J. Fac. Sci. Univ. Tokyo
Sect. IA, Math.
32 (1985), 1-76

Applications of the Malliavin calculus, Part IT
By 8. KUusuokA and D. STROOCK®

Introduction.

In the first part of this paper [6] we developed the basic machinery
needed to study regularity properties of uniformly elliptic Ito processes
by means of Malliavin’s calculus (cf. Section 3 of [6]). In particular, we
showed that the distribution of such a process at any fixed positive time
admits a smooth density (densities will always be taken with respect to
Lebesque measure unless we explicitly state that we are using a different
reference at a particular place). Of course, in the case when the It6 proc-
ess is Markovian and is therefore a diffusion, this result says nothing more
(and, in fact, says somewhat less) than is known from the classicical theory
of non-degenerate second order parabolic differential equations.

In the present article, we investigate what more can be said when we
restrict our attention to the Markovian setting. As we saw in [6], the
quantity which one must learn to control in order to obtain regularity via
Malliavin’s calculus is the Malliavin covariance matriz A(T, z) (cf. (2.4)).
The reason why one should expect to be able to do much better in the
Markovian setting than one can with general Ité6 processes is that, when
the process is Markovian, A(7, z) admits a quite tractable expression (cf.
(2.5) and (2.6)) to which one can apply a more refined analysis than seems
to be possible in general. Indeed, Malliavin himself took advantage of this
observation in his groundbreaking article Malliavin [7], [8] and indicated
there how one might proceed. Since Malliavin’s article appeared, there
have been various attempts (cf. ITkeda-Watanabe [4], Bismut [1], and Stroock
[12]) to put Malliavin’s ideas on firmer mathematical footing. The ap-
proach which we have adopted here is basically the same as the one which
we adopted in [12], although we hope that the present rendition makes it
easier to follow what is being done. Theorem (2.17) contains the estimates
about A(T, x) on which the whole of our analysis rests. Unfortunately,
we have not discovered a simple way to derive these estimates. In par-
ticular, the reader will find that Theorem (2.17) itself depends on the
rather heavy stochastic analysis involved in the proof of Theorem (A.6)
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in the appendix. Our justification for presenting this analysis in so much
detail is that, so far as we know, our results in this direction are both
the most general (we have been able to include Hormander’s “drift term”)
as well as the most quantitative which are known thus far.

Starting in Section 3), we apply the estimates obtained in Theorem
{2.17) to the study of the fundamental solution to the equation (3.12) (cf.
Theorem (3.17) and Coroliary (3.25)). Although these initial applications
are similar to results which others have obtained by purely analytic
means, they are, in some ways, less refined than the recent estimates
proved by 8. Sanchez in [Sanchez] but are, in other ways, more general
and more global. Section 4) is devoted to localization of the results in
Section 3) (cf. Theorem (4.5) and Corollary (4.10)). Given the estimates in
Section 3), the techniques used are rather standard applications of prob-
ability theory. In Section 5), we “microlocalize” our results. (From the
probabilistic standpoint, this simply means that we apply our regularity
theory to the marginal distribution of our diffusion on a submanifold.)
In the strictly elliptic context, a preliminary version of such microlocaliza-
tion was carried out already in [12]. More recently, S. Taniguchi [14]
discussed a similar but somewhat less general procedure. Our principal
result here is the one contained in Corollary (5.12).

In Section 6), we transfer our considerations from the fundamental
solution to the resolvent kernel. Perhaps the most interesting aspect of
this transfer is the way in which we have passed from Hormander’s
“restricted condition” (i.e. the one which guarantees hypoellipticity of the
parabolic operator) to Hormander’s general condition (i.e. the one for the
elliptic operator). See Theorem (6.8) for our conclusions about the re-
solvent kernel.

The results in Section 7) seem to be new, although they have ante-
cedents in the work of Oleinik and Radekevich [10] and were anticipated
by Malliavin [7], [8]. What we provide are criteria (cf. Corollary (7.4))
which guarantee that the fundamental solution is regular even when
Hormander’s condition fails to hold. Here again our analysis rests on
Theorem (A.6). Finally, Section 8) contains an application of the preced-
ing regularity theory to the study of hypoellipticity. The advantage which
our approach (cf. Theorem (8.16)) to this topic has over more traditional
ones is that we have circumvented the use of intermediate subelliptic
estimates. This fact enables us to prove the hypoellipticity of operators
which do not satisfy Hormander’s condition (cf. Corollary (8.18) and the
remark (8.19)). We conclude this section with an example of a very special
class of operators (cf. (8.20)) for which our analysis enables us to give
necessary and sufficient conditions under which hypoellipticity obtains (cf.
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Theorem (8.41)).

1. Some regularity properties of solutions to stochastie integral
equations.

We continue with the notation used in [6]. In particular, O={f<
Cl[0, o0), RY : 6(0)=10}, {B,:t=0} is the standard filtration of the Borel field
B over 6, and W on (B, B) denotes standard Winer measure.

Throughout this paper, {V,, -+, V,} will be a subset of C7(RY, R) (cf.
Section 1) of [6]) and s<=C5(RY, H.S.(R% RY)) and beCT(R¥, RY) will
stand for the associated quantities described below :

(D) o) = (Vila), -, Vi) = (Vi) s
and
12 be)=Vile) 5 2 3 Vi) 5.0

Unless the contrary is stated, we will be assuming that

(1.3) SSRDN(HG(D(%) les.ca¥; rs.cre, iy V1BV (@) s, v giy) <00 .

(See Section 1) of [6] for the notation F™ n=1, when FeC7(E,E,))
Given x= R", we use X(-,x) to denote the right continuous, 9}/-almost
surely continuous, progressively measurable (progressively measurable is
defined relative to {%,:t=0} unless the contrary is stated) solution to

(1.4) X(T, 2)=a+ S:a(X(t, 2))dot) +S:b(X(t, oNdt,  T=0.

The existence of X(-,x) as well as its 9}/-almost sure unigueness is guar-
anteed by (1.3). Moreover, a selection of x—X(-, #) can be chosen so that
for each 7'>0 the map (¢, z)=[0, TIX R¥— X{(t, ) is an element of C”~([0, T']
X RBRY, R")y (=C([0, T1, C°(R¥, R™))). (See, for example, Kunita [5]) In
particular, using the notation

(1.5) J(T, )= XT, x):<<—a)(é(x—T.,x)>>1§i,j§_v

to emphasize that we are thinking of X°(T, z) as a matrix, we see that
J(-, z) is determined by:

(1.6) HT, o) =1+ g VX, )2, 2)d0,(0)

k=1
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+S:b“’(X(-, )¢ ndt,  T=0.

From (1.6) it is an easy matter to see that J(T, x) is 9//-almost surely in-
vertible and that its inverse J X7, z) is determined by:

7 JUT, z)=I— éS:J-*(t, ) VEO(X(E, 2))d0,(0)

(e, 250X, @)~ B VP, D), T20.

Given m=1, set E™=H.S.(R¥)®", R¥). Then, starting from (1.6), it
is an easy inductive argument to show that for each m=2 there are
universal (i.e., independent of {V,,---, V,}) polynomials P, . 0=k=d, on

<ﬁE‘”’>X<nﬁIE<”’> into E™ such that:
p=1

#=2

(1.8) XOT, o) = é g: VIOAXE, 2) X, 2)d0.(2)
+S:b‘”(X(t, ) X, @)dt

+ £\ Pastanu

k=1

+{, Paotia,  Tz0,
where
P o) =Py o(V(X(E, @), -+, VXL, %)), XD, @), -+, X"V, @),

for 1=k=d, and

Poo) =P, o b®(X(E, 3)), -+, ™, %), XV, @), -, X7V, @) .
Thus, by the method of variation of parameters, we conclude that

xor, =01, 0| 3|76, 9P 00,0+ 76, 200t |,

where

Qult) = Pralt)— 2 VI(XCE, ) Prslt)

We are now ready to summarize the results of Sections 1) and 2) in
[6] as they relate to the situation at hand. However, before doing so, we
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list, for the convenience of the reader, the place in [6] where some of the
quantities and notation used below are explained.

a) The operator . and the associated bilinear operation {-, -}, are
described at the beginning of Section 1).

b) The Hilbert space H and the associated space (&) and operator
D are defined in the discussion preceding Lemma (1.7). The relationship
between these quantities and (-, -}, is the content of Theorem (1.8).

¢) The space FG(L, E) and the associated semi-norms |-}z and
115 » are defined in the discussion preceding Theorem (2.19).

(1.9) THEOREM. For each m=0 and x<RY, X"™(., x)esFG(.L, E™)
(X, 0)=X(-, ) and EC=R"). More precisely, suppose {C, : m=0}<(0, co)
ond {yn:m=0}E[0, o) are chosen so that

110 Hoe"@ s we, 5, VD@ 5 SCal+ 2 lgn)™, xRV,

(By (1.8), we may and do assume that y,=0.) Then for each q€[2, ) and
T>0, there exist Alq, T)=(0, o) and B(q, T)=(0, ), depending only on C,
and Cy, respectively, such that

(1.11) X, )= )17, 28 = Alg, YA+ Txlzm), reRY,
and
(1.12) X0, o)$r 0 <Blg, T), «<RY.

Moreover, for each q<[2, ), T>0, and n=2, there exist C,(q, T)<=(0, c0)
and 7.(q, T)=(0, ), depending only on {C,:0=v=n} and {r,:0=v=n},
respectively, such that

(1.13) DX (-, @S s vy VL X (-, NG 3R
S Coiilg, TYA 2] )T mrre Tg2 |
(1.14) IDX (-, 52 aeweny VIXOC, @) e

SChialg, T)A+ (2| gu) nrr@ g2 |
and, for m=2:

(115) I, G2 5> = Crnrn(g, T g men Pt

Sor all t<[0, T] and x=RY. Finally, 7.(q, T)=0 if 7= -+ =7,=0.
PROOF. The facts that X{(-, 2)eFG (L, RY) and that (1.11) and (1.13)

hold are the content of Theorem (2.19) in [6]. Furthermore, (1.12) is a
simple consequence of (1.6) (recall that X°(-, z)=J(-, ) and that ¢+ and b?®
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are bounded). To prove (1.14), consider the equations (1.4) and (1.6) simul-
taneously as a system defining <§E{)’(?€)x)>. Then, Theorem (2.19) of [6]

applies to this system and yields X®(:, ) e FG(L, E®) as well as (1.14)
as a consequence. To complete the proof, we can work by induction on
m=2. Indeed, on the basis of what we already know about X(-, ) and
X®(-, %), Theorem (1.10) plus Lemma (2.2) of [6] applied to (1.8) show that
X9, 2)eFG(L, E®) and that (1.15) holds when m=2. Next, if m=3
and we assume that X(-, ) FG(.L, ) and that (1.15) holds for 2=
p=<m—1, then a repetition of the preceding argument completes the in-
ductive step. Q.E.D.

2. The basic estimates on Malliavin’s covariance matrix.

The notation in this section is the same as in the preceding one. In
particular, {Vy, -+, VJ<C7(RY, RY) satisfles (1.3) and £—X(-, «) is a smooth
selection of the solutions to (1.4).

For many purposes, it is more convenient to rewrite (1.4), (1.6), and
(1.7) in their equivalent Stratonovich form. That is, X(-, #), J(-, %), and
JY(-, %) are determined by the Stratonovich stochastic integral equations:

©1)  X(T,o)=o+ kzd: SOT V(X 2))odf,(t) SOT VX e)dt,  T=0,

©2)  J(T,w)=I+ % ST VOX(E, 2)JE, 2)0d8,()

k=1J0

T
+{ veo s e, 120,
and

@3)  JNT.o)=I-3 S:J“(t, &) VXL, 2))°d0,(0)

k=1

— S:J‘l(t, VX @)dt,  T=20,

respectively.
Our aim {(cf. Theorem (2.17) below) in this section is to provide lower
bounds on the Malligvin covariance matrie

2.4) A(T, 2)=(X(T, x), X(T, x}) .

(See Section 1) of [6]) The first step is to find a tractable expression for
A(T, z). By Theorem (1.8) in [6],
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AT, 2)=(DX(T, x), DX(T, 2))u .

At the same time, after converting (2.10) of [6] to its Stratonovich form,
we have for each heH:

DX(T, 5)(h)= %, S VINX(t, 2) DX, 2)(h)oddy(t)

k=1J0

+\ Ve, @) pxt, @ mds

+ éSOT VX, aDhitydt,  T=0.

Hence, by the method of variation of parameters and the equations (2.2)
and (2.3), we see that

JT, &) DX(T, z)(h) = ké S:J-l(t, D) V(X (E, 2)ha()dt

Therefore, if we define

2.5) 2=\ 70 VX ),
then
(2.6) A(T, )=J(T, ®) A(T, x)J(T, z)* .

(Given ve RY, v®*=y®wv is the tensor product of » with itself ; and in this
context is thought of as the matrix ((v,v,)i<s, jen

(2.7) REMARK. There are several pleasing features possessed by the
preceding representation of A(7,x). In the first place, (2.5) explicitly
displays A(T,2) as a non-negative definite element of TYH{RMYQTY(RY).
(T,(R") denotes the tangent space to RY at » when RY is thought of as
a differentiable manifold.) In particular, (2.5) shows that A(T, x) is well-
defined from a differential geometric (i.e., coordinate independent) point of
view. Since A(T, ) is well-defined as an element of TARYMYQ T, (RY),
(2.6) tells us that A(7,x) is well-defined as an element of Ty . (RM®
Txcr, »(R"). For the moment we will not be making any essential use of
these remarks. Nonetheless, it should be comforting to find that A(T, x)
is indeed a kind of path by path covariance matrix, at least in the sense
that it transforms in the way a covariance matrix should.

It is clear from (2.5) that A(T, ) is non-degenerate for all T>0 if
span{Vy(x), -+, Vy(x)}=R". Since span{V,(x), -, V.(z)}=R" is equivalent
to the non-degeneracy of the matrix a(x) given by
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@) alz)= 2 (V@) =00" @)

we see that A(T,x), and therefore A(T,z), is strictly positive definite if
the infinitesimal generator of X{-, x) is strictly elliptic at «. In order to
obtain more delicate criteria which guarantee the non-degeneracy of A(T, x)
we are going to develop the quantities J (¢, 2)V,.(f, x), 1=k=d, in a
Taylor’s expansion with respect to t. However, before doing so, it will be
useful to have some new notation.

Given VeC~(RY, R"), we can associate with V the directional deriva-
tive
0

axi ’

(2.9) % Vi)

As is common in the differential geometry literature, we will indulge in
the notational convenience afforded by letting V stand for both the element
of C*(R", R¥) as well as the directional derivative in (2.9). In this con-
nection, given V, WeC~(R”, R"), we use W(V) to denote the element of
C=(RY, RY) with i*® coordinate given by

V',

Tj

(W@ =[(7))e) = 5 W)

Related to the preceding is the Lie bracket [V, W] of V, WeC*(RY, R")
which is given by

v, W]=V(W>—W<V)=;::<Vfaw ‘W) 9

0x; —W o0x;/ dx; "

Given VeC~(RY RY), we now use Ito’s formula in conjunction with
equations (2.1) and (2.3) to obtain:

dJ ¢, w) VIX(E, »)= éJ i, 2)(— ViR(X(E, 2) VXL, 2))
HV(V)UXG, 2)))odb,(t)
+JI7H(E, 2)(— VX, ) VX, )

HIVo(VHIX(E, 2)))dt .
Noting that

~ VPV +VANIW =V, V1),  0sk=d,

we conclude that
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T
0

©10)  JUT, ©)V(X(T, 2))= Vi) kzd:S T, )V, VX, @)de

r
T Y VI o, 120,
Equation (2.10) is the basis for the Taylor’s expansion which we have
in mind. In order to describe the expansion, we define the set A={p}U
;Q({O, -+, d})}, and the quanties |el, llall, @', and a, for a= 4 as in the ap-

pendix (cf. (A.1), (A.2) and the discussion accompanying these). Given
VeCy(RY, RY), we define Vi, ac 4, inductively on la| by:
14 if a=¢@
{2.11) Vir=
[Va*; Vol i a#=@.
Also, define 8°°(-), a= A, as in (A.4).

(2.12) THEOREM. For given L=1 and 0<e=1 there exist C.p <o
and . .<(0, ) such that for all xcRY and VeC5(R", RY):

(213) J"I(T, Q’})V(X(T, x)):l lEL 1‘9<a)(T>V(a)(93)+RL(T, 2, V)
lelis L —
where
1 (7K
@214) sup (3 {, " 1Rult, o, VP21
0<T's1 T Jo

§CL,eeXp(_‘KﬂL,E/(1+M(x))2) I Ke (0; OO) >
with
Mz)= (max{| V.| C%BCz,1), BV - 0=k=d})

V (max{]] V(a)”Cb<B(x, vorw lal EL+1}) .
PROOF. By repeated application of (2.10), we see that
JHT, D VX(T, @)= 3 6D Veole)+ B ST, Zw)
lats L - al=

where
Ziex{T)=J T, ) VurXX(T, x))
T
0

=Vl + 2\ T D)V, Ve I, 2)0d04(0)

+\ 7 DV Ve X, )t
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T
0

=V + 2\ T 2, Ve X, 28

+§ 7 (170 Vel 5 BV [V Vel (X )

and S(-, Z,,) is defined as in the appendix. Thus, (2.13) holds when we
define
R(T, 2, V)= 2 SAT, Zey)+ 2 0T V() .
Nz
In order to show that the estimate (2.14) holds, it suffices to show that
each term making up R (-, x, V) satisfies such an estimate.
Given an fe(C([0, 1]), note that

| i rars 52— (suplr@ls ) amy e, Tefo, 1],

—¢& ts

Hence, it suffices for us to show that for |a|=L the quantity

2 Cad -2 s °>
« JpL=22> Fren
5T Os<1t1£IS ¢, ZaH)t" Pz K

W

and for |a]=L—1 with |a| =L the quantity

2 Sup |0(a)(t) V(a)(:c) !/tL—e/zsz/‘z>

CW( 2L—¢ o<is1

can be estimated by expressions of the sort on the right hand side of (2.14).
For quantities of the latter type, such an estimate is immediate from
Theorem (A.5). To handle quantities of the former type, set

C=inf{t=0: |J7'C, @) — us.ay zm VIXQ, ©) —xlevz1} .

