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Modified wave operators with time-independent modifiers

By Hiroshi ISOZAKI and Hitoshi KITADA

(Communicated by H. Fujita)

§1. Introduction.

In this paper, we introduce a new type of modified wave operatoers
for long-range potential scattering, and prove its completeness.

The long-range scattering problem has been studied by many authors,
and it is now in a satisfactory stage at least concerning the existence and
completeness of the usual modified wave operators with time-dependent
modifier. (For the existence, see Hormander [6] and the references cited
there.) Concerning the completeness there are two types of proof, one by
the stationary method and the other by the so-called Enss’ time-dependent
or geometrical method. For the first type of proof, see Kitada [13], Tkebe
and Isozaki {71, [8]. For the second type of proof, see Kitada and Yajima
[17], [18], Isozaki [10], Muthuramalingam [20], and the references therein.)
However, concerning the scattering amplitude which should be the most
important physical quantity in the scattering theory, there seems to be
few satisfactory reference up to now execept for Agmon’s result [1] on the
smoothness of the long-range scattering amplitude off diagonal. This paper
is the first of a series of papers aiming at studying the long-range scat-
tering amplitude, and, as a first step, is concerned with the proof of the
existence and the completeness of a new type of modified wave operators
with time-independent modifier J. Such types of modified wave operators
have been considered by some authors (see e. g. Kako [12] and the references
cited there). However, we shall show in subsequent publications our
choice of the time-independent modifier opens a new scope to the study of
the scattering amplitude.

We consider the Schrddinger operators in K =I*RY), N=1:

1 13m0
H():——A:————Za/afx}j,
(1.1) 2 2=

H:H0+ V,

where the perturbation V is decomposable as V=V, (2)+ Vs with V(%)
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and Vs satisfying the following:

ASSUMPTION.
(L) V() is a real-valued C* function on R such that

(1.2) 102V ()| S C Caymiets

for some 0<s<1 and all «, where <x)=+1-+]|z|%.
(S) Vs is a symmetric Hi-compact operator in J( such that the
function

(1.3) hR)=] VS(H0+1)_1XHIQR1H

belongs to L'({0, )). Here ¥, is the multiplication operator by the
characteristic function of the set A.

Under the above assumption, H is a self-adjoint operator in H with
the domain D(H)=9D(H,)=HYR") (= the Sobolev space of order 2). Hence
H generates a unitary group e *¥.

The modified wave operator we shall propose to discuss here is then

defined in the form:

(1.4) W}(F):s-}im ¢ Je B, (I, I'=[g, o),

where @,>0 is an arbitrarily fixed constant, and Eg, and FEy are the
spectral measures for H, and H. The “modifier” J is time-independent, and
will be defined by (3.44) in Section 3 in the form of Fourler integral
operators.

We denote by K (H), H,(H), and 9, (H) the continuous, absolutely
continuous, and singular continuous spectral subspaces for H. Then our
main theorem is the following. We denote the range of an operator T
by R(T).

THEOREM 1.1. Let the assumptions (L) and (S) be satisfied. Then the
modified wave operators WiHI") defined by (1.4) exist; are partial iso-
metries in K ; have the intertwining property; and are complete in the
sense that for any I'=[a, cc), >0

(1.5) RW5(I')=ExlINH (H) .
In particular, the singular conlinuous spectrum is absent: I (H)={0}.

The proof is carried out along the line of the Enss method ({4], [5]),
and is similar to that of Kitada and Yajima {18] in the sense that we
shall use a compactness argument in its final step (see Section 4). Our
definition of the outgoing and ingoing approximate propagators (see Section
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3) is essentially the same as in Isozaki [10], in which, using these prop-
agators, he considered the completeness of the usual modified wave operator
with time-dependent modifier. Because of the introduction of the time-
imdependent modifier J, our argument seems to be more transparent than
that of [18], e.g. the estimation of the operator norm in K =I2 of the
relevant operators becomes easier (see e.g. Lemma 3.3 and its proof in the
appendix). Our approach can also be extended to cover the time-dependent
potentials, and we can give another proof of the results in Kitada and
Yajima [17], [18]. For the sake of simplicity, we shall not present it here,
however. The construction of the phase function ¢ of J requires more
elaborate calculations than in e.g. [17], but due to this phase function ¢,
we can treat the scattering amplitude for smooth potentials. Our results
and the brief sketch of the proof have been announced in Isozaki and
Kitada [11].

Acknowledgements. H.K. expresses his sincere appreciation to Pro-
fessors Barry Simon, Volker Enss, Friedlich Gesztesy, Dr. Peter Perry and
Dr. Denis A. White for their interest in this work they showed at
California Institute of Technology during his brief stay in 1983.

§ 2. Classical orbits.

The purpose of this section is to construct a solution ¢ of the eikonal
eguation

1) LiVa0le, P+ Vil@)=Liep
2 2

in the outgoing and ingoing regions of the phase space RY X RY, namely in
the regions where cos(z, &)=x-&/|z]|é|= 0" (> —1) or cos{wx, £)<s (<1). Such
solutions of (2.1) have already been constructed by Isozaki [9], [10] by a
direct method. However we present here a new proof, which clarifies a
close connection between the solutions of the eikonal equation (2.1) and
the Hamilton-Jacobi equation

(2.2) 8t ; ) &) == %lsi% VTeplt; m, £)) .

Following the idea of Kitada and Yajima [17], we introduce the time-
dependent potential:

(2.3) Vo(t, )=V (@)ylox)y({log &>>a/td), 0<p<l,

where y(x) is a fixed C” function having the property 0=y (z)<1, y(x)=1
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for |x|=2 and =0 for |z|=<1. Then V,(¢ x) obviously satisfles
(2.4) 108V o(t, 2)] = C oty HKad>™

for any [, m=0, 0<eg<e with g+l+m<|al+e, where Cy=Co . 1m 18 in-
dependent of ¢, x and p.

