 (U)——> - . . —> Z530(T)—>0 .

loc

We prove this by means of Hérmander’s L.-theory of the §-complex.
Write C,=C(C,, C,) for simplicity. First we prepare

LevMA A2, Let f(2) e L2 2%(U) with UCD"+iR" satisfying UNC"cC.,.
Then we can find Q(2) € **(C,) such that it is invertible in C, and that for
every Ke U

[@QE) knc € LLENC™).

Proor. This is an L,-variant of the calculus done in Kaneko [6].
Therefore we try to reduce it to the latter. There exists an absorbing
sequence {K;} of compact subsets of U. Put

& =(] oo @)

where dp is the Lebesgue measure of C*. Then the growth condition for
fe L2 %(U) is equivalent to the following one on g,(r):

(A.2) For Ye>0 we have g,(r)=0(").

(Recall that we are assuming §=0.) In fact, for fe I:i;;‘oc( U) we have

(JKjﬂ(r—ISIReZIST} 7@ lZdﬂ)m

<(j ' !f(z)lze_zs'm[sdﬂ)m' max  eflfe’
T\ Enr-1<iRezi<r)

r—1<|{Rezl<r
éHf(z)e_smeZIs”Lz(KjﬁC'") et 5
and conversely if g,(r) for f satisfy the above condition then
1f(@)e > Lyx;nem

[f(z)"—zsmezmleKn(r 1<iRezl<r])

(r)e_ze(r I)S<Z g](r)+ Z (g,(r)e‘“‘)e (8/2)r$<0O )

||M8 IIM8
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where r,>1/(1—(3/4)). Now put hy(r)=gi(r"*). Then hyr) are of infra-
exponential growth. By the proof of Lemma in Kaneko [6] we can find
another continuous function A(r) of infra-exponential growth (which can be
assumed monotone increasing) such that r*°h,(r)=O((r)) for all j. Then by
Lemma 1.2 in Kaneko [6bis] we can construct an entire infra-exponential
function J(w) such that it is invertible in

(A.3) [Im wi<e¢,|Re wi+c,
and that
lJ(w)l2h(Cs!wl+C4)

there. Here ¢, to c, are positive constants which can be assigned arbitrarily
except the condition ¢;<<1. (In the cited article they are so chosen that
¢,=1/4/'8, ¢,=1. This generalization is obvious.) Put finally

QE)=J(1+2°)").

Then with an appropriate choice of the constants ¢, this function satisfies
all the requirements. In fact, for a sufficiently large choice of ¢ (<1), ¢, and
1/a, the domain C(C,, C,) will be mapped by the transformation w=(a+2%*"
into a subdomain of (A.3). There we have, for a suitable choice of c, ¢,
(assuming ¢ =1 for simplicity),

|J(1+29") | = h(c| (1 +2°) 7 |+c) = h((Re 2|+1)°)
=e&({Re 2|+ 1)°g,(|Re z|+1)

with some constant ¢;>>0. Thus
1FE@IQE) racxsnem < S IR+ Dsacrsatr-szimenzny

<Sig(-—1 <o
=5 e

It is obvious that Q(z) € *%(C,). g.e.d.

Proor oF PropositioN A.l. Take fe #33%%?(U) such that 5f=0. By
the above lemma we can find Q(z) € §°*(U) such that f/Qlxnc. € LEP(K N C™)
for any compact subset KCU. We have obviously 6(f/Q)=0. Since UNC"
is pseudo-convex by assumption, we can find a continuous plurisubharmonic
function ¢(2) on UNC™ with the properties 1)-2) in Definition 1.2. More-
over, for any convex continuous function y(¢) of one variable, the composed
function x(¢(2)) also satisfies them. Now put
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K,={zcUNC"; o(<j}, j=12,---.

These K; constitute an absorbing sequence of compact subsets of U. We
can obviously choose y so that
1f1@Qlzoxnr;—vnem <€ = inf [exteeD] .
2E(KAK;-1)NC™

Thus we have found a plurisubharmonic function ¥{(2)=yx(¢(2)) such that
(fl@ev®» e L{UNC"). Then Theorem 2.2.1 of Hormander [4] gives a
solution g of 3g=f/Q such that g(1+|z) %" e L(UNC"). Qg is our final
solution. g.e.d.

