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§1. Introduction.

Let M be a compact connected smooth manifold. It is known that
there are certain constraints on the topological or differential structure
of M if M admits a non-trivial action of a compact connected Lie group.
Some of these constraints have similar feature to those arising from
the positivity of curvature in a vague sense; cf. [2, 6, 16]. In this paper
we shall pursue investigations in this direction.

We restrict our attention to actions of the circle group S* on M
with non-empty fixed point set consisting of only isolated points. A
complex line bundle ¢ on M with a compatible S™action will be ecalled
fine if the restrictions of £ at the fixed points are mutually distinct
S'-modules. It will be called quasi-ample if it is fine and e¢,(g)"#0
where dim M=2n. Quasi-ample line bundle may be regarded as an
analogue of ample line bundle in algebraic geometry. We are mainly
interested in the case where M is an almost complex manifold such
that ¢,(M)=k.c, (&) where k,>0 and ¢ is quasi-ample. It will be shown
in Theorem 5.1 that the inequalities k,<n-+1=<y(M) hold where ¥(M)
denotes the Euler characteristic of M. The extreme case ky=n-+1=
%(M) is most interesting. In this case it is shown in Theorem 5.7
that the action resembles linear action on complex projective space.
This theorem and Corollary 5.9 can be regarded as an analogue of
Kobayashi-Ochiai’s theorem in [14]. In a parallel direction with Kobayashi-
Ochiai’s theorem the case k,=m is also treated in Theorem 6.1, Corollary
6.3, Theorem 6.17 and Corollary 6.30.

These main theorems are derived in part from Theorem 4.2 which
exhibits certain relations between the tangential representations and
the restrictions of ¢ at the fixed points. It is formulated for unitary
manifolds and it can partly be generalized to Spin® manifolds; ef.
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Theorem 7.3.2. It is particularly useful in the case n+1=%(M); we
shall return to this subject in a subsequent paper.

The paper is organized as follows. In §2 we recollect basic materials
concerning wunitary S>-manifolds. Proposition 2.11 is important for
applications to almost complex manifolds. In §3 we introduce fine and
quasi-ample line bundles and discuss their main properties. Special
feature of the case n-+1=y(M) is stated in Corollary 3.15 which is a
consequence of Proposition 3.14 due to Masuda. In §4 we prove Theorem
4.2. §5 and §6 are devoted to the study of almost complex manifolds
with ky=n-+1=%x(M) and k,=n (UM)=<n+2). In §7 various remarks
are added.

Results of the present paper were summarized in [9].

§2. Preliminary results on unitary S'-manifolds.

This section is devoted to recalling basic materials needed later
and stating some preliminary results which emerge more or less directly
from those materials. Since we are mainly interested in unitary mani-
folds and especially in almost complex manifolds throughout this paper
we shall give statements only for unitary manifolds. Modifications
needed for Spin®-manifolds will be summarized in §7.

Let M be a connected closed smooth S'-manifold which has only
isolated fixed points. It is well known that the Euler characteristic
of M, denoted by x(M), equals the number of fixed points. We shall
assume that there is at least a fixed point and hence ¥(M)>0. Then
the dimension of M is necessarily even, for the tangent space at a fixed
point has a complex structure determined by the isotropy representation
of St. Note that the above complex structure is not canonical. However
it is the case if M is unitary S-manifold. A C= manifold endowed
with a eomplex veector bundle structure on the stable tangent bundle
(respectively on the tangent bundle) is called unitary (respectively
almost complex) manifold. If a Lie group G acts smoothly on a unitary
(respectively almost complex) manifold M and if the differential of each
element of G preserves the given complex vector bundle structure then
M will be called unitary (respectively almost complex) G-manifold. If
M is a unitary S-manifold and P is an isolated fixed point then, by
definition, S* acts linearly on the complex vector space W=T.MPBR’
for some non-negative integer | and R’ coincides with the complex
linear subspace of fixed vectors. Thus W/R' is a complex S'-module
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without trivial factor and W/R' is isomorphic to T,M as real vector
space. This defines a canonical complex structure on the tangent space
T-M.,

A unitary manifold M is oriented in the following way. Let z(M)
denote the tangent bundle and suppose there is given a complex vector
bundle structure on z(M)PlI where 1§ denotes the product bundle
MxR'. Then t{M)&I6 is oriented as complex vector bundle and I8 is
also oriented in the usual way. These orientation induces an orientation
of 7(M). Now suppose that M is a unitary S*-manifold and P is an
isolated fixed point. The tangent space T,M has two orientations;
namely one induced from the orientation of M and the other induced
by the complex structure. We shall set

egP)=+1 or -1

according as these two orientations coincide or not. The following
lemma is obvious,

LEMMA 2.1. If M is an almost complex S-manifold and P is an
1solated fixed point, then we have

e(P)=+1.

One of our main tools is the localization theorem for K, -theory.
Since we deals mainly with S*-actions having only isolated fixed points
on unitary manifolds we shall formulate it only in that case. The
character ring R(S') of the group S' is identified with the Laurent
polynomial ring Z[¢, t7'] where ¢ denotes the standard 1-dimensional
S'-module. Let S denote the multiplicatively closed subset consisting
of the elements of the form

II (1— 1)

where the product is a finite produet taken over a set of non-zero
integers m;. If X isan S'-space then Ku(X) is an R(S")-module. There-
fore we can consider the localization of Ku(X) by S which we shall
denote by S-'Ku(X). Note that R(SY) is canonically embedded in
ST R(SY.

Let M be a connected closed unitary S*-manifold whose fixed points
are all isolated and let P, -+, P, (y=x(M)) be the fixed points. Then,
as noted before, the tangent space T, M at P, is a complex S-module
without trivial factor so that it can be expressed in the form
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TpM=3 t"k, dim M=2n,
k=1

where m,, are non-zero integers. These m,, will be called the weights
of M at P, We formulate the localization theorem in the following
way.

THEOREM 2.2 ([3,7]). Let M be as above and let f, denote the
inclusion of P, into M. Then

25 ST Ka(M) — 3 ST Ka(P)
s an isomorphism and the inverse is given by

N Su(vy)
2T R

where f;, is the Gysin homomorphism of f.

Note. We define the K-theory Euler class of a complex line bundle
& to be 1—¢7'. The Thom isomorphism and the Gysin homomorphism
are defined accordingly. This convention has the advantage that p,(1)
evaluated at ¢=1 equals the Todd genus T[M] of M where p: M—P
(a point); ef. Corollary 2.3 and [4].

For a point P we have a canonical identification Ku(P)=R(S").
From the definition of the sign ¢,=&(P,) it is easy to see that

pre fu: R(SHY=Ku(P,) — Ku(P)=R(S"
coincides with the multiplication by &, Hence we obtain

COROLLARY 2.3. Let M be as above. Then, for ve Ka(M), the value
p:(v) e R(SHYCTSR(S") can be expressed as

&t (v)
PO G

Note. In the almost complex case, all signs ¢, are equal to -+1.

We apply Corollary 2.3 to elements in Ku(M) arising from the
tangent bundle. Let 7;: Kx(X)— Ky X) be the operation introduced by
Grothendieck (cf. [1]) where ) is an indeterminate. If ¢is a G complex
line bundle then
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YE—1)=14+(—1)r.

Let M be as before together with a complex vector bundle structure
on t(M)Bl6. If we put

@.4) v= 7;<(7:(M)69l¢9)* —%( 2+ z>> e Kou(M)
then we have

2.5) fr@ =S @) )
k
=TI A — (1 —t"™E)),
k

We set

p;=the number of {k; m,,>0}
for 1=7=<y and, in the almost complex case,

p,=the number of {i; p,=q}
for 0=qg=n.

PROPOSITION 2.6. Let M be as above. Then the following relation
holds:

gleﬂﬁl(l fmir > ; E(1—N)Pi(—n)" 7

=35 (L) (=),

In particular, in the almost complex case,

S () =2 e =0 =0,

1 t"”zk
and moreover we have On—q= 04

ProOF. We apply Corollary 2.3 to » given in (2.4). Using (2.5)
we have

3 eI (s ) =) € RISI= 21, ¢.

=1
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We regard each summand k,(¢) =11, /(1 —¢"™#*)—\) as a rational function
of t. It is easy to see that at t=o and t=0 h,(t) takes finite values

h(0) = (L= A= r)rs
B0 = (L =N~ 0.
Thus the sum 3 ¢&h,(t) takes finite values
Sed=n)r(—A)P at t=oo
> (l—n)ri( =) at t=0.

But 3] ¢h.(t)=p.(v) is a Laurent polynomial in ¢ which takes finite values
at t=co and t=0. Therefore it must be a constant and the values at
t=rco and at t=0 must coincide. Moreover we can substitute ¢ for ¢
to get the same constant. This proves the first part.

In the almost complex case all sign ¢, are equal to +1. Thus the
constant takes the form

20, =N (=0 =23 0, (LN (—M)"
From this it follows also that o,_,=p,. Q.E.D.

Comparing the coefficients of A7 in the relation in Proposition 2.6
we can get identities involving elementary symmetric functions of
A —gma)? ... (1—¢m=)"t, In particular we have

COROLLARY 2.7. The following relations hold:

n—p;
2.8 Sira e (2)==e("7)

2.9)

D=2 &(n—mp,) :———————<22€i)n

ik 1

In the almost complex case these reduce to

@2.8) 1,
gﬂ(l——tmik) On=0

and

(2.9) Sl o3 pq="4,
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REMARK 2.10. (2.8) is the constant term in the expression of Prop-
osition 2.7 and hence is equal to p,(1). It follows from Note after

Theorem 2.2 that
T[M1=zei(p“)=28,-(”‘p").
n n

In the almost complex case we have
T[M]:(On:loo-

In particular, T[M] is non-negative in the almost complex case. The
formula (2.8) is due to Kosniowski [15] in the holomorphic case; cf. also
[10].

PROPOSITION 2.11. Let M be an almost complex S-manifold. Sup-
pose that the fixed points are all isolated. If {my} are the weights of
M at the fived point P, then for each mom-zero integer m the mumber
of (i, k) such that m,,=m and the number of (i, k) such that m,=—m
are equal. In particular we have

2 My =0
i,k
and ny, must be even.

Proor. This follows easily from (2.9) by looking at the poles and
their multiplicities of the left hand side. Q.E.D.

By a similar argument we obtain the following

PROPOSITION 2.12. Let M be a unitary S-manifold having only
isolated fized points. Then for each positive integer m the mumber of
(t, k) such that [m,l=m is even. In particular

> mu=0 mod 2.
i,k
Finally by the Atiyah-Singer theorem [4] we have the following
expression of the signature of M.

PrOPOSITION 2.13. Let M be a unitary S-manifold with only iso-
lated fixed points. Then

: _ 14-¢me
Sign M—Zi] & I;,I T
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§3. Quasi-ample line bundles.