Then, by standard estimates, there exist U< co and a universal 2€(0, o}
such that

CW(Cé 71{—>§Cexp(—).K/(1+M(9:))2) . Ke(0, ),
and
T/( SUD_NZewrt)— ZearO) a2 K ) SC exo(= A1+ M@))),
Ke(0, o).

Combining these with Theorem (A.30), the required estimate on terms of
the former type follows easily. Q.E.D.

Given L=1, define
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{2.15) Y {x, 7]): j\_‘_, _1(( Videao(®), )%, rxeRY and nE RY.

k=1|alsL
Also, given a closed set F'€SV"!, define
(2.18; Yz, F)= 1r€1§ (CU Lz, AL
The main result of this section is the following theorem which allows us

to estimate the non-degeneracy of A(T, z) in terms of the quantities just
described.

(2.17) THEOREM. Given L=1, there exist C(L), C(L)= (0, ) and pg,
£:€(0,1], all of which are independent of {Vo, -+, Vi), such that for all
T<(0,1], all closed FSS¥, and all K1, o0):

(2.18) W (UTIKYEP, o, F)[ T <1/K)
<C(L) exp(— (V1 (, FY* K (14M(2))%)

and
(2.19; D ATIKYED o YT <1/K)
SC(L)exp(— (CV oz, FY* K2 [(1+M(x))) ,
where
j<t} X, F): ln}.‘? (7]; A(t; QS)W)RN »
bS]
’z(t} &, F): HI;? (7/7; A(t7 x)ﬁ)RN ’
S
and

M(ﬁ?):maX{“(Vk)w)”c%(a(r,n,xl\’) 0=k=d and |a|=L+1}.

PROOF. We first prove (2.18). Noting that:

(. A(T, x)pm:ST 3 (7, ) V(X 0)), 7)avds

0 k=1

and applying (2.138), we see that:

o, A1 (B (B Vo), nest =) di)

k=1J0

—

0

_< kﬁ ST’K B, z, Vk)|2dt>m.

Hencse,
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inf 307 5 (Vawole), Past ) Ja

fal<L-
- d T/K
=21/, 5, F)+2 3\ IR, 0, ViPds.

Since, for any ne F:

é > 1((Vk)(a)(-75): 7=V (z, 7)),

k=1lllalsL-

we see that

d TiX 2
inf V(S (V@) pasom) ) dt
lealsL-1

NEF k=140

=@t Dt {7 % baﬁ(“)(t)>2dt: 5 =1,

lalsL-1 faisL-1

Combining this with the preceding, we conclude that for any 0<e<1,
T<(0,1], and K<[1, o)

W HIVE, 2, F) S RE)

i

T/K
0

< CW<(K/ T)* inf {S ( baﬁ‘”(t)>2dt: b2

ftalisL-1

1} £ oy VEY)

fallsL-1

+ (% 1

k=1 TL

T/IK
So iRL(f, x, Vk)lzdté 1//KL+1—5> .

By Theorem (A.6), the first term on the right is dominated by

C(L) eXp< _ <%KH>M,> .

At the same time, by (2.14), the second term is dominated by
dC(L, ¢) exp(— (K/d)*E-2[(1+ M(x))’).

Thus, after replacing K by KY“*"2 and taking ¢=1/(L-+1), it is an easy
matter to deduce (2.18).

The estimate (2.19) is really a consequence of (2.18). To see this, set
F'={neS"*: . (z, n)=(1/2)V(z, F)} and define D=D,;=card{ac A |al
=<IL-—1}. Then it is easy to see that F'2{y'eS”': |y’ —F|gp<4d}, where
F*=CU (x, F)/2dDM(x)®. Hence, if {=inf{t=0: [J(, 2)—Ia s =6/4}, then,
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by (2.6), {=t implies that
(W; A(t; x)yi)RN:(J(t) ‘%‘)¥77) A(t: x)’](t) 3})*7])131\7

10 JG2)  ag oy G2
B < I/, @) plley 2 I, ) 7l ey >

> —i—/f(t, z, F')

for all y<=F'; and so:

<W< o o, F)ZUK)

=W(2 JS4K )+ T ESUR ),

Since <, (%, F')=(1/2)CV (2, F'), the first term on the right can be estimated
by using (2.18). At the samie time, standard estimates show that there exist
universal C< oo and 2€(0, o) such that W (=) = Cexp(— U A D/ + M(x))%t)
for t=(0,1]. Thus (2.19) follows. Q.E.D.

3. Preliminary applications to the transition probability function.

Set 2=C(0, ), RY) and for each t=0, define w—x(f, w)= R so that
z(t, w) is the position of @ at time t. Denote by M, t=0, the s-algebra
over £ which is generated by the maps 2(s), 0=x=¢. Then b&JO M, generates
the Borel fleld ¥ over £2. )

Given {V,, .-, VS C3(RY, RY) satisfying (1.3), think of the Vs as
directional derivatives (cf. (2.9)) and define

1

(3.1) L= —Y‘ Vi+V,.
2 k=1
A second expression for L is
0° y
9 17 :__ ij
@) LG 3096 g+ 200

where a{z) is defined in (2.8) and b(x) is defined in (1.2). Let z—X(-,x)
be a smooth selection of solutions to (2.1) (equivalently, to (1.4)); and note
that, since X(-,x) is 9V-almost surely continuous, X(-,x) determines a
probability measure P, on (2, 1) via

(8.2) P,=9 (X(-, )" L.

The following theorem simply summarizes well known facts about the
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distribution of solutions of stochastic integral equations with smooth
coefficients. (See, for example, Chapters 5 and 6 of [13].)

(3.3) THEOREM. For each x=RY, P, is the unique probability meas-
ure on (2, M) with the property that

(se®)— - Lotwisnds, H, P.)

is a mean-zero martingale for all ¢=Cy(RY) (functions in C™(R") having
compact support). Moreover, the family {P,: x< RY} is Feller continuous
(. e, tn—a in RY implies P, tends weakly to P.). Finally, if z:2—
[0, co)iufoo} s an {(M,:t=0}-stopping time, then for all bounded .-
measurable @ : 2—R' and all bounded M-measurable ¥:2—-R":

GH  EE0-@-S)r<wl=|  0(@)E P (o),
(@ T{w)R}
where S, :{r<oo}—0Q is defined so that
z(t, S:w)=z(t+r(w),w), t=0.

(In other words, {P,:z< R"} is a time-homogeneous strong Markov family.)
Let C be the set of all ¢c=CT(RY) such that e,=e¢V0 is bounded.
Given ce(C, define

3.5) P(T, 2, ]’)zE”{exp(Sjc(x(t))dt), #(T) e[’]

:EW[eXpG:c(X(t, x))dt), X(T, ) e]“]
for (T, z)=(0, )X R and I'e Bpv. By (1.11):

(3.6) sup<g ly—zl%x P, =, dy)>uq

< A(g, YL+ [z )7 exp(%L le ey

for all T7>0 and ¢g<[2, ). Combining (3.6) with the Feller continuity of
{P,: x= R}, we see that the operators °P;, T>0, given by

37 Prg(0)=\ 6] P(T,2,dy),  w=RY,

map C.(RY) into itself. Moreover, the Markov property of {P,:z<R"}
plus (3.6) imply that {"Pr: T>0} is a semigroup on C;(R"). At the same
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time, the continuity of the paths  together with the Feller continuity of
{P,: z<=R"} and the estimate (3.6) allows us to conclude that, for each
$€C(RY), ‘Prg—¢ uniformly on compacts as T | 90. Finally, because of
the martingale property characterizing P, and (3.6):

r

exp<S:c(x(t))dt>¢(x(T))—r,ﬁ(x)~— SOT eXp<\:0(x(S))ds>(L+c)¢(x(t))dt

Y

is a mean-zero P,-martingale relative to {M,:T>0} for each ¢<CT(RY).
Hence

3.8)  Pybx)—d(x) = Sj”Pz(L+C)¢(x)dt . (T, 2)e(0, )X RY,

for all ¢=C3(RY).
We next show that ‘Pr maps CT(RY) into itself. In order to simplify
the notation, we set

Y, @)=\ e(Xt, )ds

and
' X(T, x))

¢Z(T, x)=(
Y(T, x)

(3.9) LEMMA. If ¢=C7(RY), then, for each T>0, ‘Pp¢=C7(RY). In
Sfact, for each n=1 there exist universal (i.e., independent of {Vy, -+, Vi
and ¢} polynomials P, . : ITH.S.(RY)®, R¥*)—H. S.(RY)®™, (RY)®"), 0=
m=mn, such that

(3.10)  (Prg)™()
= 3 E"[exp( V(T, @) Pn, n(ZV(T, 0), -+, 2T, 2) 6™ (X(T, 2)]

for ¢ C3(RY). In particular, if T>0 and B is a bounded subset of CT(RY),
then {‘P;¢:0=t=T and ¢<B} is also ¢ bounded subset of CT(RY).

PROOF. Note that, by Theorem (1.9), for each n=0, T>0, and ¢<=[2, o)
there exist C,(g, T) <o and y,(¢, T)<[0, c0) such that

T (n)
()
1

=Culg, DA+ lizlpy)™e™,  zeRY.

<tsT

ECW{ sup
[

q :}llq
H.S.((RV)®" RN+D

Thus we can differentiate the expression
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E%lexp(*Y(T, 2))¢(X(T, x))]

underneath the integral sign. Using this ‘observation, we can easily derive
the representation (3.10) by induction; and the other assertions made are
quite easy consequences of (3.10) combined with the above estimate on the
derivatives of ‘Z(T, x). Q.E.D.

(3.11) THEOREM. For each c¢sC, {Pr:T>0} is a semigroup on
C3(RY). Moreover, given ¢CT(RY), (¢, 2)€(0, 0)x R¥—P,g(x) is the
unique function u=C=([0, ), CT(RY)) such that

(3.12) 9% (Liow, t>0,
ot
#(0, )=¢.

PROOF. To prove that (¢, 2)—°P,¢(z) solves (3.12), it suffices to show
that

tm CPT+h¢(x>h—”PT¢<x> =(L+¢)°Pré(2)

for (T, x)=[0, )X R¥. But, by Lemma (8.9), ‘Prg=C7(R"); and so, by
(3.8):

“Pron(e) — Pep(a) = (Py=1)-*Prg(e) =\ “P(L+0 Prpla)dt

Since {*P,(L+c)°Pr¢:0=<t=h} is bounded in CT(RY) and °P,(L+c)°Pré—
(L+¢)Pr¢ pointwise, we have now proved that

(3.13) j—tcptqs(x): (L+o)Pd(x), (t2)e(0, )< RY,

TFrom (3.13) and the estimates on °P,¢ provided by Lemma (3.9), we con-
clude that (¢, 2)—°P,¢(x) is an element of C~(0, o), CT(R")) which solves
(8.12). To prove that it is the only such element of C=([0, c0), C7(R")), let
% be a second one. Given T>0, set w(t, x)={"Pu(T—t, )x), t<[0, T].
Then, (d/dt)w(t, z)=0 for t<[0, T] and so u(T, z)=w(0, x)=w(T, x)=°Pré(x).
Q.E.D.

Related to the preceding is the following statement that we can make
when all the coefficients have bounded derivatives of all orders.

(8.14) THEOREM. Suppose that {V, -+, Vi SCr(RY, RY) and that ce
Ce(RYy. If T>0 and B is a bounded subset of C;(R")(S(RY)), then
{P¢:0=t=T: and $<B} is also a bounded subset of CyRY)(S(R")).
Furthermore, if
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N d
Vo=Vt 5 5 vV Vi
and

b diV(V)+ = 30 V. @iv(V,) ++ S (divy,),
2 izt 2 i=1

and if {*Pr:T>0} is the semigroup associated with Vo, Vi, -+, Vs and &,
then {Pr:T>0} on CHRERY) (C3(RY) or S(RY)) has the same vegularity
properties as {*Pp:T>0}. Finally, if ¢=SR") and ¢=CT(RY) or ¢
C3(RY) and ¢<=S(RY), then

(3.15) {90) Prowiy=\g@) Prpw)dz, — T>0.
(That s, Py is the formal adjoint of °Pr.)
PROOF. Let &, ., be the polynomials introduced in Lemma (3.9) and set
Poult, ) =Ly n(CZP, x), ¢, “Z(, x)) .

By Theorem (1.9) with y,,=0, m=0, we know that for all n=1, T>0, and
g&ll, o)

- a 3 5 g/2 /g -
D sup E m2=0 ” gan,m(t; 90) HE(m,n) -“Kn(q; T) < o 3

0<t=T xRN

where E™™=H.S.(R")®™, (R¥)®"). Using this together with (3.10), we
see that {*P,¢:0=¢t=7T and ¢<B} is bounded in C}(R") whenever B is.
Next, let B be a bounded subset of S(RY) and define

A= max sup ggg(l +llzlzx)* ™ (@) | zcm>

0s¢msn zER

where E™=H.S.(R")®*™, R). Given 0=m=n, t<[0,T], and ¢<S(R"),
(8.10) shows us that

T+l Zx)* 2 EPd) ™ (@) | 5 omd

<L+ 120" exp(Tles foynrs)
xEW[( 3 1P tt, 93)”E<m,p>>m(2 s (X2, x))H%w)”ﬂ
u=0
<K,(2, T) exp(Tle. loyan) (2] )™
<BY] B 150X Nty |

At the same time, if ¢= B, then:
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A+l Y] £ 160X )3 |)
<A@ [ [ T5) T (X, @) o = [ an/2) )

Finally, by standard estimates, there exist 21<(0, ) and Cr< oo such that
CMV(OsuIaT 1X(t, @)—2 HR@R>§CT exp(—ARYT), R>0.
=t=

Combining this with the preceding, we conclude that {P,¢:0=<t=<T and
$<= B} is bounded in S(RY).

Turning to {*P,:7T>0}, we first remark that {V, V,---,V, and &
have the regularity properties as {V,,---, V,} and ¢. Hence the regularity
properties of {P;:T>0} on Cy(RYNC(RY) and S(R™) are the same as
those of {*P,:T>0}. Moreover, if

I::—;— Viey,

=M=

then L& is the formal adjoint of L-+¢ and
a4
dt

for all ¢=CT(RY). Thus, if g€ SRY) and ¢=C7(R") or ¢=C7(R") and
¢ S(RY), then we can use the estimates just mentioned to show that

‘Pp=P(L+e)p=(L+e) P

w)=\"Pgla) Prgp@de, 1[0, 71,

can be differentiated underneath the integral sign and has derivatives iden-
tically equal to zero. Clearly (3.15) results from w(0)=w(T). Q.E.D.

Thus far none of our results depends on anything except the regularity
properties of the V,’s and ¢. In particular, these results are equally true
when Vi, -+, V, vanish identically and therefore do not deserve to be
called elliptic regularity estimates. In order to obtain regularity prop-
erties which depend on non-degeneracy properties of {V,, .-, V,}, we must
take into account the considerations contained in Section 2).

Recall the definition of Malliavin’s covariance matrix A(T, z) (cf. (2.4)
and (2.5)) and set

(3.16) AT, x)=det(A(T, x)) .

(8.17) THEOREM. Let U be an open subset of RY. Suppose that
o1 (0,1]=(0, ) and p<(l, w)—=M,=(0, ) are non-decreasing functions
such that
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(3.18) sup 11/4¢, ) Loy = Mplpt),  t<(0,1].
zel

Then, for each c=C, there is a ‘p= C™((0, ) X U X RY) such that ‘P(T, x, dy)
=°p(T, z, y)dy for each (T, x)= (0, o)X R¥. In fact, suppose that {C,: m=0}
and {yn:m=0} are the numbers appearing in (1.10) (recall that yi=0 and
see (1.1) and (1.2) for an explanation of the notation in (1.10)) and assume
in addition that

Hc(m)(x)”H.S.((R-V>®m,R1)—S—Cm+1(1+f[xllRN)rm+l: m=z1 and xRV,

Then, for each n=0, there exists an M,=2, @ P,<[2, ©), a v, (0, ), and
e 2,0, ), all of which are independent of Vo, -+, Vi and ¢; ¢ p,<s
{0, o) which depends only on {rn:0=m=m,} and is 0 if yo= -+ =yn,=0;
and o non-decreasing map Te[l, 0)>K (T)=(0, o) which depends only
on {Ch:0=m=m,} such that

319 A+ly—lz)IDrDD] (¢, z, Y| = Myp Ko(T) (L +[2] pr)
X exp(tlesl srms— 2ullly— 2l ey A1 CEA - [2lZw) D) (0 A1) AT

Jor all T=1 and (¢, %, 9)=0, TIXxUXRY and all m=0, asJ”, and p=I”
satisfying m—+la+Bl=n. Moreover, if 7o=0, then (3.19) can be replaced by

(3.20) | D DEDs plt, @, y)| = Mop K (TY1+ llziien)
xexpltle | scans— Aally—xlzn/ A+ CON/ (@E A A™.
Finally, if r.=0 for 0=m=m,, then the u, in (3.20) con be taken to be 0.
PROCOF. We first note that for T'=1:
AT, &) =J(T, 2) A(T, ©)J(T, x)*
=J(T, 2) A1, 2)J(T, x)*
=J{T, ) A, 2)J (T, z)*

where J(T, z}=J(T, 2)J (1, z). Starting from (2.2) and (2.3), we see that:
T
T, o= £\ TP ) VPO, 9)0d800)
Z1J1

T
— 30 Ji, @) VX, w))dt,  T=1.