Consider the classical orbit (g, p)(t, s ; v, &) which satisfies the integrated
form of the Hamilton’s canonical equations

[o(t, sy=y+ S:p(f, s)de,
(2.5) L
Pty 8)=E6— Ssvxvpu, oz, $))de .

This equation has a unigue solution verifying the following estimates,

which can be proved in a way quite similar to that of Proposition 2.1 in
Kitada [14].

PROPOSITION 2.1. Let &, & >0 be fixed so that 0<eg+e<e. Then:
i) There exist constants C, (1=0,1,2,--+) such that for any (y, &) R*™,
+t=+s=0, and a, B

1p(s, £ 9, E)—E1=Cop™<s>7,

10508Y,q(s, t 54, ) —I1| S Claspip®is>™,
{[85‘6’2[\71,1)(3, t5 9 ONSClarp s>,
IVeqlt, s 3y, §)— (=) =Cop*{s> " |t—s] ,
[Ven(t, s; 9, §)— I = Cp (s>,
[V,9(t, s34, E)—N=Cop (s>t —s],
IV, 00, s 4, E)| = Copfo<sd ™7,
10¢la(t, s 59, §)—y—(t—9)p(t, 559, O
S0 o0 min({Edt e, [£—s[<s> 7).

il) For la+p1=2 and some Coup,

{laﬁaéfJ(t, 89, )= Chsolt—sl<s>™,
[0308p(t, s 9, O =Chgo™(s>™"t.

From this, we can prove the following proposition in a way similar
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to that of Proposition 2.2 in [14].

PROPOSITION 2.2. Take p<(0,1) so small that Cyp®<1/2 holds for the
constant C, appearing in Proposition 2.1. Then for =t==+sz=0 there
exist diffeomorphisms x—y(s, t;x, &) and -yt s; 2, &) inverse to the dif-
Jeomorphisms y—x=q(s, t; x, & and p—E&=p(,s;x,7), and they are C* in
(z, )= R™ for each t,s€R' and their derivatives 3308y and 0%0%n are C!
i (L, 8,2, 8). Furthermore they have the following properiies. Let g and
& be as im Proposition 2.1.

1) a(s, b5 y(s, ¢, 8),6)=%
{p(t, s;a, 9@, 55 %,6)=¢,
y(s, t;3,86)=q(t,s; 2,5, s; x, )
L(t, s;u,8)=p(s, t;ys, t;x8),8).
i) For any a and B,
10508V.y(s, t; @, E)— I = Cogo™ls> ™",
{Iaﬁaéivm(t, 55 %, E)J| S Cpp (s>,
10g[y(t, s 5 @, E)—E]| S Copp™<s>™,
{lag[y(s, b, &)~ r—(t—8)s]l = Cop® min{<t)'™=, [¢—s[<s) 7"} .
it) For la+pl=2,
[02089(t, s ; @, E)] = Chpp s>,
{Iaﬁaéy(s, t; 2, E)| = Copp®t—s>(s>7t .

Here the constants C, and C,y are independent of o,t,s, 2 and & (In the
Jollowing, C, Cup, Cogr, C, ete. denote the wvarious constants which do mot
depend on the variables appearing in each formula.)

The following reformulation of Proposition 2.2-1) will be helpful to
understand the meaning of the above diffeomorphism: Let U(t, s) be the
map which assigns the solution (¢, p)(f,s;,7) to the initial data (z,%).
Then

time s time ¢

Ult, s) <y(s, i, E))

——

X
pt,s:2,8

)
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Now we define ¢(t; z, &) as follows.

(2.6) o(t;x, &)=ult; =, 5t 0;28),

where

t
0

2.7 u(t; z, p)=ux- 77+S {Ho—2-V.Hy}(z, ¢z, 0; 2, 3), p(z, 0; =, p))dz,
2.8) Hylt, 2, €)= LIEF+Vi(t, 7).

Standard calculations show that ¢(¢;«, &) satisfies the Hamilton-Jacobi
equation

it 5 @, &)= EP+ Volt, Ved(t; , £))
(2.9) 2

$(0; %, 8)=ux-&,
and the relation
Vap(t; @, §) =9 0; 2,8,
Vep(t; @, &) =y(0,t;x,8).

We now consider the following limit.

(2.10)

DEFINITION 2.3. For any (z, &)= RY,
(2.11) ¢.(x, E):}jg}o (pt; 2, 6)—¢(t;0,8).

Set Fi(R) d:UO):{(CU)S)ER:)NIIx[ZR) Islzd) -’—_COS(Q:) 5);_00} for Rr d>0
and ¢,<(0, 1).

PROPOSITION 24. The limit (2.11) exists for any (x, &) R™ and de-
fines a C* function ¢.(x,&) having the following properties: For any
d, 0,€(0,1) there exist R>1 and 0<p<d such that for any (z,&)e
I'.(R,d, 00)

2.12) é—nvxm(x, &)+ VL(m:%va?
and
(2.13) 10508(8.(w, &) — @+ )| S Cplé] Myt 117,

PROOF. We consider ¢.(x, &) only, since ¢_(x, &) can be treated similarly.
We first prove the existence of the limit (2.11). Letting R(t, z, &) =4¢(t; z, &)
—¢(t;0,8), we have by (2.9)
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(2~14) atR(t} L, E)ZVER(t7 &, 5) 'a(t} X, E) b
where
2.15) alt, 2, &) =S: TV, Teb(t 5 0, 8) -6V:R(E, z, £5)d6 .