The proof of the above proposition shows especially that

- ~ 3 -~ 3 ~
(A4) 00—’ —— L5 ——> Lh—> - - > LR ——>0

is a fine resolution of the sheaf #°°. Hence Theorem 1.3 follows at once
from the same proposition.
Next, to prove Theorem 1.4 we also consider the dual resolution

3 3
00" > Lo LHIV >+ > L3l 0.

Here Ly, (U) is defined by the same growth condition as ¢*%U) in (1.6)
(with the supremum norm replaced by the L,norm) and the definitions of
the other symbols are deduced from this one just as for the case of upper ~.
By a similar argument we can show H?(K, ¢*?)=0 for p>1 for a compact
set KCD"+iR" which admits a fundamental system of neighborhoods of
pseudo-convex open sets as in Theorem 1.3. Moreover, for UCD"+iR" we
have the following dual complexes:

0—> ZEUU)——> - - - —> ZHE(U)—>0
Oc— ZE(U) - - - < 20 (U)—0,

where the subscript ¢ denotes the sections with compact supports. These
complexes consist of FS*- resp. DFS*-spaces in the sense of Komatsu [24]
and have the same cohomology groups as the complexes

0—>LPR(U)—> - - - > LOm(U)—>0
0—LEP Uy - - < LEW(U)<—0,

which consist of the same type of spaces but with unbounded operators.
Thus we can apply the Serre-Komatsu duality ([24], Theorem 19) for each
pair of cohomology groups if one of the complexes consists of operators
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with closed range. (See also addendum 2 below.) From these facts we can
deduce Theorem 1.4 just as in the case of ordinary hyperfunctions following
the argument of Martineau-Harvey (see Kawai [11], pp. 480-482). The out-
line is as follows:

Sketch of Proof of Theorem 1.4. Let UD K be a pseudo-convex neighbor-
hood. From the long exact sequence for the pair UNKCU we obtain, in
view of Theorem 1.3,

HY(U, §+)=0(UN\ K)/0**(U)

(A.5) B ~
HY (U, 0-%=H?>"(U\K, 0°° for p>2.

On the other hand, from the long exact sequence with compact support for
the pair KCU we obtain, taking into account the principle of analytic
continuation and the fact H*(K, 9% =0 for p>1,

H(UNK, 0°9)/¢0*%(K)=HU, ¢°*°)
HYUNK, ¢°)=HXU, ¢*°)  for p>2.

By the above mentioned duality we obtain

HYU, ¢»)=H"*(U, §>?)=0  for 0<p<n-—1,
H(U, ¢ =0-Uy ,
hence
HY(UNK, 0>°)=0"(K),
(A8) HAUNK, ¢7)=0 (2<p<n-1),
HYUNK, 0~°)=0*Uy .
We can show that the first and the third isomorphisms of (A.6) are even
topological. (This can be shown e.g. by proving the closed range property

of the concerning mappings an in the proof of Theorem 1.5 below.) Thus we
can again apply the duality theorem with U\ K in place of U to obtain

HY(UNK, 0°)=H(UN\K, ¢>?y =0,
HY(UNK, 6*9)=¢**(K)’ ,
HYUNK, 0*)=0 (1<p<n-2),
T UNK)=HAUNK, 0 = 0~/(U).
Combined with the isomorphisms (A.5) at the beginning these establish

Theorem 1.4. (On account of the excision theorem, U may finally be
arbitrary.)
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Proor or THEoreEM 1.5. This is to show the exactness of Z5:0"-2(U)

igg;fg,gg’w(U)—»o or equivalenﬂy of Lg;fgg’"—h(U)i;g;fgg»M(U)—»o. In view of
the duality theorem it suffices to show that equivalently its dual

(A7) L320(Uy<—— L 20(U)«—0

has closed range®. This is surely true if U is replaced by a larger pseudo-
convex open set V because then H?(V, %) =0 for p>>1. Thus the problem
reduces to the estimation of support of the solution of the system du=f
employing the principle of analytic continuation: Note that in a DFS*-
space we can test the closedness by converging sequences. So assume that
u, € LyAU), and —ou,—f in Lyi®V(U). Then the convergence takes place in
L:2@5(V), hence by the closed range property of

(ATY Lo V)<Ly200(V)«—o0

we can find u e L$AV) such that —su=f. Since u is holomorphic outside
supp [, in view of the uniqueness of analytic continuation we see that supp u
CK, where K is a compact subset of V which may contain some connected
components of (D"+iR*)\ U contained in V but on which « is holomorphiec.
It remains to show that w is in fact zero on these components. Again by the
closedness of (A.7) and the stability of DFS* property for closed subspaces,
we can apply the open mapping theorem and find some sequence v, ve
LsXV) such that —dv,= —odu,, —dv=—du and that v,—v in L3¥V). But by
the condition of support we must have v,=u,, v=u. Hence uy,—u in Ly¥V)
and especially in 2'(V(N C*®). By the local character of the topology of the
latter space, we thus conclude that supp v must be contained in U. This
shows that (A.7) has closed range. g.e.d.

