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Introduction.

The program to classify the finite simple groups has been finished
recently and, in particular, simple groups of characteristic 2 type have
been classified. (Here, by definition, a group G is of characteristic 2 type
if G has even order and C.(Oy(L))<0y(L) for all 2-local subgroups L of G.)
The classification is dependent upon the earlier paper of Janko [1] classify-
ing nonsolvable groups in which all 2-local subgroups are solvable and have
cyclic Sylow subgroups for all odd primes. Janko’s work is further
dependent upon the N-group paper [2] in which Thompson classifies non-
solvable groups all of whose local subgroups are solvable. On the other
hand, out of the recent investigations of Aschbacher [3] and others, grew
several general theorems concerning groups of characteristic 2 type, which
are hopefully utilized in revising the earlier papers of Janko, Thompson,
and others.

Suggested by some of the recently obtained results, we divide the
groups of characteristic 2 type into three classes.

I.  The 2-isolated groups of characteristic 2 type.

II. The groups of characteristic 2 type in which some maximal 2-local
subgroup has an ‘ Aschbacher block’.

IIT. The groups of characteristic 2 type neither of type I nor of type I1.

As well known, a group is 2-isolated if and only if it has a strongly
embedded subgroup, and groups having a strongly embedded subgroup have
been classified by Bender [4]. For the groups of type II, the reader is
referred to a survey article by Foote [5]. The ‘ Aschbacher block’ is not
yet firmly defined. In this paper, we adopt the definition given in [6] or
[7]. We call groups of type III the generic groups of characteristic 2 type.
This terminology is partly justified by the fact that a simple group of Lie
type and characteristic 2 is a typical group of characteristic 2 type and it
is of type III provided its BN-pair rank is greater than 2.

The purpose of this paper is to show how the recently obtained general
results are utilized to classify the simple generic groups of characteristic
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2 type in which ‘sufficiently many’ 2-local subgroups are solvable and have
cyclic Sylow subgroups for all odd primes. In order fo describe the result
precisely, we define some notation. Let G be a group of characteristic 2
type, S a Sylow 2-subgroup of G, M(S) the set of all maximal 2-local
subgroups of G containing S, and Z=2,Z(S)). For each Me. H(S), we
define V,=<Z">, the subgroup generated by all M-conjugates of Z. If
elements M and N of HM(S) satisfy the condition

N=E=C V),
let us write
N= oM.

It is easy to show that the relation =, is a partial order in H(S). Let

HM*(S) be the set of all maximal elements of F(S) under =, Now, we
can state our classification theorem.

THEOREM. Let G be a nonabelian simple generic group of character-
istic 2 type and S a Sylow 2-subgroup of G. Assume that every element
of FHHS)U{CHL{Z(S)))} is solvable and has cyclic Sylow p-subgroups for
all odd primes p. Then, under the hypothesis (H) stated below, G is
tsomorphic to Gy(2) or *F(2).

(H) Let X be a finite group, W a faithful GF(2)X-module, A a non-
identity elementary abelian 2-subgroup of X with |A|=|W :Cy(4), and K
a quasisimple normal subgroup of X with X=AK and Cx(K)=Z(K)=0(K).
If K is a section (or subguotient) of some maximal 2-local subgroup of G,
then K< Chev(2)—{(P)SUs(2™), Sz(2** ) | m=2} or K=A,, n=7.

In the above, Chev(2) denotes the collection of all quasisimple groups
L with O,(L)=1 for which L/Z(L) is isomorphic to a simple group of Lie
type and characteristic 2. Here, we consider the groups A,=Sp.(2)’, SU3)
=2 (G,(2), and F,(2) to be of Lie type and characteristic 2. By a theorem
of Aschbacher [17, Th. 1], the hypothesis (H) is satisfied if all nonabelian
simple sections of all maximal 2-local subgroups of G are on the following
list of the nonabelian simple groups of ‘known’ type.

1. The alternating groups of degree at least 5.
2. The simple groups of Lie type.
3. The twenty six sporadic simple groups.

Thus, the hypothesis (H) says, in effect, that nonabelian simple sections of
maximal 2-local subgroups of G are all of known type. The hypothesis
(H) clarifies, however, the properties of the simple groups of known type
which we need in this paper.
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This paper is designed for the revision program. Therefore, I will
give below an outline of the proof of the theorem going into more details
than usually required. Let G be a nonabelian simple generic group of
characteristic 2 type satisfying the hypothesis (H), SeSyl(G), Z=2.Z(S)),
and C=C4(Z). For 2-groups T, let J(T) be the Thompson subgroup gener-
ated by the set A(T) of all elementary abelian subgroups of maximal
order and define K(T)=Cp(2{Z(J(T))). Furthermore, let Q(7T) be the
characteristic subgroup of 7 defined in [7]. The proof may be divided into
three parts A, B, and C in view of the nature of the analysis in each part.

(A) TLet Ne(QK(S))=He MS)and HE ,Me M*(S). Then it directly
follows from [6] and [7] that G is generated by C and M and that 2-fusion
in G is controlled by C®UMP®. The hypothesis (H) is needed here, because
we need (H) in [6] (see the concluding remarks of [6]). For each L& M(S),
let Q,=Cs(V,). It is easy to show that V, is an elementary abelian
normal 2-subgroup of L with Oy(L/C(V.))=1 and that if Le . H*(S) then
L is the unique maximal 2-local subgroup of G containing N.(Q,). This is
probably the most important property of .M*(S), for it enables us to use
the so-called weak closure theory which Aschbacher developed in [3]. The
weak closure theory is particularly effective when solvable groups are
concerned. Namely, if all elements of H*(S)\U{C} are solvable then, using
an idea of Aschbacher [18], we can rather quickly show that, for each
Le M*(S), there is an invelution t< L/C.(V,) such that [Ve:Cr, D=4
This is very strong information about the structure of L/C.(V ;). Especially,
if L has cyclic Sylow subgroups for all odd primes, it readily follows that
L|C (V) has a unique normal dihedral subgroup D,/C.(V;) of order 6 or
10 generated by involutions ¢ such that |V, :Cy (1)) =4. Thus, the results
in Part A are primarily immediate consequences of the general results
concerning groups of characteristic 2 type obtained in [3], [6], and [7].

(B) Now, assume that every element of H*(S)U{C} is solvable and
has cyclic Sylow subgroups for all odd primes. First, we prove that if
Le HM*(S) then L is the unique maximal 2-local subgroup of G containing
SD;. As G is generated by C and M, this shows that Cy(Dy)=1 and
hence it follows that Vi is of order 4 or 16. Next, we prove that .H*(S)
={M}. Hence if K& M(S) then K=(sM, and consequently V,=(Z¥"Ky,
Using this, we quickly prove that FH(S)=<{M, C, N}, where N is a certain
explicitly defined 2-local subgroup. By virtue of the results in Part A,
the arguments in this part are not too difficult.