In this section M will always denote a connected closed smooth S'-
manifold which has only isolated fixed points. We assume that x(M)>
0 as in §2.

Let £ be a complex line bundle over M. ¢ will be called admissible
if the S* action on M can be lifted to an action on & making ¢ an §*
complex line bundle. It is known [11] that ¢ is admissible if and only
if its first Chern class c¢/(&) lies in the image of the natural homo-
morphism

Hu(M; Z)— HM; Z).

We shall denote by ad H*(M) the image of the homomorphism and
call its elements also admissible. Let ES' be the universal S' bundle.
Then, the fibration

M- M. — BS,
where Mu=FES'x M, induces an exact sequence
(3.1) 0— H¥BSY; Z)— H4(M; Z) — ad HX (M) — 0.

This follows from the Serre spectral sequence of the fibration and the
fact that the fibration admits a cross-section since the action has a
fixed point. The exact sequence (3.1) means that the liftings of the
given S' action on M to an admissible line bundle ¢ are parametrized
by H*BSY; Z)=Z, cf. [11].

Note that if M’ is an S*-invariant submanifold, then, for any
admissible line bundle &, its restriction &M’ to M’ is also admissible.
It is also easy to see that if M is a unitary S'-manifold with only
isolated fixed points then ¢,(M)e H¥M; Z) is admissible.

LeMMA 3.2. Let xcad HX (M) and 2’ € HX(M; Z) be such that x=kx’
Sfor some non-zero integer k. Then 2’ also belongs to ad H¥(M). In par-
ticular the torsion subgroup of HXM; Z) is contained in ad H*(M).

Proor. This immediately follows from the fact that the module
ad H*(M) coincides with the kernel of

dy: H(M; Z) — H*BS*; H\(M; Z))=H'(M; Z)
and the module H*(M; Z) is torsion-free. Q.E.D.
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COROLLARY 3.3. Assume M is o unitary S-manifold. If xe
HM; Z) satisfies the relation

.(M)=Ekx mod torsion
Jor some integer k=0, then xecad HXM).

Let {P}&., x=x(M), be the fixed points. If 7 is an S* complex line
bundle whose underlying bundle is &, the restriction of 7 at each point
P; determines a complex S'-module which is of the form

NP,=t%, a,c6Z

where ¢ is the standard 1-dimensional S*-module. The integer a, will
be called the weight of ¢ at P,. If 7 also corresponds to & then by
(3.1) we see that

7/|Pz-=t“i+“

for some integer a. Thus, strictly speaking, the set of weights {a,} of
£ is determined only up to addition of simultaneous constant a.

PROPOSITION 3.4. Let M be an 2n-dimensional unitary S-manifold
having only isolated fixed points and & an admissible line bundle over
M. We take n and {a;} as above. Then, we have

la; ‘
¥ T S A ¢

Sfor any integer 1, where {m,}r., are the weights of M at the fixed points
P, for each 1.

PrOOF. 7 belongs to K,(M). We apply Corollary 2.3 to ' and get

S i e =) € RS)= 211, 7], QED.

PRrROPOSITION 3.5. Let M and & be as in Proposition 3.4. If the
wetghts {a;} of & are mutually distinct then the inequality n-+1=y(M)
must hold.

Proor. Take any fixed point P, and consider the element

v=TI (1—77't%) € Ku(D).
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Then, f#(v)=0 for all 7 other than ¢. Hence

J];It (1 _—t““i'*'“j)— Z .
5im—fx('v) e Z[t, t7].

But this implies the number of factors in the numerator is not less

than that of the denominator. Hence y—1=n.

LeMMA 3.6. Let M and & be as in Proposition 3.4.
sequence of s integers ¢, -+, ¢, with s=n, we have

r(11 (1—77‘1t°f>>}t=1={§"[M] ;{ ZiZ

where x=c, (&) € H(M; Z).

ProorF. We consider the commutative diagram

Ko(M) 25 Z1t, 1]

1T

KM 2 z

Q.E.D.
Then, for any

where » and 7’ are induced by the inclusion {¢}-—S* and +' coincides
with the evaluation at t=1. TUsing this and the Atiyah-Singer formula

it follows that

PAIL L=7t)em=pir LA —774)
=p(1—¢)
=7 (M)ch(1—[M]

where 7 (M) is the Todd class of M. But the lowest term of
T (M)ch(1—&7')° equals 2° and gives z"[M] or 0 according to s=mu or

s>n if evaluated on the fundamental class [M].

Using the set of weights {a,} of & we put

Py —&W

Q.E.D.

for each 7. Since @,(t ™) =p,(I1;.. (1—77t*)), Pt) belongs to Z[t, t7'].
These functions will play an important role in the sequel.
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ProrosiTIiON 3.7. If n-+1=yx(M), then

D= ;}i(ai_aj) ey
P )-&——W—x[ |

Jor all 1.

PRrROOF. Since

Pt =p(IL Q-7
J#i
we have
P(L)=x"[M]
by Lemma 3.6. On the other hand, it is easy to see that

e g(ai_ay’)
?4( )—eiw-

COROLLARY 3.8. If 20 then n+1=Yy. Moreover, under the as-
sumption n-+1=y, the condition x*+#0 holds if and only if the a, are
mutually distinct.

Proor. Assume that 2°+0 and y<n-+1. We shall show the g,
are mutually distinet; this contradicts Proposition 3.5. Clearly we may
agssume 2=<7y. Taking two distinet fixed points P, and P,, we apply
Lemma 3.6 to

FO=p(A—ytey o0 T (1 —y7t79))
and get f(1)=2"[M]=0. But
(1_t"'i1_“i)"_(l“1) H (1__t“j_“i)

fo=s ma e

Hence a; must be different from other a;. This proves the first state-
ment. The second statement follows easily from Proposition 3.7.
Q.E.D.

DEFINITION 3.9. Let M be a connected closed smooth S*-manifold
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of dimension 2n with non-empty fixed point set consisting of only iso-
lated points. An admissible complex line bundle & over M will be called
fine if the weights a, are mutually distinet. It will be called quasi-
ample if it is fine and ¢,(&)"#0. Note that if M is unitary S*-manifold
and n+1=y(M) then a fine line bundle is necessarily quasi-ample by
Corollary 3.8.

A typical example of quasi-ample line bundle is the hyperplane
bundle (dual bundle of the Hopf bundle) over n-dimensional complex
projective space CP" with a linear action having only isolated fixed
points. In fact, if b, ---, b, are mutually distinet integers then the
St-action on CP™ given by

(3.10) 220 2y v 0y 2=, 00, 202,], 2€S*CC
has isolated fixed points
P,=l0,...,0,1,0,+--,0] (1 at 2-th factor; 0=i=n).

Moreover if ¢ is the hyperplane bundle then its point (of the total space)
is represented as [z, -, 2,, w] with relation

[azo; cee, 07y, aw]:[zoy tt oty Ry w] a+#0.
Thus we can lift the action to ¢ by the formula
Z[ZO’ tt vy Ry w]:[zbozw Tty zbnzm w]

and with this lifting the weight of ¢ at P, is a,=—b,.
We also note here that the weights of CP* with the above S-
action at P, are given by

3.11) {mu}= {ai“ag‘}jﬂ-

PROPOSITION 3.12. Let M be a smooth S-manifold as in Definition
3.9 and let & be a fine line bundle over M. Then there is a canonical
ring isomorphism

S Ku(M)= S‘lR(S‘)[p]/jf[zl (pt=ei—1)

where 7 is an S'-line bundle obtained by lifting the action of S* on &

and
P, =t%.

ProOOF. Let f;: P,— M denote the inclusion. Since f(I]; (% —1))=
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0 for all ¢+ and 3. f¥ is an isomorphism by the localization theorem,
we get a commutative diagram

A=S R(SH[7YTL (gt~ —1) —> S-Ku(M)

\50 :l *
\\' = Zfz
> STIR(SY.
It suffices to prove @ is an isomorphism. For that purpose we set
IL (1—nt=*)
e, =2 e STR(SYH[7]

COTL (-t
and define a homomorphism : >, STR(SH—A4 by

P((v)) =2 vee, .

Using the fact fi(e;)=0d,; we see easily that @oqr is the identity map.
In particular + is monic.

On the other hand, any element we A can be written uniquely as
a polynomial A(%) of degree y—1 with coefficients in S—*R(S!). This
polynomial k(%) is characterized by

Mt ) =v, =1, -, %.

But 4((v;)) is such a polynomial and hence must coincides with A(x).
This proves + is epic. Thus 4 and consequently ¢ are isomorphisms.
Q.E.D.

Let S denote the set of elements in HX(pt; Z) of the form ma’
with m==0 and v=1 and let S H¥(pt; Z) denote the localization. Then
by a similar argument we obtain the following.

PRrROPOSITION 3.13. Under the same assumption as in Proposition
3.12 there is a canowical isomorphism

STHEM; Z)=S"Hu(pt; Z)[y]/T] (y—a,0)
where y=c,(n) € Hu(M; Z) and a=c,(t) € Hi(pt; Z)=H*BS'; Z).

Note. y maps into x=c,(£) under the canonical homomorphism; cf.
3.1).

If n+1=y there is a more precise result about H#u(M; Z) due to
Masuda [17].
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ProOPOSITION 3.14. Let M and & be as above. We assume moreover
n-+1=%. Then there is a canonical ring isomorphism

H:(M; Q)/H4(pt; Q)-torsion= H(pt; Qlyl/11 (¥y—a.).

Proor. Hu(M; Q) divided by H¥%(pt; Q)-torsion is isomorphic to its
image in ST'H%(M; @). Let u be an element in that image. By Prop-
osition 3.13 we may assume that the degree of u is 2¢ and u is of
the form

U=C 0 T Y+ Y Cu @Y s g, YT
with ¢+7=<y—1=n and ¢;€Q. Then we have
o uy q+r)__C ar+qyn (q+r)+ +cq+ryn.

This equality holds not only in S H(M; Q) but in H:(M; Q) since Hi (M)
is isomorphic to X, H5:(P,) which is Hk%(pt)-torsion free prov1ded that
s=2n=dim M; cf. [5].

Thus we can restrict the above equality to the ordinary cohomology.
Assume now >0 and ¢,.,#0. Since o maps to zero by that restriction
we get

0 = Cq+,.’)0n.

Since n+1=y, the line bundle & is quasi-ample, i.e. "0 by Corollary
3.8. Thus we must have ¢,..,=0 contradicting the assumption. It
follows u is of the form

U=C* + Y+ - eyl
This shows that u belongs to Hi(pt; @yl/II (v —a.). Q.E.D.

