dJ. Fae. Sci. Univ. Tokyo
Sect. TA, Math.
31 (1984), 487-520.

Algebraic cycles on certain abelian varieties and
powers of special surfaces™

By Fumio HAZAMA

(Communicated by T. Shioda)

Introduction,

In this paper we introduce and exploit the notion of “stable non-
degeneracy” of abelian varieties in order to study algebraic eycles on
them. Further, using this notion, we show that the Hodge Conjecture
holds for certain powers of special surfaces. In this introduction, we
explain briefly how we have arrived at the notion of “stable non-
degeneracy”, and give a discription of the content of this paper.

First we recall the Hodge Conjecture mentioned above:

(0.1) The Hodge Conjecture: For any smooth projective variety X,
H*(X, Q)N H**X)={cohomology classes of algebraic cycles of
codimension d} 0=d=dim X).

The elements of the left-hand group are called Hodge cycles. It is
known that every algebraic cycle is a Hodge eycle. (0.1) says that the
converse is also true. When d=1, (0.1) is known to hold (theorem of
Lefschetz). From this and the hard Lefschetz theorem, it follows that
(0.1) holds for varieties of dimension at most three. But for general
higher dimensional varieties, (0.1) remains open. For the present state
of knowledge on this conjecture, we refer the reader to Shioda’s recent
article [19].

We now introduce some notation. For a smooth projective variety
X, let Y X)=H*X,QNH*X) and let <#*(X) denote the Hodge
ring PiN* Z4X). Let 2*(X) denote the subring of <*(X) generated
by divisor classes. Note that if we are able to show &Z*(X)=2*X),
then (0.1) holds for X. With the exception of the case treated by
Shioda [18], all known cases of (0.1) for abelian varieties are proven

*  Part of this work is the author’s Doctoral thesis, Department of Mathematics, University
of Tokyo, 1984.
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by proving that &#*=<2*. Pohlmann [12] investigated abelian varie-
ties of CM-type and proved for them the equivalence of the Hodge
Conjecture with the Tate Conjecture. Even for abelian varieties of
CM-type, there are many examples for which Z*22* (see [12], [18]
for example). We note that Shioda [18] gives some examples of abelian
varieties for which &#*2<* and (0.1) holds.

The main theme of this paper is to study to what extent abelian
varieties satisfy the condition <#*=<*. Moreover, it will also be
natural to consider not only an abelian variety A but also the power
A”. This consideration leads us to the following notion:

DEFINITION (2.2). We say that A4 is stably non-degenerate, if it
satisfies the condition <#*(A")=2*(A") for all n=1.

We study this notion from the view point introduced by Mumford [8]
that the Hodge cycles are characterized as the invariant elements in
the cohomology space under the action of the Hodge group (see §1
below). This view point was exploited systematically by Tankeev [20],
[21], [22] to prove the validity of (0.1) for certain abelian varieties.
In this paper we give a characterization of stable non-degeneracy and
at the same time clarify the reason why his method works well for
the abelian varieties considered in his papers mentioned above. Finally
we use the notion of stable non-degeneracy as a guide to prove (0.1)
for certain powers of algebraic surfaces.

Now we describe the contents of this paper in greater detail. The
main objective of PART I is to characterize stably non-degenerate
abelian varieties. For this, in §1, we recall the definition and funda-
mental properties of the Hodge group of an abelian variety, and then
investigate the relation between the Hodge group of a product of
abelian varieties and that of each factor. In §2, we introduce the
notion of the “reduced dimension” of an abelian variety (see Definition
(2.6) below). Using this, we are able to state the main theorem of
PART I as follows:

THEOREM (2.7). An abelian variety is stably non-degenerate if and
only if the rank of its Hodge group over the complex nmumber field is
equal to its reduced dimension.

Since we see that the rank is smaller than or equal to the reduced
dimension, we are able to restate this theorem as follows: an abelian
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variety is stably non-degenerate if and only if the rank of its Hodge
group is “as large as possible”. This is proved in §3 in the following
manner. First we show that the theorem holds for simple abelian
varieties and that the rank of the Hodge group is always smaller than
or equal to the reduced dimension for any simple abelian variety. Next
we show that, if the rank of the Hodge group of a product of some
abelian varieties is as large as possible, then that of each factor is
also as large as possible and the representation of the Lie algebra of
the Hodge group of the product into the cohomology space is decomposed
to the tensor product of each representation of that of each factor.
Combining these two arguments, we see that, for any abelian variety,
if the rank of the Hodge group is as large as possible, then it is stably
non-degenerate. The converse is proved by the fact that the Hodge
group of an abelian variety A is the largest subgroup of GL(H'(4, Q)
which leaves invariant the Hodge rings of A" for all 1. In §4,
applying the theorem (2.7), we uniformly reprove the Hodge Conjecture
for some abelian varieties studied previously from certain view points,
and also for their powers. In §5, we give an example of “stably de-
generate” abelian variety A4 without complex multiplication for which
F*(A)=D*(A) but F*(AYRD*(A?. This kind of phenomenon is very
interesting since such an example is not known when A4 is of CM-type.