Since by (2.10)

VR, %, &) =y(0,t; 2, 6)—y(0,%;0,8)

=g S:(sz)(o, t; 0z, &)db
we have by Proposition 2.2-ii)
(2.16) |0208VR{t, , £)| = Coplm> .
By (2.10) and Proposition 2.2-ii),
080ep(t5 0, )| =Cyltl, 1810,

From this, (2.4), (2.15) and (2.16) follows that
.17 19204a(t, @, £)] = Capltd ™)1 =741,
Thus, by (2.14), (2.16) and (2.17), the limit
2.18) lim 5£04R(, 2, &) = S:aga@{ng(t, ©, &) -alt, ¢, §))dt

exists, hence ¢.(x,&)=lm R(t, z, &) and z(co, 0; 2, E)=1imV,6(; 2, £) exist
t—oo {—o0

and are C*.
We next prove (2.12). From the above discussion, the limit

Ve, ) =lim V. o(t; x, §) =lim 5(t, 0; z, &)
L—co Lo
=lm p(0,¢; y(0,¢; %, £),8)
t—co
exists. Thus for |z| large enough, we have

S 196w, P+ Vo) = Lim1p(0, ¢55(0, 5 2, ), P+ V{0, 0).

Setting for 0<s=<f< o

75, 5):%110(3, £y AP+ Vils, als, £, 6))
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we have by (2.5)
0

ofy o
En (s,9,8)=

On the other hand, Proposition 2.2-i) shows that
{q(s, t;y0,1;2,8),8)=q(,0;2,9¢0;2,8),
(s, 15 40,85 2,8),8)=p(s,0; 2,9 0;x,8) .

Vp i
t, s
5 (%)

t=s,x=9Cs. t;%,8) ~

(2.19)

Therefore, using Proposition 2.1-1), we can see that for cos(z, &)= —a,
la(s, t; 900, 5 2, 6), E) =1a(s, 0; 2, 9(t, 05 @, €))]
Zlz+spls, 05 @, pt, 0; 2, )| —Cpp(s> ™
=lz+spls, t; Y0, ¢; %, &), &) — Cop™<s> ™
Zc(lw]+51€1) — Cop®<s>! 11— Cyoto(s)! =0

for some constant C>0 and the constant C, in Proposition 2.1. Since |£|=d

aazp (s, m)C{z| 1= og (s>>|x]/<(s>=<2}, we can find some large S=

S¢,0, independent of ¢ such that for s<l[S, t]

and supp

i(s, y(©0,t;2,8),8=0.
0s

For s<[0,S], taking R=Rs large enough, we also have for |z|=R and
cos(z, &)= —a,

ofs (5,y(0,%;®,8),8)=0.
0s

Summing up, we have proved that for (x, &)=l (R, d, o)
Fi(s, g0, t; x, &), &)=constant for 0=s=t<co,
In particular, we have f,(0,y(0,t; %, &), 8=/, y(0,¢; x, &), &), hence
S1P0, 8550, 83,8, P+ Vo0, D)= 161+ Vit 50, 25 2, )
Letting ¢—oco in this equality, we get (2.12) for (x,8) =l (R, d, oy if R is

sufficiently large.
We finally prove the estimate (2.13). We first consider the derivatives:
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(2.20) BE(p. (e, € —x-f)zgjaéé‘tR(t, z, &)dt .
Letting y(¢, @, &)=y(0, t; z, &) — (x+t£), we get from Proposition 2.2 that for
(x,5)el' (R, d, 00
(2.21) [Ve(t ; 0, &) +6V:R(, x, &)
=1y(0,1;0,8)+0w0,t; z,8—y(0,¢;0,8)]
=47, 0,5 +0{x+te—tE+rt, , &) — 7, 0, )}
=|fe+tE+(1—0)r(t, 0, &) +0r(t, =, )]
Z colfla] L&) — e min{<edi™e, [¢]} .

Thus there is a large enough T= T4.5,>0 such that for ¢=7T and (z,8) <
(R, d, )

hence by (2.3), (2.15)
2at, w, 1 SC5\ <Gl +1g1>7-ds.

In view of (2.21), we can also prove this inequality for 0=<¢=<7 with Cs
replaced by another constant Cr . From this, (2.14), (2.16), and (2.20)
follows that for (xz, & eI (R, d, o))

108 (2, ) —5-£)| < CT,A3<x>S:S:<mx; gD dad
= Cr,p<od g1 11> 0= Cr, par=121 .

For the derivatives 020%(¢,{x, &) —x-£), la|#0, we use the following
expression :

(2.22) Vb (e, £)—¢&
= ltgcrcl V.00;x,8—8)

=i \ (T Ve, ale, ¢35, 15 0, 8), )iz

t
~1im\ (7. V), a6z, 053, 900, 03 2, £)de
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where we have used (2.5), (2.19), (2.10) and the existence of the limit (2.18).
Since [(V,Vo)(r, )| C{e>7'7” and lim g, 0; 2, &)=5(,0; x, &) exists by
>0

(2.18), (2.22) is equal to

\ TV ate, 052,900,055, )i .

By Proposition 2.1-i), we have
la(z, 05 @, g(o0, 05 %, £)]
Zla+op(z, 05 2, 9(c0, 0; x, £))|—Cip7dz)! =0
= |a+ry(c0, 0; 3, &) —Cop**(r) ™1 — Cip™ )™,
and by Proposition 2.2-ii) and the existence of (e, 0; =, 5):&1}3 2t 0:%,8)
[p(c0, 0; x, &) —&|=Cp®.

Therefore, taking p>0 small enough and R=R,, , large enough such that
p<d=|é|, we have for (x, &)l (R, d, )

(2.23) lg(z, 05z, 9(c0, 0; , £))]
= |x+cé]—Cpo—Cop (e > 51— o7z pt 0
=zl +lEl),

where ¢,>>0 is independent of x, & and . Thus we have by (2.22), (2.23)
(2.24) Vs (2, )= 1 SC| <ol +elel> e = Clel >
Higher derivatives can be treated similarly. O
Let —1<g,<0;<1, and let ¢.(c)=C?([—1,1]) satisfy
0=¢.(0)=1,
1 for o,20=1,
¢+(0)={

(2.25) for —1=0=(0y+01)/2,

0 for (oy+o)/2=20=1,
¢_(o)=
for —1=Z0=g0,.