COROLLARY 8.15. Let M be as above with n+1=y. If M admits
a quasi-ample line bundle then the image of

sk
ad H (M) = Ha(M; 2)/Tm Ha(pt; Z) =05 S Hi(P; 2)/4= 244
is infinite cyclic where 4 denotes the diagonal.

ProoF. The image of the composite homomorphism

sk
L(M; Q) — STHL(M; @) 255 3, S H3(P; @)= @
has dimension two and is generated by 3. ff(%) and 3. f¥(«a) by Prop-
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osition 8.14. Since 3. f*(a) is nothing but (a, -, @) e 4 the image
of Hu(M; Q) in X, S7H%W(M; Q)/4 has dimension 1. This implies the
statement of Corollary 3.15. Q.E.D.

Note that the homomorphism ad H¥(M) - Z of Corollary 3.15 assigns
to z the weights (a,) of the corresponding line bundle ¢ with (& =u.
Corollary 3.15 implies that the weights are either mutually distinet or
all equal.

DEFINITION. An S'-manifold satisfying the conditions of Corollary
3.15 will be said to have property P. Let M be an Simanifold having
property P. A sequence (a,) € Z* will be called basic if it generates
the image of ad H*(M) in Z*/4. Thus any sequence (¢,) € Z* in the image
of ad H*(M) is uniquely written in the form

(3.16) c;=ka,+d for all ¢

with k), de Z. An element xcad HXM) will be called basic if it maps
to a basic sequence.

If, moreover, M is a unitary S'-manifold then ¢(M) is admissible
and the corresponding sequence is (3, m,,) where {m,} are weights of
M at P, Thus if M is an S'-manifold having property P then there
are integers k, and d such that

3.17) Sima—=ka,+d for all ¢
&

where (a,) is a basic sequence. In this case we shall make convention
to choose basic sequence so that k,=0.

When n+1<y, not every xzcad HXM) is related to the tangent
bundle of M like (3.17) even with rational coefficients. Let M be a
unitary S*-manifold and ¢ an admissible line bundle over M. We shall
say ¢ or its Chern class x=c,(¢) satisfies the condition D if there exist
integers k, 20 and d such that the relation (3.17) holds for any i where
a; is the weight of ¢ at P,.

PROPOSITION 3.18. Let M be a unitary S-manifold having only
1solated fixed points. If xe H¥M; Z) is fine and such that e(M)=Fkx
mod torsion for some k,€ Z then x satisfies the condition D.

PROOF. By definition ¢,(M)=c,(c(M)EPIF) for some .

Therefore
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ex(M)=c(A"(z(M)DIF)) , N=dime(c(M)DIO).

Let £ be a line bundle with ¢,(¢&)=x. Since ¢,(M) =k mod torsion we
have

A (T (M)DIY) =8"¢,

for some line bundle & such that g'=1 for some k. By Lemma 3.2
the action on M can be lifted to £ and ¢&. Let % and 7, be S* line
bundles with some lifted actions. Then, as S* line bundles,

A (T(M) +16)=nrnt¥

for some d’e Z; ef. (8.1) and [11].

We now claim that »,=t* for some d, as elements of ST Ku(M).
In fact p'=t* for some A’. Applying f* we see f*(p)*=t" in Z[t, t™']
for all 7. This implies that f*(»)=t% in Z[¢, ¢7'] for all . Since 3 f*
is monic we have

n=t4 in ST Ka(M).
Hence, setting d=d'+d,,
AY(M)PlLo)y=n"t* in S Ka(M).
Taking fF on both sides we get
> mg=ka,+d. Q.E.D.

LEMMA 3.19. Let M an almost complex S'-manifold and & an
admissible line bundle satisfying the condition D. Then, in (3.17),

(8.20) d=—F s,
pé
so that we have
zk‘;mzk“—‘%z (@;—a;)  for all <.

Proor. By Proposition 2.11 3>, ,m4;=0. On the other hand it
follows from (3.17) that

kaik:k()zai‘{‘dx.

Hence k, >, a;,+dy=0. Q.E.D.
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PRrOPOSITION 3.21. Let M be a wunitary S-manifold having only
1solated fixed points. If c¢ (M) is a torsion element then

T[M]=0.

PrOOF. If the action has no fixed points then T[M], which is
equal to p,(1) evaluated at ¢=1, vanishes by Theorem 2.2 (without
assuming ¢, (M) is torsion element). Suppose the action has a fixed
point. By Proposition 3.18 (in which we can take %,=0) we have

(3.22) > my=d.

On the other hand, if we assume T[M]+0 then, by Remark 2.10, there
exist 4, and 4, such that p, =n, p,=0. This means that m ;>0 for all
k and m,, <0 for all k. Therefore

2imy>0 and > m,, <0.
This contradicts (3.22). Q.E.D.

REMARK. The Todd genus T for 2n-dimensional unitary manifold
with n odd is divisible by ¢; ef. [18]. Thus, if » is odd T[M]=0
whenever ¢,(M) is a torsion element.

§4. The functions @,(t).

Throughout this section M will be a connected closed unitary S:-
manifold of dimension 2n having only isolated fixed points {P;}-,, x=
%(M)>0. Let {m;} be weights of M around P,, Moreover we suppose
there is given a fine complex line bundle £ over M. As before we set

4.1 D8 =¢,! A=) Z[t, t]
. (6= L,L_____e , =1,
(4.1) ( ¢ ];I(]- k)

The main goal of this section is to prove

THEOREM 4.2. Under the above situation there exists o wunique
sequence 1(t), ri(t), -+, r,_.(t) of elements of Z[t, t7'] such that

@) =rt) +r )t 4 - o Fry_ (E)EF Jor all 7.

Moreover these r(t) sutisfy the following properties;
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(1) 70(t>:T[M]:zei<pi>:z‘si(n_pi> .
" n

(2) If ¢ satisfies the vroperty
D: ;mik:koai—{—d for all 4

where k,=0, then k<.
(3) In (2) if k>0 then, setting l,=y—k, we have
r(t)=0 Jor all s>1,,
and
Trms(D) =(=1D)F @) 2% for s=l,.
In particular
7, (8) = (= 1)F g =@tz
where r,=1r,t).

(4) In 2), if k=0 then r,=0

and
Ty (8= (= 1)1 p (1@ Ze Jor 1Z=s=y-—1.
Note. If M is an almost complex S'-manifold then
__k l,
d=—22>a; and d+> ;=23 a;
X X
by (3.20).

PrOOF. By Proposition 3.12 and Theorem 2.2 there exists a unique
element

9(7]; t) = To(t) + 7’1@)7] Freee+ 71—1(t)7]z_1
in ST Ka(M)=S"R(SH[5]/TI}; (pt~%—1) such that
T, ) =2.(8).
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Explicitly g(x, t) is given by

=SB o
g, 1)= > W@z(

3#5

as in the proof of Proposition 8.12. Expanding with respect to » and
substituting the expression (4.1) of ®,(t) we obtain

&; Z t_(“i1+"'+“is)

4.3 st =(—1) 1< g Sy E 0
4.3) r(t)=(-1'% K=

eSZ[t, t7'], s=0,1,---,%x—1.

We need to prove r,(t) actually belongs to Z[¢, {7]. Equivalently we
shall show that

(4.3 Fy(t)=7,(t™)
g, s faiteetegs
—(—1)® Fy< o<y dy#i
R | [

[

belongs to Z[t, t7*].
Comparing the expression (4.3) with Corollary 2.3 we see that it
suffices to show the following

ASSERTION 4.4. For each s=0, -++, y—1 there exists an element
k(n, tye ZIt, t7, 1] such that

fg:(ksO?, t)) :j . Z et

ver g dyti

for any i where [k, (m,t) means k(t%, t)ye Z[t, t7']. Then, F(t) s
given by

(4.5) 7(0) =(=1yp:(k,(1, 1)).

It is easy to show by calculation that if we define k,(%,t) in-
ductively by the following formula (4.6) then it has desired prop-
erty.

(4.6) k(n, =1
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k0, )= (1% =)+~ 17

ks(y]’. 12 :’_ <§<5(t“i1—~77)- e (t¥s—17)

¢ (x—1—<s~—»>>
y=1 v

(_”)vks—v(777 t)
for 0=s<y—1. This proves Assertion 4.4 and hence »(t) e Z[t, t7'].
To proceed further it is convenient to use another sequence of

polynomials k%, t), - - -, k,_,(n, t) satisfying (4.5). For that purpose we
note the following identity

feirt e — tzaj(t—ai S t‘(“i1+"'+“i1-—1~s)>,

9y < <Tged, #1 J1<e Iy gy

Hence, if we set

(4.7) R0, )=k (7", t™ € Z[t, t7, 7]
and
(4.8) k(n, t)=t=%( " hy_,_ (), 1)) € Z[t, 17, 7]

then we have

f;{(Es("?, t)) = Z {oigtee e
§1<ere<dgid,#t
and

(4.5) F(t) =(—1ypu(ke,(7, 1))
Note. k,(n,t) and k,(7, t) give the same element in SKu(M).
We need the following

ASSERTION 4.9. k7, t) is a polynomial of N7t with coefficients in
Z[t, t7'] of degree Y—s and without constant term. Moreover the
coefficient of 7~ in k,n, t) is equal to

— (=1, o=s=y—1

In fact, k,(n, t) is a polynomial of 7 of degree s and the coefficient
of 7° is equal to

) (e (e
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as is easily seen from (4.6). Hence 55(77, t) is a polynomial of xn™' of
degree 1+ —1—s=y—s without constant term and the coefficient of
7% is equal to

tZaj(_ l)x-l—s
by (4.7) and (4.8).
Now we shall prove (1) of Theorem 4.2. By (4.6)

— . _ _ &;
FO=plon, )=p (=5 g,

Then Corollary 2.7 and Note after Theorem 2.2 imply

To(t)= T[M]:Z‘Sl(iZ) zzsi (n—pz>

In particular 7,(t) is a constant and hence r,(t)=7(¢).
To prove (2) and (3) assume the relation
S M=k +d, for all 7
holds with %,=0. We shall first show the following
ASSERTION 4.10. If k,>0, then

gtk gt r
K — ) — 0
ZIkI (I —tm) ZH (I—t7m)

k

Jor 0<k<k,

To prove this we may replace ¢ by some power & (r=0). This
corresponds to taking the r-fold covering action of the given S' action
on M; i.e. geS" acts on xe M by gz. With this replacement m,, and
a; get multiplied by » simultaneously. Similarly we may replace the
a; by a;+a. This corresponds to taking another lifting action to &.
With this understood we replace ¢t by t* if necessary and may assume
that %, divides d. Then, by replacing @, by a,+a for some a, we may
assume d=0,i.e.

(4.11) Ek_]mikzkoai for all 7.