Sketch of Proof of Theorem 1.6. Let 2C D" be open and let UD2 be a
pseudo-convex neighborhood. Applying Theorems 1.4 and 1.5 to the funda-
mental long exact sequence for the pair 2 Q:

- H2(U, §5%)—>HYU, §)—H¥U, §>)—>- - - |
we see at once

Hy(U, §°)=0 for ptn—1,n.

To prove HE YU, 0°%)=0 we further need the injectivity of H%,(U, §°%)—
H(U, 0*°) or equivalently the denseness of range of the dual map ¢*%(2)—
0%(082). Since the proof of Theorem 2.2.1 in Kawai [11] is rather long

4) The algebraic exactness of (A.7) is obvious from the principle of analytic con-
tinuation.
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though it provides a more general approximation theorem, we give here a
short proof for our need. Let {I";}}_; denote a set of open convex polyhedral
cones whose dual {I'}}]_; defines a decomposition of $”7*, and let W (z, I'7)
be the holomorphic function defined by (1.11) with I"; N $*~! in place of> 4°.
Now let ¢(2) € ¢(02) and assume that ¢(2) € 0>%K) for a compact complex
neighborhood K 232. Put

Fj(z)=Lan W(e—t, IDe(0ds,  j=1,---, N.

Then as a special case of curved Radon decomposition we can show that
F,(z) becomes an element of ¢~*(D"+il",0)JInt(K)) and that

o@=3Fz) on Int(K).

Therefore it suffices to approximate each F,(z) by elements of ¢*%(2) or
rather of ¢>%(D"). Put

F;’(Z)ZFJ(Z'*-ieyj)) j::ls tt ',N’

where y; € I'; is a fixed element. Then it is obvious that F(z) € ¢0=*(D") for
sufficiently small >0 and F%(2)—F(2) in ¢~%(32) when ¢—0. qg.e.d.

Now we turn to the foundation of micro-analyticity of Fourier hyper-
functions. We follow the argument in Kaneko [9bis] for the case of
ordinary hyperfunctions which unites the ideas of Komatsu, Kashiwara and
Kataoka. The following lemma is fundamental:

Lemma A3, Let 2C D" be open, (x°, ) e 2 and let f(x) e 2°%(2). Let
De 2 be a neighborhood of (x°, &) and let f(x)=> 3, Fy(x+il';,0) be a
boundary vlaue expression on a neighborhood of D. Then we have (x°, &) &
S.8.5% if and only if for one (equivalently any) choice of sufficiently small
yP e I'; the function

(A8) (5 Wi twem(@ O = ﬁ Fx) Wie—z, Odx

i=1J D+iytd

which is in general holomorphic in (2,{) on the infinitesimal half-space
Im{z0+i(2>—(2))} >0 on a neighborhood of (x’, &%), extends as a section of
G2 Q 0, to a full neighborhood of (x°, £).

(Here we denote by 0°®0, the sheaf on (D*+iR")X C* of functions holo-
morphic in (z,{) and satisfying the same growth condition as #*° with
respect to z locally uniformly in the parameter {. The symbol of the tensor
product may be considered only formal.)
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Proor. By the Cauchy-Poincaré theorem we can deform the path
of integral D-+iy"Y" as close to the real axis as we desire in the part
Int(D). Hence (A.8) is always holomorphic on the infinitesimal half-space
Im{z{+i(2*—(20))}>0 on a neighborhood of (x°, £). The change of the
domain of integral D or of the imaginary levels y¥ e I'; (if the latter are
sufficiently small compared to the size of D) affect the result at (x°, &%) only
by a section of @§’5®04 on a full neighborhood of (%% £%. Further, the
change of the boundary value expression is realized by the repetition of the
calculus such as Fyx+il',0)+ F(x+il"0)=(F;+ F)(x+i(I";NT,)0) which
obviously commutes with the integral if the imaginary level is chosen to a
common value in I';NI";. (See Remark after the proof of Theorem 1.15
below.) Thus (A.8) neither depends on the local boundary value expression
modulo a section of @°® 0, at (2, £°).