After converting this equation to its equivalent It6 form, one can easily
check that for each p=[1, o°) there exist A,& (0, o) and B, [0, o), depend-
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ing on C, alone, such that

NTTHT, 2)Vis.ry, anllLran = Apexp(B,(T—1)),  T=z1.
Combining this with the above, we conclude that
G2 WAT, 2) e = Asp expBep(T— DL/ AW, @)l 220wy,  T21,

for all x=R¥. In particular, by Theorem (1.10) in 6] and (3.18) above,
1/4(T, )= G(.L) for all (T, z)=(0, o0) x U.
Next, let a=J¥ be given and set

B a,a(T, ©)=exp(C Y (T, @)/ (Liarian(ZT, @), =, Z(T, 2))acar »

where we have used the notation introduced in Lemma (3.9) and the para-
graph preceding that lemma. Then

D Pglay= 3 EV[E, (T, )(D*)(X(T, x))]

le'islal

for all p=C7(RY). Hence, if R, (T, x), y=JI”, is the operator on G{.L) as-
sociated with X(T, z) as in Theorem (1.20) of [6], then for (T, z)=(0, c0) X U :

D= Prg(x)=E" [V (T, ©)p(X(T, ©))],  $=CT(RY)
where
YT, 93):’ HZS)I [(~ DR AT, 0) 5 oo (T, ) (A(T, 2)) 729
is again an element of &(.). In other words, if
‘QulT, x, ) ={(U (T, 2) WWX(T, x)—x)"*, (T, )= (0, o)y x U,
then
(3.22) D Pig()=\ g+ QT mdy),  $SCIRY).

Next, choose p=C=(R¥) so that 0=<5=1, =0 on B(0,1/2), and =1 off
B(0, 3/4). For n=0, define

A+l i e=0
" :{(1+lly||§zzv)”’277(y/a) it
Then, for peJl¥, ¢=C5(RY), and (T, x)€(0, ) xU:
\ (029 @), () Qu(T, 5, d)
=BV (T, 2)7,, (X(T, 2)=2) (D) (X(T, 0)—2)]
= (VB g0 T, DT, 2)—2)]

>0.

(0]
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where
U 5.m, T, 1) =R (T, @) ¥ (T, 2)70,(X(T, @) — )] (4(T, )" 572F)
is again an element of G(.L). We can therefore apply Theorem (1.31) of

[6] to conclude that for each (T, ) €(0, co) X U there is a ¢.(T, #, -) = Cy (RY)
such that

DY) QalT, , dY) =1, (W)@ (T, 2, Y)dy .

Moreover, that same theorem tells us that there is a universal C=(0, o)
such that

an,e(‘)cqa(t; x, ') ” cRN>

=0(_ B 1Rl W o0, 2070, X 1) = DIl ) W)

1=

< 2 IR0, )1/ 46, 2D

iri=1

By combining the estimates in (1.22) and Lemma (1.14) of [6] with those
in (3.18), (3.21), and Theorem (1.9) of the present article, we see that for
given n=0 there exist p,=[1, o), g, €[1, ®), m,=2, and v, (p, o), which
are independent of {V,, ---, V,} and ¢, such that, for all 721 and a, = JI¥
satisfying |a-+ 8| <m, the right hand side of the preceding is dominated by
an expression of the form

MK (T)exp(tlle. I pgrmy) L+ zllzn)in(-/e) ”c;}“mN)
< W(1Xt, 5)=olenz 5 ) [oEALr, €)=, TIxU,

where T&[1, o) =K, < (0, o) depends only on {C,, : 0=m=m,} and p,<[0, o)
depends only on {y,: 0=m=m,}. In particular, if y;= --- =yn,=0, then g,
can be taken to be 0. Given y=RY, we now apply this estimate with
¢=0 and e=|ylzy. After making an obvious modification of K,(T), we
then arrive at:

(3.23) max | Di(1L+IylEa)"" ¢, @, v)l

la+f1s
< MK (T) exp(tlesll sam) L+ lz|Ey) ™ ot A1)™
XU X(T, @)=zl ey = llylen/2)70 ) [yl 55) AL]

for all (¢, z, )= 0, T]x Ux R,
To complete the proof of (3.19) and (3.20) when m =0, we must provide
an appropriate estimate for /(| X(t, x)—=2lzv=R). To this end, set
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M(z, )= sup llo@)llas.ayevnlb@ilzy,
yEB(z, R)

where ¢(-) and b(-) are given by (1.1) and (1.2). Then, by standard esti-
mates, so long as t=R/2M(x, R) :

CV/<Osup 1X(s, 2)— 2l g = R>§ 9N exp(— RYSNM(z, R)E) .
=s=st

Thus, for all t>0 and R>0:

(3.24) CW(()supt I X(z, 8)—z] = R>

=<2Nexp(R/4N) exp(— RY8N(1+M(z, R))t).

Using (3.24) in conjunction with (3.22) and (3.23), one can easily complete
the derivative of (3.19) and (3.20) when m=0. (Recall that y,=0 and
therefore that we may always assume that y,<[0, 1].)
To obtain (3.19) and (3.20) for general m=0, simply observe that, by
(3.13) and the regularity results already proved about x=U—p(, x, ) :
o .

Ty olt, x, y)=L+c(z)™ plt, 2, y)

on (0, o) x Ux R”. Q.E.D.

(8.25) COROLLARY. Define CUr(x, n) for L=z1, z=RBY, and n=S" ' as
in (2.15) and set CU {x)=( ianCVL(x, AL Given Lz1, define Uy=
pESN-

{xesRY: Y (x)>0}. Then there exists an m(L)=2 and a non-decreasing
map p<[1, c0)=M (L) =(0, o), both of which are independent of {Viy, -+, Vai
and ¢; a p(lys(0, ) which depends only on {r,: 0=m=m(L)} and is 0
Wf 7o= " =7nay=0;and a K(L)<(0, o) which depends only on {C,: 0=m=
m(L)} such that:

(3.26) 11/ 4T, @)l Locap, = M(L) K(LY(1+ [ [lza) “ P (CV L () TV,
(T, 2)=(0,1]xU,.

Next, set U:LCOJ U;. Then there is a ‘p=C>((0, o) x UxXRY) such thot
=1

PT, x, dyy="p(T, z, y)dy for each (T,x)s(0,c0)xU. In fact, for given
n=0 and L=1, there exists an m,(I)=2, v (L)< (0, ), and a 2,=(0, o),
all of which are independent of {Vo, -+, Vo and ¢; ¢ p,(L)=(0, o) which
depends only on {yn:0=m=m, (L)} and is 0 if 7= =yn ,=0; and a
non-decreasing function T<[1, o0)—=K (T, L)<= (0, o) which depends only on
{Cr: 0=m=m,(L)} such that
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327 (A-+ly—alz)"|DrDEDf p(t, o, Y| = KT, L) A+ o] pw) >
X exp(tlies | sam— Ao (ly— @l ey ADYCE(L+ @] aw) ) (CV () 4 52) 5

Jor all T=1, all m, «, and B satisfying 2m-+la|+ifI=n and all (&, 2z, y)
€0, TIX U, X RY. Moreover, if y,=0, then (3.27) can be replaced by

(3.28) [DIDiD{ p(t, «, )| = KT, L)1+l gw) "
X explt]c.l perny— A lly— x| 2w/ (L+-CHH/(CV L () 1) =5
Finally, if o=+ =yn, =0, then (3.28) holds with p.(IL)=0.

PROOF. In view of Theorem (3.17), we need only check (3.27). Refer-
ring to the notation used in Theorem (2.17), set (T, 2)=A(T, z, S¥ Y. Then

AT, z)=(etJ (T, x))¥/det A(T, )
<(detJ YT, ) i(T, )~ .

By the same argument as the one which led to (3.21), there exists a non-
decreasing map pe(l, c0)—=M,=(0, co), depending on C; alone, such that
sup sup l[(detJ (T, #))*|l Lo = M, .
0<sT<st xRN

At the same time, since t—i(t, ) is non-decreasing, (2.18) tells us that for
(T, 2)=(0,1I1x U :

DT, o) T*<1YK)SYWOAUTIK, 2)| T <1/K)
=C(L) exp(— (VL (@) K) e/ 1+ M(2))), K=1,

where C(L) and ¢ are universal and M(x) is described in Lemma (2.17).
From this and the preceding, the deduction of (3.27) is easy. Q.E.D.

4. Localization.

Thus far we have been working under rather rigid global regularity
assumptions on our coefficients. The purpose of this section is to show
that so long as we are interested only in local conclusions we need only
impose local regularity assumptions (cf. Theorem (4.5) below). Since the
procedures which we have in mind are quite general and do not rely par-
ticularly on the detailed structure of the diffusion under consideration, we
will begin with a somewhat abstract formulation of our localization pro-
cedures.

Throughout this section, our notation is standardized as follows:
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1) {Q.:xz<=R¥} is a strong Markov, Feller continuous family of prob-
ability measures on (2, %) and ¢=C(R"Y) satisfies fc. | prn,<oo. For (T, z)
(0, 0)x RY and '€ Ppw:

“QT, =, F)zEQ{exp(S:c(x(t))dt>, 2(T) e]’]

and {Qr: T>0} 1is the associated semigroup on B(RY): ‘Qrflx)=
\rw e, o, a.

ii) W is a non-empty open subset of RY and RY is a Polish space
containing RY as an open subset, 2=C([0, ), ﬁN) and J and {H,:t=0}
are the naturally associated s-algebra over 4.

i) {P,: xEIAEN} is a strong Markov, Feller continuous family of prob-
ability measures on (2, ), ceC(R”) satisfies (&, zar, <o, and ¢P(T, z, -)
and {*P;: T>0} are defined by analogy with ‘Q(T, z, -) and {Qr: T>0}.

iv) ("=inf{t=0:xz{)e W}; and, for each x= W, Pzlogw=Qzlaw and
e{ax)=-c(x).

(4.1) LEMMA. Let U and V be non-empty open subsets of W satisfy-
ing USV and VW, and let (Z,|-1s) be ¢ Banach space which is con-
tained in the space of finite measures on U. Suppose that (T, z)<(0, 1]
XW = Qu(T, %, dy)=1o(y)°Q(T, x, dy) is & measurable mapping into X, and
assume that

K@)=sup sup [‘Qu(s, & -)s<co,  t=(0,1].

0<Csst EEWNT
In addition, suppose that

sup Q"= = %

zsV

where p is some element of (0,1]. Then
(T, %) € (0, 11X RY —> *Py(T, w, dy)=ys )" P(T, z, dy)
18 o measurable mapping into 2. In fact,
FPo(T, z, Vs = 1°QUT, z, )l s+5K(T) exp(T164 | san) @ < T)/ %,
if (T, 2)e(0, 11xXW, and
1*Pu(T, @, Yz =5K(T) exp(T1|é+ ]l scaw)/ ¢
of (T, x)=(0, 1]x(R‘V\V). Fenally, if SS%,) 1°Qu(1, &, Hz< oo, then (T, z)=

a, OO)XR‘VHEPU(T, %, *) is @ measurable mapping into 2 and
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Pu(T, 2, )= (sup1Qu, & s )Jexp((T— Dl )
EEW
+5K(1) exp(Tle. | peansy/ ¢
if (T, m)e (1, ) x R,
PROOF. First, define
T
Q¥(T, , F):EQZ[eXpGO c(:c(t))dt), #(T)el and C¥> T} .

Then, by the strong Markov property ;
‘QUT, x, I")

—Q(T, 2, F)—EQx[eXpGjWc(cc(t))dt)cQ(T— o, w@"), I), 7 < T]

for (T, )= (0, co)x Wand I'e B,. It is obvious from this and our hypothe-
ses that (T, x)<(0, 1Ix W—QF(T, », dy)=yuv(y)'Q” (T, x, dy) is measurable
into X and that

42 1°QU(T, z, N>=1°QT, z, s+ K(T)exp(Tlel sav)Q:C" =T) .
Next, set 7,=0 and define {r,}7 and {r,}; inductively by:
o, =1nf {t=7, 1 2(t) €V}
rp,=Inf {t=0,: () € W}
for n=1. Then, for (T, z)=(0, I]XRN and 'e Py

o

P(T, o, )= 3 EP”[eXpG:é(x(t))dt), #(T) el and o,< T<Tn]

n=1

= 257 exp( | ew )t f Q7 (1= 0, 500, 1), 0, < T,
Now, suppose that we knew that

(4.3) Sup 3 Po(o,<1)=5/u’ .

zERN 1

Then, it would be clear from the preceding that (T, x)<=(0, 1]><f€“’ —
‘Py(T, 2, )= 2 is measurable and that the desired estimates hold so long
as T=(0,1]. Moreover, since

Py(T, ->:36P<1, & VP, (T—1, &, dE)

for T>1, the final assertion of the lemma follows immediately from the
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earlier ones. Hence, all that remains is to provide the proof of (4.8).
Clearly

Moreover, if n=1, then

Paen= = Qutryton o€ = = 0:() Pold) E = PuloZ 1)

{w:og(w)s g}

< %Px(ané .

Hence, P (z,=p)=<e™, p=1. Also, for any /=1 and m=1:
Pz(‘5'<l+1)m§ (l+1)#) éP:c(Tlmél,u) +Px(7(l+1)m_7lm = ow, T < OO) .
Hence, P,(cin=lp)=<lfe™. From here it is clear that:
P . =D =[(1+ )/ ple7 e/

and therefore that

3 Po(en 1) (Lt ) plet @+ ©—1)

n=1

=4/p*

Clearly this leads to (4.3). Q.E.D.

Lemma (4.1) provides us with a way to localize results about the
“forward variables”. We now want to develop an analogous procedure for
the “backward variable”.

(4.4) LEMMA. Let U and V be open subsets of W satisfying USV
and VS W, and let (B, |-z be a Banach space contained in BRYNC(U)
with the property that if {f.7 is a bounded subset of B and f.(x)—f(x)
for each x< U, then feC,(U). Assume that ‘Q,: B(R”)»»B for all t=(0,1]
and that there exist non-decreasing functions «: (0,1]—(0, o), B:(0,1]—
0, «0), and 7:(0, 1]=(0, o) satisfying

K= 3 (alt/2m) +p/27) 2 <o, (0,11,
and such that

1°Q. Sl 2= exp(tllc. il ser) 1N zerms/7(E) feBRY),
1°Qeyvefllz=exp(tlic,l srm)a@fisrys, fE B(RY),
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and
sup Q¥ =)= j(¢)

eV

ﬂrthe@ﬂ.TMn%mB@%agﬁrmue@au In fact, if C=
fellaermsV 16 ] acany, then for all f= B(RY):

1P = 1°Quf 1 5 +2K (1) exp(tC) | £ e
when t<(0,1] and
IEP.fll 5= (17 (1) +2K(1)) exp(tC) Il peaws

when te (1, co).

PROOF. Since, for t>1, (P, =’PofP,_,, we may and will restrict our
attention to ¢{=(0,1]. Also, observe that it suffices to prove the desired
conclusions about ‘P.f, t=(0, 1], when feC,(RY).

Given t=(0,1] and fe Cb(fBN), note that

"Pf@) = Quf @)= 3 Quinnign(®),  ©<U,

where
gm:(éPt/zmﬂ—Qz/zm+1)oapz<1—1/27n+1>f~

Set gn=yvgm and gn=yvcgn. Then

lgml seryy =2 exp(t(1—1/2"*YC) /2™ Y1 ] seaws
and so0

1Quam19mll 5= 2 exp(tC) BRI 2™ Y| Fll sz 7 (E/2™FY)
At the same time:
1°Quam+1gmll s =exp(tCla /2™ )| fl zcaw, -

Combining these, we conclude that !P,f= B and that the desired estimates
hold. Q. E.D.

We now specialize our choice of {Q,:x<R"} so that we can apply
these localization procedures to the situation treated in Section 3). Let
Vo o0, Vo Co(RY, BRY) and c=Cy(RY) be given. Set

1 d
L=53Vi+V,

and let {Q,: 2= R"} be the diffusion generated by L. We point out that
the condition Palaw=Qzlsw, v €W, is, in this case, equivalent to the
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statement that

AW N
<¢(66(MCW))—¢(90)—SO Lg(z(s))ds, M., Px>
is a mean-zero martingale for all x€W and ¢<=Cy(RY). Finally, let
{Cr : m=0}<[0, co) be chosen so that (1.10) holds with y,=0 for each m=0,
”’C‘.;_l!g(f;}\f)éCg, and

sup "™ (x) |[H,S.((R.'V>®m,}zl>§_cm R m=0.
zGRN

(4.5) THEOREM. Referring to the situation just described, define
AT, x), (T,2)=(0, )X RY, as in (8.16). Let p:(0,11—(0, ) be @ non-
decreasing function with the property that lilrgxtlog o(6)=0, and suppose

H
that there exist {M,:p<[l, ) <=(0, ) such that

(4'6) Sup “ 1/A(t} x) ” Lp(‘W)éMp/p(t) > t s (OJ 1] 2

zERN

Jor each pell, co). Then there exists a measurable map xEIAENHép(-, x, %)
e C*((0, o) X W) such that

1w WP, x, dy)="p(t, @, w)dy, (&, )€ (0, ) x RY
and

ggépa, o )= (LE+e@)pt, ,y), (& 5 y)e 0, ) xR W,

where L* denotes the formal adjoint of L. In fact, given n=0, there exist
an Ma=2, & P,E[2, ), a v,(0, ), and a 1, <(0, ), all of which are
independent of {Vy, -, Vi, ¢ and &, and a K,=(0, ) depending only on
{Cr: 0=m=m,}, such that for each 0<di<(rad W)A1l (rad W=sup{>0:
(Jxs W)B(z, )= W}):

(4.7) max | D} *p(t, , y)
Irisn

= M4B(0) K, exp[tl| el scan,— 2a(ly— @l av A 0/ (L+CHEY (ot AL)E) ™
fOT (t: x, y) & (0) OO) X -RN X VV‘((?)?
(4.8)  max|Dj P f(@)| £ MK, expltles ] zav)

iylsn

< [(S expl— 2. [&—=lzv/(1 +C§)t]d5) A1/ (o((E[2) A1) AtY™
supp (S

+ B (0) expl— 2,091+ Ce] v,



Applications of the Malligvin caleulus, I 29

for all (¢, 2)€(0, )X W, and all f<BRY), and

(4.9) Jax [DEDE p(t, =, y)| = M2rB,(6)K: expltlic. | s,
a IBisn

— Zllly—zllzw A8 (A+CHEY (o((/2) AT AT
Jor (¢, 2, y) €(0, 00) X Wiy X Wesy 5 where
W(a): {ﬂ'/' cW: dlst(x, Wc) > 6}
and

B.(5)= [Os<1t12 expl — 2,8(1+COEY (p(E A D) A t)”"] Ve

PrROOF. Under the stated hypotheses, Theorem (3.17) applies to
{Q,: x=R"} and says that °‘Q(T, z,dy)=°¢{, z, y)dy where °q=C™((0, o)
X RY <X RY) satisfies (3.20), with p,=0, for each #>>0. Moreover, one sees
from standard estimates (e.g., (3.24)) that there is a universal ¢>0 such
that

sup Qz< sup [2(t) —allzy= 5>§ 1/e

2ER ost<p

so long as p=¢(0/C). Now let n=1 be given. Using the preceding, taking
U=We, V=Wem, and X=B=Cj(U) ; and applying Lemmas (4.1) and (4.4);
we conclude that there is a measurable mapping

(T, )€ (0, o) x RY —> *p(T, @, -) = C=(W)

such that yw@W)'P(T,z, dy)="p(T, z, y)dy. Moreover, for each 0<d<
(rad W) A1, the same argument shows that (4.7) and (4.8) hold.