We set
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tk“i

h(t)=—r——.
L (-t
If 0<k<k, then we see easily by using (4.11) that the rational function
h.(t) takes value 0 at t=0 and t=co. Then the sum > ¢h,(t) is a Laurent
polynomial which takes value 0 at t=0 and t=c. Hence >} ¢h,(t) must
vanish identically. This proves Assertion 4.10. By Assertion 4.10 we
have

(=0 for 0<k<k,.
Hence, by Assertion 4.9, we have

(kL (n, £)=0

for y—s<k,i.e. l,=)—k,<s. From this and (4.5) we have 7,(t)=0
and r,({t)=7,(t")=0 for [,<s. This proves the first statement of (3).

Assume moreover that y<k, Then »(t)=0 for s=0,1, --., 1—1
and hence @,(t)=0. But on the other hand

e
@i(t)—5¢m¢ .

This contradiction proves (2).
Next we shall prove the rest of (3) and (4). Setting l,=x—Fk, and
using the property D we get

Pt = (— D ()T,
Therefore, by the first part of (3),
(412)  mEER R EIEO ey ()
= (= 1) E Ea (py(8) + 1y ()% 4 - - - 1y (O oy (8)89%)

for all 4 in case k,>0. In case k,=0 these identities also hold provided
that we make convention that r,(t)=ry(t)=0.

We first consider the case k,>0. Since the number of identities
is ¥ and it is not less than [,+1 which is equal to the number of
terms 1, t%, -« -, t9%, the coefficients of each ¢*** at the both sides must
coincide. Hence we get

Promd7) = (— 1) ()55,

If k,=0, then »,=T[M]=0 by (1) and Proposition 3.21. By con-
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vention 7,(t)=0. Thus, by the same argument as above comparing the
coefficients of %, we get

Pyt = (= 1)1 (F) 842, 1ss=<y—1.
This proves (4) and completes the proof of Theorem 4.2.
REMARK 4.13. In Theorem 4.2, the condition (2) can be replaced by
c.(M)=k.e, (&) mod torsion
in virtue of Proposition 3.18.
REMARK 4.14. We see by simple calculation that

1 I @ —gee9) I (¢t —1)
(4.15) T (@ —¢™w) =0,t" ]__kI @™ 1)

k

where
ve= S @—a)~ B =~ e+ 3 e }
(1)t sgn e 2
i =(—=1F " hsgn E
Il ma
Thus, since @, € Z[¢, t7'], the function
H (tlai—ajl __1)
PO T

is a product of eyclotomic polynomials. If w+1=y%, then, by using
Proposition 3.7, we have

(4.16) @,(t) =sgn{x"[ M])t%pr,(t).

The following Proposition gives a topological meaning of the fune-
tions @,(t).

ProPOSITION 4.17. Let M and & be as in Theorem 4.2. Then

L Tt in STKa()
‘Pi(t) J#i

fuD)=

where fi: Pi— M 1is the inclusion and ()=9,(t™) and P, is equipped
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with the standard unitary structure of a point.

ProoF. Elements of S™Ku(M) are detected by >, fF. Set

L (-7,

:u]- d =
u=fy(1) and w» 7.0 A

If j#1, then we have f}u=0 since f,(1) has support arbitrarily
near P, and we clearly have ffv=0. On the other hand, f¥f,(1) is
the Euler class e¢(v,) of the normal bundle of f,. Hence

Fru=frf.1)=¢, Ik[ (I —¢7me),
while we clearly have
fro=¢, T] (1 —t—m),
k

Thus we have u=v. Q.E.D.

§5. Quasi-ample line bundles and theorems of the Kobayashi-Ochiai
type.

We continue with the assumption on M made in §4. In this section
& will be a quasi-ample line bundle satisfying the condition

D: %mikzkoai-i—d for all 1

with £,20. We notice that if y=n+1 and ¢,(M)"#0 then the unitary
manifold M has property P by Corollary 3.8; in particular the condition
D is satisfied in that case by a basic quasi-ample line bundle ¢.

The main goal of this section is Theorem 5.1 and Theorem 5.7.

THEOREM 5.1. Under the situation as above we have the inequalities
E=n+1Z7.

For the proof of Theorem 5.1 it is convenient of introduce a
generalization of functions @,(¢). Let 4, ---, 7, be mutually distinct
integers, 1=<%,=%. For an admissible line bundle ¢ we set

1__t(liv—a'
Py (t)=2 &; #il‘v’q"is ( J)
1 s " v H (l_tml"k)

E
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Then

Poe =0 T A=77t)

P

and hence ;.. (t)e Z[t, t7'].
Let b, - -+, b, be mutually distinct integers. We set

Fk : s tkbi
bl...bs( ) _é 'ﬁm
J#1

for ke Z.

LEMMA 5.2. T} .., (1) belongs to Z[t, t™*] and satisfies the following
properties.

(1) b5, (B =1,
(2)  Tha®=0 for 0<k<s,
(3) b, (B) = (= 1)1,

k—1
(4) r’:l...bs<1>=<—1>s—1<8_1>.

Proor. Consider the linear S'-action on CP*~* given by
Z[Zl, ) zs] :[zblzly ttty zbszs]-

Then Proposition 3.4 applied to this action shows that I'i ..., (£)=p,(77%) ¢
Z[t, t7']; ef. (3.11). Also, formula (2.8) and Assertion 4.10 applied to
this action yield (1) and (2); in this case 3., (b;—b,)=s(—b,)+3.b; and
hence k,=s. (3) is proved as follows.
T )= =2
byebg —i=1m

J#

— —-1 s—1 S _———
R

= (=1, L, ()
=(—17t2 by (1),

tsbi-t-):j(bj—b,;)

Finally, since I't .., (£)=p,(p*) we have
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T (D=p(gH =7 (CP I} CP]

by the Atiyah-Singer theorem, where «a is the canonical generator of
HYCP**; Z). Thus I'}...,(1) equals the coefficient of a** of the formal

power series
e“""‘< @ )8.
1—e~

By calculation we see it is equal to (—1)“("; :i) Q.E.D.

Note. It is known that
Iz, () =(=1""tip(t)
and

Ik, =00

for k=0 where

oty= 3t

iySeeSip,

There is a proof of these formulae which uses the Atiyah-Singer
formula applied to the above S'-action on CP*,

PROPOSITION 5.3. For a fine line bundle & we have

Pty O = Tot (= D (I 4 1 (DTS, (D) -+ 7O ()

all
where rJt) are those given in Theorem 4.2.
Proor.

1—te7%
Py (t)=Zs & #i“ll’is ( i
1 s =1 ¥ H (1_t""’i,,k>

_ 1
-3 II (-t Pu0)

-1 tkui
7:,(t)

bty

-1
= ST ey (OT(0)
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by Theorem 4.2. We then apply Lemma 5.1 to get the desired form.
Q.E.D.

COROLLARY 5.4. Let & be a fine line bundle satisfying condition
D with k,>0. If s>l,=x—k, then

Py, (O =1
For s=I, we have
Pt (O) =11 — (= Dbon=ig =i i)
where Qy,...;; =254, 000,105

Proor. The first part is clear from Proposition 5.3. For s=I,
using Proposition 5.3 and Theorem 4.2 we see that

Py (O = o+ (= 1)o7y () 1500
— ,,.0{1 + (_ 1)10—1+Z—1—nt—(d+2aj)+Za7;y}
=TO{1—(-—1)k°_""1t"(d+6i1”'is)}.
LEmMMA 5.5. Let ¢ be an admissible line bundle. Then for s=x—n,
we have
@il-nis(l):xn[M]y z=c¢,(8).
Proor. This follows immediately from Lemma 3.6.

PrOOF OF THEOREM 5.1. We have already shown -+ 1<y in Corol-
lary 3.8. Assume now that k,>n+1. Sets=y—n—1. Then s>, and
by Corollary 5.4 we have

Pipeis(E) =70 =Py (1),
But
I (A—tewme)
Gyeeet t = i Chad i
q)l s( ) Zey H(l—tm“‘)

and each summand takes value 0 at t=1 since y—s=n-+1>n. Therefore

re=@;,...;,(1)=0.
Next set s=x—n. Then s>, and by Corollary 5.4 we have
(5‘6) @i,...¢¢(t):7‘0=0.
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But ;... (1)=«"[M] by Lemma 5.5, and z"[M]+#0 because & is quasi-
ample by assumption. This contradicts (5.6). Therefore we must have
ko =n-+1. Q.E.D.

It is natural to investigate first the extremal cases k,=n-+1 and
n+1=y% among the range k,<n-+1=y of Theorem 5.1. Kobayashi-
Ochiai’s theorem [14] tells us that if there is an ample line bundle £ on a
compact complex manifold M of complex dimension » such that ¢,(M)=
(m+1)c.(¢) then M is biholomorphic to CP*. In our context their assump-
tion corresponds to k,=n-+1 (cf. Proposition 3.18) and their conclusion
partly corresponds to n+1=7y%. Unfortunately the author has no way
of proving or disproving this implication ky=n-+1l=n-+1=%. Quasi-
ampleness doesn’t seem strong enough for that purpose; we shall briefly
discuss about this point in §7. However if we assume k,=n+1=%
from the first and add the assumption that M is almost complex then
we can deduce similar conclusions as Kobayashi-Ochiai’s theorem.

THEOREM 5.7. Let M be an almost complex S*-manifold of dimension
2n having only isolated fixed points. Assume ¥(M)=n-+1. If £ is a
quasi-ample line bundle satisfying the condition D with k,=n-+1, then
& 1s mecessarily basic and the weights of M at each fixed point P, are
given by

{mat={a:—a;};s.
Moreover M is unitary cobordant to CP*. In particular we have
TIM]=1.
Furthermore we have x*[M]=1 where x=c,(&).

COROLLARY 5.8. Let M be an almost complex S*-manifold of
dimension 2n having property P and let xead H(M) be such that
2" =0 and

a(M)=mn+1x mod torsion.
Then the same conclusion as in Theorem 5.7 hold.

COROLLARY 5.9. Let M be an almost complexr S-manifold (having
only isolated fixed points) of dimension 2n which has the same cohomol-
ogy ring over the rationals as CP*. Let x be a generator of H¥M; Z)
mod torsion. If
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a(M)=mn+1x mod torsion
then

C(M)$(1+x)"+l mod torsion.
Moreover x"[M]=1.

The rest of this section is devoted to the proofs of Theorem 5.7,
Corollary 5.8 and Corollary 5.9.

First we notice that if the manifold M has property P and quasi-
ample line bundle & satisfies the condition D with k,=n-+1 then g is
necessarily basic. For otherwise we would have

2ima=ka;+d
k

for a basic sequence {a;} and with k>k,=n+1, contradicting Theorem
5.1.