In PART II we show that the investigation of algebraic cycles on
stably non-degenerate abelian varieties enables us to understand those
on certain kind of projective varieties which are not necessarily abelian
varieties. To be more precise, we show the validity of the Hodge
Conjecture for the fourfolds which are powers of a Hilbert modular
surface satisfying some arithmetic conditions (see (8.2)). This is the
main result of PART II. In §6, we recall the definition of Hilbert modu-
lar surface. In §7, some preliminary lemmas concerning Hodge cycles
on a product of projective varieties are proved. In §8, we formulate
the main theorem and prove it. The proof largely depends on Oda’s
work [11] on the Hodge structure of Hilbert modular surfaces. There
he shows that, under some conditions, an essential part of the Hodge
structure of a Hilbert modular surface is expressed as a direct sum
of tensor products of the Hodge structure of some abelian varieties
(see (8.1) and (8.4)). We notice that these abelian varieties are stably
non-degenerate and, moreover, have “many real endomorphisms”. For
abelian varieties having the latter property, we determined the strue-
ture of the Hodge ring previously in [2]. In fact, the method of the
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proof of the main theorem of PART I is obtained by generalizing the
one used there. Then the structure of the Hodge ring of a product
of Hilbert modular surfaces can be determined by the Kiinneth formula.
On the other hand, we have algebraic cycles on the power of a Hilbert
modular surface, arising from Hecke operators and the canonical invo-
lution (see §8). We show that, under the condition mentioned in (8.2),
these cycles together with some algebraic cycles given by intersection
of divisors generate the Hodge ring.
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Notations.
For a non-singular projective variety X defined over C, we define
the Hodge ring &#*(X) by
dim
F(X)= & F*X), where
=0
FH(X)=H*(X, QN H**X).
We call elements of <#%X) Hodge cycles of codimension d. We put

Z*(X)="@ Z4X), where
=0
#%X)={algebraic cycles of codimension d},

and

dim X
%(X)= d@ Z4X), where
=0
2% X)={algebraic cycles of codimension ¢ which is represented
as a sum of intersections of divisors}.

Therefore the following inelusions hold for any X:
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F X)) o#YX)D24X) 0=d<dim X).
And the Hodge Conjecture (0.1) is expressed as:
@ X)=&*(X).

Moreover the theorem of Lefschetz to which we refered above says
that the equality #'(X)=&"(X)=2%X) holds for any X.

Further let G (resp. g) be a group (resp. Lie algebra) and let V
be a vector space with G-action (resp. g-action). Then we denote by
End,V (resp. End, V') the space of G-linear (resp. g-linear) endomorphisms
of V. We denote by [V]® (resp. [V]®) the space of G-invariant (resp.
g-invariant) elements in V. We denote by End A the endomorphism
ring of an abelian variety A4, and put End’ A=End ARQ.
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PART I

§1. Hodge group.

In this section we recall the definition and the fundamental prop-
erties of the Hodge group of an abelian variety (cf. Mumford [8]).
Let 4 be an abelian variety defined over C of dimension g. We put
V=H,(A, Q), then Vy=V®e R is given the complex structure induced
by the natural isomorphism between V. and the universal covering
space of A. Therefore we are given a homomorphism of algebraic

groups,
é: T—GL(V)
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defined over R, where T is the compact one-dimensional torus over R,
i.e. Tx={z€C; |z]=1}, by the formula

#(e?)=the element of GL(V) given by multiplying in the
complex structure on Vi by e®.

Note that there is a non-degenerate skew symmetric form I: Vx V—@Q
and that ¢ satisfies the Riemann conditions (a) ¢(T)cSp(V, I), and (b)
Iz, 6(2)-2)>0 for all xe V, x=+0.

(1.1) DeriniTION. The Hodge group of A, written Hg(4), is the
smallest algebraic subgroup of Sp(V, I) defined over @ and containing

o(T).

(1.2) ProrosiTION (Mumford, [8]). The Hodge group is a connected
reductive algebraic group with compact center whose semi-simple part
is of Hermaitian type.

To compute the Hodge ring, the following propositions are useful.