To prove that ®p(-, z, ) € C*((0, o) X W) and than %Zp(t, z, y) = (L¥+
cy)ipt, x,y) on (0,00)xRYx W, it suffices to check that ‘Pip—d=
S:éPs(L—Fc)géds, t=0, for each ¢=Cy(W). Given ¢=Cy(W), choose an open
V so that suppgeV and VeW, and define {r,}; and {o,}7 accordingly as
in the proof of Lemma (41). Setting E(t)zexp(SZc(x(s))ds) and £()=

eXp<S:é(x(s))ds>, we then have:

“Pg(w) = g= . ETEOH0(1)), o <1< znl—(0)

=3

\ Elon(a), 0)
m=1J{w:onle)i)

X BEom > O 8 (4 — g, () $(2((t—0m(@) ALT)IPo(dw) — ()
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%
— Lu

7 o el EO T+ (e (s)ds |

n

o

Soéps(mc)gs(x)ds .

In order to prove (4.9), we combine (4.7) and (4.8) as follows. Let
0<d<(rad W)A1 be given, choose %,y < W, and set e= |ly— x| zy Ad. Given
a, B I”, we have

Dng ep(t; z, y):Dg EPtlﬁf‘(x) s
where f=Dj ‘p(¢/2, -, y).
and (4.8).

If te[l, o), (4.9) follows directly from this, (4.7),
If t=(0,1], set ' =ysqy,qof and f/=f—r".

Then
IDEDEp(t, 2, y)| S |DEPyf ()| + D& Py f” ()] .

Assuming that |a| VIS =n, we have, from (4.7):

£ Ve, = @2M,, ) *B,(0) K, exp(tlic, | scavy/2)/ (o(t/2) AT)™ .
Hence, by (4.8):

[Dg P f (2)] 222 M K2 (wx(e/2)™ + B,(3)) B, (5)

xexpltlesllscany— 2,6 2(L+CHLY (o(t/2) Nt)>»
where @y denotes the volume of the unit ball in RY.
by (4.7):

At the same time,

1 lscan,= @M, ) "B,(6) K, expltlc. | scany/2— 2,821+ C)t]l (o(t/2) A t)*™
and so, by (4.8):

|Dg P f” ()| <27 MER K ((1+CE 2,) Y + B ()

x expltle, vy — 2,82+ COL] (p(t/2) N)>™ .
Clearly (4.9) follows from these, once minor adjustments to K, and 1, have
been made.

Q.E.D.
(4.10) COROLLARY. Again referving to the situation in Theorem (4.5),

define <V (x), L=<1 and z=R”, as in Corollary (3.25) and assume that,
for some L=1 and 0<e=1, inf CV;(z)=e.

zERN

Then there is a measurable
map xEIAEN—ﬁp(-, z, %) € C((0, o0) X W) such that

ZW(y) EP(t: xz, dy) = 6p(t; Zz, y)dy
and
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%fp(t, &, 5)= (L& +c()'p(t, 2, )

forgall (¢, 3,9) =0, o)X RYXW. In fact, given n=0, let m,(L)=2 and
v.(L)€(0, o) be as wn Corollary (3.25) and let 2,<(0, ) be as 1n Theorem
4.5). Giwen 0<o<(rad W)AL, define B,(0) as in Theorem (4.5). Then
there is a K,(L)=(0, ), depending only on {C,:0=m=m,(L)} such that

(4.11) max | D} *p(t, z, y)| = K,(L)B,(3)
iylsn

X expltlie llzany— 2 ly—xllzw A SV /(A +CHLY (' ENL)) =P
for (t,a,y)€(0, ) X RY x W,
(412)  max | DLP.f(@)] £ Ka(L)Bo(0) exp(the. | aam)

~ l:<gsupp(f)eXp[_ 2 lé— i|§zN/(1+C§)t]d§> AlfgrnD

+Ba(0) expl — 237 (1+ G |11 sca
for all (¢, z2)=(0, )X W and f=BRY), and

(4.13) max (D3 D5 Ep(t, x, y)| < K, (L)*B,(5)
IX-2AVAN-AF-53

X expltl &l pearws— Anllly— 2l ow A O (L+COHEY (YL (EA L))
Jor (¢, 2, y) (0, 00) X Weay, X Wesse

PrROOF. This result is an immediate consequence of Theorem (4.5) and
the estimate (8.26). Q.E.D.

5. Microlocalization.

Let {V,, -+, Vg3 SC3(RY, BY) satisfy (1.8), define L accordingly as in
8.1), let {P,:x<R"} be the diffusion generated by L (cf. Theorem (3.3)),
and set P, z, =P (z(T)<I"). In the preceding section we learned how
to localize (in space) regularity results about P(T, z, ). In this section,
we want to microlocalize such results. Rather than give a formal defini-
tion of what that means, we will instead give an example of the kind of
result toward which we will be working. Namely, let 1N, =N, write
RY=R"*x R", and denote by II:RY—R" the natural projection map.
Recalling the definition of <V (x,7) (L=1, x=R", and y=S"*) given in
(2.15), suppose that
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inf V(e 9)=elDplky peSY,
for some L=1 and ¢>0. When N,=N, Corollary (3.25) says that P(T, z, -)
possesses a great deal of regularity. When N, <N, it is reasonable to
suppose that the marginal distribution P(T, ¢, -)=P(T, x, - )oll ' of P(T, x, -)
on R"! should enjoy similar properties. The purpose of the present sec-
tion is to prove such results (cf. Theorem (5.9) and its corollaries).

(5.1) LEMMA. Given a non-emply closed set F<S¥™!, define UV (x, F'),
Lz1 and x<RY, as in (2.16) and At z, F), (& 2)€[0,0)xRY, as in
Theorem (2.17). Assume that in%CVL(x, F)ze for some 0<e=1 and that

ZER

M=max{l|{(Vi)lcyrr rr;: 0Sk=d and la|=L+1} is finite. Then for all
(T, 2)=(0, 0) X RY and K<[1, ).

(5.2) WQT, =, F)|p(T, K)* <1/ K) = C(L) exp(— (" K)* 1/ (1+M)) ,
where

1 if T=1/K*
(T, K)=

T if T<1K*:
and the numbers C(L) and g, are those described in Theorem (2.17).
PROOF. Given 0=s=T, define
JAT, )=J(T, ) JJ (s, ),
44T, )=\ T, @)l Xtt, 2) JAT, @)%t

and
)‘S(T) x) F):lnf (ﬁ) AS(T} x)U)RN b
neF

where a(-) is the matrix in (1.1). Next, let 6—9; be the regular condi-
tional distribution of 9 given B,. Then, for J/-almost every <6, the

distribution of
(X (T, =) )
A(T, x)

under 9% coincides with the distribution of

(X(T—— s, X(s, x, 0)))

A(T—s, X(s, x, 8))
under 9.
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Now take s=T—5(T, K)/K*. Since AT, x)=A(T,x), we have from
the above and (2.19):
Y (AT, 2, F)[p(T, K)Y*SYK)SW (T, z, F)[7(T, K)*<1/K)
=\waw, KyK*, X6, 2,0, F)y(T, P <1K)W @)
= C(L) exp(— (* 2 K)* I/ (1+ M) . Q.E.D.

(5.83) LEMMA. Let W be a non-empty open set in RY, F' a non-emply
closed subset of S¥!, L=1, and 0<e=1l. Assume that

Ve, Fy=s, zEW,
and that
M=max{|(Vwlciw : 0Sk=d and |a|<L+1}<oo.

Then there exist C(L)s(0, 00), 2,E(0, ), y.=(0, o), and p.&(0, o) (all of
which are independent of {(Vi, -+, Va}, W, and &) such that for each 0<o
<(rad W)A1L, all K<[1, o), and all (T, x)s(0, o) X RY:

(5.4) WAT, =, FY(TADSUYK, X(T, ) € W)
SC@) L+ M2 exp(— 2.8 H (52 K) F 1+ M)H 6",
where Wey="{y< W dist(y, W*) > é}.

PROOF. We note first that it suffices to prove (5.4) when T<(0,1]
Indeed, given T>1, set s=7T—1 and observe (cf. the proof of Lemma (5.1))
that

CW(Z(T; X, F) é 1/K) X(T; x) € W(B))—S—CW(ZS(T; Xy F)é I/K} X(T: 96) S W(ﬁ))
=\, X6, 2,0, ) ZUK, X0, X, 2,00 W)W A0) .

Before turning to the proof of (5.4) for T=(0, 1], we need to make a
simple construction. Namely, given 0<d<(rad W)A1, choose a ¢=Cr(W)
and a ¢ =C3 (W) so that 0=¢, ¢=1, ¢=1 on Wy, and ¢=1 on We/s.
Note that the choice of ¢ and ¢ can be made so that [pllcperyvldlcran,=
B,/6", n=0, where B,=(0, o) is independent of W. Next, set

V=0V, 0=k=d,
and

Vi=(01—¢) d+1=k=<d=d~+N.

A

0% g ’

We will use “ on top of quantities associated with {Vy,--+, V s} in order
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to distinguish them from the analogous quantities associated with
{Vo; ) Vd}-
Note that
Doz, F)ze, x<RY,
and that

M=max{|(V el cgny,: 0=k =d and |al<L+1)

is dominated by (B..s)""'M/57L? where y,=2(L+1)(L+3).
Now let T=(0,1] be given, set r,(x)=0, and define

on(@)=inf{t=7,_(x) : X(t, 1) € Wesp} AT
o) =inf{t= o, (@) : X, 2) & W AT

for m=z1. Also, set Tn(x, 8)=T—on(x, 8), Yiu(®, 0)=X(on(z, §), ,6), ¥ .(x, 6)
=X(Tn(z,0), Y,(z,0), and Ly)=inf{t=0: X(t, y)& W for y= RY. Then

WMT, z, F) T UK, X(T, z) € Wes)

Mz

= 2 Wl T, 2, ) T =1/K, X(T, 2) € Wesy, on(@) < T <zn(x))

m

Il
Ms

WA Tul, 0), Yulz, 0), F)| T* 1K,

1 S(ﬁ:am(z, H<T

X(Tn(z,0), Yulz, 0) € Wa,, UV n(x, 0)> Tulz, )W (d6)

m

Il

Ms

= X (T, x),
1

m

where

a

(T, x)z\

Jlromz, )T

Y (s, 6) € W)WV (d6) .

W (U Tolz, ), Ynlz, 6), F) T*<1/K,

In the preceding, we have used two facts. The first of these is the strong
Markov property in the form which says that, for each m=1 and 9§/-
almost all §<{o,(2)< T}, the distribution of

( X(T, ) )

Aam(z)(T: x)

under the regular conditional probability distribution G¥/§= of G/ given
B, > coincides with the distribution of

(X(Tm(x, ), Yalz, 0)))
A(T (%, 0), Yilz, 0)
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under 9. The second fact is a consequence of uniqueness and states that,
for each y< R", the distribution of

()
X(-ANC(w), v)
AC AW, v)
under 9 coincides with that of
Ey)
ACAEw), )
under 9.
In order to complete the proof, we will now show that there exist
C(L)=(0, o0) and 2, <(0, co) (which are independent of {V,, ---, V,} and W)
such that, for all m=1 and K<[1, 00):

(5.5) LT, ©) = C(L) exp(— 2:0" (e K) " H/(1+ M)W (o) < T)

where 7, is the same as above and p; is the same as in Lemma (6.1).
Since (cf. the proof of Theorem (4.5)) there is a universal Be(0, ) such
that

§ W (o,(z) < 1) < B(1+MD5*

(6.4) will follow immediately from (5.5).
In the derivation of (5.5), we consider two cases. First, suppose that
2€ Wease. Then o2)=0 and

I(T, ) < WAT, «, F)|T*<1/K) .

Thus, this case is covered by (5.2). Next, suppose z& Wes, and m=1 or
that x€ Waseo and m=2. Then Y,(x,8) €0Wessy, for all § with o, (x, 8)<T.
Hence, in this case, (6.5) will follow from

(5.6) WG, y, F)SUK, X, y) € We)
< CO(L)exp(— A0 L(eF 2 K) 2/ (1+ M%)

for all (¢, 4)=(0,1]X0Wasn. To see (5.6), first suppose that 0<t<1/K".
Then, by standard estimates:

sup  W(X(t, y) € W) =2Nexp(— 182 KE/(1-- M)?)

YESW (35/4)
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where 2= (0, o) is universal. Second, suppose that 1/K*<¢=1 and apply
(3.2) to WAl y, F)S1/K). Q.E.D

(5.7) LEMMA. Let 1SD=N, Lz1, 0<e=1, and o non-empty open set
W in RY be given ; and define

FP"(L,e)={neS" ' : UV (x,n)=e for all x=W}.
Assume that F7(L,8)+ @ and that
M=max{|(Viwloiw : 0Sk=d and [alSL+1}<o.
Nezxt, let r=C7(RY, R”) and define
X(-, z)=noX(-, ),

A('; x):«X(': x): X(') x)»f s
and
2('; x):A inf (f]) [i(.: x)f])RD .
WESD"I

If for all yeW and $=S°7:

[(@*)yHli=e
and
(z*), 9 =spanF" (L, ¢)
then for each 0<d<(rad W)A1:
(5.8) WAT, )(TAD* =K, X(T, x) € W)

< C(L)(A+ M) exp(— 20" M K) M1+ M)/ 8"

Jor all (T, %)< (0, )X RY and all K<[1, o). (The quantities C(L), 2z, and
urp in (5.8) are the same as those in (5.4).)

PROOF. Because <(¢o@,¥>=¢o@<(P,¥> for all ¢,¥<=G(L) and g
C3(RY, we have:

(5, AT, )9)p0= (@) xcr. o7 AT, @) (@) xer, v
ESQZ(T, Z, FW(L; 6))

for all $=S?" whenever X(7,z)€W. Hence, (5.8) follows immediately
from (5.4). Q.E.D.

(5.9) THEOREM. With the notation and hypotheses the same as they
are in Lemma (5.7), define:
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PYUT, @, )= ((X(T, e)W)(X(T, )™

for (T,x)e(0,0)x RY and ¢<cCy(RY). Assuming that supp(¢)S We, Sor
some 0<d<(rad W)A1, there exists a pj<C™((0, o) X RV X RP) such that

PYT, ,dg)=p§(T, =, §)dF

Jor all (T, z)s(0, o)X RY. In fact, if di¥(z, §)=dist{x, z {HNW) (=0 if
7€ R\z(W)), then, for each n=0, pj satisfies an estimate of the form

(6.10)  (A+d¥ (@, 9V DTDEDEP(E, w, P = K(TYA+ [z lzw) [l opan
X exp(— (¥ (x, §) ALPIC(L+ @ l72) "0 (5 (E A1)

for all ¢, 2, 9)©, TIXRYXR? and all (m,a, ) NXNVXN? satisfying
m+lal-+1B S n. The quantities Ko(T), tn, s, end v, in (5.10) are elements
of (0, ) which depend on {Vi, -+, Vi, n, and L in the seme way as the
analogous quantities in (3.27). The C, and 7, are those in (1.10). Finally,
under the growth conditions stated in the last part of Corollary (3.25)
(cf. (3.28) and the statement following (3.28)), the analogons modifications
of (5.10) hold.

PROOF. Given the estimate (5.8), the proof of this theorem differs in
no essential way from that of Theorem 3.27). Q.E.D.

(5.11) COROLLARY. Let 1=D=N, ==C3(R", R®), and a non-empty
open set WERY be given; and, for ¢=Co(W), define PiT, x, ), (T,x) <
0, o)X R on R® as in Theorem (5.9). If

span{(ﬁ*)z((vk)(a>) : Oé k§ d and [P e L/Jy} - RD

Jor each xS W, then there 1is o pj < C™((0, c0) X RY X RP) such that Pi(T, «, dy)
=T, %, )47, (T, x) (0, ) X R". Moreover, for each n=0 and T<[1, o),
(t, 2, 7)< (0, TIXRY X R?—pj(t, z, 9) satisfies an estimate of the form in
(5.10).

PROOF. Note that for each x= W there is an L=1 such that

4
2 % (Vi) @)0)>0, =57

isL-1

Indeed, simply choose L so that
R2=span{(V,)os(2) : 0=k=d and laj=L-—-1}.

Thus, for each z< W, we can find an open set W(z)>z, 2 0<:=1, and an
L=1 such that
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[(@*)y Dy =e
and
(z*)1) =span F¥(L, &)

for all (y, #)= W(x) <SP (cf. the statement of Theorem (5.9) for the nota-
tion F"(L,¢)). Our result now follows from Theorem (5.9) and an easy
partition of unity argument. Q.E.D.