Set y.(x, &)=¢.(cos(x, &), cos(w, &) =wx-&/|x(|¢], and define ¢ (%, &) =05, o(w, &)
by



Modi fied wave operators 87

(2.26) o(x, &) ={(p.(x, &) —a-Ey.(x, &) +(p-(x, &) —x-8)y-(x, &)}
X 128/ D) geR/ R) - - &,

where de(0,1) and R=R, ,,,, (>1) are the constants specified in Proposi-
tion 2.4. Using Proposition 2.4, we can easily obtain the following theorem.

THEOREM 2.5. Let the assumption (L) be satisfied. Choose —1<o,<0y
<1 and d>0 arbitrarily. Then there exist constants R>2, 0<p<d and
a C* function ¢(x,8)= .., 4(2, &) having the following properties :

1) For |&lzd, cos(z, &)el—1,0,)V0y, 11 and |2|=R, ¢ solves the
eikonal equation

2.27) ST, O+ Vylw)=el".
i) For any (x,8)=R¥™ and «, B, ¢ verifies the estimate

(2.28) 10508(p (e, &) —m-E)| S Copladi=7191EN

In particular, if lal#0,

2.29) |0288(p(x, &) — - S CupR "oy 114 1¢E) ™

Jor any s, =0 with +e=c. Furthermore

(2.30) o(x, &)=x-&  for [2|SR/2 or [&=d/2.
i) Set

(231) a@, §=e = L Vi)~ LiglJerre

Then we have
(2.32) alz, s):%mgo(x, &)+ VL(x)—%télz—%mxgo(x, £,

and the estimate: For |€l=d and |2|=R
Caﬁ<x>-1~3_[m<é>_l » COS(W, E)E[_ly UO]U[UD 1] s

(2.33) |020%a(x, &)1 é{
Caﬁ<x>'5"“' B COS(W; E) = [UO) 01] .

§3. Outgoing and ingoing appreximate propagators.

In this section, we introduce the operators of localization P. and ap-
proximate propagators FE.(t), and investigate the properties of the dif-
ference e ¥ P, —FE.(b).



88 Hiroshi IsozAxi and Hitoshi Kirapa

We begin with defining the Enss phase space decomposition operators.
Fix an interval 4=Ja, b], 0<a<b< oo, and let y4(2) = C((0, 0)) be such that
0=7,D=1, 740=1 for A€ 4=[a,b], and =0 for 21<a/2 or 1=2b. Choose
p:(0)€C>([—1,1]) so that 0=p.(s)=1; p.(0)+p-(6)=1; and p.(0)=1 for
1/4=0=1, =0 for —1=0=—1/4. Set Hy(&)=[£¥2 and let y, be the func-
tion in (2.3).

DEFINITION 3.1. Let

(3.1) P&, ¥) =7 s(H(E)) ()0 (cos(§, ¥)) .
We define P, by
©2 P. f(0)=0s-\{e > ip.(e finas,  re IR,

where 45£=2z) Yd¢ and OS-SS --- means the usual oscillatory integral (cf.

e.g. Kitada [15] or Kitada and Kumano-go [16]). In the following we
always omit the prefix Os- for the sake of simplicity.
From (3.1) we have

2+ ¥+ ¥ =71, HENpy) ,
hence

(3.3) P.+P_=y,(Hyolw) .

In order to define the approximate propagators, we utilize the solutions
¢0+(x,&) and ¢_(x,&) of the eikonal equation (2.1). ¢.(z, &) [¢_(x,&)] is
defined by Theorem 2.5 with —1<g,<o;=—1/2, [1/2=0,<a,<1], d=+a.
Then they satisfy the eikonal equation (2.27) for (z, &) el.(R, Vo, 1/2),
respectively. Furthermore

3.4) 18208 . (w, &) — @+ &) = Copd®> a1
for all «, $;
8.5) 10508 (2, §)— 2+ E)| < CppR ™% E> () melemte!

for a+#0; and

(3.6) 0. (2, E)=1u-& for |z|<R/2 or &=+ /2.
In what follows, R=R,>2 will be fixed so large that

(3.7) VTsg e, ) =11 <

holds, where I is the Nx N identity matrix.
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DEFINITION 3.2. We set

3.9) Tof@)=\\e s omropayae

and

39) P fla)=\{er= v 2 6 pdyac
‘We then define E.(t) by

{3.10) E.(t)y=J, e #HpP, |

Tor estimating these operators, we prepare a lemma concerning the L’
boundedness of some integral operators, whose proof will be given in the
appendix,

LEMMA 3.3. Let o(x, &) be a real-valued C° function on RY X RY which
satisfies

(311 192080 (, &) — - &)| S Caplapt ™1
Jor some ¢>0 and all a, B, and
(3.12) V%@, )= 11< -,

where I is the NX N identity matrix.
1) Let plx, & ), o(&, y), r(z, &) be C° functions such that the mnorms
Ipl, lal, 17! defined below are finite:

Ipl= max sup [0g0foip(x, & W,

fa+B+yisMe .6,

where My=2(N/2]+[6N/4]1+2). Then the operators P, Q, R defined by

Pi()={{eoe o 00 i, & ftaya
@19 Qr@)=\{e= e 2ate, e,

Rite)=\ (oo 20000, enfl)yae
are all bounded operators in LY RY) whose operator norms satisfy
(3.14) [PI=C,lpl, lIQI=C,lql, IRI=C,lr|