Hereafter we shall assume M has property P and £ is a quasi-ample
line bundle such that

Smy=ka,+d for all <.
We set z=c¢,(¢) and K=2a"[M].
LEmmaA 5.10. If ky=n+1 then K==%1 and
2,0 =T[M]=K.
In particular, in the almost complex case, we have
e,1)=T[M]=1.
Proor. By (1) and (8) of Theorem 4.2 we have
P () =r,=T[M].
Then, using Proposition 8.7, we get
PH=p(1)=K.

Comparing this with (4.16) in Remark 4.14 in which 4r,(t) is a product
of cyclotomic polynomials, we have

P(t)=sgn K.
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Hence K=sgn K and K must be equal to K=x1. If M is almost
complex, then T[M]=0 by Remark 2.10. Hence K=T[M] must be equal
to 1. Q.E.D.

REMARK. Using Remark 4.14 we can see that the algebraic con-
dition “@,(t)=1 for all i” is equivalent to the following three conditions

(5.11) {imil}={la;—a;};»c  for all 4,
(6.12) ;mikzzmi—aj) for all ¢ (.e. k,=n+1),
(5.13) g, sgn IkI my=sgn [] (a¢;—a;) for all 1.

2

Therefore the conclusion of Theorem 5.7 states more than “@,(t)=1 for
all 77,

Note. In the almost complex case, (5.13) reduces to
(5.13) sgn JT ma=sgn [] (@;—aj).
FE=A

Musin [19] announced Theorem 5.7 in a somewhat weaker form.
But there seems to be a gap in his proof. His proof seems to show
only @,t)=1. Also he states the theorem in the unitary category.
But in some places he seems to work in the almost complex category
forgetting the signs ¢,

LEMMA 5.14. Suppose that the condition (5.11) is satisfied. Then
K==+1 and I, and d+3.a; are both even. Moreover 7,(t)=0 for s =+
1./2) and

@z(t> — Kt(loai— (d+Zu_,,') }/2.

Note. In the almost complex case we know that d+>la;=
(l/m+1) D a;. Hence (I,/2(n+1))ia;€Z.

Proor. K=:1 follows from Proposition 38.7. Then, by (4.15) in
Remark 4.14 we have

@, (t) =sgn KtZ@ime)—2mirl2
— Kt”o‘zi—(d+2a5))/2

Here {la,—d+>. a)}2eZ.
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Assume [, is odd. Since r;,_,(1)=7,1) by Theorem 4.2 we have
E1=K=2(r 1)+ +7,_,(1) € 2Z.

This is a contraction. Hence [, must be even. Therefore d+ 3 a; also
must be even. Thus we have an expression

P,(t)y=sgn Kt~ = /2lei/2,
Comparing this with Theorem 4.2 we see that

r{&)=0 for s;é-%-

and
712(t) =sgn Kt~ 9+, Q.E.D.

COROLLARY 5.15. Suppose that the condition (5.11) is satisfied. If,
moreover, T[M]+#0 then ky=n-+1. In particular, in the almost complex
case, if 0,(=p0,)#0 then ky=n-+1.

PrROOF. 7,=T[M]+#0 by Remark 2.10 and Theorem 4.2. Therefore
(1,/2)=0, i.e. ky=n-+1. Q.E.D.

Let Z,cS' be the subgroup of the m-th roots of unity. Each
connected component X of the fixed point set of the restricted Z,-
action is also a unitary S-manifold; it is almost complex Si-manifold
when M is so. We shall only consider a component X which contains
a fixed point P, of the given Sl-action.

LeEMMA 5.16. Let m and X be as above and assume dim X>0. If
the condition (5.11) is satisfied for M then X has property P and also
satisfies the condition (5.11) with respect to &|X. Moreover if P,e X
then the fixed points lying in X are exactly those P, such that

J
a;—a;=0 mod m.

PROOF. We set 2n'=dim X and ¥'=%(X). Let P,e X. We denote
by X the number of P;e M such that ¢,—a,;=0 mod m.
Obviously £|X is a fine line bundle over X. Hence

(5.17) n+1Zy
by Corollary 3.8.
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If P, P;e X then 7P, and 7|P; are equivalent as Z,-module since
7| X is a Z,-line bundle over a connected trivial Z,-space X. Hence
a;—a;=0 mod m. This implies that

(5.18) Y=

On the other hand the weights of X at P, are exactly those m;
which are divisible by m. Since (5.11) is satisfied this implies that
(5.19) n'=¥—1.
Combining (5.17), (5.18) and (5.19) we see that n'+1=%"=X. Q.E.D.

We now proceed to the proof of Theorem 5.7. Thus M will be an
almost complex S-manifold having property P and & will be a quasi-
ample line bundle such that

(5.20) Simg=2,(a,—a;) for all 1.

Recall that the condition (5.11) is satisfled by virtue of Lemma 5.10.
For each fixed point P, we set
A,={a;—a; a,—a;=m, for some weight m}
BZ:{a‘i—aj}j¢i_Ai'

LeEMMA 5.21. A, and B, have the following properties:
(5.22) {my} is the disjoint union of A, and {—(a;—a;); a;—a; € B,
(5.23) > (a;—a;)=0,

a;~aj€B;
(5.24) the cardinality of B, is even and #2.

Proor. (5.22) follows easily from the definition of A, and B;. By
the assumption (5.20) we have

>, (ai—aj)+ > (a'i_a'j):zlmik-

a;—a;E€4; a;—a;eB;

From (5.22) it follows that
> (ai—a’j>— >, (ai—a,-)=2 Mg

a;—aje4d; a;—ajeB;

From these two relations we obtain (5.23). The first part of (5.24)
follows from (5.13).
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Finally assume that B; has exactly two elements a,—a; and a;— Q.
Then by (5.23) we have

ai—aj'= "“(G/i"‘a]‘).

But then (5.11) implies one of them must coincide with some m,, and
hence it belongs to 4,. This is a contradiction. Hence the cardinality
of B, can not be 2. Q.E.D.

The conclusion to be proven is the claim that B,=¢ for all j.
Numbering the fixed points as P, ---, P, so that

a’0<a’l< e <an——1<an)

we shall prove that claim by induction starting from B, down to B;
we might proceed also by induction starting from B, up to B,.

The claim clearly holds for n=1 by (5.20) or (5.24). Thus we assume
n>1 and the claim is true for manifolds of complex dimension less
than =. '

Claim (n): B,=©.
This is clear from (5.23) because a,—a,;>0 for all j=n.

Claim (n—1): B, ,=@.

We devide into two cases ¢,—a,_,=1 and a,—a,_,>1. First suppose
a,—a,,=1 and B, ,#@. Since a, ,—a,>0 for all j<n—1, the only
negative element in B,_, is a,_,—a, and there are at least three ele-
ments in B,_, by (6.24). Thus

> (a;—a)>0.
ai-—ajeBi
But this contradicts (5.23). Hence B,_,=@. Next suppose m=a,—a,_,
>1 and B, ,#@. Let X be the component of the fixed point set of
the restricted Z,-action which contains P,. By Lemma 5.16 X has
property P and satisfies (5.11) and P,_,€ X. Moreover the fact B,=Q
implies all the weights of X at P, are positive. Therefore if we denote
by {m(X)}C{m,} the weights of X at P,c X then, by virtue of (3.17),
we have an expression

_ k(X .
%mzk(X)—m P%X(ai a;), k(X)=0,

where (a;) are basic sequence for X and 2n(X)=dim X. Also a, can be
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written in the form
(5.25) a,=ha;+a for all 4.

Now the fact B,=¢ implies m,,>0 for all k£, and hence m,,(X)>0. So
we can apply Corollary 5.15 to X and get k(X)=n(X)+1 i.e.
Sma(X)= 3 (ai—aj).

PjeXx

Then by dimensional induction assumption applied on X we have
{mu(X)}={a;~ a;’}j#i‘

Comparing this with (5.11), (5.20) and (5.25) we see h=1 in (6.25), an
hence :

(5.26) {ma (X} ={a:—a5izipsex-

This in particular implies that a,_,—a,€ 4,_,. Since all other a,_,—a;
are positive we must have B, =@ by (5.23).

Claim (n—2): B,,=@.

It suffices to show that a, .,—a,, ¢, ,—@,,€A,,. For then we
should have B, ,=@ by (5.28). Let m=a,—a,_, and let X be the com-
ponent of the fixed point set of the restricted Z_-action containing P,.
Then by the same argument as above we see that P, ;€ X and (5.26)
is satisfied for this X. Thus in particular a, .,—a,€ 4, ..

Next we put m=a,_,—a,, First consider the case m>1. Let X
be the component of the fixed point set of the restricted Z,-action
containing P,_,. X has property P and satisfies the condition (5.11)
and P, ,€ X by Lemma 5.16. If P,e€X then the same argument as
above using B,=@ shows that (5.26) holds and a,,—a, €A, If
P, ¢ X, then using B, ,=Q we see that all the m,_,(X) are positive.
Hence by a similar argument as above we obtain (5.26) and in particular
@y o— A, | € A, .

Next assume a,_,—a, .=1. Since we have proven a, ,—a,€ A, ,,
only possible negative elements in B, is @, ,—@a,,=—1. But then
@, .—a, € B, , would contradicts (5.24). Thus a, ,~@a,_,€A4,.,. This
completes the proof of Claim (n—2).

Now we assume inductively that B,=@ for j>s. Then it is clear
now that we can prove that

Gy Qpy Ag— Dy, ** (1/3"‘(1/3+16As
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and hence B,=¢ by using similar arguments as above. This completes
the proof of the main conclusion of Theorem 5.7.

The fact T[M]=1 is proved in Lemma 5.10. It remains to prove
that M is unitary cobordant to CP®. That amounts to show that M
has the same Chern numbers as CP". Let s=(s, -, s, ---) be the
sequence of indeterminates s,, We define an operation A, on Ku(M)
(and K(M)) by setting

MO=T] L+se+sG++++)

for a complex vector bundle {=(---@, which is a sum of line
bundles £, «-+,{,. Then it is clear that the Chern numbers of M can
be recovered from

pl(ks(T(M))) € Z[Sly Sgy * ']y
where p: K(M)—Z. But if we denote by p%: Ku(M)— Z[t, t™] the
equivariant Gysin homomorphism then

(6.27) DOz (M))) = DY M2 (M)}
1;[ (L -st™ik 4 st mik 4o o 0 ‘

S | (e

k

i=1

Since the weights {m,}={a,—a;},;.; are the same as CP* by (3.11) we
get

DMz (M))) = D:(M((CP™))).

Hence M has the same Chern numbers as CP*. This completes the
proof of Theorem 5.7.

Corollary 5.8 follows from Theorem 5.7 and Proposition 3.18.