We conclude this discussion with a result obtained by combining the
preceding WiEh Lemma (4.1). In describing this result, we use the nota-
tion {P,:x<=R"} explained in (iii) of Section 4) (cf. the second paragraph
of that section). Also, we use L to denote the operator

1¢ .
5 2 VitV
2 k=1
and {” to denote the escape time
inf{t=0:xt) s W}

from W. Finally, we assume that
N4 -~
(s6enc—g@—{"" Lowwnds, A, P.)
is a mean-zero martingale for all xe W and ¢<=Cy(W).

(5.12) COROLLARY. Referring to the preceding, let 1=<D=<N, r<
C3(RY, R?), and ¢=C3(W) be given and set

Py(T, @, )= (g((T)PYo(zox(T) ™, (T, z)s(0, o)< RY.

Assume that there exists an open set U such that: supp(¢p)€U, UEW,
d¥(x, z(y)=6>0 for all xc W\U and yesupp(¢) (¢f. Theorem (5.9) for
the definition of dY), and span{{zy),(Vi)a: 0=k=d and aEJl}:RDAfm"
all x€U. Then there exists a measurable mapping (T, x)=(0, o) <X B —
(T, z, -)€CF(R?) such that PiT,z,d9)=piT,z, §)d§. Moreover, for
each n=0, pj satisfies an estimate of the form

(5.13) | D5 0i(T, x, §)| S K, exp(— 2,(d7 (e, ALV TADEAL ™,
where K., A, and v, are all elements of (0, o).

PROOF. In Lemma (4.1), take X to be the space of Radon measures g
on RY such that (¢p)ex™ has a density in C}R?). Now use Corollary
(5.11) and apply Lemma (4.1). Q.E.D.
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6. Regularity of the resolvent operator.

Let Vi, ---, Vo Cr(RY, RY) and define Lie(Vy, -+, V) and Iy (Vy, -++, Vi)
to be, respectively, the smallest Lie algebra of wvector fields containing
{Vo,-»+, Va} and the smallest Lie algebra of vector flelds containing
{Vi, -+, Va} and closed under Lie multiplication by V, Then, it is easy to
check that

(6.1) Lie (Vy, o+, V(@) =span{{V, )wy(x) : 0= k=<d and as A}
and

(6.2) Tyy (Vi oo, V(@) =span{(V) (@) : 1=k <d and ac A} .
In particular,

(6.3) Lie(Vy, -+, Vo(z)=span(Jy (Vy, -+, Vollm) U {Vi(x)}) .

4
As we have seen, the regularity of P,=e'L when L:%E V24V, is related
1

to the rank of Jy (V, -+, V). We will show in this section that the
regularity of R;=([—L)™' is related in the same way to the rank of
Lie(Vy, -+, V).

Throughout this section, we will be working with the following situa-
tion: .
) {V,, -, VJISCo(RY, RY), ceCy(RY), and {C,, : m=0}<(0, o) are quan-
tities for which (1.10) holds with 7,=0 and SIEII?N”C("D(W)”H,SA((RIV)@""',Rl)ng

for each m=0. Given Lz=1 and z<R", ¢V, (x) is defined as in Corollary
.
(3.25). Finally, set L:%EI Vit V.,

i) W is a non-empfy open subset of RN;RN is a Polish space in
which RY is an open subset; 2, J and {H,:t>0} are defined relative to
RY (cf. ii) in the second paragraph of Section 2)); and % (@)=inf {t¢>0:
x2(t, d)E W}, o .

iii) {P,: erA{N} is a strong Markov, Feller continuous family of prob-
ability measures on (2, M) such that, for each zeRY and p=CH(W),

»

(satnem—g@-\"

WL¢(x(s))ds, M., Px>

is a mean-zero martingale; and cECb(RN) equals ¢ on W.
iv) p(€)=2-+sin¢ for E€ R ; {V, : 0=k=<d-+1}SCy(R¥*") are defined by :

. y '
Vo(Z):‘o(E)E1 Vo(qg)% , z=(z, &)= RY+ ,
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N
Ve =0 S Vilw) 5, 2= R and 1=k=d,

Vd+1(z):

2 =, R,

o

- 1 e+t -
and LZ? le Vi+V.

v) O={<C(0, ), BY):6(0)=0}, and B and {B,:t=0} are defined ac-
cordingly ; 9% is Wiener measure on (8, B); 2=C([0, o), Ry X RY, and M
and {H,:t>0} are defined accordingly ; and, for z=(x, E)ER‘V x R, 13, on
(@, M) is the distribution of

6,000 — (o] ple+otnas, a)00))

under P,xX 9. . .
vi) For z=(z, &) RYX R, ¢(z)=p(&)c(z). Given z=RY and zc B X R,
®R(x, -) and <B(z, -) are defined on Pzy by :

(6.4) *Rio, 157\ exol | ototeas Jyrtatenat

o

and
e, 1) =B | exp( | eete)is JoteOrpronat |,

respectively.
The following lemma is a consequence of straight-forward computa-
tions.

(6.5) LEMMA. The family is {P,:z<RYx RY is strongly Markov and
Feller continuous. Moreover, if C¥(e)=inf{t=0:2(t, o) Wx RS, a<g,
then for all ze R"X R and ¢=Cy(WXR') :

TN ~ o
(seenemn-s-\ " Lote(s)ds, b, P,)
is a mean-zero martingale. Finally, if z=(x, S)ER‘VXRI, then ”R(m, =
‘Rz, ).
(6.6) LEMMA. For each L=4:

6.7) CKA}L(Z)E % inf{(Ve(a), ey +CUr(z, n) i neS¥ Y,

where U ,(2) is defined in terms of (Vo -, Ve in the same way as
P (x) was in terms of Vo, -+, Vil
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PROOF. First note that if 1=<k=d and acd, then V,)mlz)=
o)V ) r(2) for z=(x,&)e R x R'. Next, observe that [V,, V.. ] =
(—cos&)Vi(x) and [Vai, [Vo, Veudl2)=(sin &) Vi(z) for z=(x,&)eR"XR'
Combining these remarks, we arrive at (6.9) immediately. Q.E.D.

(6.8) THEOREM. Assume that there exist an 0<e=1 such that

d

(6-9) Eo naéL—i((V}e)(a)(x)’ )%BNZS s xeRY and Ui esv-! s

Jor some L=4. Also assume thaot c(x)<—2, x€RY, and é(x)=—2, foZN,
for some 2>0. Then there is a measurable map < RY—ir(x, -) € C(W\{z})
such that *r is C= on (W)*={(z,y) € W*: x#y} and yw(y)*R(z, dy)="r(z, y)dy
for all v=RY. In fact, given n=0 and 0<d<(rad W)AL, there exist
m(L)=2 and v,(L) (0, ), with the same dependence as those in Corollary
(3.25), and a K,(I1)(0, ), depending only on {C,:0=m=m,(L)}, such
that :

(6.10) max D] (@, Y] = KoL) Bo(@) 2l —yll gy A 5>,
IBI=n
zeRY and ye Wiz,
and
(6.11) max | DED] (e, )| = (KAL) B, () 22—yl zy AT,

tzlViBisn

(z,y) € (Wey*,

where We,={xe W :dist(z, W) >6} and B,(6)=(0, ) is as in Theorem (4.5).
Finally, for each x<=R”,

(6.12) @) +LHr(zy9)=—08), yeW,

where L denotes the formal adgjoint of L*.

PROOF. Set O={f= ([0, o), R**) : 6(0)=0} and let 9/ on (O, Bj) denote
Wiener measure. Let z€ RY—Z(-,2)=(X(-,2), 5(-,2)eC(0, ), R¥ X RY
be 2 smooth selection of solutions to

AT, =2+ 5\ Vo2, 2)d0,0)+\ Vo2, Dat,  T205
and define

T, 2, F):E‘ﬁ[expG:p(E(t, (X, :c))dt)p(E(T, 2), X(T, 2) < r]

for (T,2)€[0, o) x RY*! and I"€ Brv. Since, by Lemma (6.6), UV (2)=¢/4,
z= R we can repeat the argument which led us to Corollary (3.25) and
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thereby derive the existence of a G=C=((0, co) X BRV*'xX RY) such that
QUT, 2, dy)=a(T, z, y)dy, (T,2)=(0, c0)x B¥*', 1In fact, that line of reason-
ing allows us to assert that for each #=0, there exist m, ([)=2, v, ()<
(0, ), and K,(L) (with the desired dependence properties) and a universal
2, €(0, o) such that:

max |D#DEq(, z, y)l
1aiVIglsn

S K (L) expl— 2t — A, lly— 2 llx/ (L COLY 220~ E

for all £=(0,1], 2=(x, &) R" X R', and y=R".
Next, define

B(T, 2, T) :Egz[eXpGZ a(z(t))dt)o(g(T)), o(T) < zﬂ

for (T,2)e(0, o) x (RYX RY) and I'c Brx. Noting that the distribution of
Z(-,2) under 9% and of z(-) under P, are equal on Mew, we use the local-
ization procedures introduced in Section 4) to show that there is a meas-
urable map (T, z) (0, oo)XIA{N—%b(T, z, Yy C*(W) such that:

Ei)(Tz ';*)](WXRI)XWECM((WXRI)XW)’ T>O;
and .
L) P(T, 2z, dy)="p(T, z, )dy ,  (T,2)&(0, o) x(R¥XR") .

Moreover, given #=0 and 0<d<(rad W)Al, we can find K,(L}<(0, o0),
with the desired dependence properties, so that

max | D§ *p(t, 2, y)l
181<n

< Ko (L)B,(0) expl — 2t — u(lly— 2l gy A 6P/ (L COLY (T EE A1) ™E
for all t>0, z=(x, &) eR"% R, and yes W, ; and

max |DeDSp(t, z, y)
talVifisn

S (KAL)Bo (L) expl— 2t— A (ly—zley A8 (A-+-CHLY (T (EAL))PE
for all t>0, z=(z, &) € Wi x R, and y= W, Since ‘Rz, V=*B((x,0), )=
Swap(t, (, 0), -)dt, the existence and regularity properties of °» are now
¢

proved.
Finally, to prove (6.14), we need only show that

Ay
R,

M

(6.13) \ 66+ Lo SR, d=—g(a), @
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for all ¢=Cy(W). But (cf. the proof of Theorem (4.5)), for any ¢=C5(W),
xeRY, and T>0:

T

£ exp( | 6(e(s)ds 3T |- 5(0)

0

:E”[ QOT exp(SZé(m(s))ds)(éqﬁ+L¢)(x(t))dt] .

Since ¢(+)=< —2, (6.13) results from this after one lets 7 1 . Q. E. D.

7. Regularity in the presence of degeneracy on thin sets.

Let Vi, .-+, V, € C7(RY, B") satisfy (1.3), set Iy, (V,, ---, Vo) =span{(Vi)e
1=k=d and e« 4}, and define the processes X(-, z), A(-,x), and 4(-, z) on
(0, B, ) accordingly. The basic result of Section 2) is that {1/4(T, z):
0<T= 1}§pEQm)L”(CW) whenever Jy (V,, -+, V,)(x)=R". Before turning to

the topic of the present section, it may be helpful to know that when the
Vi's are real analytic near z the condition Ty (Vi o0, Vo) = RY is not
only sufficient but is also necessary for {1/4(T, 2): 0<T=1}c N\ L2(9) to

pE[1.20)

be true. To see the necessity, suppose that Jy (Vi -+, Vo)(z)# R". Then,
thinking of the V.'s as vector flelds on R""'=R'xXR¥, we see that
Lie(d/0t+ Vo, Vi, +o-, VO, 2)) = B¥*'. Therefore, by the Nagano Theorem (cf.
[9]), there exists an open real-analytic submanifold M of RY*' passing
through (0, x) and integrating Lie (3/0t+V,, V,, ---, V). Hence, there is an
open neighborhood W of (0, ) in R¥*' such that (¢, X x))& M for some
t=[0,L%(x)))=0, where {"(x)=inf {t=0: (¢, X(¢, x))& W}. In particular, the
measure p=ryq ,{)dt X P, xz, dy) assigns M positive mass. Since M has
dimension strictly less than (N4-1), this means that g has a non-zero
R¥*""Lebesgue singular part. On the other hand, by Theorem (3.17), if
/4T, z): 0<T=1c N L?’(CW) then z would be RY"'-Liebesgue absolutely

PEL0. )
continuous. Thus, in the real-analytic category, Iy, (Vi -+, Vi(x)=RY
implies that {1/4(7,z): 0<T=1}& N\ L*9Y) (in fact, a closer look reveals

PEll.e0)

that 9/(4(t, x)=0)>0 for all t=(0,1] if Iy (V3, -+, V(@) # RY).

In spite of the preceding remarks, one can still ask whether for C°
(as opposed to analytic) vector fields V, it is possible that {1/4(T, z): 0< T
=lle N LZ’(CV/) can hold in situations where Jy (Vy, -+, V,)(x)=R" fails.

PELL,00)
That such situations might exist was already indicated by Oleinik and

Radekevich in their extensive study of hypoellipticity [10]. The proba-
bilistic intuition underlying our analysis of this question is very simple.
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Namely, in the C”-category, the analogue of Nagano’s theorem is false; thus,
the diffusion can “escape instantaneously” from {x<=R": Jy (V) -+, Vo(x)
=R}, By making this intuition quantitative, we will now produce
criteria which guarantee that {1/4(T, x): 0<T<1}c N\ LP(9)) even when
Gy (Viyoor, V() £ R e

In the discussion below, we will be using the following notation. Let
A be the index set described in the appendix; and, for a= A, recall the
definitions of |a| and e and, when a# @, of ¢’ and a,. Given ¢ =C*(R"),
define ¢ay a €A, inductively by : dpy=¢ and du="Va,dan, a#@. Finally,
given L=1, set

&Y o= 5 (Gale).

(7.2) LEMMA. For each L=1 there exist universal (i.e., independent
of {Vo,+++, Vi and ¢) constants C(L)<(0, ) and p;<(0,1] such that

W swp o, 9T UR)

0stsTK-2/(L+1)
= C(L) exp[— (o0, ()(x) 7KL (1 -+ M())*] Kell, o0)
where
Mx)=max{dai cXBCa,1 - la| = L+1}.

PROOF. We relate this estimate to one which is similar to the
estimate proved in Theorem (2.17). Indeed, since

K T/K )
S\ K, P BE s G(X, DVITH
Jo 6=t=T/K

it suffices for us to estimate
CTK-2/(L+D)
cyy(\o S(X(E, 2))dt] T < 1/K2> .

To this end, we proceed as in Theorem (2.12) and develop ¢(X(t, x)) in a
Taylor’s expansion:
Xt @)= = _1¢<a>(x)0‘“>(t)+RL(t, z, )
where
Rt =, ¢):‘§LS“"(?5, O XC, o)+ 2 1sbm(:c)ﬁ“”(?ﬁ)

and the notation &¢(.) and S is explained in the appendix. Starting
from here, the argument differs in no essential way from the one used to
prove Theorem (2.17). Q.E.D.



Applications of the Malliavin caleulus, IT 45

(7.3) THEOREM. Let h:(0,0)—(0,1) be a mon-decreasing Jfuncltion
satisfying : h(O)ElZimh(l)ZO and 17im A 1og(L/R(A))=0 for each p>0. For
10 210

giwen Lz1 and non-empty closed FSS¥Y, define CU(x, F) and i(-, =, F)

as in Section 2) (cf. (2.15) and Theorem (2.17)) ; and assume that U (%, F)
Zhog(x) for some 0<3<1 and ¢ C=(R"), where FP={neS¥':|p—Flgr
<0} If xeRY satisfies olry(¢)®)=1, then for each p=(0,1]:

W@A(T|(log K)'?, x, F)| T* = 1/4K) = C(L) exp[ — 26*(log K)*/ (1 + M(x))*]

Jor all T<(0, T(L)] and K=exp|(4/T)"], where: C(L)e(0, ) depends only
on L ; T(L)e(0,1] depends only on h, p and L ;A is universal ; and

M(x)= (maX{Héb(a)“ C¥ B )+ lal=L41})

\/(max{”(vk)<a)||c?,(Bu,m;BN) 0=k=d and |a|=L+1}).

PROOF. Let x<=(0,1] be the smaller of the constants z, and z; ap-
pearing in Theorem (2.17) and Lemma (7.2) and let C be the larger of the
constants C(L) appearing in those results. Set y=(L+1)/(oA #) and choose
K,(L)s[1, c0) so that all the inequalities:

(K(h((log K)™ ) ™)) * = (log K)?
3K = (log K)*¥*
(log K)° =4

hold whenever K=K,(L). Define T,(L)=4(og K (L))""".
Given T<(0, T,(L)] and K=exp((4/T)?), we have:

W (T (log K)Ye, @, F)| T* <1/4K)
=W ((x)=1/(log K))

+9 (@) =1/(log K)*®

+ I (AT (log K)', @, F)| T* <1/4K, «(x) <1/ (log K)** <{(x))
=I(K)+ LK)+ L(K),

where

t(z)=Inf{t =0 : (X, ))*=1/(log K)7}
and

L{x)=inf{tz20: | X{¢, ) —xlpy=1 or ”J_l(t, e)—Ilaswy ey, =06/(2+-5)}.

By Lemma (7.2):
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LE=w( _ sw (X0, x))?él/(logK)‘f)

ost< Gog K)2T/L+1
=Cexp(—(log K)*//(1+ M(x))?)
= Cexp(—(log K)¥(1+4 M(x))).

By standard estimates on the growth of solutions to stochastic integral
equations, there exist universal C=(0, o) and 1< (0, c0) such that

I(K) = C exp[— 26*(log K)**/(1+M(x))*]
= Cexp[—16"(log K)} (1 + M(x))*].
To estimate I(K), first note that if 0=<s<{(x)At, then

L, v, FP)<4it, o, F),
where

Att, o, F®)=inf{(y, A, x)n)ex : € FP}
and

At )= 26, x)(gzu-l(u, ) VX, x)))®2du>J(s, z)* .

Next, note that
T/(log K)"*=4/(log K)**,

and so, after applying the strong Markov property for
(X(~, x))
A(-, x)

I1(K) gg W (2w, 0), Y(z, 6), FP) <1/ K)IW (d6)

(9:2(z, )< g KI2 PNz, 6%

we obtain :

where
olx, 0)=T/(log K)'*—t(x, 6) > 3/(log K)**
and
Yz, 0)=X(z(, 9), z, 6) .