(1.8) PrOPOSITION ([loc. cit.]). The endomorphism ring End" A of
A is isomorphic to Endg. ., H' (A, Q). The Hodge ring <£*(A) is the
subring of H*(A, Q) consisting of invariant elements under the action
of the Hodge group: #Z*(A)=[H*(A, Q1. Moreover Hg(A) is the
largest subgroup of GL(V) which leaves invariant the Hodge rings of
A" for all nz=1. :

(1.4) ProposITION ([loc. cit.]). An abelian variety A is of CM-
type if and only if Hg(A) is a torus algebraic group.

(1.5) ProposITION (Tankeev [20]). If A s isogenous to a product
of abelian varieties of types 1, 11, III, then Hg(A) is semi-simple (see
[9] for the definition of “type” of an abelian variety).

Here we compute the Hodge ring of an abelian variety such that
Hg(A)=Sp(2g, Q) (g=dim A).

(1.6) PROPOSITION. Let A be a simple abelian variety of dimension
g such that Hg{A)=Sp2g, Q). Then for any power A® (n=1) of A,
the Hodge ring <#*(A") is generated by 7' (A), i.e., B *(A")=D*(A").

REMARK. Mattuck proved in [7] that if A is generic, then <#*(4)=
Z*(A). Since it can be shown that Hg(4)=Sp(2g, @) for a generic A,
(1.6) is considered as rephrasing of Mattuck’s result.
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PrOOF OF (1.6). First we note the following

(1.7) LEMMA. Let V be a vector space over C and let g be a Lie
algebra over C acting on V. Then for the exact sequence defining
A"V

(1.7.1) 0——ker T—@" V—s A" V0,

the following sequence is exact:

(1.7.2) 0—[ker Tl——[Q? VF——[ A" V]t——s0.

ProoF OF (1.7). Consider the map s: A*"V—®"V defined by s(x,A
s Ar)=1/n1) Des, 2N(0)2,0,Q ¢ - - ®%,my, Where S, denotes the n-th
symmetric group. Then it is clear that s gives the splitting of the
exact sequence (1.7.1) and that it is compatible with the action of g.
Hence (1.7.2) is exact.

Now we put V=H'4,C) and g= .“(Hg(A)c) =8p(2g, C). Since
Hg(A")=Hg(4) (see (1.11) below), we must prove that [A2VR -+ ®
A= Vs, for various 4, - -, i, € N, are generated by [A*V]* and [VRQ V.
For this, by (1.7), it suffices to prove that for any m=1, [Q™V] is
generated by [VQV]. But this is nothing other than the following
result which can be found in the classical invariant theory:

(1.8) THEOREM (Weyl [24, Theorem 6.1.A)). All vector invariants
of the symplectic group depending on an arbitrary number of covariant
and contravariant vectors, x, --- and &, ---, are expressible in terms
of the basic invariants of type

[xyl, (g2), [en].
Here “vector invariant of a group I”” means a linear function
FISHVIQS(V® -+ —C
(8#(V): symmetric tensor space of degree )

invariant under all substitutions of Aer, i.e.
f(Aﬂ’,', Ayy ° '):f(xy Y, - ')

for any Ael', xeS¥V), yeS(V), --- (cf. [24, p. 23]). And [zy], (cx),
[en] for z,yeV, & neV* (= the dual of V) denotes the canonical
pairings: e.g.
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[xy] = (xlyi - xiyl) + oo+ (xgy?; - wﬁya) ’

where z=(x, --+, %, @, -+, 2%;), etc. Thus our proposition (1.6) is
proved.

As for the Hodge group of a product of abelian varieties, we have
the following propositions.

(1.9) PROPOSITION. Let A, B be abelian varieties. Then
Hg(A x BycHg(A) x Hg(B).

PrOOF. PutV,=H,(A,Q),V,=H,(B, Q) andV=H(AXB, Q=V.DV..
Then the complex structure on Vi is given by the following commu-
tative diagram: "

T —5— GL(V)x
P X Vs J
GL( Vl)x X GL( V‘.Z)Rr

where 4, (¢=1, 2) denotes the map which gives the complex structure
on V,z Therefore we have Hg(A x B)CHg(A)xHg(B).

(1.10) PROPOSITION. Let A, B be abelian varieties. Then
He(A*x By=Hg(A X B)
for any n=1.

ProoF. Notations being as above, we have the following commu-
tative diagram:

T GL(VBVr

0
\GL< Vorx GL(V))x

1 4
GL(VE)a X GL(Vi)x
0
GL( V?n@ VZ)R,

where ¢ (resp. +) denotes the map which gives the complex structure
on Vie®Vir (resp. V@ Vir), and 4 is defined by 4(a, b)=(a, ---, @, b)
for a € GL(V)r, be GL(V)r Since 4 is injective and defined over @,
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we see that Hg(A"x B)=Hg(A X B).
Noting that the proof above is also valid when B=(0), we have
(1.11) COROLLARY. For any n=1,
Hg(A")=Hg(4).
Moreover Hg(A) acts on H,(A", Q)= H,(4, Q)* diagonally.