Jor some constant C, independent of p, q, 7.
i) Let a*(x, &) and b*(£, y) be C° functions on R™ wverifying the fol-
lowing inequalities for some L=0, —1<§,<8,<1, 6,>0, r=0 and p,>0:
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Caﬁ<x>~L ) iCOS(.’,U, 5)260 >
i) [0g0%a*(x, &)=
(A) Copl&>™,  *cos(z, §)=6,.
i) a*(z, &)=0 for |x|=<6,.

i} For any m=0
Cozﬁ ’ iCOS(S: y)§51 3

(B) [0502b*(&, y)l = {
l Cop.mly>™™, =cos(§, y)=0,.
ii) (&, y)=0 Jor |&I=p or |y|=4,.
Then the operator L*(t) defined for +t=0 by

(8.15) L*(t)f(x)=gge“‘f“’ Drusttoew g2 (g, £)b*(8, )N y)dydé
satisfies the estimate
(3.16) D> <y L (DCy> 2 S Cr o, Cazy ™ B 0172
for =t=0 and s, $,=0 with s;-Fs,=L.

Using this lemma, we have the following

PROPOSITION 34. i) P.,J., P. are bounded operators in H =LXR").
i) E.() is norm continuous for te R, and

(3.17) sup [E.(t)] <oo.
teRr!
ifi) P.-+P.—y(Hy) is compact.

iv) PEZ—P. is compact.
v) FE.(0)—P. is compact.

PROOF. i) follows from Lemma 3.3-i). ii) (8.17) follows from (3.10)
and i). The norm continuity of E.(t) follows from the fact that P, is a
bounded operator from L*(RY) into H™(RY), the Sobolev space of order m,
for any m=0. iii) is a consequence of (38.3). iv) We have

(3.18) (Pt—P.)f(2)

- S Sem-w-f(ms, ) — p. (&, W)y dyds

_ Sgem—w.é(x__ ) S:v“m(g, y+0(c—y)d6 fly)dyds
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1
:isgeury)-fgo(vé.vﬁh)(a v 400 —y))do fly)dyds .
Here we take note of the following inequality
1
(8.19) |, cwt0te—y)>-ra = Crmin(<a>~, y>~)

for 0<e¢=1, which can be proved directly. Then, letting d{z, & y)=
1
SO(Ve‘pr+)(E,y+¢9(90—y))d0, we have
1050291d(, &, Y)| = Cosr <> Kyt
Thus <z><DX{P¥—P.) is bounded in 4 =L*by Lemma 3.3-1), hence P*— P,

is compact. v) From (8.10) we have

(320 (B.0)—P.fle)=|\e o= 0002, & y)ftypdyds—P. fle)
The phase factor of the integrand can be written as
0.2, 8)— 0.y, E)=(z—y)-V.0.(5,& ),
Vo2, & y)= S:ngot(y +6(z—1y), §)db .
In view of (3.4), (3.19), one can see that
(3.21) 1020207(Vop . (1, &, ) — E) = oy (6> > 5

Taking into account of (3.7), we make a change of variable »=v,¢.{(x, §, y).
Denoting the inverse of £—7p=V.0.(%, &, y) by V.0:'z, 5, ¥) and its Jacobian

by J(z, 7, ¥)= %;l(% 7,4}, we get
(3.22) (E.(0)—P.)f(x) = Sgesw 7, )y .

where
8(93, 7]; y):{pi(vzgp;](m7 7, y); ?J’)_pt(f, ?/)}J(W; "7) y)

+0.0, I, 75, 9)—1) .
Taking notice of (3.21), we see that
1050805 (Vo= (m, 1, )= = Cogr > 7> 72
Therefore s(zx, », y) satisfies

1050807s(x, 1, YN = Cosrp> 7D ™0 .
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Thus the compactness of E.(0)—P. follows from the same argument as
in iv). O

Next consider the difference ¢ *#P.—FE.(?), and set
(3.23) G.Q)=(D,+H)E.t), D,=—19/dt,
G 1(O)=(D+H)E.(Q),
{Gﬁ,s(t)Z VsE.(),
where H;=H,+ V(). Then G.(t)=G.  {t)+G. s(t), and

(3.24)

(3.25) e P, —E.(t)= -ie‘“HS:e“HGi(r)erre’“”(Pi —E.(0).

Without loss of generality, we may and shall assume V,(x)=0 for
jz] =1 in the following.

THEOREM 3.5. G. () is norm-continuous in t=0; compact for each
t; and satisfies the estimate

(3.26) 1G. . I=CE™

Sfor £t=0.

PROOF. We consider the + case only, since the other case can be
treated similarly. From (3.10) and (3.24), we have

(3.27) G+.L(t):(HLJ+—J+H0)9_“HOP+ .

The operator A=H;J,—J,H, can be expressed as

628 afte)=\\ee s 0r0aa, )t dyae
where the symbol
— ol s(x &) ___i - __L 2 io4(x,8)

(3.29) ale, &)= ve o - L g+ V(@) Ligr)ore
satisfies
(3.30) a(x, £)=0 for Jz|=1
and

Caﬁ<x>—1—s—lal<5>—ly Cos(x: 5)2_1/2;
(3.31) |0%6%a(z, &) <

Cagary™7'e, cos(x, §) = —1/2
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(see Theorem 2.5-iii)). By Lemma 3.3-i), this and the fact that P, is
bounded from L? into H™ for any m=0 imply the norm continuity in ¢
and the compactness of G, .(¢).

We can rewrite (3.27) as

632 Cuaifie)={[oseomsttn-eao s, . ) dyds

In view of (8.1), (8.30) and (3.31), we can see that the symbol a{z, £)p. (&, ¥)
satisfies the assumptions (A), (B) of Lemma 3.3-ii). Thus (3.26) immediately
follows from Lemma 3.3-i1). [

Next we estimate G. s(t).