(C) 1In this part, we obtain precise information about H(S), using
three results concerning pairs (X, Y) of solvable groups having a common
2-subgroup 1 of odd indices such that no nonidentity subgroup of 7 is
normal both in X and in Y. The first result is an elementary but powerful
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result probably due to Thompson [2] and concerns the case XN\ Y=+#1. The
second result is a corollary to Glauberman’s ‘triple factorization theorem’
[8] and concerns the case where both [X: 7] and |Y:T/| are prime to 3.
The third result is a theorem in [9] and concerns the case where both
|X:T} and |Y:T| are primes.

As to the third result, we can alternatively appeal to the combined
work of Goldschmidt [10] and Fan [11]. Nevertheless, in this paper, we
will quote [9] rather than [10] and [11] for the following reasons.

i)  [9] is much shorter than [10] and [111.

ii) [7] is, in effect, the only outside material needed in [9], while [10]
and [11] rely on more outside materials.

iil) [9] is written in the completely standard group-theoretical lan-
guage, while both [10] and [11] are written in the graph-theoretical language,
and thus [9] appears to be easier of access for most readers of the present
paper.

Now, using the above three results together with P. Hall’s theorems
on solvable groups [12, Chap. 6] and weak closure theory, we prove that
HM(S)={M,C} with [M:S[=38 and [C:S|=38 or 5. As G=<{M,C>, no non-
identity subgroup of S is normal Bboth in M and in C. Hence if S*=
(OHBMHNSHOHCINS), M*=0(M)S*, and C*=0*C)S*, then the structure
of M* and C* is described in [8]. As O¥G)=G and fusion in S is con-
trolled by M and C, the focal subgroup theorem [12, Th. 7.3.4] shows that
S*=S8. Thus, the structure of C is determined to the extent necessary to
quote characterization theorems in terms of the centralizers of involutions
[13], [14], [15].

This completes the description of the outline, but Sections 1-6 contain
a more complete description of the preliminary results mentioned above.
In particular, most results in Part A are contained in those sections. A
major part of the proof of the theorem is contained in Section 7, and
Parts B and C occupy the equal halves of that section. When treated in
full generalities, the results in Sections 1-3 yield further general results
on the 2-local structure of groups of characteristic 2 type, which I hope
to discuss in the future.

Our notation is standard. Thus, if G is a finite group and X is a
subgroup, then M(X) is the set of all maximal 2-local subgroups of &
containing X, X¢ is the set of all G-conjugates of X, NX¢ is the inter-
section of all subgroups in X, and <X¢)> is the subgroup generated by all
subgroups in X°¢.
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1. Weak closure theery.

In this section, we describe two theorems of Aschbacher [3]. Let G
be a group of even order and V an elementary abelian 2-subgroup of G.
For 2-subgroups T of G and nonnegative integers n, define W, (T, V) to be
the subgroup generated by all subgroups W of T which are contained in
some G-conjugate V¢ of V such that

[Vewi=am

(In [3], W.(T,V) is defined by the equality |V9W|=2" instead of the
inequality above. However, this is not an essential change.) Also, let

CuT, V)=Cr(W(T, V)).

The following properties of the W,(T, V) are direct conseguences of the
definition.

1.1, WuT, V)EW,(T, V).
12, If WAT, V)SUZT, then Wn.T, V)=W,(U, V).
1.3. Ng{T)YENLW(T, V).

Now, let me(V) be the minimum rank of V/Cy(t) as ¢t ranges over the
set of all involutions of Ng(V)/Ce(V). When Ng(V)/Cyx(V}) has odd order,
we define mqs(V) to be the rank of V. Next, let 74(V) be the minimum
rank of V/W as W ranges over the set of all subgroups W of V such that
Co(WYLNg V). If such W does not exist (i.e. when NV }=G), we define
re{V) to be the rank of V.

14. Let G be a group of even order and V an elementary abelian
2-subgroun of G. Assume that me(V)>n+1<r (V) for some positive
integer n. Then for any solvable subgroup H of G aend any Sylow

2-subgroup T of H, we have
H=CylCoi T, VINg(WA(T, V)), 0=i=n.
PRCOF. See 6.11 of [3].

1.5. Let G be a group of characteristic 2 type, M a maximal 2-local
subgroup of G,V an elementary abelian normal 2-subgroup of M, and @
a Sylow 2-subgroup of Cx(V). Assume MN (Q)={M} and mV)>2.
Then me(V)YSre(V).

PROOF. See Section 11 of [3].
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2. A partial order in J(S).

In this section, G is a group of characteristic 2 type, S<Syli(G), and
Z=0(Z(S)). For each M FH(S), define

VM:<ZM> 3
Qu :CS(VM) .

2.1. The following conditions hold.

1) Vu=2(Z(0,(M))).

(2) M=Ne(Vy)=Co(Vy).

(3) Oz(M/CG(VM)):l-

(4) QueSylCe(Vy)) and Nu(S)SNy(Qu)-
(5) M:NM(QM)CG(VM)-

PROOF. As ZZCy(0M)=Z(04(M)), (1) holds. In particular, V, is a
nonidentity normal 2-subgroup of M and so, as M= H(S), (2) holds. Let
X/Co(Va)=0(M|Cs(Vy)). Then as X=<SCx(Vy), Z=Cy,(X) and hence we
have V,=Cy,,(X), proving (3). (4) is clear because S eSyl(M) and
Co(V, )<\ M. TFinally, (5) follows from (4) by a Frattinl argument.

Now, for elements M and N of H(S), let us write

N §(S>M
if they satisfy the following condition.

N=Co(VmM.

2.2. The following conditions hold.

1) If N=E oM, then Vy=<L{Z W< V.

(2) =5 18 a partial order in HM(S).

PROOF. (1) If N= M, then N=Cy(Vy)(MNN) by 21, so N=
Ce(ZYMNN) and Vy=<Z">=<{Z¥"W)>ZVy.

(2) It is clear that M= .M for all M HM(S). Suppose N=,M and
M= ,N. Then Vy=Vy by (1) and so M=Ng(Vy)=Ns(Vy)=N by 2.1.
Suppose N=(s,M and M= 5,L. Then N=Co(VyIM=Co(V)Co(Vy)L. As
Co(Vi)ZCa(Vy) by (1), NECH(Vy)L and thus N=,L.