Since t—i(t, Yz, 8), I_W-“’—’) is non-decreasing and

TIK<1/K<3/(log K)*,
we conclude that

I(K) < S WETIK, Yz, 0), F) <1/ K)W(d6) .

(0: c(x, HI<UJog K% ALz, 82
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Hence, by Theorem (2.17):
L(K)=Cexpl —(K(h((log K) )" *|(1+ M(x))’]
=Cexp[—(log K)¥ (1 +M(x))?]. Q. E.D.

(7.4) COROLLARY. Let h:{0, o0)—(0, 1] be as in the preceding theorem
and assume that UV, (-)=ho¢(-) for some L=1 and $=C*(RY). If x=RY
and ot (P @) =1, then, for each pell, ) and p<(0,1), there exist an
Mp(p) = (0, ), depending only on h(-), L, p, p and {ll¢culcges. 1t lal L+1}
U{”(Vk)m)“cg(B(x,z);RN) H1=k=d and la|=L+11U{] Vlgl)”Cb(RN;HAS. &N, RNy 0=k
<d}, such that:

(7.5) 11/ 4(T, 2} 17can = M (o) exp[1/T*], T<(0,1].
In particular, Theorems (3.17) and (4.5) apply.

PROOF. Since H(T, xy=(detJ(T, 2))*(A(T, x))" and | YT, @) s, cev .zl L2
=A,exp[B,T], pell, o) and T=0, where A,<(0, o) and B,<(0, o) depend
only on p and {|Vi’ls,avims v .zvy: 05k =d}, (7.5) is an easy consequence
of the estimate obtained in Theorem (7.3). Q.E.D.

8. Hypoellipticity.

Our aim in this section is to show that our results about the funda-
mental solution to du/dt=Lu provide us with enough information to prove
hypoellipticity properties for L. Indeed, it is clear that glp(t, x, y)dt is,
in some sense, a “parametrix” for L and therefore thatvohypoelliplicity
cannot be far off. However, we do not know whether g:p(t, z, y)dt is in
some algebra of pseudodifferential operators. Hence, it is not immediately
obvious how to use S;p(t, %, y)dt to prove hypoelliplicity. For this reason,

we need to begin with a few preliminaries.

Let L be a linear differential operator on C*(R™)—C=(RY). Given an
open set WS RY, we say that L is hypoelliptic on W if, for every ue
9D'(RY), sing supp(ulw)Ssing supp(Luly). We say that L is parabolic
hypoelliptic on W if 9/6t+ L is hypoelliptic on R'X< W.

Lemma (8.5) and Theorem (8.6) refer to the following situation. There
is a q=C=((0,2) x R¥ x R¥) such that

dq

at

(8.1) t oz, )=LFpt x,y), ¢ 2 9)<0,2)xR"<XR",
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where L* denotes the formal adjoint of L and the subscript “y” indicates
the variable on which the operator is acting. For ¢<=CF(RY), Q.¢(x)
ES¢(y)q(t, x, y)dy and QF(y)= ggzi(x)q(t, xz,y)dx. We assume that for each
d=CF(RY):

(8.2) lim Qpx)=¢(x), z=RY,

and that for each #=0 there is a C,=(0, co) such that

(8‘3) 0§§1§p1 ”thbncg (RN gcn”éﬂlcg (RN >
and
84 D Q61 o, SCalllcgean-

Finally, p=C3((1, 2)) satisfies Smp(t)dtzl, and p.(t)=(1/7)p(t/7) for z<(0, 1/2]
and t< R

(85) LEMMA. Given ¢<Cy(RY), Q¥¢cE(RY) (=C~(R"), the test func-
tion space for distributions with compact support) for each t<(0,1] and
Qfp—¢ in ERY) as t10. Also, if ¢=CT(R'XR") and

)=\ pdt—9dG, Dalt—s, ¢, v)dsde

for ©€(0,1/2) and (¢t y)e R'XRY, then ¢¥=ER'XRY) for each t<(0,1/2)
and ¢¥F—¢ m E(R'XRY) as = 0.

PROOF. Since the proof of the first part is essentially the same as
that of the second (only easier), we will only prove the second part. To
this end, note that

160 =\ =5 Dode)als, o, y)dsde

RIxR
Thus, by (8.4):
0§9§11)/2“¢;k” c})"(RN) < oo > %20 .
In particular, {$¥:0<r=1/2} is relatively compact in &(R'XR"). Thus,
the proof will be complete once we show that ¢¥—¢ in D'(R'XR"). But,
given ¢ C7(R'XRY):

[ oot vddy=\ o206 0dsda,
R1xRN 1xRN

< RIixR

where
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(s, W)Egpr(t)sb(s‘f‘ft, Watt, z, v)dydt .

Since, by (8.2) and (8.3), ¢.—¢ boundedly and pointwise, we now see that
¢¥—¢ in ' (R'x RY). Q. E. D.

(8.6) THEOREM. If for each n=0 and ¢>0

(8.7) max sup  sup _[Dg Dfq(t, z, y)| <o,

lai+iBlsn 0<ts1 Hy—anN;s

then L is hypoelliptic on RY. If for each n=0, ¢>0, and »>0:

(8.8) max  sup  sup —tlv—lDZ"Dé? Diq(t, x, y)| < oo,

imi+ial+ifisn 0<t=1 [ly—l‘HRNZE
then L s parabolic hypoelliptic.

PROOF. Assume that (8.7) holds. Let uc=9'(RY) and let W be an
open set for which Lul,C*(W). Given z'< W, choose 5= C5(W) so that
»=1 in a neighborhood of #°. Set @=xu, f=yLu, and 9=L#%i—f. Then:
#e & (RY), feCy(W), and there is an >0 such that B(z% 25)&€W, =1 on
B(2°,2¢), and supp(@@W\B(z’ 2¢). Given t<(0, 1], set %,(x)=12a(q(t, =, +)).
Clearly #,=C5y(RY), t=(0,1], and, by the first part of Lemma (8.5), %,(g)
=0(Q¥p)—u(p) as t |0 for each g= Cy(RY). Hence, %,—% in &’'(RY). Thus,
we will be done once we show that Osggl “'Zl/;]lggz(3<xo,e>)<00, n=0. But, by

8.1), 6/at)ya.(x) = (La)q@t, %, ) = Q.f(x)+v.(x), where v,(x)=0(q(t, =, -)).
Thus, for z=(0,1]:

N 1
712-:7’/7/1"“‘3 szdt—‘g Q"}Ldt .
By (8.3), sup [[Qafllc;<xzv><°°, 72=0; and, by (8.7) plus supp(@eW\B(’, 2¢),
0 =1

sup [17:llcrepczo.en <0, n=0.
0<t=1 4

The proof of the second part is similar but somewhat more involved.
Let us D' (R'XRY), and suppose that W is an open set in R'XRY for
which (3/9t+L)ulw € C=(W). Given (s° z°)= W : choose 0<e<1/10 so that
[s°—5e, s"+5e] X B(x’, 5e)&W and choose n=C7((s°—4e, s'+4¢) X B(2°, 4¢)) so
that =1 on a neighborhood of [s'—3e, s*+3e]XB(a’, 3¢). Define #=yu,
F=7@/3t+L)u, and o=(@/ot-+L)a—f. Clearly supp(@)c(s"—4e, s"+4e)x
Bz, 4e), FeCr((s°—4e, "+H4e) X B(x', 4¢)), and supp(@)&(s’—4e, s+ 4e) X
B(x, 46)\[s° — 3¢, s + 3¢] X B(x°, 3¢). Given z&(0,1/2), define %.(s,z) =
#(p.(-—s)q(- —s, x, ¥)). Then {@,: c< (0, 1/2)} = &(R' X RY) and, by the second
part of Lemma (8.5), for each ¢=CT(R' X RY):



50 S. KusuokA and D. STROOCK
= " — (A%
SmNuf(s, x)g(s, w)dsde="0(pF) —> u(g)

as z10. That is, %.—% in D' (R'XRY). Hence, we will be done if we
show that

8.9) sup 14| CPCs0-e,50+8) X B0,6) <o, n=0.
0<r<5e

To this end, first note that (s, x)=0 for all |s—s°| <e and x=RY. Hence

(8.10) ar(s,x)=—553 ;‘a (s, )do, (0,5 and |s—s'| <.
T g

We next compute 0%,/do. First:

_QpadT(E)— = %pa(f)_ %(%pv>($): - aa—spa(g)
where 7,(5)=(¢/0")p(/0). Thus, by (8.1):

ai@a(t—s)q(t—s, o, %)
g

- ——%m(t—s)q@—s, 2, )+ L (p(t—s)qlt—s, 7, 9)) ;

and so

L WO N A Vo S

e (5, 0)=| (L L) (7l —~5)al —s, 2, 9)]

=Fols, )+ (s, 7) ,
where
Pl 0=\ B6=97 att—s o, it
= Smxmv p.(0F s+t ylalt, z, y)didy

and

770(3: x):?‘}(ﬁo( _"S)Q( —S, &, *)) -
By (8.3), Sup 17l opcrixryy <0, n=0. Thus, in view of (8.10), (8.9) will be
%y 0<o5e

proved once we show that

(8.11) SUp ¥l enccsoe,s04e3xBez0,0n <0, M=0.
0os5¢ b

To prove (8.11), choose ¢=Cy(R'XR") so that 0=<¢=1, ¢=0 in a
neighborhood of [s°—2¢, s°4+2:] X B(2, 2¢), and ¢=1 off of (s"—5¢/2, s°+55/2) X
B(x°, 5:/2). Then, because supp(®)N[(s°—3e, s°+3¢) X B(z’, 36)1= @, ¥,(s, x)=
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(@ (s, z, -, %)), where
Uols, @it y)=p.(t—9)oC, yalt—s, z, ) .

Thus, (8.11) will follow from:

(8.12) 03’;1})55 1,1 CP(s0-2,50-+e) x BCx0,)Ix[R1Ix RV D) <oo, nz0.

Because of (8.8),
E/QSS"L(J;IS)_E ||wa”cgl<<RlxRN>2>< co, nz0.

Now suppose that 0<o<e/2 and that |s—s |V |x—zlgv<e. Note that
U,(s, z;t,y)=0 if either t—se< (o, 20) or |y—2"lzv=<2:. Indeed: p,(t—s)=0
if (t—s)&(o,20), ¢, y)=0 if [t—s" | VIy—alen=2¢, and [|t—s"|>2¢ implies
t—s>e>2s. On the other hand, if t—s<(s, 20) and |y—2%ey=2¢, then
ly—zllgrv=e and so, by (8.8), for each n=0 and v>0 there is a C,=(0, )
such that

1DrDEDEq(t—s, x, y)| S C,lt—s|™ 1L 2™+ I(C g™

Since IIDZ"ﬁal[cgm)éHﬁli cgnm;)o‘"““’, (8.12) is now proved. Q.E.D.

{8.13) THEOREM. Let {Vy, -, Vi3 Cr(RY, RY) and define 4(-, x), x = R¥,
accordingly as in (3.16). Assume that there is a non-decreasing p: (0, 1]—
(0, 00) such that |1/ 4, 2)|| 12 @ = Molp@®), &, %) (0, 11X RY for each pe[l, o)
and some M, (0, ). If tlog(l/p(t))—0 as £ |0, then for each c=Cy(RY)

d
the operator ‘L=1/2% Vi+V,+c¢ is parabolic hypoelliptic on RY.
b1

PROOF. Define °‘P(T,x,-) as in (3.5), {*Pr: T>0} as in (38.7), and
{¢Pr: T>0} as in Theorem (3.14). By Theorem (3.14), for each #=0 and
any bounded BZC3(RY), both {{P,¢:0<t=1 and ¢=B} and {P,d: 0<t=<1
and @ B} are bounded subsets of Cy(RY). Moreover, by (3.8)

*T
(8.14) PT¢~¢:S PeLédt, T>0 and g=Cs(RY),
4
and by (3.15)
(8.15) §V¢6PT¢dx:S¢CPT¢dx, T>0,
JRS

for all ¢, o= S(RY). Finally, by Theorem (3.17), there is a ‘p= C=((0, )
X RV < R)* such that: ‘P(T, x, dy)=p(T, z, y)dy, (T, 2} =0, <) x RV ; and,
for each n=0, there exist C,, 4, and v, from (0, co) for which
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(8.16) max |DPDEDEp(t, z, y)l

m+lat+181sn
=C, exp(—Zuly—xlzv/t)/ (o) A)™

so long as (¢, x, ¥) = (0, 21X R¥ x R (cf. (3.20)).

Clearly “P;p(x)= \¢(y)°p(t, x,y)dy and, by (8.15), “Pp(y) = Ssﬁ(x)”p(t, ©,y)dx.
Moreover, from (8.14), we have that (3°p/ot)(t, x, v)=(CL¥p)@, z, y) in (0, o)
X R¥x R¥. Finally, from (8.16) and 1ilmtlog(1/p(t))=0, we see that, for

tio

each #=0, ¢>0, and »>0, (8.8) holds with °p in place of ¢q. Thus, by
Theorem (8.6), °L is parabolic hypoelliptic on R”. Q.E.D.

(8.17) COROLLARY. Let {V,, -+, VJSC=(RY, R¥) and define U .(x),
L=1 and x<RY, as in Corollary (3.25). Assume that there exists a mon-
decreasing h: (0, c0)—(0, 1], satisfying h(O)zlzilm h(2)=0 and lzllm 22 log(1/h(2))

[} 0

=0 for each p<=(0,1], and a ¢$=C=(R") such that <V (-)=hod for some
L=1. If oky(p) is defined as in (1.1) and W is an open set in RV such
1«
that ot()=1 on W, then for each c=C~(R") the operator CLZEZ) Vi
1
+Vo+ec 1s parabolic hypoelliptic on W.

PROOF. Suppose for each 2°= W we can find an ¢>0 and an operator L
such that L equals ‘L on Cy(B(x%¢)) and L is parabolic hypoelliptic on
RY. Then, clearly, °L is parabolic hypoelliptic on W.

Given z°< W, choose ¢>0 so that B(z’, 4e)&W. Choose € C7(B(z’, 2¢))
so that »,=1 on a neighborhood of B(z’, ¢) and n.&€ C™(B(2’, 3¢)) so that n.=1
on a neighborhood of B(x’, 2¢). Set

Ve=nV,:, 0=k=d,

Veri=(1—70) ai 1=i<N,
and
é=nc;

and define €U/, and oi{¢) relative to (Vo -+, Vasnt. Clearly, D=,
and 34,(d) = ot(¢) on B(x',2:). Moreover, 7, =C)),=1 off of B(a’, 2e).
Thus, <) r=hog everywhere, §i,(¢)=1 on B(z,2:), and CP,=1 off of
B(z%, 2¢). Combining these with Corollaries (7.4) and (3.25), we conclude
that, for each pel[l, ), there is an M,<(0, co) such that

VAT, )l oo =Mpexp(l/T"),  (T,2)<(0,1]xRY,
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where 4(-, z) is defined relative to Vo, -+, Vasn). Hence, by Theorem (8.6),

el::—%—d::ViJrVo—’ré is parabolic hypoelliptic on RY. Since eL=tL on
C7(B(x° ¢)), the proof is now complete. Q. E.D.

(8.18) COROLLARY. Let {V,, -+, Vi sC=(RY, RY) and define CV (x)=

inf (Zd) > 1(Vk)m(f)c), Pav) AL for L=1 and x< RY. Assume that there

gcsgt; kao ::c];:-decreasing R (0, 00)—(0,1], satisfying h(0)= izilrf)l (D=0 and
lxilrgx 22 log(1/h(D)=0 for each p<(0,1], and o $=C*(R") such that V.=
hod. If oty(¢) is defined as in (7.1) and W is an open set in R such
that ot (P)=1 on W, then for each ccCy(RY) the operator cL:%E(j) Vi

+Vote is hypoelliptic on W. In particular, if Lie({V,, -+, Vi) has dimen-
sion N at each x= W, then °L is hypoelliptic on W.

PROOF. The last assertion is obviously a consequence of the first,
since Lie({Vy, +++, V)(x)=R”Y implies that €U (x)>0 for some L=1.

To prove the first assertion, we use the same device as we used in
Section 6). Namely, set p(f)=2+siné, =R, and define {V,, -, Vods
Cm(RNH, RN+1) by:

Vi) =p(&) S Vi ()2
o(z)—P(E) Za (x) o, s
7 9 al i 8
Vile)=p(®)" Z Vi(w) A 1=k=d,
and
Vdﬁ-l(z):%‘

for z=(z,8)e R"xR. Also, set &((x,&)=p(&)ec(x) for (z,&)esRYxXR.
~ da+1 -
Clearly, if ELzégl Vi+V,+¢ is hypoelliptic on Wx R, then °L is hypoel-

liptic on W. At the same time, if P .(2) is defined as in Corollary (3.25)
relative to {Vy,+-+, V1), then it is easy to find an ¢>0 such that .z, 9)
= (x), (@, eRYXR'. Finally, if J(x,&)=¢(), (z,6)€RYXR!, and
6%(¢) is defined as in (7.1) relative to {Vy, -+, Vi, then a,(@)(x, &)=
oln(¢P)(x), (z, &) RY X R'. Thus, Corollary (8.17) applies to ‘L, on Wx R
Q.E.D.

(8.19) REMARK. The last assertion in Corollary (8.18) is the criterion
for hypoellipticity discovered by L. Hoérmander [3]. In the case when the
V.'s are real analytic, the reasoning given at the beginning of Section 7)
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shows that Hoérmander’'s criterion is necessary as well as sufficient for
hypoellipticity of °L on W. When the V,’s are only C*, the criterion
given in Corollary (8.18) clearly shows that Hormander’s criterion is no
longer necessary for hypoellipticity. In fact, in general Hoérmander’s cri-
terion guarantees that °L is not only hypoelliptic but also subelliptic (in-
deed, subellipticity is the route taken by Hoérmander to prove hypoelliptic-
ity); and, at least when °L is formally self-adjoint, results of C. Fefferman
and D. Phong [2] show that Hoérmander’s condition is necessary for sub-
ellipticity. From the point of view taken in this section, the distinction
between subellipticity and hypoellipticity lies in the way in which the
fundamental solution to du/dt=Lw explodes as £]0: if it explodes poly-
nomially, then L is subelliptic; if the explosion is faster than polynomial,
then L may be hypoelliptic but the Fefferman-Phong result indicates that
it will not be subelliptic.