Now the j-th individual term in (A.8) is originally holomorphic in the
open set

Im{(z—iy?){+i((z—iy") — (z— iy "))} >0

which will contain (R*+i{ly|<<e}) X{|§—&"|<e} for ¢ small if £&'; and y
e I'; is so chosen that {y*, &> <0 with |y¥| sufficiently small. The growth
condition is obviously verified. Thus we see that if (x°, £°) & S.8.2%, then
under a suitable choice of boundary value expression (which comes from
the definition of S.S.) the function (A.8) extends to a section of @&, on
a neighborhood of (x°, £°).

Conversely put G(z, ))=(f* Wo»,iry, (2, {) and assume that G(z, )
defines a section of @:*®0, on a real neighborhood DxACD*XS"! of
(x% &%. Let {4,}}_, denote a covering by pyramids such that $* "\ Int(4)C
UL, 4,C8*"\{¢&}. Then in view of the Radon decomposition formula (1.10)
we have

=3 Gx+id0)  mod G~¥(D)
on D, where
Ga=] GG 9ds.
4

This shows that (%, £% & S.5.%°f by definition. g.e.d.

A precise proof of Theorem 1.13 follows immediately from this lemma.
The same argument also gives the following

CoroLLARY A.4. Let QC D" be open, I’ be an open convex cone and
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assume that f e 9%°%(D) satisfy S.8.9fC 2 Xil°dxoo. Then we can find F(z)
e 0°%(R+1iI'0) such that f(x)=F(x+il'0). Especially, if S.5.%°f=0, then
f(x) € 2*%(4).

In fact, local defining functions with such a property are given by the
Radon decomposition (1.10) as in the above proof (first with a cone der").
Since we have obviously the local uniqueness for such defining functions
from a single wedge (which comes at once from the corresponding assertion
for %), the local ones can be glued together to a global one (and finally with
the initial I).

ProoF oF THEOREM 1.15 is performed by induction on N. For N=2,
putting f(x) = F(x+il0)= — Fy(x +il.0), we know that S.S.*’fcC D" x
N Isydxco =D"Xi(I'+1,)°dxco. Hence by the above corollary we can
find H(z) € 0>3(D*+i(l";+1I")0) such that f(x)=H(x+i(l",-+1)0). Assume
that the assertion is true for N, and let > 7 Fy(x+il";0)=0. Choose 4}
such that 4,cdiel;. Put f(x)=2 7, F{x+il[,0)=—Fy,(x+ily,0). Then
we have

N
SSfC DR i NS, )dxoo C D* innt(U (A§+Afv+1)°)dxoo .
j=1 i=1
By Theorem 1.13 we can find H,, (2) € 0>(D"+i(4}+ 4}.,)0) such that
N
FN+1(x+iFN+10):ZIHN'{»l,j(x'f'i(A;'+A;‘7+1)O) .
=

In view of the uniqueness of the defining function from one wedge this
implies

N
FN+1(Z):Z:1HN+1,J'(Z) in D"+idy, 0.
s

Now apply the induction hypothesis to the relation 3 Y., (F;+ Hy.., )(x+i4/0)
=0 to obtain H,,(z) € 0% D"+i(d,+4,)0) satisfying

N
Fj(Z)+HN+1,j(Z)=I§1ij(2) in D"+i4,0.
Putting H; y,(2)=—Hy., ;(2) we thus obtain a set of required functions.
q.e.d.

Remark. In the basis of the proof of Lemma A.3 to establish the well-
definedness (modulo @§’5® 0O,) of the definite integral f+ W, we have employed
an assertion which is a consequence of a local, weakest form of the edge of
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the wedge theorem of Martineaw’s type: That is, two different local
boundary value expressions can be deformed from one to the other by the
repetition of the calculus of the form Fy(x+il",0)+ F(x+il ,0)=(F;+F})
(x+i";NI)0). For our standpoint this assertion follows from Lemma
1.8 rather by the definition. Since Lemma A.3 is s¢ fundamental we give
in the Addendum another proof not employing Lemma 1.8 for the reader
who cannot avail [9bis].