Now, let M*(S) be the set of all maximal elements of HM(S) under
<

= (S

23 If A{[e VC%X(S), the?l ‘%(AT}I(Q)[)): {ﬂj}.
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PROOF. Suppose N& M(Ny(Qy)). Then N HM(S) and M=Co(Viy)N
by 2.1, which implies that M=.,N. Therefore, N=M by the maximality
of M.

24. Assume that some element Me M*(S) satisfies J(S)=SCol{Viy).
Then

(1) K(S)=Qu,

(2) M(N(K(S))={M}, and

8) J(S)YECAVy) for all Ne M*S)—{M}.

PROOF. As J(S)=SCs(Vy)=Qy and Vy=2/{Z(Qy)), we have Vy=
Q(Z(J(S))) and so K(S)=Ce(Vy)=@Qx Thus, (1) holds. Furthermore, we
have K(S)=K(Qy) and so Ng{Q,)=<N(K(S)). Thus, (2) follows from 2.3,
and (3) follows from (2).

25. Let Le J(S), U an elementary abelian normal 2-subgroup of L,
and P=Cy(U). Assume MU, (P))={L} and ma(U)>2. Assume further
that an element Me HM*(S) 1s solvable. Then M 1is a¢ unique maximal
solvable subgroup of G containing S.

PROOF. As ro(U)zme(U)>2 by 1.5, 1.4 shows that
H=Cy(Cis T, UNNg(W,(T, U)), 1=0,1,
for any solvable subgroup H of G and any T<=Syly(H). Thus,
M=Cy(Cisi(S, UNN (WS, UNECHZ)Ng(W(S, U))

for 1=0,1. Let W;=W.(S, U) and N;=Ngx(W;). Notice that 1+ W,<Oy(N;)
as U+1. As SeSyl{N;) by 1.3, Z=ZCs(Oy(N;))=Z(0s(Ny)). Therefore, V, =
ZHy<ZV¥<Z(04(Ny)) and so W;SO(N)=Cs(Viu)=Qu. Thus, W,=
Wi{Qy, U) by 1.2, and then Ng(@Q;) SNH{W)SNHZ(W,)) by 1.8. As Z(W,)
+1, 2.3 shows that N Z(W))=M for 1=0,1. Now, let H be a solvable
subgroup of G containing S. Then

H=Cy(C\(S, U)Nu(W(S, U)) = CelZ(W(S, UNNZ(W(S, U)))
and so H=M. This completes the proof of 2.5.

2.6. Let M M*(S). Assume that M 1s solvable, that G is generated
by solvable subgroups containing S, and that M+G. Then me(V,y)=2.

PROOF. This is a direct consequence of 2.5 and 2.3.
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3. Generic groups of characteristic 2 type.
By definition, a group G of characteristic 2 type is generic if

i) G is not 2-isolated (see [16] for the definition), and
il) no maximal 2-local subgroup of G has an Aschbacher block (see
[6] or [7] for the definition).

Therefore, if G is a generic group of characteristic 2 type, then so are all

maximal 2-local subgroups of G.
In this section, G is a generic group of characteristic 2 type satisfying

the hypothesis (H), S€8yly(G), and Z=2,(Z(S)).
8.1. G is generated by Co(Z) and NHQK(S))).
PROOF. This is a direct consequence of Theorem H of [7].
3.2. If G=Ny{Z), then No(Z)& M*(S).

PROOF. Suppose N=Ng(Z) is contained in M*(S). As Vy=Z, Qy=
Cs(Z)=S and so M(N(S))={N} by 2.3. But then G=N by 3.1

3.3. Let Ng(QESW=ZHe HS) and H= s,Me M*S). Then

(1) G is generated by Cs(Z) and M, and

(2) Sylow 2-intersections and 2-fusion in G are controlled by
Co(Z)YFUIME (see [6] or [T] for the definition).

PROOF. By Theorem H of [7], the set CAZYEUNHQK(S)H)® controls
Sylow 2-intersections in G, and so does the set Ce(Z)\UH®. Now, N4 S)
<NJZ)NH and, consequently, Cs(Z) and H are the only elements of
Co(Z)UHS that contain S. Thus, G=(Cs(Z),H> by 1.5 of [6]. Now,
H=Cu(V)(MNH)=Cx(Z)MNH). Hence G=<(Cs(Z), M>. Also, Co(Z)*UM®
controls Sylow 2-intersections in G by 1.9 of [6], and so it controls 2-fusion
in G as well by 1.4 of [6].

3.4. Assume that every element of M*(S)U{Ce(Z)} is solvable and
0.G)=1. Then me(Vy)=2 for all Me M*(S), and if me(Vy)=2 for some
Me M*(S) then the following holds.

(1) J(S)=Qy-

(2) TMNLK(S)))={M].

(8) mVy=1 for all N M*(S)—{M}.
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PROOF. The first assertion follows from 2.6 and 3.3. Suppose me(Vi)
=2 for some M< M*(S). Then (1) follows from certain (probably well
known) facts on GF(2)-representations. Namely, if A= A(S) is not contained
in @y, then AZC,(V,) and so the maximality of | 4] shows that the image
of Ain M=M|Cy(V,) is contained in the set P consisting of all nonidentity
elementary abelian 2-subgroups X of M such that | X||Cy L= YCr (V)]
for all subgroups Y of X. Let &P* be the set of all minimal elements of
<P under the partial order < defined by: X<Y if and only if X=<Y and
[ XNCy ((XD=1Y1ICy (Y)]. Let XeP* Then since M is solvable and
O.(M)=1 by 2.1, it follows that <X‘®®) is isomorphic to the dihedral group
of order 6 (see for instance 3.1 and 3.3 of [6]). In particular, |X|=2 and
$0 |Vy:Cy, (X)|=2 by the definition of &, which shows that me(Vy)=1,
a contradiction. Therefore, (1) holds. Finally, (2) follows from (1) and 2.4,
and (8) follows from (2) (or (1) and 2.4).

4. GF(2)-representations.

In this section, (G, V) is a pair of a solvable group G of even order
with 0,(G)=1 and a faithful GF(2)G-module V. Except in 4.1 below, we
assume further that

(%) Sylow p-subgroups of G are cyclic for all odd primes p.

Let m{(G, V) be the minimum rank of V/Cy(t) as ¢t ranges over the set of
all involutions of G. Let J(G, V) be the set of all involutions ¢ of G for
which the rank of V/Cy(f) is equal to m(G, V). Let P(G, V) be the set of
all nonidentity elementary abelian 2-subgroups A of G such that
[AICY A= IBIICy(B)] for all subgroups B of A. As usual, D, and Z,
denote the dihedral group of order » and the cyclic group of order =,
respectively. In this section, we consider the case m(G, V)<2. Section 13
of [17] contains a more complete discussion of this situation for an arbitrary
group G.