To prove Corollary 5.9 we first note that z belongs to ad HXM)
since H'(M; Z)=0 by assumption (c¢f. [11]) and « is necessarily basic.
Then, by Corollary 5.8, M has the same Chern numbers as CP* and
2" [M]=1. On the other hand M has the same rational cohomology
ring as CP" by assumption. It is easy to see from these facts that
the Chern classes of M are formally same as those of CP”, that is,

e(M)=1+2z)""* mod torsion.
This completes the proof.
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§6. Quasi-ample line bundles and theorems of the Kobayashi-Ochiai
type (continued).

Kobayashi-Ochiai [14] proved that if there is an ample line bundle ¢
over a compact complex manifold M of complex dimension » such that
c.(M)=mnc, () then M is biholomorphic to the complex quadric @,. We
shall give analogous theorems in our context.

We take the following model of @, defined by the equation

2@+ +2,2,1,,=0 when = is even
and
Ryt 2y 2t 2t =0 when = is odd

in the (m+1)-dimensional complex projective space CP**'. Set h=[n/2]
and let b, b, +-+, b, be mutually distinct integers. We define an §*
action on @, by

— b, —b, b —b
220 2y * 0 0y Buy Bari] =[2%020, 270, <0 v, 2002, 27002,,]
when n is even,

and

— [ b —b b —b
Z[Zo, iyttt Ry zn+l] —[z 0% 870y vty BOM2y_yy B2y, zn+1]
when # is odd.

The fixed points are all isolated and given by
p,=[0,---,0,1,0,---,0] (1 at 4-th factor)

where 0<i<n-+1 when n is even and 0=<7=<n when % is odd. It follows
that %(Q.)=n-+2 when % is even and ¥(Q,)=n+1 when » is odd.

Let ¢ be the restriction of the hyperplane bundle on CP™** to @,.
We lift the S*-action on @, to & as in Section 3. The weight a, of ¢
at P, is given by

Ay; = —b;, azj+1=bj 0=5=h)
and the weights of M at P, are
(ma)={a;—a;};ss, 0=Zi=m+1, when = is even,

and
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{ma}t={a;—a};ssrU{a}, 0=i<n, when = is odd,

where for each 7 we set

, {t+1 when ¢ is even
1=, ..
t—1 when % is odd.

Note that ¢ is characterized by the relation
a;+a,;=0.

Returning to our context, M will be a connected closed unitary
manifold having only isolated fixed points P, ----P, (x>0) and ¢ will
be a quasi-ample line bundle over M satisfying condition

D: Ymu=ka,+d for all ¢

as before. The following is an analogue of Kobayashi-Ochiai’s theorem
for odd n.

THEOREM 6.1. Suppose M is an almost complex S-manifold of
dimension 2n and Y=n+1. If k,=n then n is necessarily odd and ¢
18 basic provided n>1. Moreover once {a;} are normalized to fulfil
>.a,;=0 then for each i there exists a umique i’ such that a,+a,=0
and the weights {m;} at P, are given by

{may={a;—a}ze0 U{as} .

The almost complex manifold M is unitary cobordant to Q,. Further-
more we have x"[M]=2 where x=c,(&).

COROLLARY 6.2, Let M be an almost complex manifold of dimension
2n having property P and let x<ad HX (M) be such that x*+0 and

o(M)y=nx mod torsion.

Then the same conclusions as Theorem 6.1 hold.

COROLLARY 6.3. Let M be an almost complex S-manifold (having
only tisolated fixed points) of dimension 2n which has the same ra-
tional cohomology ring as CP". Let x be a generator of H*M; Z)
mod torsion. If

o(M)y=nx mod torsion
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then m is mecessarily an odd integer>1 and

e(M)=1+2z)""*1+2x)"" mod torsion.
Moreover x*[M]=2.

The proof is preceded by several lemmas. For these lemmas M
will be a unitary S-manifold of dimension 2x having property P and
¢ a quasi-ample line bundle satisfying the condition D. We set x=c,(&)
and K=x"[M] as before.

LeMMA 6.4. If k,=n then
P (t)=sgn K1+1t%) for all 1
provided that we normalize the a, so that
d+>.a;=0.

In particular, r,=T[M]=sgn K and K==2. Moreover none of the a,
can be zero. In the almost complex case we have

@ B)=1-+t% for all 1
and K=2, T[M]=1.

Note. If we replace a, by a,+a simultaneously then d+3} a; gets
replaced by d+3 a;+l,a where [,=n-+1—Fk, as before. Hence in case
[,>0 we can normalize so that d+3),a;=0 by taking [-fold covering
action if necessary. Notice [,=1 in the present case k,=n. Moreover
notice that if ¢,=1 for all ¢ then d+> a;=(,/(n+1)) > a;.

ProoOF. Suppose k,=n. Then by Theorem 4.2 we have
o) =rd+t%), r.=T[M]
and also by Remark 4.14 we have
P(t)=sgn Kt"y(t)

where () is a product of cyclotomic polynomials. Thus we must have
r,=sgn K and

K=p,(1)=2r,=2sgn K.
Therefore K==+2.
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Assume that a,=0 for some i. Then, for that 7, we have
2=0"i4,(0)

which is a contradiction because +,(f) is a product of cyclotomic
polynomials. Q.E.D.

LeMMA 6.5. Suppose that k,=n. If we nmormalize the a, so that
d+>,a;=0 then, for each 1, there exists a unique %' such that

a;,+a, =0,

Moreover the weights {m,} at P, satisfy the following conditions:

(6.6) {[mik]}={lai—aji}j$i,i’ U {lail} Jor all 1
and
6.7) (sgn K)e, sgn 1;[ My =S8N I;Ii (a;—a;) Sor all 1.

Note. In the almost complex case, (6.7) reduces to

6.7) sgn II! ma=sgn ] (a,—a;).

J#T

Proor. From Lemma 6.4 it follows that

HO)  n ke
51———"”— =8sgn a4 .
a9

Noting that a,#0 we see that
(1—t%) ] (A —¢%%)

EE
(A—=) I (1=t

==+1,

Hence

(6.8) 2a,|=la;,—al for some ¢’
and we have

(6.9) {lmal}={lac—a,l}sz0 U{lad}
Note that (6.8) is equivalent to either

6.8 2a0,=a,—a;, ie a,=-—a,
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or
(6.8)" 2a,= —(a,—a;), ie. a,=3a,.

We claim that there exists a unique 7" such that (6.8) holds. We
prove this by descending induction on absolute values [a,;/. If |a,)=
max{la,;}, then (6.8)” can not occur. For otherwise we would have a
contradiction

|ay|=3la,|>max {ja,l}.

Therefore ¢/ which satisfies (6.8) must be unique and (6.8)" holds.

Assume that for each a; with [a]>]|a,| there exists a (necessarily)
unique 7’ such that a;=—a; but (6.8 does not hold for ¢’ which
satisfies (6.8). Then a,=3a, by (6.8)".

Set m=2la,]. Let X be the component of the fixed point set of
the restricted Z,-action containing P,. If we put dim X=2n' then »’
equals the number of those m,, which are divisible by m; hence, by
(6.9), n’ is equal to the number of j+#7 such that m divides a,—a;.
On the other hand if we put ¥’ =%(X) then »'+1<y by Corollary 3.8 and
moreover m divides a,—a; if P;e X. Therefore we see that n'+1=Y’
and P; belongs to X if and only if m devides a,—a;. In particular P, e X.

We now count the number o of m; which are weights of X and
such that |m;|=m. First take j=i,1,4”. Note that a,=3a, and
as+a,=0. Then the number of m, such that |m,l=m and that
of m,, such that |m;,|=m are equal by virtue of (6.9) and the fact
that a;,=—a;. Next the number of m,, such that [m,,|=m is greater
by one than that of mj, such that |m,=m because there is a
weight m,;, such that |m,,|=|a,—a,] while there is no ¢; with a;,=—a;
(we note again that a,=—a,). Finally there are no weights mg
such that jm;|=m by virtue of (6.9). Therefore the total number p
is odd. But this contradicts Proposition 2.12. Hence there must be
¢ satisfying (6.8).

Once the above claim is proven then (6.6) follows from (6.9). On
the other hand (6.7) follows from Remark 4.14. As for (6.7) we use
the fact K=2 which is proved in Lemma 6.4. Q.E.D.

LEMMA 6.10. Suppose that for each i there exists a unique 1’ such
that a,=—a, and the condition (6.6) is satisfied. Then K=12 and
l,—1 and d+3,a; are both even. Moreover r,(t)=0 for s#(1/2)(l,—1),
1/2)(1,+1) and
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Pu(t)=sgn Kt-odonen(] 4 gor),

Proor. Kz +2 follows from Proposition 3.7. Then by (4.15) in
Remark 4.14 we have

@,(ty=sgn Kt{lbai*idi|—<‘1+Z“:i”/2(1-*—t}“i‘)
=ggn Ktitoaei—dliz(] 4 goi) |
Here (1/2){(l,—1)a,—d} e Z. _
We shall prove that [,—1 is even; then automatically d would be
even. For that purpose we may assume all the «, are even by taking

double covering action if necessary. Then d must be even. Setting
a;=2¢; we can write @,(t) as

(6.11) @,(t)=sgn Kt'd/z(t‘lo—l)éi + t<lo+1>%‘).
On the other hand by Theorem 4.2 we have
?’1(15) =7r,+ rrl(t)tn,; + ’}”Q(t)t“i e /,-lo(t)tﬂoci

where

Prgeo) = (052 = (1314,

Comparing this with (6.11) we see that I, is odd. Moreover we see
that »,(8)=0 for s={,—1)/2, (I,+1)/2 and

T ap-02(8) =7 p40.(L) =sgn K=, Q.E.D.

COROLLARY 6.12. In Lemma 6.10 if we assume moreover that
TIM]+#0 then l,=1 i.e. ky=n. In particular, in the almost complex
case, if p,(=p,)#0 then k,=mn.

Proor. Since r,=T[M]+#0 we must have [,—1=0. Q.E.D.

LeMMA 6.18. We continue with the situation of Lemma 6.10. Let
X be a component of the restricted Z,-action which contains a fixed
point P; of the given S'-action where m is an integer>1. We set
dim X=2n" and y(X)=y'. We assume n'>0. Then X is of one of the
following three types:

(1) o'=w"+1 and (5.11) is satisfied.

(i1) ¢'=x"+1 and (6.6) is satisfied.

(iit) y'=w'+2 and

(6.14) {lmikl}:{Iai_ajl}j¢i,i',Pj€X Jor all Pe X.
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Moreover m 1s even in case (iil) and if X' is the component of Z,-
action containing X where m=2m' then X' is of type (ii).

Proor. Let P,e X. %' is equal to the number of k such that
m||mal. Note that |my=la,~a, for 71,7 or |mui=la,|. We divide
into three cases:

(i) ml2a,.

(ii) mla,.

(iil) mi2a; but mia,.