PROPOSITION 3.6. (. s(t) is norm conlinuous in t; compact for each
fixed t; and satisfies the estimate

(3.33) !S:mHGi,s(t)I(dt <oo,

PROOF. We consider the + case only. Itiseasy to see that (H,+1)E.({)
is Dbounded and norm continuous in .  Hence G, s(&)=V(H,+1)™*
-(H,+1)E (t) is norm continuous in ¢ and is compact by Assumption (S).
Thus we have only to show that

(3.34) 16 50

is integrable on [0, o). Let p=C™(RY) be such that p(x)=0 for |z|=2,
and =1 for jx/|=<1. Then (3.34) is majorized by

(3.35) RO Hy+1)E(8) [+ Cllp(2/ 6t)(H,y -+ 1D EL )]

for any 6>0, where he L'([0, =)) is the function appearing in Assumption
(S). Thus we have now only to show the existence of §>0 such that

(3.36) lo(z/o)(Ho+ DEL O =CK>™ (¢20)

for any [=0. By (3.10) we have

(357) (DB @)= \{e9 500 (a, &, wif()dyas,

where

@(ﬁ:, 5:21?t>:@+(x; E)A—ti'&l/z (D (/!J) 5);
(3.38) 1
a{z, & y)= < 1+ 5iV0.4(, OF —5ido0. (2, E))yu(f, Y).
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Set

(3.39) L=<":D> (1 —iV:D-Ve) .

Since cos(&, y)= —1/4 for (& y)=supp p:, we have on supp p.{& y)
[tE+V:0.(y, ) Z eoEiE] + yl)

for some constant ¢,>0 by virtue of (2.26), (2.10) and Proposition 2.2-1i).
This together with V.@=V.0.(z, &)— (té+V:p.(y, &) implies by Proposition
2.2 that for |a|<26t and (&, y)=supp p, and for large t>0

(3.40) VDl =z c(lyl +tlE])

for some constant ¢>0. Using (3.1), (3.4) and (3.40), we see by a direct
calculation that

(3.41) (050205 LY a(z, & )| = Cagrulyl +2EDT

for x| =256t (0<d<1) and (£, y)=supp p+. Thus, applying Lemma 3.3-i) to
the expression:

(3.42) o(wlot)(Ho+ D E(D)f (%)

= SSei(g0+(x, E-¢ 1y, 5>)e—itv§|2/~z(tL)za(x’ 5; y)f(y)dydE s

o]

we get (3.36) from (3.41). I

Finally we consider the asymptotic behavior of E.(f) as {—+oo. For
this purpose we introduce the operators .J, and J: For a>0 we define
0o, &) by (2.26) with ¢,=—1/2, 5,=1/2 and d=+/a. We also define
eo(, &) by (2.26) with g,=~—1/2, ¢,=1/2 deleting the factor 3,(2/d) in (2.26).
¢, is not smooth at £=0. Now we define J, and J by

(3.43) Jaf(w)=Sge“‘@““’5>"y'“f(y)dydé
for fe LA(RY), and
(3.44) Jte)=\\ecroes ov-opty)dyag

for f whose Fourier transform F(E)=Ff(€) belongs to Cg(RY—{0}). Note
that J, is bounded in L? by Lemma 3.3-i), but J is not. However, if we
set I',=[a/2, ), we see that JEy (I'.) is a well-defined bounded operator.

Furthermore

(3.45) JEu(I')=JEn () -
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This J was used in Section 1 to define the modified wave operator W5(I).
LEMMA 3.7. The operators J}J,—I and J,JF—1I are compact in I =12

PROOF. By (3.43) we have
(3.46) FULI,—~DFf(8) =\ e rer 0002 ftr)yan— 7(e)

-‘T-\foting (3'7) 3,nd (/)a(y) S)M ‘,Da(% 77) = (E»‘ 77) : v€§0a($; Y, AO)) vfsoa(f) Y, 7]) -
SOV5¢a(y, n+0(E—1))dd, we make a change of variable 2=V:0.(£, v, 7).
Denoting the associated Jacobian by J.(&, z, %), we obtain

@47 FUE—DF A=\ e 2 - Ddnas
By (2.28) and (3.19), J, satisfies
(3.48) 10202057 (&, 2, 1)~ 1)1 = Cpy<ad<E>™ .

Thus, arguing as in the proof of Proposition 3.4-iv), we see that
FI3T,—I1)F, hence J¥J,—1I is compact.
By (8.43) we have

(3.49) (T —I)f ()= Sgei%“* O 00 Nyt — f(z) |

Thus, interchanging the role of x and & in the above discussion, we can
similarly show that J,J*—1I is compact. []

PROPOSITION 3.8. The following relation holds for any s R':

(3.50) s-lim e"# e J ¥ E, (t—s)=etH0 P |
-0

PROOF. Since the phase functions ¢.(x, &) and ¢.(x, &) of J. and J,
coincide around the directions x/|z|=+¢&/|&], it follows from the stationary
phase method (cf. e. g. Hormander [6]) that
(3.51) s-lim (Je " Ho—J, g HH0) f=(

L=+ oo

for all f such that FfeC3(RY —{0}), hence for all feL? On the other hand,
since w-lim e “#of=0, from Lemma 3.7 follows

totoo

(3.52) s-lim "o 3 ] o 1 o f e f

t>too

Now (3.50) follows from (3.51), (3.52) and (3.10). ]
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84, Proof of Theorem 1.1.

The existence of the limit (1.4) can be proved by the stationary phase
method if we note that the operator HJ—JH, has the form

Ry (HT~TH)f) =\ Palz, 7 €

a(z, &) being defined by (2.31). The important fact we utilize here is that
a(z, &) behaves like {2 "'"° as |z|-—oo if the direction of x is close to *&/|&l.
(See (2.33).) Since the calculus is routine, we omit the details.