4.1. If PG, V) is nonempty, then m(G, V)=1.
PROOF. We can use the same argument as in the proof of 3.4.1.

4.2. Assume m(G, VI=Z2 and let te (G, V). If X s a t-invariont
subgroup of G of odd order with X=[X,t]#1, then one of the following
holds.

1) 1X]=38 and [V, X]|=|Cr n(®)1*=4 or 16.

2) 1Xi1=5 end |[[V, X]1=[Cw» n{®)|*=16.
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PROOF. Assume that X is cyclic and let W=[V, X|. Then t inverts
X and Cp(X)=0, so [Cr®|=IW:Cw®) and [W|=|Cp(t)l’=4 or 16. As
<t, X> is faithful on W, <¢, X> is isomorphic to a subgroup of GL.(2)=A,.
Inspecting dibedral subgroups of A;, we obtain | X|=5.

Assume, therefore, that X is not cyclic. As X is solvable, X is a
product of a Hall {35} -subgroup Y, X,=Syl(X), and X,=SyL(X):
X=YX,X;. We may choose ¥, X;, and X; so that they are ¢-invariant
and X,X; is a subgroup. As [Y,t] is generated by elements inverted by
t, the last paragraph shows that [Y,¢]=1. Thus, X=[X,t{]|=X.X,. As X,
and X, are cyclic by (x), we have X;<<X (see Section 6). Hence X, acts
on X;, and X, clearly centralizes the Frattini factor group of X,. This
shows that X, centralizes X;, and therefore X is cyclic, a contradiction.

4.3. Assume m(G, V)=2 and let O, O, -+, O, be the orbits of J(G, V)
under the action of {<I(G, V)> by conjugation. Then

(1) <O0:»>=Ds or Dy, 1=i=n,

2) <I(G, V)>=K0>x++xL0,,

B) n=2 with equality only when <{I(G, V)>=Dsx Dy, and

4) of m(G, V)=1, then <I(G, V)>=D,

PROOF. Let 9=9(G, V) and J=<(4>. For t= 4, let O, be the orbit
containing t. As C,(OJ)=0(J), we have [O(J]),t]=Z; or Z; by 4.2 and,
consequently, <[O(J),t], t>=<0,. If ueg is conjugate with ¢ in J, then
[OWJ), t] and [O(J), u] are conjugate, and so [O(J]), t]=[0(J), u] as F(O(J))
is cyclic by (x). Conversely, assume [O(J]), t]=[0O(J), #]. Then tu stabilizes
the series O(J)=[0(J]), t]=1 and, as C,(O(J))=0(J), it follows that #u has
odd order. Thus, u is conjugate to t. Moreover, as J=0, ,(J) (see 6.1),
we have tus0(J), so {tud=<[0(J), t] and u < {tu, > <<[0(J]), t],t>. We have
shown <Op=<0(J),¢],t>, and therefore (1) holds. We have also shown
that if O*(KO)=0%O,>) then <O,»>=<K0,>. As F(O(J)) is cyclic, (2) and
(3) now immediately follow. (4) is a consequence of (1)-(3) and 4.2.

5. Pairs of groups having a common 2-subgroup.

In this section, G and H are groups having a common nonidentity
2-subgroup S of odd indices.

51. Let P be o nonidentity subgroup of G and H such that {S, P> 1s
solvable and O((S, PY)=1. Let Q and R be subgroups of Ne(P) and Ny(P),
respectively, and assume that both Q and R vermute with S. Then P, Q
and R normalize o nonidentity normal subgroup of S.
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PROOF. Embedding G and H into their amalgamated product over

<S, P>, we have
(S, P,Q, Ry=<S, PY{Q, k>

and hence P is contained in
D=nN<S, pPys-2.er,

Therefore, I is a nonidentity solvable group with O(D)=1. Let T be a
minimal characteristic subgroup of D. Then T is a 2-subgroup normalized
by <S, P, Q, B>, and hence T=S.

By definition, a subgroup Y of a group X is nearly maximal in X if
Y is contained in a unigue maximal subgroup of X.

5.2. Assume that G and H are solvable groups with O(G)=1=0(H)
and that S 48 nearly maximal both in G and in H. If 3, |Gl|H|)=1,
then some monidentity subgroup of S is normal both in G and in H.

PROOF. By the ‘triple factorization’ theorem of Glauberman [8], there
are three nonidentity characteristic subgroups 4, B, and C of S such that

G:]\’TG(A)NG(B) = NG(B)NG(C) = NG(C)NG(A) s
H=Ny(A)Np(B) = Np(B)Ny(C)= Nyu(C)Ngu(4) .

As S is nearly maximal in G and H, at least two elements of {4, B, C} are
normal in G, and the same is true of H. Therefore, some element of
{A, B, C} is normal both in G and in H.

Before stating the next result, we define some notation and terminology.
By the %, we denote central products with amalgamated centers, and by
D;#D,, we denote the group

{a, b, c|a’=bt=c'=(ab)*=(ac)*=b""¢c"bc=1).

Now, suppese G and H satisfy the following conditions.

(a) Both |G:S| and |H:S| are odd primes.

(b) No nonidentity subgroup of S is normal both in G and in H.

(©) Ce(Ox(G)=04(G) and Cy(O(H))=Oy(H).
By definition, (G, H) is of Gy(2)'-type if G/O(G) = H|O(H) =Dy, Of(G) =7y X Zy,
and O(H)=Z,%Ds; (G, H) is of My-type if G/O(G)=H|O(H)=Ds, Ol(G)=
Ds£Ds, Oi(H) =Dy Dy, and <(Z(0,(G)*) is an abelian 2-group; (G, H) is of
T (2) -type if G/O0(G)=D,, HIOo(H)=Fy (the Frobenius group of order 20),
and there is an H-composition series O,(H)=R,=2R;=R.=R,=1 of O,(H)
such that the groups @, (0=1=<48) defined below form a G-composition series
of O,(G).
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Qo=0,(G), Q=<(R%>, Q:=NRY, Q=<RNQY%>,
Q=NR{, Q=<RP, and Q=1.

Finally, define S*=(SNOY@®)SNOXH)), G*=0%G)S*, and H*=O0(H)S*.
Then by 3.3 of [9], S* is a nonidentity 2-subgroup of both G* and H*, and
(G*, H*, S*) satisfies the conditions (a)-(c). Now, we can state the third
main result of this section.

5.3. Assume that G and H sotisfy the conditions (a)-(c) and thaf
QZS))=Z(H). Then (G*, H*) is of Gy(2)-type or My-type or "F.(2)-type.