Proor or ProrositioN 1.21. First we decompose f|z. into the sum
fi-+-- - +fy such that S.S.f,CX/N(R*xS""!) employing the flabbiness of the
usual sheaf ¥ of microfunctions. In order to modify this at infinity to
obtain the required decomposition employing the flabbiness of 2%%/#*¢ and
the Radon decomposition (1.10), we must enter some technical details as
follows:

For each j choose a finite number of closed sets 47*C$*~* (without
common interior points) and correspondingly closed cones K** (not neces-
sarily connected nor convex) satisfying

XINET xS YeJ KLt x4 e W/,
k

where Ki*=K~*NS§**. Decompose X’ correspondingly to the union of
closed subsets |_; X?* in such a way that

X2 (S5 S N KLF X 47 F, in S¥ixsel.
Now decompose f; to the sum 7, f; . such that
S.8. £, CXP*N(RXS*7Y).
By virtue of Theorem 1.10 we can find f; , € 2% D") such that
fiilen—Frn€ (R,  singsuppf;,.Csing suppf.,
hence
(A.9) sing supp f, . N ST ICKEi* .
Now let 4’#* > 4%* be such that
Kitx A7 *CKi*x A" c Wi,
Without loss of generality we can assume that

(A.10) S.8.%%f, (N ST XS IC KL X 4%
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In fact, we have
Fru=Fix Wix, SN ¥) 4 fy 0% Wi, 95) .

The second term obviously satisfies (A.10). In view of (A.9) the singular
support of the first term splits into the two disjoint parts, the one which is a
compact subset of R* and the other in $%'. Hence in view of the flabbiness
of 2%%/#*? we can pick up the part fjk € 2% D"y which conveys the singu-
larity of f;, in R" and adopt it as the new fi». Thus we have obtained
fi=>".f, . such that

S8 C(XINR XS NAW!,  (F= 3 F)lee € L(RY).

Now it remains to give a decomposition of g=f—3f, satisfying S.S.%’gC

721 W7 to the sum 3} g; satisfying S.S."’g,CW. We can do this just in
the same way as above by choosing an intermediate covering of the form
Ui K2*x 4%* and employing the convolution by W(x, 4%). The final
ambiguity is in #%(D") and may be added to any of thus obtained solutions
fi+g; g.ed.

Addendum 1. A direct proof for well-definedness of f+1y,.

Since the edge of the wedge theorem of Martineau’s type is employed
by some authors to show the well definedness of the fundamental operations
such as the definite integral by an elementary approach, the argument em-
ployed here may seem a kind of vicious circle to the reader who cannot
avail the reference [9bis]. Therefore we give here another way of showing
the well definedness of the integral f* W, (mod (ﬁ;*‘*@(@.

First note that for fe 2%°(D") the definite integral for fx W, can be
well defined by the inner product {f(x), W, (z—x, ©)>, between 2°%D") and
2%D"). For f(x)=F(x+iI0) ¢ 2% D") this agrees with

.. F@WwE—x0d

for any fixed yeI'. In fact, by a linear coordinate transformation we can
assume without loss of generality that I” properly contains the first orthant
and hence F(x-iI"0) corresponds to the cohomology class defined by F(z),
0, ---,0in the Cech cohomology representation

@S’B(U#D")/]_ZZJI G- (U%,D")
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of 99(D")=H3.(U, %), where UDD" is a pseudo-convex neighborhood
satisfying the condition of Theorem 1.3 and

U={ze U; Im z,#0}, j=1,---,n

b

Ugp" = U, Ut;p»=NU,.
=1 k#j
The analysis of the Martineau-Harvey duality by this representation gives
in general

6@ oy =S sgno [ GCEpl)dz

for G(z) € 0>*(U$D") and ¢(2) € ¢*°(U), where 6=(a,, - - -, 0,), 6,=+1, sgne
=qy- - -0, and ¥ is fixed in the o-th orthant {Imo,2,>0, j=1, ---,n}. The
above formula for (F(x+4iI'0), W(z—x, {)), is a particular case of this one.

Next consider the case where suppf is contained in a compact subset K
of D. Then the above defined result of f* W, is in #°% 0, on (D"\K)Xx
8”1, This is because the inner product can then be extended to the one
between 2°%(K) and Z°(K)(=0"*(K)) and W (z—x,£) is a P (K)-valued
holomorphic function on a neighborhood of (D™\ K) x $"~.