REMARK. It is easy to see by the stationary phase method that our
wave operator W) is equal to
(4.2) s-lim e 0G0 P2 [, (I)

t>hoo

which is the usual modified wave operator with time-dependent modifier
(cf. Hormander [6]).

We next prove that Wi(I") is isometric on Ky (I")#. We mimic the
argument of Kako [12, p.141]. By (3.45) we have

(4.3) JEHO(F):JﬂaoEHO(F) , I'=[ay, ), a>0.
Thus we have only to show with ¢=2q,

(4.4) I WFIul= lim [ Jee™ 0 Epy(Iu = 1 En (Iul®.

Letting v=FEg(I")u, we can write

(4.5) [T e~ Hop]|?
= (J¥J e " Hoy, ¢ "Hoy)
=((JFJ,— De "oy, o "oy |0,

Since J¥J.—I is compact by Lemma 3.7, the fact that w-lime “*#ov=0

implies (4.4). o

The intertwining property can be proved in the same way as in the
short-range case.

Next we prove the completeness (1.5). We treat Wj(/) only. From
the intertwining property, it follows that R(Wi(I")CTEL(I)H (H). Thus
we have only to prove E (I H (HYCTR(WHI)). Consider ¢= ¥ (H) such
that Ey(f)é=¢ for some g=[a,b]C’, 0<a<b<co. Then by the Ruelle
[22]-Amrein-Georgescu [2] theorem, there exists a sequence {t,}—o (n—o0)
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such that

(4.6) w-lim e ¥2fg =0,

n->00

For t=t,, we have
4.7 e—itn}'—l¢_ei(t—tn)HE_}_(t__tn)e_“ans
=(y(H)—P,)e "L (P, — e R (t—t ))e tnHg

We first show that the first term of (4.7) converges to zero strongly
as n—o0, Since fA(r)z(Zn)“S ey )dis S(RY),

P =)=\ (P — e e

—\" i\ eeon v ey

0

is approximated in operator norm by a sequence of compact operators in
H by the assumption on V, hence is compact. Therefore (P,—y (H))-+P.
=(P,+P_—y(H))+(r s(Hy)—7 4(H)) is compact by Proposition 3.4-iii). Thus
by (4.6) the first term in (4.7) is asymptotically equal to P_e #2# g5 y—o00,
But

(4.8) | P_g itnBg|P=((PX— P_)P_¢ ¥n¥g ¢=itnig)
+((P_— e—ithE_(_tn))P_e—uanS’ e—ith¢)
+(P.e¢ %" g E_(—1,)%) .

By Proposition 3.4-iv), the first summand on the RHS converges to zero
as n—oo, By (3.25), Proposition 3.4-v), Theorem 3.5 and Proposition 3.6,
we see that the limits

(4.9) Um (P, —e""E.(t))=K.

t— oo

exist in the operator norm in 4 and K. are compact. Thus the second
summand on the RHS of (4.8) converges to zero as n—oo. The third term
in (4.8) is bounded by

(4.10) ChE (=t yiz:mdl + Clyiscn B (—t) 1]

for any R>0. Similarly to the proof of (3.36), we see that for t=0, R>0
and any (=1

frnacm A== Ciat>?,
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which implies that the second summand of (4.10) converges to zero as
n—oo for any fixed R>0. Since R>0 is arbitrary, this means that the
third term of (4.8) converges to zero as m—oco., Summing up, we have
proved

(4.11) lim | P_e #»8g)| =0,
hence
(412) lim ([P, ~ 7 s(H)Je 3] =0.

For the second term on the RHS of (4.7), by (4.9) and (4.6), we have

(4.13) Hm Him [P, — e W7 E, (t—t,) e ¥ gl =0.

nL—oc (00

Thus from (4.7), (4.12) and (4.13) we get

(4.14) lim lim supje"*eJ¥e™ g — B, (t—~t,)e 9]l

<Climlimlje #rig—g " in ¥ F (t—t Je 273 =0,

oo {00

e J¥E (t—t,)e "5 converges to Z(t,)¢=en"0 P ¢ " g strongly as t—oo
by Proposition 3.8. Thus

(4.15) lim lim suplie#oJ¥e* " #p— Z(t,)p1 =0,

n-oo t-

which, by the Cauchy criterion for the convergence, implies the existence
of the limit

(4.16) s-lim e*#oJFe o= 0% .

{00
From this, (4.6) and Lemma 3.7 we get
(4.17) Wi 2°6=9¢,

where W7 is defined by (1.4) with J=J,. Hence, remembering (3.45) and
the definitions of J, and ./ and using the intertwining property of Wiy,
we have

(4.18) W3 En(d) Q6= W3 Ey ()26 =Ef Wi =3

This implies that ¢= R(W;Ey ())CR(WiEy(). The proof is com-
plete. [

REMARK. In the above we have assumed (1.2) for all «. But this is
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redundant. It suffices to assume (1.2) up to a certain fnite order depend-
ing only on the space dimension, independent of 0<e<1.

Appendix. PROOF OF LEMMA 3.3.

i} We first prove the L’*boundedness of P. Taking npotice of
(?;.12), and the formula o(x, &)~ oy, &)=(x—y) -V.o(z, & y), V.olz, & y)=
Sovxgo(y%—ﬁ(x—y), £)dg, we make a change of variable: p=Y,0(z, & %) in

Pf. Then, denoting the inverse mapping of &—y=V,0(x,&,y) by
V.0 (%, 5, ¥) and its Jacobian by J(z, 7, y), we can rewrite P in the form
of & pseudodifferential operator :

Pr(@)=\\e 1m0, 9072, 7,90, 917, 7, )y

By (3.11) and (3.12) the symbol q(x, y, y)=n(x, V.o '(x, 7, y), )J(z, 7, y) is
easily seen to satisfy

10205059, n, PI=Colpl,  latB+rI=H,

for some constant C, independent of p. Thus the estimate for P in (3.14)
follows from Calderdn-Vaillancourt theorem [3]. (3.14) for @ and R is
reduced to (3.14) for P if we take note of the formula

Q*Q () = {|eox om0 OUE Tate, wifdya

RE*f(z)= SS@“‘“”' D@ (e, E)rly, ENfy)dyds

D

lg(&, 2)g(&, =1l [r(z, Erly, I =|rl®.

i1} We consider the case t=0 and r=0 only dropping the superscript
4. The other case can be treated similarly. Without loss of generality
we may assume a(z, £)=0 for [&]< u /2.