PROOF. See [9]. (This is Theorem A of [8])

We conclude this section by two more remarks on the pairs (G, H) of
G4(2)'-type or My-type or *F,(2)-type.

5.4. Assume that G and H satisfy the conditions {(a)-(c). Then the
Sollowing holds.

(1) If (G, H) is of Gu(2) -type, then S=Z,wr Z, (the wreath product of
Z; by Zs).

(2) If (G, H) is of Mu-type, then S has the following presentation.

generators: a,b, e, d;

relations: o’=b=c¢=d"={ab)’=(ac)’=b "¢ be=(ad)*=b"'dbd=cbdcd=1.

Furthermore, there is a noncentral involution x of S such that Cs(x)ZQ"
Jor any he H.

() If (G, H) is of T2 -type and R Q; are the same as in the
definition of TFu(2) -type’, then | Ro/R,=|R /Ry =16, |Ry|=2, O,(H)=R,= R,
>R,2R,=1 is the upper central series of Oy(H), and |Q;-/Q:]=4 if i=
1,2, 4, 6.

PROOF. Let Q=04(G), R=0,(H), V=2,(2(Q)), and Z=2,(Z(S)).

(1) Suppose (G, H) is of G,(2)-type. Then R is non-abelian and so
Z(R)=Q by 4.1 of [9]. Pick geG—S so that ¢*’Q. Then, as G=<R, R*>
by 8.6 of [9], we have Z(R)NZ(R%)=1 and so Q=Z(R)x Z(R%) with Z(E’)’
=Z(R). Thus, we may pick g so that ¢°=1, and it follows that S=
Zs Wt Zs.

(2) Suppose (G, H) is of M-type and define U=<V*>. As U is ele-
mentary abelian, we have |U|=8 and U<Cs(V)=Q by 3.8 of [9], so @NQ"
=U for all he H—S by 3.6 of [9]. Let z=G—S and define W=RNR".
Then |W|=8 by 3.6 of [9] and W?<ZNZ"=1. Also, as [W,R|SZ=V=W
and G=<(R, R*>, we have WG and so W=U. Now, let T=[Q, O(G)].
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Then T=7,xZ, and {U, W, TN R} is the set of the maximal subgroups of
QN R containing V. Now, pick be TNR—V and an involution de Cp(b)—
(this is possible as R=D;xD;). By Suzuki’s lemma, d inverts an element
g=G of order 3. Let Cp(g)=<a>. Necessarily, a’=a and (ab)’=1. As
Cr(g)=1, we have bb°=1 and so, if ¢=0b% then ¢*=b"l¢™!, be=ch, and
{ae)?’=1. Now, c¢®=bey for some vcV. We have c¢“=(bcv)!=cb ¢ =
b7, while ¢¥=¢" "?=p%=5h. Therefore, v=>0)""=(b""¢c" ) and so c?=b"'¢c"%
It is now clear that S has the above presentation. Finally, Csla)£Q and,
as ac U, a&e Q" for all he H—S. Therefore, Csla)£Q" for all he H.
(8) This has been proved in [9, 1.2].

55. Assume that G and H satisfy the conditions (a)-(c) and (G, H) is
of Gy(2)Y-type or My-type or *F2) -type. Then the Frattini factor group
of [0,(H), O}(H)] has order at most 16.

PROOF. Let R=0,(H). If (G, H) is of Gy(2)'-type, then R=Z,+D; and
so [R, O H)] is isomorphic to the quaternion group. If (G, H) is of Mp-type
or “F.(2)'-type, then [R, O¥H)]=R (see the proof of 3.9 of [9]) and |R/R*
=16 (when (G, H) is of 2F,(2)'-type, this follows from 5.4).

6. Solvable groups.

In this section, G is a solvable group in which all Sylow p-subgroups
are cyclic for all odd primes p.

6.1. G=0,y.G).

PROOF. Let Q=04(G) and F/Q=F(G/Q). Then F/Q is cyclic and so
GICe(F|Q) is abelian. As Co(F/Q)=F and F/Q has odd order, we conclude
that G= 0,y ,(G).

6.2. Let p be the largest odd prime divisor of |G| and let P be a
nonidentity p-subgroup of G. Then

(1) POL(G) <G,

2y P permutes with every SeSyL(G), and

) if G is a {2, pi-groun, then O, (PS)=0,(G).

PROOF. (1) Let G=G/0,(G) and P=X<Syl(G). Then X<=SylL(0(G)
by 6.1. As O(@G) is supersolvable, X is the unique element of Syl,(O O(G)).
Therefore, X <\G and then P <G.

(2) As PS=P0,(G)S is a subgroup by (1), P permutes with S.

(3)  0.(PS) acts on O(G)=X and [P, 0,(PS)]= P "0,(PS)=1. Therefore,
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we ]:lave [0(G), 0«(PS)]=1, which shows that O(PS)=0,(G) as el(®)
=0(G).

7. Thin groups.

In this section, G is a nonabelian simple generic group of character-
istic 2 type, SeSyl(G), and we assume that every element L of
MHES)YUCHR(Z(S))} satisfles the following two conditions.

i) L is solvable.
ii) Sylow p-subgroups of L are cyclic for all odd primes p.

Furthermore, we assume that G satisfies the hypothesis (H).
Let Z=0,(Z(S)) and, for each L< H(S), define

L=L/C.(V}).

Recall from Section 2 that V, is an elementary abelian normal 2-subgroup
of L with L=NyV.)=Ce(V,) and OyL)=1. Now, let Le HU*(S). Then
L has even order by 3.2, and so the pair (L, V) satisfies the hypothesis
of Section 4. As m(L, V.)=ms(V.)=2 by 3.4, 43 shows that L has a
normal dihedral subgroup D, of order 6 or 10 generated by elements of
(L, V,). Let us choose D, so that, if possible, D, =D, Let E;=0%D,)
and B,=Cz(D,). Define D;, E;, and B, to be the complete inverse images
of D;, E;, and B,, respectively. Notice that {[V,, E;ll=4 or 16 by 4.2.

7.1. If Le M*S), then MESD,)={L}.

PROOF. We distinguish two cases.