Consider finally f(x)=F(x+il'0) e 2%%(2). Choose an extension f(x)
with support in 2. We again assume that I properly contains the first
orthant and employ the above Cech cohomology representation [G(2)] of f(x).
By what is just remarked above, the inner product

F@), Wie—x0y=Sseno | C@W( x0de

44yl
is independent of the choice of f modulo @°& 0. on a neighborhood of a
fixed point (2%, &) e £2XS"". As such we can even confine the integral
region to a neighborhood DC 2 of x°:

ngnof
v D

the result being independent of the choice of small ¥ or of D just by the
same argument as used in the proof of Lemma A.3. Recall that [G(2)]=
[F(2),0, ---,0] on D. Via similar Cech cohomology representation with U
replaced by a pseudo-convex neighborhood V of D, this implies that the
difference is in Y7, @*%(V#,D"). Hence modulo #:'®0, at (x°, &) we can
deform the last integral to

, G(x)Ws(z_xy C)dx ’

+iy¢

j  F@)W(e—x, Odx
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with y e I'.  Since the definition is obviously linear in f, we have established
that (A.8) modulo @23"@(% depends only on the cohomology class of f. g.e.d.

Note that in our proof of the edge of the wedge theorem the study of
HDa . (0 is replaced by the use of the curved Radon decomposition.

Addendum 2: Remarks on the duality between cohomology groups
of complexes of closed operators.

In the foundation of the theory of hyperfunctions or Fourier hyper-
functions we often encounter with “resolutions” of such types as

FIO) F1e)
0,0 0,1 0,
(B.1) 0—>0—> L0 —> L —> - - - —> L5 —0.

Here L{;?) denotes the sheaf of germs of (0, p)-forms with coefficients in
locally square integrable functions. Therefore precisely speaking (B.1) is
not a resolution of @ in the usual sense of sheaf theory. To avoid this
difficulty we usually escape to resolutions by C>-coefficients at the cost of
preparing the regularity theorem for the solutions of the Cauchy-Riemann
system. (See for example Hormander [23] and the cited references.) It has
been pointed out, however, by T. Oshima (unpublished) that if we simply
replace each term L2 in (B.1) by another sheaf #{2 consisting of the
germs of L{Z which are in the domain of 6®, then we immediately obtain
the following soft resolution of ¢ in the usual sense:

FI) 18]
0,0 0,1 q,
B.2) 00— LN ———> LG —> - Fom 0.

Thus we can calculate the cohomology groups with coefficients in ¢ em-
ploying only the solutions of 9’ in the L,-theory.

This idea of Oshima may not seem to apply to deduce the Martineau-
Harvey duality theorem, because the dual space of the section module of
such a sheaf as #{2 (naturally endowed with the usual graph topology) is
not directly connected with the corresponding object for the formal dual
operator of 5. We will show here, however, that in the level of cohomol-
ogy groups there exists a very clear correspondence. In fact we have the
two following theorems.

ToeoreEm B.1. Let

&% Am-D

(B.3) 0—x0 2% xo A X®——50

be a complex of FS*- (resp. DFS*-)spaces with densely defined closed oper-
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ators, that is, Domain(A™) D> Image(A®) and AP o AP D=0 for p=1, -- -,
n—1. Assume that each A® has closed range and let

(B.9) H® =Ker(A)/Image(A®~?)

be the cohomology groups of (B.3). Let I'(A®) denote the graph of A®
endowed with the usual graph topology. Put

Aw, TAD)—>I(A%),  p=0,---,n=2.
(B.5)
(5, AP} (A%, 0)

Then we have the following complex of continuous operators which has the
same cohomology groups as (B.3):

B6)  0—TAN S ran A A pgenyxe g

(the last mapping being the natural projection to X™).
TeEOREM B.2. Let

Afo) A(l) A(n-l)

7 P ’
X, e X0

(B.7) 0—X7,

be the dual complex of (B.3) consisting of the dual spaces X{,,=(X®Y and the
dual operators Al,,=(A®Y. Then A{, have closed range and the homology

group
(B.8) H €p> =Ker (Agp—l) /Image (Aép)

becomes the dual space of H® in (B.4) by a natural correspondence (which
will be given in the proof).