By a similar argument as in the proof of Lemma 5.16 we see easily
that in case (i) ¥'=#'+1 and (56.11) is satisfied while in case (ii) ¥’ =
n'+1 and (6.6) is satisfied.

In case (iii) we see similarly that the absolute values of weights
of X at P, are

W:{{ai—aji; J#1, 7, ml xa’i_a?‘[}

and #’ is the cardinality of W. Note that if |a,—a,| € W then {a;,—ay e W
where a;,= —a;. There are two possibilities: ¥'=n"+2o0r ¥'=n"+1. Note
that y'=='+2 if and only if all the P, such that m|{a,—a;| belong to X.
Assume that ¥'=n’+1. Then there exists just one P; (which may
be P,) which does not belong to X but m|la,—a,;. Let X’ be the
component of the fixed point set of the restricted Z,-action containing
this P;. By the same reasoning as for P, we see that y(X")=n"+2 or
2 XY=n"+1. Moreover if ¥(X")=n'+2 then P, must belong to X’ which
is absurd. If %(X")=w'+1then P, is the only P, such that m||a;—~a,
or equivalently ml la,—a.] and k+#j. Since XN X' is empty this implies
that X={P;} which contradicts the assumption dim X>0. Therefore
¥’ must equal n'+2. Moreover (6.14) follows from the form of W.
Finally, in case (iii), it is clear that m can be written as m=2m'
and m’ divides a,. Moreover the component of the fixed point of
Z,~action containing X is of type (ii). Q.E.D.

We are now ready to prove Theorem 6.1. The proof will proceed
in a manner parallel to that of Theorem 5.7. Thus we shall only give
a sketeh of proof and mainly stress the points where we need modi-
fications or additional arguments.

So suppose M satisfies all the assumptions of Theorem 6.1. In
particular we are in the almost complex case. By Lemmas 6.4 and
6.5 n is necessarily odd and K=2. Assume that ¢ is not basic. Then
there are integers r>1 and d, such that
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a;,=ra;+d,
for any ¢ where {a;} is a basic sequence. Then
> mg=nra;+d,

and nr<n+1 by Theorem 5.1. This is impossible for »>1. Thus ¢
is basic provided n>1.

We normalize {a;} so that > a,=0. Then since we are in the almost
complex case, d+>, a;=(,/(n+1)) 3 a;=0 and, by Lemma 6.5, there
exists a unique ¢’ for each 4 such that a,——a,, We denote by A,
the subset of

Ci={a;,— @5}z U}

consisting of those a,—a; (or a,) which are equal to some m,. Note
that this definition is licit since a;,—a;+#a;—a; if j+#k and a,—a;#a,.
We also set B,=C,—A,. B, satisfies the following conditions:

(6.15) 2, =0,
¢k € By
(6.16) the cardinality of B, is even and =2,

The proof is similar to that of (5.23) and (5.24).

We shall prove B,=¢ for all . We proceed by induction on n=
(1/2)dim M. We know = is odd. Setting 2h=#n+1 we rename the fixed
points as P, -+, P, P_,, ---, P_, so that

a,>--+>a, and a_,=—a,.

Note that 2"= —4¢ with this renaming.

The case n=1 is clear from (6.16). We assume n>1 and the state-
ment is true for manifolds of complex dimension less than #. The
proof will proceed by descending induction starting from P, down to
P,, then by ascending induction starting from P_, up to P_,.

Claim (h): B,=@.
This is clear from (6.15) because ¢, >0 for all k; cf. proof of Claim
(n) in §5.

Claim (h—1): B, .= Q.

We devide into two cases a,—a,_ <2 and a,~a;_.>2. Ifa,—a, =
1 or 2 then a,_,—a,€ A4,_, by virtue of (6.16) and then B, ,=@ by
virtue of (6.15); cf. proof of Claim (n—1) in §5.
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Assume m=qa,—a,_,>2. We consider the component X of the
fixed point set of the restricted Z,-action containing P,. By Lemma
6.13 three types are possible for X. If X is of type (i) then, by using the
fact B,=@ and Corollary 5.15, we see that k(X)=n(X)+1. We then
- apply Theorem 5.7 to conclude that a, ,—a,<€A4,_,. Since a,_,—a, is
the only negative element in C,_, the set B,_, must be empty by (6.15).

If X is of type (ii) then we deduce that ky(X)=n(X) from the fact
B,= and Corollary 6.12 in a similar way to the proof of Theorem
5.7.. Then from the dimensional induction assumption applied to X it
follows that a, ,—a,c 4, , and hence B, ,= Q.

If X is of type (iii) then we replace X by X’ described in Lemma
6.13 which is of type (ii). Then by the same argument as above we
see B,_,=@. Thus Claim (h—1) is proved.

We now assume inductively that B;=@ for j>s=1. Then we show

Qg —Cpy Bs—Qp_gy ***y By—Qyyy eAs

by similar arguments to those used in the proof of Theorem 5.7.
Namely assuming inductively we have proved a,—a;c 4, for j>s we
set m=a,—a,. In case m=1 or 2 we use (6.16) to deduce a,—a, € A4,.
In case m>2 we consider the component X of the fixed point set the
restricted Z,_-action containing P,. If X is of type (iii) then we
replace it by X’ of type (ii) given in Lemma 6.13. Then using all
the induction assumptions applied on X (or X’) and using Theorem
5.7 in case X is of type (i) we deduce that a,—a, € 4, in a similar
manner to the proof of Claim (h—1).

The proof of the fact B;=@ for j<O0 is entirely similar. We start
from j=—h and proceed by induction.

Finally we see that M is unitary cobordant to @, by a similar
argument to the proof of Theorem 5.7 using (5.27). The relevant fact
is that the weights {m,)} of M are the same as that of @, with the
standard action. This completes the proof of Theorem 6.1.

Corollary 6.2 follows from Theorem 6.1 and Proposition 8.18.

Corollary 6.3 is a consequence of the fact that x belongs to ad H* (M)
and M has the same Chern number as @, and z*[M]=2. Note that
@, has the same rational cohomology ring as CP* when % is odd and
2"[Q,]=2 for a suitable generator z’ € H¥Q,; Z). Moreover

Q=1+ (1+22")"

Then it is easily seen the Chern classes of M are formally same as
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those of @,. This completes the proof of Corollary 6.3.
We turn to the case where x=n+2 and k,==. In this case [ =
1—k,=2. Hence

POy =r,+r (E)t% 4 r,(t)t2 for all 4.

THEOREM 6.17. Suppose M is an almost complex S-manifold of
dimension 2n and Y=n+2. If k,=n and r,(t)=0 then n is necessarily
even and & is basic. Moreover once {a,} are normalized to fulfil 3 a,=
0 then for each © there exists a unique i’ such that a,+a,=0 and the
wetghts {m;} at P, are given by

{m}={a, —aj}j#i,i"

The almost complex manifold M is unitary cobordant to Q,. Further-
more we have x"[M]|=2 where x=c,(&).

REMARK 6.18. The condition k,=n can be replaced by the following:
There exists a fine xcad H*M) such that

¢{M)=nx mod torsion.

The proof of Theorem 6.17 is almost parallel to that of Theorem
6.1. So we shall only give indication. Instead of Lemmas 6.4, 6.5, 6.10,
Corollary 6.12, Lemma 6.13 we use the following lemmas. Let M be
a unitary S'-manifold of dimension 2n and & a quasi-ample line bundle
satisfying the condition D. We set z=c¢,(¢) and K=z"[M].

LemmaA 6.19. If y=n+2, k,=n and »,(t)=0 then
P (t)=sgn K(1—1t*) Jor all 4
provided that we normalize the a, so that
d+> a;=0.

In particular r,=T[M]=sgn K and K==x2. Moreover none of the a,
can be zero. In the almost complex case we have

@,(t)=1—t" for all 4
and K=2. T[M]=1.

LeMMA 6.20. Suppose that x=n-+2 and k,=n. If we normalize the
a; so that d+>, a;=0 then, for each i, there exists a unique i’ such that
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a;+a,=0. Moreover the weights {m,} satisfy the following conditions

(6.21) {Imik!}2=1:{lai—a'jl}j$i,i’ Jor all 1,
and
(6.22) (sgn K)¢, sgn IkI My, =SEN 1; (@;—a;) Jor all 1.

LEMMA 6.238. Suppose that y=n-+2 and that there exists i’ for each
i such that a,=—a; and (6.21) is satisfied. Then l, and d+3a; are
both even. Moreover r,(t)=0 for s#l,/2—1,1,/2 and

Pyt) = - A Eep M lDei(]  ges),

COROLLARY 6.24. In Lemma 6.23 if we assume moreover that
TIM]#0 then l,=2 i.e. k,=mn, and r,()=0. In particular, in the almost
complex case, if 0,(=0,)+#0 then k,=n and r()=0.

LEMMA 6.25. We continue with the sittuation of Lemma 6.23. Let
X be a component of the fixed point set of the wrestricted Z,,-action
containing a fixed point P, of the given S'-action. We set dim X=2n'
and YUX)=y'. We assume n'>0. Then X is either of the following
two types:

(1) ¢'=n"+1 and (6.11) is satisfied.

(ii) ¥'=n"+2 and (6.21) is satisfied.

First we prove Lemma 6.19. If x=n+2, k=% and d+>,a;=0
then by Theorem 4.2 we have

@,(t) =r(1—1E29).
From this and Remark 4.14 we see that r,=+1. On the other hand
K=¢,(1)=2r,
by Proposition 5.3 and Lemma 5.5 for i1%=4. Therefore
K==+2 and T[M]=r,=sgnkK.

This completes the proof of Lemma 6.19.
The proof of Lemma 6.20 is similar to that of Lemma 6.5. From
Lemma 6.19 we see that
TL (A —t=m)
izt ==+1.

(I—g=) [T (A —tm)
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Hence it follows that for each ¢ there exists ¢’ such that 2/a,|=|a,—a,|
and

{lmzk{} = {[a/t'—aj[}j¢,;,.,;l.

To show that there exists a unique 4’ for each ¢ such that a,=—a, we
can argue in an entirely similar manner to the argument used in the
proof of Lemma 6.5.

The proof of Lemma 6.23 and Corollary 6.24 is similar to that of
Lemma 6.10 and Corollary 6.12.

To prove Lemma 6.25 we devide into two cases: (i) m}2a, and (ii)
m|2a;. Then the rest of proof is similar to that of Lemma 6.13.

Once the above lemmas are proved the proof of Theorem 6.17
proceeds like that of Theorem 6.1. The details are left to the reader.

There are examples in which ¥=n-+2, k,=n but »,(t)#0. They are
given in §7. A sufficient condition for »,(t)=0 to hold was given in
Corollary 6.24. Here we shall give another one.