Case 1: D, =D, Let W=<ZN[V,, E.)Pr>. As [V, EJJL, W is a
nonidentity D;-invariant subgroup of V.. Suppose that 1/ is not normal
in L. Then W=[V,, E;] and, as Cy,z(E)=1, we have V., EL]l=186,
(Wl=4, and |Cw(SND;)|=2. As L=D,xB; and SEN (W), [B;: Ny, (W)
is odd=1 and, moreover, it is not 3 as a Sylow 3-subgroup of L is cyclic.
If t=B;— N5, (W), then WNW*=1 as E,=N,(W? and E; acts irreducibly
on W. Thus, [V;, E.]—{1} is partitioned by five B;-conjugates of W— {1}.
As [Cwz(SNDy)=2 for each z<B;, we conclude that [Cry 5 (SND 1) =6,
which is a contradiction. Therefore,

WJaL.
Consequently, Co(IW)<AL=Ng(W) and so as Cp,(W)=Ce(V,), we have
C:(W)=B;.
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Now, let Ke . HM(SD;) and K= g Je M*(S). Then

W=VgsV,
by 2.2, and so
Co(V)ECe(Va)=Co(W)=B,.

Now, the pair (B,, V.) also satisfies the hypothesis of Section 4 provided
B, has even order. As (|B;|,3)=1, 4.1 and 4.8 show that J(SNB;)=Cs(Vy)
(otherwise, P(B;, V1) is nonempty, a contradiction). Thus, if J(S)=Ce(V,),
then J(S)=J(SNB)=Cs(V,), so J=L by 2.4 and K=Cx(Vy)L=L. There-
fore, assume J(S)ZC4(V,). Then P(J,V,) is nonempty, so ms(V,) =1 and
D,=D, by 4.1 and 43. Let XeSyL(D;). Then as X=K=(JNK)Cs(Vg),
there is a Sylow 3-subgroup Y of J such that X<(YNK)Ce(Vy). As L}
=XC(V;) and E,;=YCs(V,), we have

VV:[IV; X]é[VK: YmK]g[VJ: Y]:[VJ: EJ}

As |[V,,E;ll=4 by 4.2, we conclude that W=[V,, E;]. Therefore, L=
Ne(W)=Ns([Vy, E;)=J and hence K=IL as before. This completes the
proof of 7.1 in Case 1.

Case 2: D;=Dy,. Then [V, E;]=16 by 4.2. Suppose L+ K< M(SD.)
and let K=< ,Je M*S). Then as D, acts irreducibly on [V, £;],

[V, B 1=<ZN[V,, E DPosVesV,
and hence
Ce(V)=Co(VR)=Co((V,, E D=L

This yields that J# L as K=Co(Vx)J. As me(V,)=2 by choice of D, and
4.3, we have mg(V,)=1 by 3.4 and hence D,=D; by 4.3. Let XeSyL(D.)
and YeSyl(D,). As XS K=(JNK)Cs(Vx), there is a Sylow 5-subgroup F
of J such that X=(FNK)Cs(Vy). Thus,

Vi, B1=1Vy, By, X[V, FNKI=[V,, F.

As J=D,xB,, we havelY, F']=Cy(V,) and so F normalizes both [V,, Y]
and Cy (Y). As E;=YCu(V,), we have V,=[V,, Y]IxCy (Y) and [V, Y
=4 by 4.2. Thus, we conclude that [V,, F']=Cy (Y), and so

Y=ColVy, FH=Co((Ve, ELD=L.

However, this shows that SD,=SYC,(V,)=< L, which contradicts what we
have proved in Case 1. This completes the proof of 7.1.

Now, let NAQKEW=He M) and H= oM H*(S). Henceforth,
we fix such H and M, and denote Vy, Qu, Dy, Ey, and By by V,Q, D, E,
and B, respectively. Furthermore, we define C=C,(Z).
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1

2. The following conditions hold.
1) V=[V,E].

2) 1VI=ICASND)I*=4 or 16.

3) NLQEESN=M (in fact, H=M).

o~ e

PrROOF. (1) First of all, V=[V,E]xCy(E), so we have to prove
Cy(EhY=1. If Cy(E)=1l, then C(E)=C,(E)NZ(S)+1. As SD=SE=
Co(CL(E)=C and HM(SD)={M} by 7.1, we conclude that C<M. But then
G=M by 3.3, which is a contradiction.

(2) This follows from 4.2 and (1).

8) As H= M, Vg=V by 2.2. As G=<C,H)> by 3.1 and G+ Ngx(2),
Z#Vy Thus, if {VI=4 then Vy=V and H=N;(Vy)=N(V)=M. If |V]
=16, then mgs(V)=2 by 4.2 and (1), and so H=M by 3.4.

73. D=D,

PROOF. We assume D=D, and argue for a contradiction. As |V|=16
by 7.2, M is isomorphic to a subgroup of GL.,(2). As the centralizer of
every involution in GL4(2) has order 2°-3 or 2°-3, we conclude that |B|=1
or 3. Also, |[M/DB|£2 as Out(Dy)=Z, Thus, Syls(M)={E} and SylL(M)
={B}. Now, as V=<Z%), we have Cp(Z)=Cs(V)=Cg(Z). Therefore,
MNC=S8C,(V). Define W=C,(SND). Then |W|=4 by 7.2. As SBEN(W)
and Nz(W)=C4(V), we have N,(W)=SB.

Claim 1: HM*S)={M}). Assume that M= L M*S). As L=<(C.(Z),
NLQKSH)> by 3.1, 7.2 shows that L=<CNL, MNL>. As L#+C by 3.2,
we conclude that MNLLMNC=SC;(V). Therefore, there are p={3,5} and
XeSyl(MNL) such that | XCe(V)/Cs(V)|=p. Now, me(V)=2 by 4.3 and
so, as L# M, me(Vy)=1 by 3.4. Thus, D;=D, and [[V,, E.]l=4 by 4.3
and 4.2.

Assume that p=35. Then XCy(V)=EFE, so V=<(Z*><V, and V=[V, X]
=V, X) As V.=[V,, EL]XCVL(EL) with [[V,, E.]l=4 and [E,, X]<
Cy(V.), we have [V,, X]=Cy (E;) just as in the proof of 7.1. But then
E <Co([(V, XDECAV)EM and SD,=SE, <M, which contradicts 7.1.

Assume, therefore, that p=3. Then XCg(V)=B and so, as Cz(W)=
Cy(Z)y=Cx(V), we have W=<Z®>=<(Z*) and W=[W, Bl=[W, X]. Thus,
W=V, and W[V, X1=[V,, E;], so we have W=[V,, E,], XCo(V,)=E,,
and L=Ns(V,, E.p=Ng(W). Therefore, V,=W. But then L=D,=
SXC;(V ) =(MNL)Cs(Vy), which implies that L= M. With this contra-
diction, we have proved Claim 1.

Claim 2: HM(S)<{M,C, Ng(W)}. Let K= MU(S). Then K=M by
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Claim 1 and so
V—K: <Z;”/I.’\.K> — <ZCMHK)CG<V)>

by 2.2. If MNK=S8C,(V), then Ve=2Z. If MNK<SCy(V) and MNK=SB,
then Vi=<Z8 =W. If ES(MNK)Cx(V), then V=<ZF>=V. Thus, K=
N AV E{NHZ), No(W), M}. If Ny(Z)#C, then Z=W. Therefore, we have
proved Claim 2.