We conclude this section with the examination of a special situation
in which we can give a necessary and sufficient condition for the hypo-
ellipticity of an operator having C~-coefficients. To be precise, let o<
C7(RY) be a function with the properties that: ¢(¢)=0 if and only if £=0,
o(+)* is non-decreasing on [0, o), and ¢(-)* is even on R'. Given o, define

Tt (o) ) L)
gaz T\I@I G ) o)

(8.20) L= 1/2(

Our goal is to show that L, hypoelliptic on R® if and only if:
(8.21) 151%1 ¢ log(1/]a(6)1)=0.

The reason why we can get such a precise result in this situation is
due to the simplicity of the diffusion generated by L,. Indeed, the
stochastic integral representation of this diffusion is:

XAT, 2)=u,+6,(T)
X(T, )=+ olo+6,6)d0.0

XA(T, x)=as+06,1) .
Using (2.5), one easily sees that
(8.22) AT, 0)zT* (T, x)

where

(T, xl)ES: oz, +6,()3dt
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(8.23) LEMMA. The condition {8.21) is equivalent to
(8.24) tim 7 log( sup VST, 2)lascwn) =0, pS[1,e0).
Tio zieR!

PROOF. We begin by recording some facts about Brownian motion.
First, for any 1>0, x;€(—4,2), T>0, and '€ B 1

€25 W(XT, e su 1% 91 <2} )={ #2000,
where N )

(826) (T, u)=1 3 exp(—w'TI8E) cos(nra/24) cos(umy/22)
In particular, there exists a K=(0, c0) such that
(8.27) CW(E}(}:)T 16,(6)] < 2>§K exp(—eT(23), 2>0 and T3>0,

where e=7%8. Also, an easy comparison argument using (¢, x,) —

e" 8% cos(ri,/22) yields
(8.28) %(03;1351]61(15)] < ,2>g exp{—eT/2%), 2>0 and T>0.

Finally, we recall the familiar estimate
(29 W(supl6.0)1>2)S2exp(=22T), 1>0 and T>0.

Now, assume that (8.24) holds. By (8.28):

EVTA/S(T, 071 T20() 3 ( sup 10,0 < 2)
= (To(2)?) P exp(—eT/2Y .
Taking 2=7T, we see that (8.24) implies that:
lim Tlog(/lo(TID=¢/2p,  pe[l, ).

Hence, (8.24) implies (8.21).

We now turn to the proof that (8.21) implies (8.24). Given 1>0, set

o{z) =inf{t=0: |2, +6,) | =24}, x,€ R, and {,=inf{t=0:16,(()|= 2. Observe
that :

W (o) > TI2) < W(osstggﬂ 10.0)] <4,Z>§K exp(—eT/327)

for all x,R', 2=(0,1], and 7>0. Thus, for R>0, 2€(0,1], and T>0:
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Tz +T/2

W(S(T, w) = 1/R)§CW<S o@D A= 1/R, ci(z)= T/2>

Talzp
+Kexp(—eT/327%) .

By the strong Markov property:

Tz +T/2
CW(S oA OOV HE=1/R, ra(z)= T/2>

iz

= sup W(XZ(T/2,6)=<1/R)

SWUTI2) NGEL/Ra(2)7) .
Hence, we conclude from (8.29) and the above, that:
(8.30) (AT, 2) <1/ R)=2 exp(— 2o(D)*R[2) + K exp(—eT/327)

for all 2=(0,1], T>0, and R=2/T¢(2)* Next, let L=1 be given. By
(8.21), we can choose 6;>0 so 2¢(1)*=0; exp(—1/2L2) for 2=(0,1]. Thus,
if R=e and 1=1/Llog R, then

R2Z¢(2)*= 6. R exp(—log R/2)=6,R'.
Hence, by (8.30):
8.31) W UT, ) L1/ R)=2 exp(— 8, R"2) + K exp(—eT(L log R)*/32)

for T>0 and R=(2/6,T)Ve. In particular:
EY[(US(T, 2)) #1=p\ B9 (ST, ») S1/R)AR
< (I3, T)*V e)? +2ij1€1’-1 exp(— 0, R"/2)dR
+pK S:ORP“ exp(—eTL(log R)/32)dR

=((2/3,T)V )*+ Kp| 6% + (Kyp/ T* L) exp(ap’ TL)

for appropriately chosen positive numbers K, K, and «. From this we
conclude that

Tim 7 1og( sup 11/3(T, 2 nwm)éc«p/ﬂ :
Ti0 ziER!

Since L was an arbitrary element of [1, ), we have now derived (8.24)
from (8.21). Q.E. D.

In view of (8.22), Lemma (8.23), and Theorem (8.13), it is now clear
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that L, is hypoelliptic on R® whenever (8.21) holds. Also, we now know
that the converse statement will be proved once we show how to deduce
(8.24) from the hypoellipticity of L.

Given z= (2, 2s) € R? set X(-, z)=(X.(+, (%, 0)), Xi(-, (Z,0))) and P(¢, 7, -)
=Wo(X(t, 7))}, t>0. Let n=C7(R) be chosen so that 0=9=1 and n=1
on [—3,8], and define f(dZ)=(p(x)dx,) X dfdx,) where §, denotes the unit
mass at 0. For ¢>0, define

alt, )=\P (¢, 5, ) u(da)
Finally, let L,=1/2((3%/0x3) +(o(x){0/0x:))%).

(8.32) LEMMA. The map t< (0, 0)—alt, ) €S (R is differentiable
and satisfies:
lim agt, -)=g
(8.32) o '
of _
= N :Lo‘ ty ") 0 s
3t (¢, -) a, ) £>

in S’ (RY. Furthermore, psC=((0, ) x R%), where Ri={(x,, x) € R*: ¢, 0}.
Finally, for each p<ll, ) and 2>0 there is o K (1) (0, o) such that:

(8.34) Sup, 11/ 2, 2 2o =KD/ (EATD), >0

and for each n=0:

(8.35) g:ﬁ (A O):ﬂnEW[(E(t, ﬁ?l))—<2n+1)/277(x1_l_ﬁl(i))],

t, ©,) (0, o) x R\ {0}

where ,Bn:(—l)”-(zn—ﬁfﬁ)!—.

PROOF. First, note that by (3.8):
t - —_
(6@ Pt, 2,40 5= \Lo@)P(s, 2, du)ds

for all p=C5(RY). Thus (8.33) follows from the symmetry of L, on S(RY.

Next, observe that the symmetry of L, implies that the semigroups
{P,:¢>0} and {th: t>0}, associated with X(-, Z) in Theorem (3.14), coincide.
Thus the measure P,(dZ xdy)=dz P(t, z,dy) is symmetric on R*xX R’ At
the same time, by Corollary (3.25), there is a p<C=((0, o) X R X R?) such
that P@, z,d7)=p(, &, §)dy for (&, z)=(0, o)X R%. Clearly the symmetry
of P(dZxd¥y) implies that p(t, &, 7)=5(t, ¥, &) for (¢, T, §) € (0, o0) X R X R5.
Hence, if (¢, 7)< (0, o) < R, then
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|20, (2, 09)do= 1205, 3, (2, 0z,

and so

(5.36) e, ) =\)B (6, 7, (0, )y, €, D=0, 0)x R

Inparticular, since 5 € C™((0, o) X RE X R*), we now see that g= C™((0,00) X B%).
To prove (8.34), simply note that if 1>0 and |z, =24, then

EP[AZ, 2) ?1=o() P ET(EAL) 7]

where (;=inf{t=0:[0,(t)|=2}. Hence, (8.34) is a consequence of (8.29).
The proof of (8.35) is now quite simple. Indeed, the conditional dis-
tribution under Y of X, (%,0)) given 8/(-) is g(Z(&, z, 8), ys— xs)dys,

where g(z, &)=(2rc)"® exp(—£2¢). Thus, if p=Ce(RY satisfies SRIp(E)dE
=1 and p.(&)=(1/e)p(&/e), e>0 and £< R, then for (¢, 7)<(0, co)= R*:

(st 2, @, O)ay=1im o e wne, 7 Dz
—tim B ({o(2, 22, v 200w Jr(a, +0.0) |

:EW[Q(Z(t, 901); 5U2)7](x1+01(t))] ’

where we have used (8.34) in the last step. Combining this with (8.36)
and using (8.34) to justify differentiating under the integral sign, we can
now easily deduce (8.35). Q.E.D.

Define
76, 2= (o000 <12, 9| sup [+, <3}

on (0, 00)x(—3,3). By (8.25),

3
7(t, ) = Sj(t, =3, Y3) Y

where 7 is given by (8.26). In particular,

o _1 97 00) X (—
(8.37) vy o (0,0)x(=3,3)
and
(8.38) 7, v} S K exp(—et/9), (¢, z,) (0, co)x(—8,3).

Also,
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g
(839)  0s--1 .,Se*fwzmds—r(é,x3>§%<suplxgwg(s)xgg).
2ty Ja 0535t

Let ¢=C7((—2,2)) be chosen so that ¢=1 in a neighborhood of [—1, 11
Then, in view of the preceding and (8.33), one can easily check that

seS@®) —\ u(t.{ 6@s, vyt edda)ar

determines an element v of S'(R® and that L,»=0 in B*x(—1,1). In par-
ticular, if L, is hypoelliptic in R?, then v=C~(R*x(—1,1)). Moreover, after
combining (8.34), (8.36), (8.38), and (8.39), we see that
0%y
ox3"

for all n=0 and x,=(—1,1)\{0}. Thus, for each p<l[l, c0):

(200, 0)=62) EVL(S, )"y, 0,0) e, 0)dt

(8.40) 3= sup \"BVL(S ¢, 20) 7o) ¢, 00t < oo

In order to pass from (8.40) to (8.24), note that if |x|=1 and «{x)
=inf{t=0: |2z,+0(t)| =2}, then

E7V(Z(t, @) (A —yle+0:(E)]
éEW[(Z(t; %)) 72, |2 +6,(8)| = 3]

=5 ([ otorto.07at)”, trta) <o) (1ot 0,01 >3 |

oz -

SEV[(Z(t2, 2) "1+ W () =t/2 N {lz+0,¢) | > 3]
=27k, @1 2+ sup 16,6/ =1)

<9, (2)t7P+2e71,

where we have used (8.34) and (8.29). Thus, for each p<[l, o) there isa
K,=(0, o) such that

EV[(Z(, z))77]
SEV(S®, ©)) Pple, +6,0) 1+ Kt 7?2, (¢, %) S0, 11X (1, 1).
At the same time, by (8.39) and (8.29), there is a >0 such that
7@, 0)=ge™", t=(0,1].

Combining these, we arrive at:
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~o.

EV(S, ) 712+ B[(S(6, 2))2Ws
= E L\ BYUSG, o) et 0600 (s, 00ds + K, 5ds
< M ot -+ (K| (p— 1))t~ @

for pe(l,c0) and (¢, z)<=(0,1/2)x(—1,1). In conjunction with (8.34), this
leads to

limt 1og< sup, EY[((, 20y p]>§2

ti0
for all p=[l, 00). Hence, for any p<ll, c0) and n=1:

Tim ¢ 10g< sup, EV[(Z@, )" p])

tio

<1 Tme log< sup BV(S(t, 2))° w})g 2
N tio 7w

™

and so (8.24) follows upon letting n— oo,
We state our conclusions as a theorem.

(8.41) THEOREM. Let oc=Cy(RY be a function which satisfies: o(&)=0
if and only if £=0, o(£)* is non-decreasing in £<[0, ), and o¢(—E&)=0c(&)’
for all £¢=R. Define L,=1/2(0%0x+(o(x)(8/0x))+0%023) on C=(R.
Then L, is hypoelliptic on R® if and only if lgrolé log(1/|e(8)])=

Appendix.

Our whole program rests on certain facts about Brownian stochastic
integrals. The purpose of this appendix is to collect these facts together
in one place so that the development of the main program need not be
interrupted each time we need one of them. We begin by stating the
results toward which our efforts will be directed.

Let A={(@}IU p ({0, -, d))'. Given ae i, set

0 if a=@
(A1) lal=
l if a=({0,---,d})’
and
0 if o=@
(A.2) fal=
la}+card{j: a;=0} if |lalz=1.

Also, if a={ay, -, a;) € A\{D}, define



Applications of the Malliavin caleulus, 11 61

Ay =a;
and

) if =1
a’=
(ag, ==+, i) it i=z2.
For notational convenience, we will often use 8,(-) to denote the

function
6,(t)=t, t=0.

With this convention in mind, suppose that Z:[0, ) x@—R' has the form
d T
(A3) Z(T)=Zo+ EOSO Y.0)dont), T=0,

where Zy,eR' and Y:[0, ) xO®—R*! is a continuous {PB,:t=0}-progres-
sively measurable function. We then define S‘(.,7), a= 4, inductively
on la| by:
Z(T) if a=@

ST, Z)=1% ¢r
50 Suilt, Z)odf., () if lal=1.
In particular, we set
(A.4) o(T)=8(T, 1).
Qur goal is to prove the following theorems.

(A.5) THEOREM. Given L=1 and ¢>0, there exist C(L,e) <o and
AL, &) >0 such that for all Z(-) of the form given in (A.3) and all ac A
with lal=L:

~ W sup 15, 2K, sup 201K, | 5 V0P <K)

[ 251 0<t=l 4

k=1

<C(L,e) exp(—A(L,e)K}, K>0.

(A.6) THEOREM. Given L=1, there exists C(L)y<co and u,<(0, )
such that for all T<(0,1):

2L oo
w( e [( 3 boow)a=ux
fallsL-1

=C(L) exp(—K*Y), K>0.

Theorem (A.B) is a quite easy application of familiar facts about
stochastic integrals. It depends on the following two lemmas.
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(A7) LEMMA. Let 5:10,0)xXO—-R* be o continuous progressively
a T T
measurable function. Set E(T):kZ\ B:()d6,(t) and V(T):S |B@®)°dt for
=1 o0 0
T=0. Then, for any v<[0,1/2) there is ¢ C,<oo and o 2,>0 such that
W sup EOZEDN o (1) )=, exp(— 2 KK
oss<tst [ V({E)— V{(s)|” — -/ b
for all positive K, and K.
PROOF. Without loss in generality, we assume that |3(f)i=¢ for some

¢>0 and all ¢=0. It is then easy to check that B(-)=&V¥.) is a 1-
dimensional Brownian motion under %Y. Moreover, it is clear that

W]
{ogssgggr V) — V()" =K, V(T)§I(~z}

g{ sup MZKI}.

0ss<tsK, |[t—s!|”

Thus, all that we need to know is that

(A.8) (, sup, OB 2 k)= c, exp(— 2 KHKL)
053<tSKy |[t—sl”
for some C,<co and 2,>0, and for all K;>0 and K,>0.

There are various ways of deriving (A.8). To begin with, observe
that, by Brownian scaling invariance, it suffices to treat the case when
K,=1. To see (A.8) when K,=1, one need only note that B(-) is Gaussian
and that for each re=(0,1/2) the distribution of B(:)lw s 1s supported on

the Banach space C'([0,1))={p=C([0, 1]): ¢(0)=0 and !197511,50;3%1@%%@
< oo}. Thus, by Fernique’s Theorem, there existstaii, >0 such that
E7Texp(4,{B(-)|)]=C, <.
(See Lemma (8.27) in [12] for a more self-contained derivation of (A.R).)
Q. E. D.

(A.9) LEMMA. Given a<[0, o) and r=(0,1/2), there exist Cla,r)<oo
and Ala,r)s(0, ) such that

99 sup BT K2, sup 301 <K )

0<T 1

=Cla, r) exp(—ila, 7)K), Ke(0, ),
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whenever B(-) and &(-) are given as in Lemma (A.7).

PROOF. Define V(T)———STI,B(t)]?dt, 720. Then
il

a

+1
V(T)éoig (1g@ifeey = sup (I8@)I/e*) T for 0<T=1.
=1 <t

TZ
2a-+1
Thus, if p=(e+7)/(2a+1), then

V(Ty= 0S<upl(I,B(t)I/t“)z"’T‘“”, 0<T=1;
2
and therefore, by Lemma (A.7):
9 sup, BT T+ 2 K2, sup 1)< K )
UE S o<t st

=9/ sup |V 2 K2, V(1) S K7)

§CP eXp(—ZPK) »
where C, and 1, are as in Lemma (A.7). Q.E.D.
(A.10) PROOF OF (A.5). Clearly it suffices to prove our inequality

for 0<e<1/2 and K<=(1, o). Thus we always choose such ¢ and XK. Given
K, set

E(K):{oﬁg Z@I=K and |3 S:lyk@)mt}mgfc} .

k=1
We work by induction on L=1.
First, suppose that ol =L=1 and therefore that a=k,={1,---,d}. Then
~T T
ST, 2)=\ Z)a8, o) +1/2) V. 0t
and so

W sup, 15T, 2)1 T2 K, B(K) )
0<T=s1

= CW(@‘%QJS:Z(t)dﬁko(t)!/Trz K32, sup | Z(t)] §K>

where r=1/2—: Hence the desired inequality is an immediate consequence
of Lemma (A.9) with ¢=0.

Next, let L=2 and assume the result for all ¢ = 4 with |a=L—1.
Given a={ay, -+, ;) with [all=L, suppose first that «,=0. Then

ISAT, Z) =T sup 1S, Z)|
0t

for 0<T=1. If a'=@, there is nothing more to be said. If «’'# @, then
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99/ sup 151, 2|/ T =K, BK))
0 s

g%y(()igp }S“"’(T, Z)}/TM‘I"E_ZKZL, E(K)> .