An FS*-space is the projective limit of a sequence of Banach spaces by
weakly compact mappings with dense range. (See Komatsu {24].) The space
L, ,(2) of locally square integrable functions is a typical example. Here
the weak compactness of the projective mapping L, ;,(2;,,)—L, .{2;) for
2,c9;,,=2 is obvious because these spaces are Hilbert. Theorem B.1 thus
assures that we can calculate the cohomology groups H?(£2, ®) employing
the complex of closed operators

B9 0 ,LS"M(Q" \Lg" (Q)—D> c——>LEm(2)—>0.

Usually this fact is explained in a more complicated way with use of the
Sobolev spaces H*(2) and C=(Q).
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The DFS*-space is the dual notion of the FS*-space: It is defined as
the inductive limit of a sequence of Banach spaces by weakly compact
injective mappings. (See again Komatsu [24].) The duality between the
cohomology groups of (B.3) and those of (B.7) was shown directly in
Komatsu [24], Theorem 19 even for closed unbounded operators A®. Our
present interest concerns therefore the relation between the dual sequence
of (B.6) and the sequence formally corresponding to it:

A(n 1)

(1) A(?)
(B.10) 0« X{«—T(A] D>) D(AL) <2 (A yy)«—0.

As is seen below, it is explained by a kind of mapping cone.
We first prove Theorem B.1. Recall the definition (B.5) of the mapping
A®_ Tt is clear that A® is continuous. We have obviously

Ker(A®)={(x, 0); A®x=0}=Ker(A®),
Image(A®)={(A®"2(x), 0)}=Image(4®")
also including the topology. Thus the cohomology groups of the complex
(B.6) agree with (B.4).
Next we prove Theorem B.2. It is well known that A{,, becomes a closed
operator, Image(A/,,,) CDomain(A/,) and hence Af, o Al,.,=(A%"D e A®Y

=0. Also, A/, has closed range if A® does (see e.g. Komatsu [24], Theorem
19). Now we calculate the dual complex of (B.6).

LEvMA B.3.  We have the following canonical isomorphism
(B.11) FA®Y =X X X/ [ (— Alp) -

The correspondence is given by the canonical scalar product between X® X
X gnd X, X Xipen: For (x, APx) e ['(A®), (f, 8) € X{p X X{p41, we have

(B.12) {(x, APx), (f, 8))=(x,[>+{APx, &) .

In fact, by the routine polar analysis for the subspace I'(A®)CX® X
X@*9 we have the canonical isomorphism

T(A®Y =Xy X Xy T(A)"
Therefore it suffices to show the identity
T(APYL=T(—A).

The inclusion I'(A®)+DI'(—A},) is obvious from (B.12). The opposite
inclusion also follows from (B.12) by the definition of the dual to an
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unbounded operator.

Note also that the dual operator (A®): (Al —T(Al,) of A®
agrees with the continuous operator induced via the above isomorphism
from the operator Af,: I'(A%,,.,)—I(A%,) which in turn is defined as in (B.5)
employing A{,: X7,,,—X/,.

Now consider the following commutative diagram by the well un-
derstood continuous mappings:

0 0 0 0
) ) 1 7
0 «~I'(A®)Y «—T(APY <« . «T(A®YY X ,«0
T T
(B.13) 0X{p XXXy« XXX+ +«Xpy XX &w—ﬁ w<0.
0 Xp<«—I(—Aly) < [(—AY) - «T(—Al, ) < 0
T 1 1
0 0 0 0
Each column is exact by (B.11). The middle row consists of the mappings
Xy XX pye—Xp X Xpuny »
[NV W
©0,/) «— (f,8

hence is trivially exact. In view of Theorem 1, the complex I'(— A/,) in the
third row gives (B.8) as the homology groups:

(B.14) H(I'(-AL)=H, .

(Here in general H,(C.,) denotes the p-th homology group of the chain
complex C.,.) The first row is the dual complex of (B.6), hence if we assume
the duality between the cohomology and homology groups in the case of
continuous operators A®, it has the following as the homology groups:

(B.15) H(T(A©Y)=(HXT(A”) =(H®Y .

These two are connected by the well known snake lemma for the diagram
(B.13):

(B.16) H([(—AL)=H,, (T(A).

Combining these we thus obtain H[,=(H®). (Note that the degree shift
in the highest row is just compensated by that of the snake lemma (B.16).)
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