Hereafter, we will frequently use the following fact. If S=EX=Le
HMLS), then O(X)=1. This is because O(X)=CL(O(L))=0(L).

Claim 3 : MES)={M,C}. Assume that N=NgzW) is a member of
HM(S) and N=#C. Then Vy=W and N#SCs(W), so N/Cx(Vyy=Ds As
N= oM by Claim 1, 8 divides |MN\Nj and N is solvable (but Sylow 3-
subgroups of N may not be cyclic). Recall that MNN=SB and so
IM: MNN|=5.

Tet P and F be a Sylow 3-subgroup and a Sylow 5-subgroup of M,
respectively, chosen so that SP, SE, and PF are all subgroups. As
(IM: MNNJ],6)=1, we can choose P and F so that P=<MNN. Then we can
choose TeSylL(N) so that P<T and ST=7TS. As P and F are cyclic,
FAPF and so X=02,(P) acts on F' by conjugation. As the group of order
15 is cyclic, we conclude that [F, X]=1. Now, let Y be a subgroup of
Ny(X) permuting with S. Then 5.1 shows that there is an element K HM(S)
containing F and Y. As F is contained neither in C nor in N, Claim 2
shows K=M, and thus Y=TNM=P.

Assume that 3 divides |N:MNN|. Then TZ£P and so X is not normal
in T. In particular, T is nonabelian and, as Cp(Vy) is a cyclic maximal
subgroup of 7, T has the following presentation

e
eyl

for some integer m=3 [12, Th. 5.4.4]. Let T,=TN0,4(ST). Then {(&’>=
ZT)< T, as Csp(T)=0,4ST). If Z(T) permutes with S, then Z(T)=P
and so X=Z(T), which is a contradiction. Thus, Z(T) does not permute
with S, which shows that Ty# T and T, is abelian of rank 2. As 2(T)=
Z,X Zs, this forces X=T, and so T,<P, which is a contradiction as P is
cyclic. Therefore, (|N: MNNJ, 3)=1.

Now, let p be a prime divisor of |[N:MNN| and pick a Hall {2, p}-
subgroup P* of SC4(Vy) containing S. Let F'* be a Hall {2, 5}-subgroup
of M containing S. As p#3 and both a Sylow p-subgroup of P* and a
Sylow B-subgroup of F* are cyclic, 5.2 shows that there is an element of
M(S) containing P* and F*. This contradicts Claim 2 as CZF*£N and
P*£M. Thus, MES)<{M,C). As C£M by 3.3, we have proved Claim 3.
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Now, we conclude the proof of 7.3. As [M:MNC|=5 or 15 and M(S)
={}M, C}, the argument in the last paragraph shows that |C:MNC| is a
power of 3. Assume |[MNC:S| is divided by p={8,5} and let X, be a
Hall {2, p}-subgroup of MNC containing S. Let X be a Hall {2,5, p}-sub-
group of M containing X,, Xs a Hall {2, 5}-subgroup of X containing S, and
X;, a Hall {5, p}-subgroup of X. Define F=X,NX;, and P=X,NX;,.
Then FeSyl(M), PeSyl,(MNC), F permutes with S, and F centralizes
P,=0,(P) as the group of order 15 is cyclic. Let Y be a Hall {2, 3, p}-
subgroup of C containing X,, and Y, a Hall {2, 8}-subgroup of Y containing
S. Then as PO, (Y)Y by 6.2, Y=Ny(P)Oy(Y) and so Ny (P, contains a
Sylow 3-subgroup 7' of C, which necessarily permutes with S. We can
now use 5.1 and conclude that F and T are contained in some element K
of M(S)={M,C}. However, as F£C and TZM, we have M#=K+C(C, a
contradiction. Therefore, ({MNC:S|,16)=1. Now, let X* be a Hall {2, 5}-
subgroup of M containing S, and T* a Sylow 3-subgroup of C which
permutes with S. Then Y*=SQ,(T* is a subgroup by 6.2. As
(IMNC: S|, 15)=1 and M(S)={M, C}, X* and Y™ satisfy the hypotheses of
5.3 with respect to the common 2-subgroup S. However, |X*:S|=5,
1Y*:8]=8, and Z=<Z(Y™), which is impossible by 5.3. With this contra-
diction, we have established 7.3.

7.4. The following conditions hold.
(1) M/Cx(V)=D,.

2) MNC=SCAV) and |M: MNC|=3.
3 MS)={M,C}.

PrROOF. (1) As D=D; by 7.8, M=DxB and it suffices to prove B=1.
As |VIZ16 by 7.2, M is isomorphic to a subgroup of GL,2). As the
centralizer of every involution in GL.(2) is a {2, 8}-group and as Sylow
3-subgroups of M are cyclic, B is a 2-group. Now, O.(M)=1 by 2.1 and
thus B=1 as required.

(2) This follows from (1) as MZC by 3.2 or 3.3.

(8) Let Ne M(S) and assume NZC. As N=<XCNN, MNN> by 3.1 and
7.2, we have MNNLMNC and so, as MNC=SCy(V) is maximal in M by
(2), we conclude that M=(MNN)Cs(V). This shows M= 5N and so N=M
by the maximality of M. As C£M by 3.3, we have proved HM(S)={M, C}.

75. Let p and r be odd prime divisors of |MNC| and |C: MNC|,
respectively. Then p+vr and o Hall {p, r}-subgroup of C 1is a Frobenius
group whose kernel is a Sylow r-subgroup.
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PROOF. Let X, be a Hall {2, p}-subgroup of MNC containing S, X a
Hall {2, p, r}-subgroup of C containing X,, X, a Hall {2, r}-subgroup of X
containing S, and X,, a Hall {p, #}-subgroup of X. Define P=X,NX,,, and
R=XNX,, Then PeSyl,(MNC), RSyl (C), and R permutes with S.
Recall from 7.4 that [M: MNC{=3. Let Y be a Hall {2, 3, p}-subgroup of
M containing X, and Y, a Hall {2,3}-subgroup of Y containing S. As
POJ(Y)Y<Y by 6.2, we have Y=Ng(P)O(Y) and so Ny, (P) contains a
Sylow 3-subgroup T of M, which necessarily permutes with S and normal-
izes P,=&(P). If R normalizes P, then (R, T) is contained in some
Ke H(S) by 5.1. However, this contradicts 7.4 as RZM and TZC. There-
fore, R does not normalize P,. Then p<r, R<X,,, and P, acts nontrivially
on 2,(K). This implies that X, . is a Frobenius group with kernel E.