Since L/2—1=|a’}/2 and 2L=2|«’|, the desired result now follows from
the induction hypothesis. Next, suppose that «;=k,={1,---,d} and that
al—lik[)» Then r
ST, 2)=\ S, 2)dB,(0)

and so
CW(()itTlp ST, )| T+ = K*, E(K)>
=1

T
S Sean, Z)d&ko(t)l/Tm‘ngzL ,

0

é‘W(sup

0<T<1
sup lS(aO(t Z)l/t(L—n/z—s/zSK2<L—1>>
0<t£1 ’ -

+CW<°§1TJ.£)1]S(‘X')(T, Z)l/T(L_I)/Z_s/Z’ZKg(L_l), E(K)> .

Thus, the desired result follows in this case from Lemma (A.9) with a=
(L—1)/2—¢/2 and r=¢/2 and from the induction hypothesis. Finally, sup-
pose that a,=k,={1,---,d} and that a,.;=Fk, Then

T T
ST, )= 5, 20, +1/2) S, 2)dt,
0
where a” =(ay, -+, a;_) if =83 and «"=@ if [=2. Thus:

cw(oigp ST, Z)|/ T = K*F, E(K))
=1

[ scne, an, 0|1 T2 K712,
0

éW( sup

oTs1

sup !S(‘m(t, Z)[/t(L“mz‘”ZéKg(L_l))
o<t =1
+ 9 sup |S< (T, DTE P2 K, EE))

+Cy/< Sl}pl IS(CW(T, Z)I/TLI?—I—sszL} E(K)) .

0T =

The first of these terms is handled by Lemmas (A.9); the second and third
are covered by the induction hypothesis. Q.E.D.

We must now turn to the proof of Theorem (A.6). Our first step is
to convert the problem from one involving Stratonovich integrals to the
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corresponding one for Itd integrals. To be precise, given a continuous
progressively measurable function Z:[0, co) xO—R!, define I‘(-, Z), a =,
inductively by :

Z(T) if a=®@
I“”(T, Z): r
S [, 2)d0..() i a®D .
0
In particular, we set

(A.11) O N T)=1*(T, 1).

(A.12) LEMMA. For each L=0 there is an invertible matriz {adf:
lal=18l=L} such that

6o()= 3 a@e®(),  lal=L.

18i=L

PrROOF. We work by induction on L=0. When Le<{0,1} there is
nothing to prove. Suppose that L,=2 and that the results holds for L=
L,—1. Given a= with [la||=L, suppose that a,=0. Then:

r
ooy =\ o ar= 2 age{ oo
0 0

1p1=Lo—2

Thus, we take

(L)
BT

adog? if Bx=0
, for a.=0.

0 if By#0
Next, suppose that a.=k,={1,---,d} and that (a’).+*%k,. Then

r T
0<“>(T):S G (t)d, (1) = i, a;%f’;g‘PS 65 (8)d0,, (1) .
0 0

EI=Ly—1
Thus we take
{ alos if Br=ax
(Lgd —
agy =

s fOI‘ (OC/)*:/’EOC*E{I,'”,CZ}.

Finally, suppose that (¢')y=a,=k,={1, -+, d}. Then
T r
6= 0O (0)+1/2) 5 (D)
0 0

T
= = afff’,;"g 05" (8)d:(2)
0

I3 b=Lo—1

T
+ 3 e eowa,
0

Igi=Lg—2
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where a”={(a’)’. Thus, we take:
{a%‘?ﬁ'” if Bi=a
a3 =1{1/2a%0z® if B,=0, for (@ )e=ax<s{l, -+, d}.
0 it B {0, ay}

It is an easy matter to check from the induction hypothesis that {a%9}:
lal=l1pgl=Ly is an invertible matrix. Q.E.D.

As an immediate consequence of Lemma (A.12), we see that Theorem
(A.6) is equivalent to proving that for each L=1 there is a C, <o and
21, <(0, o) such that for all T<(0,1]:

(A13) <W< inf S:<1 > lbaﬁ“”(t)>2dt<1/K>§CLeXp(—K”L),

fai<L -
K>0.

Given a bounded interval IS R' and an fe(C(RY), define the mean f;
of f by
1
Fi=r\ s,

(JI| denote the length of I) and the variance ¢¥(f) of f by

2 — L _ 2
)=\, (FO—roydr.

We will make frequent use of the fact that
HNE) FO—0rdt,  acR.

This notation will be used repeatedly in what follows. Of particular im-
portance to us in the next lemma will be the estimate:

(A.14) Plow, r(B(+)) =) =2 exp(— T/2°¢%) ,

for all T'>0 and ¢>0, where B(-) is a l-dimensional Brownian motion
under P. The estimate (A.14) can be derived by first using Brownian
sealing to reduce to the case T'=1 and then using Wiener’s development of
Brownian motion on [0,1] as a trigonometric series to compute o, 5(B(+))
via Parseval’s theorem. Details of this argument can be found in Lemma
(8.6) of [4].
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{A.15) LEMMA. Suppose that £(-) 18 given by:
d T r
ar)=at 2\ pyas 0+ rwar, 720

where S R and §:{0, 0) xO—-R** gnd 7:[0, o] xXO—-R' are continuous
progressively measurable functions. Given M<[1, o), set

Ay= {0: Os;gg(l‘@(t, MV ir, 6)|>§M} ;
Then for all Q,R>0 and K<(0, ) :
w({| eoazarr, (porazrix)na,)

<o exp<— K >

25(Q@+R)M* )

PROOF. Without loss of generality, we assume that [8(8)] V| ()| <M,
t=0, and that there is an ¢>0 such that |8(¢)[=e, ¢=0. In particular, we
assume that A,=06.

Given a positive integer N, set I(k)=[k/N? (kE+1)/N*? and define

B={\ soasene | porazr.
ICk) Ik

Clearly :

(A.16) CV/(S:EZ(t)zdté QIN®, S:| Bt)dt gR/N)

=" W)

We therefore must estimate 9/ (E(k)).
r
Set V(T):S |8(H)Pdt, T=0, and put ry=V(L/N"). Then
0

| ema=\""eov v
J IR JTR

1 (te+z o tro1
= grk £V ()t .
Since for < F(k) we know that 7,.(0)=7,(0)+ R/N*, we now see that
(A.17) Ek)< {SJ EOVTIDdt = MPQIN, rkﬂgth/M} ;

&)

where J(k)={zs, 7.+ R/N".
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T
Set B(T)=&1 ‘(T)—SQ—S A(t)dt, T=0. Then:
0

(Sms% V“(t)dt>mz (SJ@)(E‘”L S:msy(s)ds+B(t)>2dt>m

|43} 2 1/2
(o (e 7005) )
TR\ J BN

V=l + RIND

= R NYos0(B()—
Note that if 7,..(8)=7,(6)+ R/N*, then:
Ve @)+RIN, O) SV zh0:(0), )= (k+1)/N*.

Ir(s)ids>.

kNS

Hence, by (A.17) and the preceding, we now have:
(A.18) El)S{o,0(B() = M(Q/R)*+1)/N% .

Observing that (B(T), By-1y, W) is a 1-dimensional Brownian motion
and that the z,’s are By-i.,-stopping times, we see that o¢,u,(B(-)) has
the same distribution as oy z/wo(B(+)) and therefore, by (A.14) and (A.18),
that

(A.19) W (EE)) <2 exp<_ RN )

2Q+-R)M?
Combining (A.16) and (A.19), we arrive at

(A.20) w({ewa=ans, {1porazrn)
<22N? exp< — 28((5—2&-—1\;)M>

for all @, R>0 and all positive integers N. Finally, given K&l[1, o), let
N be the smallest integer in [K, o) and set @ =(N/K)°Q=<=(1+1/K)Y*Q=
2°Q. Then

‘T/V(S:E?(t)dtéQ/K”, {180 ;%z@R/M)

=7({.ewar=@inn, {ipora=rin),

and so the desired estimate follows immediately from (A.20) with @ re-
placing Q. _ Q.E.D.

(A.21) LEMMA. Let feCU) and let F be a primitive of f on I (i.e.
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F'=fon I,. Then

(4.2 AAF) = (min 11 171712

In particular, if Osupq%gL and Sllf(t)!ﬂdtgai, then, so long as
s=L: e 0

(A .23} U%o,l](F)§5lo/47L8 .

PROOF. To prove (A.22), use the mean value theorem to find a t€
int I such that

Then

(T = %S (SO f<s>d3>2dtg <mlin /] )ﬁg, (t—82)dt

2 (win 1) (77§, pae— (77§, 2ae))
—(rmin 171) 121712

Turning to (A.23), we choose %< (0, 1) so that |f({)|=e. Then, [f(t)]=¢/2
for all ¢<[0,1] satisfying Llt—1|*#<e/2. Since ¢<L, we conclude that
there is an interval I<[0,1] such that {I]=(¢/2L)*? and mln [f1=e/2. Thus,

by (A.22):
oto(F) Z (/2L)* P (F) = *(e/ZL)S(s/Z)

=4 L. Q.E.D.

{A.24) THEOREM. There exist C<co and A<(0, o) such that for all
continuous progressively measurable functions B8:[0, o) xO—R% F:[0, o)
x@—-R and 7:[0, 0)xO—-R', all & and 7, in R, and all K< (0, o) :

W(Szgz(t)dtél/ff“, [ us@r+iopazyx,

sup |81V IBEIV OV I SK™)

<Cexp(— 1K),
where

an)=a+ 2\ pane+ rwa, 120,
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and
d T | T
1 =pt 3 suwaso+{ r0ae,  r=0.
PROOF. Let K<€[2, o) be given. Without loss of generality, we as-

sume that [B()| A1B(H)|=¢, t=0, for some ¢>0 and that ||V |AH)| VIr @)
VIFOI= K™, £=0.

Set E:{S;EZ’(t)dtgl/K‘"’ and S:([ﬁ(t)[gﬂr(t)lz)dtg 1/K}. Then
(A.25) ECE,UEUE,,

where

Elz{S:ég(t)dtgl/K“ and gof B)1Pdt = 1/K1°} ,

E’g:{ sup Mzszw} )

oss<is1r  |f—g|®®

and
Ey=EiN {g;{:?(t)dté 1K™, S; B PdE<1/ K™, S;rﬂ(t)dt > 1/21{} .
Observe that by Lemma (A.15), with Q=1 and R=1/k":
(A.26) W (E)<2"K¥exp(— K12 .

T
To estimate TV (E,), set V(T):S0 [B®)|%dt and note that:

é Szﬁk(u)dﬁk(u)t
lt—sl®® = [V (&) —V(s)]*"

r&)—rs) e

1/t
+KY,

and so

> | 8w, )
k=1~. s _ > KS/lG .
VO-VETE -

Hence, since V(1) K", Lemma (A.7) yields:

TV(E)< CW(sup

(A.27) W(E)= C3/8 exp(— )\3/8K1/2) .
We now turn to 9Y(E,). Set

¢

v(1)= 2\ 00,0 .

()" =(§ (o~ oy

Then
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= 0p, u(SO. 7(3)d3>_ S[(}JB [Y®)!.
By (A.23), for 6<E,;:

OEOJJ“; 7(s, 5)d8>2 (1/23)2(1 k) .
Thus - 1
E.g [sup| V)| = (/291 K)* and { 1p0)rae=1/50]

and so, by Lemma (A.7):

(A.28) W)= Crexp(— 2,K) .
Combining (A.25), (A.26), (A.27), and (A.28), we arrive at the desired
estimate. Q. E.D.

(A.29) PROOF OF THEOREM (A.6): We have already seen that it
suffices to prove (A.13). We now point out that it is enough to check
(A.18) when T=1. Indeed, by Brownian sealing, the distribution of
1 H 2

SO< 2 baew(t))dt

Tr leksL -1

under 94/ coincides with that of

S1< Z b T((la!l—Lﬂ)/Z&(a)(t)>2dt
oN\iaiz—1 :

But, for T'<(0, 1], l > pRTdLib = 3 B2 - and so the left hand side of

lafsL—1 lelisL—1
(A.13) is non-decreasing with respect to 7'=(0,1]. We therefore restrict
our attention to the case T'=1.
We next show that it suffices to prove that there exist C; <o and
2. €(0, o) such that

(A.30) CW((l( > 1ba0‘“’(t)>2dt§1/K>§CL exp(— K*%)

JO\lals L~

for all K=(0,00) and {b,:|la|=L—1}SR"' satisfying > bi=1. To see

lalsL—1
that (A.30) suffices, let L=1 be given, define D,=cardlas 1 |lal|<L~—1},
and set SPr'={beR"2: |b|,p,=1}. It is easy to see that there is a geo-
metric constant M, <co such that for each K<[1, o) the sphere SPI-! con-
tains a finite set X (K) with the properties that card((K )< M, K?>PL+1
and SDL"IgcﬁkZJ@B(c, 1/2K*®). In particular, we have:

inf SZ( >3 baﬁm(t))zdt

pesPL-1Jo\laks L ~1
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[t
= inf \
LEINCIM]

(ME cﬁ‘“’(t))dt 1/KZS S 100 e

fafl=L—1

Thus

bES

CW< 125180([“‘ b 6““(t)>2dt§1/K>
(1

< < inf S b 6‘“(t)>2dt§1/K, 5 Sllﬁ‘“’(t)lgdt§K>
lalsZ - lalls L-~1J0 r

DLI

1

¢CW< g2 dt>K>

al=L-1J0

§Cﬂ/< inf S( > caﬁ‘“’(t)>2dt§2/K>

cET(RJoNlalI=L~1

+CW< sup 3 Iﬁ‘“’(t)lzéK>

0t lais L -1

< M,E®. sup CW(SXH “SL_lbaem(t)dez/K)

pzgPL~L

- I, max C7/f/<sup > Iﬁ‘“’(t)lZZK/L)

0zl L~-1 0=2t21 lal=]
Noting that, by Lemma (A.12), there is an ;>0 such that
~| Zl 0= 1/8Ln%}_li0(c‘>(tﬂ2

for all £=0 and 0=<I<L—1, we see that

W(sw 3 o0 =KIL)= % (sup 5 16t) P2, KIL)

05251 lal=1l 0s2s1 flal=1l
for 0<I=<L—1. Hence, by Theorem (A.5), we see that there exist B; <o
and 1;<(0, o) such that

{A.31) ,max CW( sup X 1690 >K><BL exp(— 2 K", Ke<(0, o).

0221 fal=1

Thus (A.30) implies that

q//( inf Sl<“au§2,;_lba6‘““(t)>2dtg1/K>

pesPL-1 V0
SCL M KPE exp(— (K/2)5)
+ LB exp(— 1. K'), Ke&(0, ).

Clearly, this means that (A.30) implies the existence of Cr=c0 and pr e
(0, o0} for which (A.13) holds.
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Before turning to the proof of (A.30), we first show that for each
L=1 there exist B, <o and v, (0, co) such that

1
(A.32) W<S0<, b baa<a>(t)>zdt§ 1/K>§BL exp(— (1/(1—b2))")
feisL~1
for all K&[16, ) and {b, : la| SL—1}S R satisfying X b2=1. To this
el =L—1
end, note that

Bz pre)a)”2no=({( 2, poro)a)”

i/2
zlbgl—(1~b%)“zsup< > 10‘“’(25)12) .

0SES1 \ 1flals -1

Assuming that [b,/=1/2, we see that for K<[16, ) :

w(\( = baa<w<t))2dt§1/K)

o\lelsL—1

ngf/(sup 5 faw<t)121/16(1-bg>>.
0<t<1 1glafsL-1
Thus, by (A.31), we see that there exist B, <co and v, & (0, o) for which
(A.32) holds whenever K&[16, o) and |b,|=1/2. Clearly, after adjusting
B;, the same inequality extends to all {b,: |all<L—1} with I IZL) b:=1.
laisZ—1

We now prove (A.30) by induction on L=1. Obviously there is noth-

ing to prove when L=1. Assuming that (A.30) holds for all 1<L<L, let

et lall =Ly R satisfying X b%2=1 be given and set

lalSL,

€)= IIaEL be6"(T) ,

E§ll)=_ 3 b.0(T), 0=k=d,

and
Eox(T)= 3 b8 T), 0=k=d,
it it

where a”={(a’)’. Defining

&(T)
B(T)= ( : ,
£AT)
) &o:(T)
5(T)= : s
go,d(T)

r(Ty=&(T),
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and
?(T):EO'O(T) »
we have:
d T T
=6t 3\ 00+ roa,  T=0,
and
4 (T T
@) =rt 3\ B0+ 7o, Tz0,
where
Eo:b@
and
{ be if Ly=3
To=
0 if Ly=2.

Given K<[16, ), we proceed as follows. If 1—-b5=<1/K'*, then, by (A.32):

W(§( 2, 6070 #=1/K )2 Bryurexp(— K500,

lal=L,
Thus, we assume that 1—53=1/K". Referring to the notation just intro-
duced, define
g={| ewar=1/x%, | lpOr+rOraz1E,
9 0
sup [B@IVIEOIV 7@V IFOI= K}
By={ sup 190}V 1801V 1) v 1701 =K
and
1
B={{ ts0r+ir@mas <y}
By Theorem (A.24),
W(E)ZC exp(—AKY .
Moreover, by (A.31), we can find M, <co and v=(0, o) such that:
W(E) =My Br,exp(—2,,K") .

To estimate Y/ (E,), set p=1—b%. Then p=1/k'* and
d
br=p.

k=0 15lal<L,
Thus there is a k,={0, -+, d} such that
Ny= X bizold+-Lzl/d-+-DK",

1shalisL,
as=kgy
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Applications of the Melliavin calculus, I1
Since [B)P+1r®)*=E4,(1), we have that:
W (Es) é(S;&ZO(t)dté 1/K> :
At the same time, by induction hypothesis:

I

.
W(S:Eﬁo(t)dt = L«’K> = CW< 7\} \:Sio(t)dt < 1/NkOK>

lkou

<Cy, exp(—(N,K)"*o)
<Cy, exp{—(K'7[d-+1)"70).

Combining this with the estimates already obtained on 9/ (¥, and GV (E)),
we conclude that there exist Cp .;<co and p+1<(0,00) such that the
desired estimate holds for all K<[16, co). Q.E.D.
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