We take 85 and 6] so that —1<8,<8,<0:<8,<1, and choose C* func-
tions pi(o), pi(s) on [—1,1] such that for j=0,1

pilo)+pila)=1, 0=p7(0)=1,
(A1) 1 for sz=zmax(8,,6))

pilo)=
0 for Uémin(ﬁj: 0;) ’
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{ai(x, &) =alz, §)pr(cos(z, §)),
(A.2)

b.(&, ¥)=Db(&, y)pi(cos(&, ) .
Then a. and b, satisfy
(102080, (&, &) S Coplar> ™",
(A' 3) |az(/xa§b—(§) y)fécaﬁ,m<y>_my mZO ’
1 a.,b.e BRY),
a{z, &)=0  for cos(x, £)=6,,
(A. 4)
bi(&,9)=0  for cos(§, y)=0",

where $*(R*) denotes the space of all C functions with bounded deriva-
tives. We decompose a(x, §)b(E, y) as

(A.5) a(w, EB(E, y)=(a:bs+asb-+a b +a b ), & y),
and accordingly decompose L(t) as
(A.6) Lt)=L, () + L, () + Lo (t)+L__(t).
We estimate each term on the RHS.
1° L..(t): Let ¢@;y, &)=t16172+¢(y, §) and set
(A.T) P=<N:) 1 —1V:-V:) .
On the support of a.(z, £)b.(§, y), we have
(A.8) Ve = CClyl +IED

by (3.11), (A.4) and t=0. Noting Pe **=¢"'%, we have by integration by
parts

(A.9)  LoOfle)= {0 om0t v 00 PIetr 20 (@, €006, ) AW)dyds
for any (=0, where
(A.10) Oz, &,y )=, E)—tIEl2—oly, §) .

The function in {} of (A.9) is a finite sum of the functions of the form
al(z, E)bLE, v; 1), and each @} and b} satisfies

{]agagali(x: E)] §Caﬁ<x>l—L 3

183084, y 5 ) S Copllyl +21E]D

(A.11)



Modified wave operators 101

by (A)-1) of Lemma 3.3-i1) and (A.8). Hence letting
ayfw)=\Jer o pale, o f)aaz,

(A.12)

Bi(0() = \er et v 008, s Dty
we have
(A.13) Luo()=3 Ale™BY(2).

{A.11) shows that for 0=m=]

[<ayttAjl < oo,
(A.14)

[ B <y>™ | S C<tpep™ "
Thus we get
(A. 15) K> Ly s ()< ™ | S Clt g™

for any m<[0,1] and any integer [=0. Interpolating this with respect to
I, we finally get

(A.16) [a> Ly (< S Cltprgy~HHore
for s, 8,20 with s;+s,=L.

2° L__(t): 'This case is reduced to 1° by considering {x>%2L__{£)*<{y>"
and making a change of variable £&— —¢ in the expression of L__(¢)* similar
to {A.9). Then we can obtain

(A.17) <> Lo (¢)<y>*2) = Crlt o> ™"

for s, 8,20 and any k=0.

3° L..(t): We argue in a way similar to 1°. In this case, however,
we must replace the estimate (A.8) of V¢ by

(A.18) (Veglt 5y, E Ky =0 ™.

Integrating by parts in L,_(t) by the use of P in (A.7), we get (A.9)
with b, replaced by b_, the function in {} of (A.9) being of the same
form as in 1°. By (A.18) and (A.3), we have

[820%a’(w, E)| = Copad' ™",
[0208b4(E, v ; )] §Caﬁ,m<t§>—l<y>21+l,€(-m

(A.19)

for 0=I=<L and any m=0. Hence we have
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[<wyEtAG <oo
I By I = C<tpe> ™

for 0=I<L and any k=0, where A} and Bi(t) are defined by (A.12). Thus
by (A.13) we get

(A 21) |}<x>L—£L+—(t)<y>k”§C<t/lo>~l

(A. 20)

for 0=I=<L and k=0. By an interpolation, we obtain
(A. 22) H<a>™1 Ly (E<y> 2l S Cpgy =51

for 0=s,<L and s,=0.

4° L_.(t): Let @ be as in (A.10). On the support of a_{x, &)b.(§, u),
we have

(A.23) VD SO x—yl +tleD
=0l +ly| +eg>

by (A.4), (8.11) and t=0. Thus integrating by parts in L_.({)f by the use
of the differential operator

(A.24) Q=<Ve@>*(1~1iV:0-V:),

we get for any integer [=0

(A.25) L ()f(x)= Sge“’q(x &y Dfy)dyds |
Here
(A.26) qie, &, £)=e PR a b ), &, )

satisfies by (A.23)
(A.27) (0503059 (2, &,y 5 E)] = ClagyCEEY ML) 71y THACEE) TP

for any «, 8, y with la+F+7 =M, =2([N/2]+[5N/4]+2) and for any integer
[=0. Thus by Lemma 3.3-1), we obtain the estimate

(A.28) [<eD L Oyl = Cs ot ™"

for any s, 8, £=0.
(A.6), (A.16), (A.17), (A.22) and (A.28) complete the proof of Lemms
3.3-11). [
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