7.6. (JC:MNC]|,15)=1.

PROOF. Let E=0,(C) (we retain this notation in the rest of this
section). There are two cases to consider.

Case 1 : RZQ. Then as |S:Q|=2 by 7.4, we have S=QR and so
N (@)= NgS). Recall from Section 2 that M=Ngz@Q)Ce(V). Hence if X
is a Hall {2, 8}-subgroup of Ng(Q) containing S, then [X: XNC|=8 by 7.4.
As Ng(S)ENg(Z)=C by 7.4, we have O,(X)=Q, while O(XNC)=S as
NA{Q)=N(S). Thus, XNC=S and [|X:S8]=3 by 6.2. Now, let r be a
prime divisor of |C: MNC|, and Y, a Sylow r-subgroup of C permuting
with S. Then Y=S%(Y,) is a subgroup by 6.2, and YZLM by 7.5. As
HM(S)={M, C} by 7.4, no nonidentity subgroup of S is normal both in X
and in Y. Thus, we can conclude by 5.8 that =3 or 5, proving 7.6 in
Case 1.

Case 2: R=Q. Let N=N\(MNC)°. Suppose an odd prime p divides
INl, and let PeSyl,(N). Then C=N,(P)N, and so if » is a prime divisor
of |C: MNC| then » divides |Ny(P)|. As this is impossible by 7.5, N must
be a 2-group, which implies that N=ZR.

As REQ=C4(V), we have VC,(R)=Z(R) and so U=<V° is con-
tained in 2,(Z(R)). As REC,(UN)EC(V)YEMNC, the remark in the last
paragraph shows that C.(U)=R. Therefore, m (U)=2 by 2.5. Then by
4.3, C/R has a normal subgroup X/R isomorphic to D;or Dy As X£EMNC
by the last paragraph, we conclude that | X(MNC): MNC|=3 or 5, proving
7.6 in Case 2.

7.7. MNC=S.

PROOF. By 7.5 and 7.6, any prime divisor p» of {MNC: S| must divide
3—1 or 5—1. Therefore, MNC=S.
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7.8. One of the following holds.
1) [M:S|=|C:8{=3.
2) |M:S8|=3 and |C:S|=5.

PROOF. First of all, 74 and 7.7 show that {4/:S|=3. Let r» be a
prime divisor of |C:S] and pick a Sylow s-subgroup X, of C permuting
with S. Define X=0,(X,)S. Then X is a subgroup by 6.2, and X£M by
75 or 7.7. So, as M< H(S), no nonidentity subgroup of S is normal both
in M and in X, and we can appeal to 5.3. Let S*=(SNOMNENOCH(X)),
M*=0%M)S*, and X*=0XX)S*. Then (M*, X*) is of G4(2)'-type or Mg
type or *F,(2)-type, and consequently, #=3 or 5. If =3 then the number
n of the noncentral 2-chief factors of # is clearly equal to 2, while if
r=5 then n=4 by 5.4. This implies that |[C:S}| is a power of », so
OX)=R (=0,{C)) and (X, )R<C by 6.2. Now, as X*<X, we may
deduce as follows:

[R, ()]s RNX*=0y(X"),
LR, 0*(X)]=[R, 0%(X), O*(X)]=[0X7), O((X)],
[0:(X7), O(X*)]=[R, O(X)]=[E, O(2:(X,)R)].

This shows that Y=[0,(X*), O3(X*)] is normal in C. Now, |V : Y} =16 by
5.5. Therefore, Y does not admit a nontrivial automorphism of order #?
and it follows that [C:S|=7r.

7.9. (SNOHMNENOHCH)=S.

PROOF. Suppose false. Then M and C, respectively, have subgroups
M, and C, of index 2 such that SNM,=SNC,. Now, N (S)SMNNZ) by
7.2 and, in particular, M and C are the only elements of M9 UC? that
contain S. Therefore, M and C control fusion in S (in the usual sense) by
3.3, and so SNG =SSN M, by the focal subgroup theorem. This contradicts
the simplicity of G.

7.10. G=Gu(2) or 2.

PROOF. Tirst of all, no nonidentity subgroup of S is normal in M and
C as CLM. So by 7.8, 7.9, and 5.3, (M, C) is of Gu(2)'-type or My,-type or
Fy(2)'-type.

Case 1: (M, C) is of G,(2)'-type. Then by 5.4, G satisfies the hypoth-
esis of Fong’s theorem [13, Th. 2], and therefore G=G,(2).

Case 2: (M, C) is of My-type. Then S has the presentation given in
5.4 and, in particular, S contains a self-centralizing cyeclic subgroup Y of
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order 8 all of whose generators are conjugate in S (let, say, Y={ed)> in
the notation of 5.4). Also, S has a noncentral involution x such that
Col)£Q° for any c¢eC. We wish to show that xz does not fuse to the
central involution of S. Suppose it does, and let Cs(x) < T <=SylL(Cy(x)).
Then TeBylL(G) and SNT=Cs(x). As MSUC? controls Sylow 2-inter-
sections in G by 8.3, there are Sylow 2-subgroups S, S, -, S, of G and
elements X, -+, X, of M®UC® such that S,=S, S,=7T, <S;i., Sp=X;
(1=i=n), and Cs(x)=8; (1=1=n). We may assume S, #S; and X, +X,
for each 4. Thus, S, . NS;=0(X;). As Cg(x)Z£Q, we have X,=C and so
Cs(x)<R. Hence, n=2 and if S;=S° (¢=C) then X,=M°. However, this
shows Cg(x)=Q° a contradiction. So x does not fuse to the central involu-
tion of S, as desired. Now, we appeal to a theorem of Brauer and Fong
[14] and conclude that G=M,, (we can alternatively appeal to a theorem
of W.J. Wong [19] after determining the structure of C and showing that
G has precisely two classes of involutions). However, M, is eliminated
because it is not of characteristic 2 type.

Case 3: (M, C) is of "Fy(2)'-type. Then by 5.4, G satisfies the hypoth-
esis of Parrott’s theorem [15], and therefore G=*F,(2).

7.10 completes the proof of the main theorem of this paper.
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Added in proof.

Recently, it has been shown that the method of [9] yields a result
stronger than is stated in Section 5. By the result, we can significantly
improve Section 7; we can avoid using Glauberman’s theorem [8] and
shorten the proofs of 7.3 and 7.5-7.8. For details, the reader is referred to

Gomi, K. and Y. Tanaka, On pairs of groups having a common 2-subgroup of odd
indices, to appear in Sci. Papers College Arts and Sciences Univ. Tokyo.