PROPOSITION 6.26. Let M be a unitary S-manifold of dimension 2n
having only isolated fized points with Y(M)=n-+2. Assume that M
con be embedded as a unitary S'-submanifold into a unitary S-mani-
fold M' of dimension 2n-+2 having only isolated fixed points with
X(M)=n+2 and that there exists a quasi-ample line bundle & over
M’ satisfying the condition D:

(6.27) Simyp=m+Da,+d’ Jor all %,

where the summation is extended over the weights {my} of M’ at the
fized point P; and a, is the weight of £ at P,. Then the fized points
of M and M' coincide and the weight of M’ normal to M at P, is of
the form a,+d, where d, is independent of 1. The line bundle ¢=¢|M
is quast-ample and it satisfies the condition D:

> mg=na,+d for all 1.
Moreover v (t)=0.

Proor. Since the number of fixed points of M and M’ are both
equal to n+2 they have the same fixed points. We may suppose that
the a, are normalized so that d’+3) ¢;=0. Then, by Lemma 6.5 applied
to M', we see that there exists 7' for each i such that a,=—a, and
(6.6) is satisfied. We know also that & is basic; c¢f. the proof of
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Theorem 6.1 where we did not need the almost complex assumption
for that fact.

Now the normal bundle v of M in M’ is an S%-line bundle in a
natural way. JIts weight a; at P, is the weight of M’ normal to M.
a; can be written in the form

(6.28) a;=7ra;+d;

since {a;} is a basic sequence. We claim in fact that a;=aqa, i.e.

r=1, d,=0. To prove this let 4, be such that a,, takes the maximum

value among the a,. Then all the |mi,| and |mi;| are less than 2fa,

by (6.6). In particular |a;], laj|<2|a,|. Hence |r| can not exceed 1.
On the other hand from (6.27) and (6.28) we get

Sima=nm+1—r)a,+d’ —d,

where the summation is extended over the weights of M at P,. Thus
¢ cannot be equal to —1 by Theorem 5.1. The possibility r=0 is ex-
cluded by Remark 7.2.1 of the next section. Therefore r=1.

Assume now d,#0, say d,>0. Then by looking at (6.6) for 2=¢1,
we see that there exists j such that a;=—d,. But then aj=a;+d,=0
would be a weight of M’ at P; which is a contradiction. If d,<0
then looking at (6.6) for 7=14, leads also to a contradiction. Thus
d,=0.

We know by Lemma 6.4 that

;i[;l;: (1—ta,;—aj) _ +(1+t"')
“Hraem

From this and the above claim a;=a, it follows that

) jl;[i(l___tai—ui) 1 g
P —%m———( — %),
This implies that k,=n and »,(t)=0. Q.E.D.

As an immediate consequence of Proposition 6.26 and Theorem 6.17
we obtain

COROLLARY 6.29.  If in Proposition 6.26 we assume moreover that
M is an almost complex S-manifold and M is an almost complex S'-
submanifold of M’ then the weights of M are
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{mu}={a,— a’j}j#i,i’

and M is unitary cobordant to @, (n even).
We also have

COROLLARY 6.30. Let M’ be an almost complex S-manifold of
complex dimension n+1 having only isolated fized points. Suppose that
M’ has the same rational cohomology ring as CP*™* and that

o(MY=m+1)x" mod torsion

Jor a generator «' of HM'; Z) mod torsion. If M is an almost complex
S-submanifold of M’ of complex codimension 1 and with Y(M)=n-+2.
Then the Chern classes of M are formally the same as those of Q,, i.e.

c(M)=0+=z)""*1A+2x)* mod torsion
where x=7*x" (j: M—M' is the inclusion).
Proor. By Corollary 6.3 we have
(My=1A+«)*1+2¢)" mod torsion.

Since the complex codimension of M in M’ is equal to 1 the Euler class
x=e(y) of the normal bundle is the restriction of some element in
H*M’; Z) and hence

z=e(y)=7%(r2") mod torsion.
But since the weight of v at P, is equal to a,, » must equal 1. Therefore

e(M)=3*(c(M"))e()™
=751+ +22) (1 +2)"' mod torsion
=(1+ax)""*(1+2x)™" mod torsion.

§ 7. Concluding remarks.

7.1. In §6 before Proposition 6.26 we mentioned examples in which
r=n+2, k,=n and r(t)=0. Here we exhibit some of them. They
come from actions on Hirzebruch surfaces [12]. Let I be an integer
=0 and >, the hypersurface in CP*x CP' defined by

2w —2z,wi=0
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where ([z,, 2, 2], [w,, w,]) € CP*x CP'. Define an S* action on 3; by
2([20, 21, 2e)[w,, wo]) =([20, 2772y, 2°2,], [, 2'w])

where z€ S* and b, b’ are integers. If we assume bb’ 0, b+’ 0 then
the fixed points are all isolated and they are

P1=<[17 Oy O]v [1’ 0])1 PZ:([O) 0’ 1]7 [1, O])y
P3=([17 0, 0]’ [0, 1])» P4:([O9 1, 0]1 [O: 1])'

In particular ¥(3))=4. The weights {m,} of 3, at P, (:=1,2, 3, 4)
are, in this order,

{0, b}, {=0, ¥}, {p+W', =0}, {—(+1b), —b'}.

Let & and & be the pull-backs of the hyperplane bundles over CP?
and CP' respectively. The S'-action can be lifted to & and & as in §3
so that the weights at P, (=1, 2, 8, 4) are

0, —b6,0, —(b+1") for g
and
0,0, =b', —b" for &,.

Set &'=g27%? and =42 if | is even. The weights {ai} of ¢ at
P, (1=1,2, 8, 4) are

so that & is fine generically if I+ +2, and we have

S mg=a;+b+b for all 4.
k

Thus in case [ is even the weight a,=ai/2 of ¢ at P, satisfies

;.mik:.?ai—%—b—!—b’.

In this case the functions @,(f) are given by
@8y =1+ r (f)tec— e
where

(1 — tlb’/z) (1 _ t—(b+lb'/2)) JRYnY

lt: ’
7:(8) 17
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The verification is left to the reader. Thus we always have »(#)=0
if 1=0, but »,(f)#0 in general for [#0. Note that >,=Q,=CP'x CP'.

7.2. In Kobayashi-Ochiai’s theorem the assumption k,=%-+1 implies
L=n-+1 and the assumption k,== implies y=n-+1 or y=n-+2. In our
context the conditions for the Euler characteristic ¥ are included in the
assumption. We do not know those additional assumptions are really
needed. But we shall prove the following Remark which was used in
the proof of Proposition 6.26.

REMARK 7.2.1. Let M and & be as in §5. Suppose k,=n-+1 then
L=n-+2 cannot occur.

Proor. We may assume that the a, are normalized to fulfil
d+>.a;=0. Assume k,=n-+1 and y=n+2. Since l,=%—k,=1 we have

T (1—te79)

gt =@ )=r1—t%

T =P =t
by Theorem 4.2. It follows that, for each 4, there exists ¢’ such that
la;—a.]=la,), i.e. a;=0 or a,=2¢,. But if a,=0 for some 7 then we
would have @,()=0 which is a contradiction. Hence a,=2a, for all <.
But this is also a contradiction because {a;} is a finite set of mutually
distinct integers. Thus if k,=n+1 then ¥#n+2. Q.E.D.

When n=2 we shall prove the following:

REMARK 7.2.2. Suppose M is almost complex of complex dimension
2. If k,=3 then the following relations hold: )

P[M]=T[M]=Sign M
where x=¢,(¢). In particular
¢.{M)*=38e¢,(M)=38y(M)>0.

Proor. Set s=Y—n=%—2. Then by Corollary 5.4 and Lemma 5.5
we have
R ¢1—‘[ (a'iy_a’j)
> s =pD=r,=T[M]=z[M] .
¥=1 II My

If we apply Lemma 5.5 to the complex line bundle Aic(M) instead of
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& we obtain

8 . H . (d’v - d.‘l)
>} e =c(M)[M],
v=i 11 mi

where d,=>, m;»=38a;+d. Hence

(M [M}=92[M]=9T[M].

Then using
T[M]= o(M)*+ C2<M)[M]
12
Sign M= AU —ZCZ(M)[M]
3
we obtain the desired result. Q.E.D.

. Note. It is proved in [8] that if M is an almost complex manifold
of complex dimension 2 which admits a non-trivial almost complex
St-action then the equality ¢,(M)*=3¢c,(M) holds. It is known [18] that
a compact complex surface satisfying ¢?=8¢,>0 is either biholomorphic
to CP? or covered by the unit ball.

7.3. Part of results in §2, §3 and §4 can be generalized to Spin°
S'-manifolds. We shall briefly indicate necessary modifications in Spin°
case. The reader is referred to [8] for materials concerning S*-actions
on Spin® manifolds.

Let M be a closed connected smooth S-manifold with an invariant
Riemannian metric. Let p: @ > M denote the tangential orthonormal
frame bundle. There is a canonical lifting of S-action on Q. If w,(M)
comes from an integral class then there exists a Spin® structure P—
Q of Q. P—Q can be regarded as an S-bundle. If the first Chern
class ¢, of the S-bundle P— @ belongs to ad H*Q) then there is a lifting
of the Slaction on Q to the Spin®-structure P and it induces an S'-
action on the S'-bundle L=P/Spin(n)— M.

Now assume that the fixed points of the S*-action on M are all
isolated. For each fixed point P, the linear isotropy representation of
S* decomposes the tangent space T M into a sum of weight spaces

TP‘ZM: 2 tmik .
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However the weights m,, are well-determined only up to sign. For
simplicity’s sake we shall make convention that all the weights m,,
be positive.

Let w, be the weight of L with the induced S'-action at P, i.e.
L|P,=t*t*. Then w,—>,, m,; 1S an even integer. We set

>\’i:<wi_; Mir)/2.
The formula corresponding to Corollary 2.8 in this case reads as follows:

—s _ &t (v)
(7.8.1) p!(v)—;m.

Next let £ be a fine complex line bundle. . We take an S* complex
line bundle 7 whose underlying bundle is £, Then 5|P,=t% as before.
We set

I | A
IT (X —¢mx)

k

Then, by (7.8.1), we have
Pt =p (T 1=t  Z[t, 7.
V£

It follows that the same conclusion n+1=<y(M) as in Proposition 3.5
holds in this case too. Moreover the first part of Theorem 4.2 still
holds in Spin® case. Namely we have:

THEOREM 7.3.2. Let M be a connected closed smooth S-manifold
having only isolated fixed points. Assume that the S*-action can be lifted
to a Spin‘-structure P on M. If & is a fine line bundle over M then
the assoctated function ®(t) can be expressed uniquely in the form

Pt)=74() @)%+ - -+ (O
where 1), « -+, r,_(t) € Z[t, t7] are independent of 1.

The proof is essentially the same as that of Theorem 4.2.
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