§2. Main theorem A: Stable non-degeneracy.

In the previous section, we have seen that the Hodge group Hg(A)
of an abelian variety A is characterized as the largest subgroup of
Sp(H'(A, @) which leaves invariant the Hodge rings B*(A™) for all
n=1 (ef. (1.8)). (Recall that the natural representation of the Hodge
group in H,(A, @) is symplectic and, therefore, it is equivalent to the
dual representation in H'(A, @).) Hence if A satisfies the condition

2.1 B ANY=D*(4A") for all n=1,
then this property must be reflected in the structure of Hg(A4).

(2.2) DEFINITION. When an abelian variety A satisfies the condi-
tion (2.1), we say that A is stably non-degenerate.

REMARK. The notion of “non-degeneracy” of an abelian variety A4
is first defined by Kubota when A is simple and of CM-type (cf. 5.
His definition is, in our terminology, that A is “non-degenerate” if
dim Hg(A)=dim A. Note that dim Hg(A)=rank Hg(A): since Hg(4) is
a torus (cf. (1.4)).

Here are some propositions about our notion “stable non-degeneracy”.

(2.3) PROPOSITION. Let A be an abelian variety and let B be an
abelian subvariety of A. Suppose that A is stably mon-degenerate.
Then B is also stably non-degemerate.

PROOF. The notion of stable non-degeneracy is invariant under
isogeny. More precisely, if A is stably non-degenerate, then any B
which is isogenous to A is also stably non-degenerate. Therefore we
may assume that A=Bx B’ for some abelian variety B’. Then it is
clear that if 2% B")22%B") for some d and n, then FYA")2D%A").
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(2.4) PROPOSITION. Let m be an integer =1. Then A is stably
non-degenerate if and only if A™ is stably mon-degenerate.

Proor. Only-if part follows from the definition of stable non-
degeneracy. If-part follows from Proposition (2.3).

(2.5) PROPOSITION. Let A; (i=1, ---, k) be abelian varieties and
let m, (1=1, --+, k) be positive integers. Then T[i. AT is stably non-
degenerate if and only if Y. A, is stably non-degemerate.

Proor. Only-if part follows from Proposition (2.3). To show the
converse we note that

(f4) >

Then the assertion follows from (2.3) and (2.4).

To state the main theorem, we introduce the following notion of
“reduced dimension” of A, which is denoted by rdim A.

(2.6) DEFINITION. When A is a simple abelian variety,

dim A if A is of type I,
(1/2)3dim A if A is of type II,
rdim A=<dim A if A is of type III,

A/d)dim A if A is of type IV with
d*=[End°’ A: Cent End® A].

When A is isogenous to [[i.,Ar, where A, (1=<i=k) are simple and
A+ A; for i£j, we define

rdim A=3, rdim 4.

Now we are able to state the main theorem:

(2.7) MAIN THEOREM. An abelian variety A is stably mon-degen-
erate if and only if rank Hg(A)=rdim A.

REMARK. In general, we have rank Hg(4)c<rdim A, as is shown
in the proof below. Therefore we can restate (2.7) as follows: A
is stably non-degenerate if and only if rank Hg(A). is as large as
possible.
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§3. Proof of Main Theorem A.

By the definition of stable non-degeneracy, and by the propositions
(1.10), (2.5), it suffices to prove (2.7) for abelian varieties of the form
A X XAy with A, 1=1=<Fk) simple, A,»¢A; for i==j. The following
lemma will be used frequently:

(8.1) LeMMA. Let g, (1Z1Zn) be reductive Lie algebras over C
and let g be a reductive subalgebra of g, x --- xg,. Let p, 1<i<n)
denote the projection of g, X «-- Xg, to §,. Suppose that the following
conditions are satisfied:

(8.1.1) p®)=g  (1=i=mn),
(8.1.2) rank(g)=rank(g, < --- xXg,).
Then g=g, X ++- Xg,.

Proor. It suffices to consider the case n=2, since the assertion
for the general case follows from this by induction. Put a,=(p,|,)"(0)=
gN0xg,), and a=pya,). Then a is a subalgebra of g, We show that
a is an ideal of g,.. By (8.1.1), for any x,cg,, there exists z, g, such
that (%, x,)€g. Then (v, 2.)+(0, a)=(x,; x,+a)cg. Therefore

(2, 2, +0), (2, x2+a)]:([xu z], (2,44, z,+a))
< (O, [z, a]+a)Cg.

Hence [x,, a]+aca, so we get [z, a]Ca, i.e., a is an ideal of g,. Now
we note that q, is an ideal of g. For we see that for (x, x,) €g and
aca, [(z, ©), (0, a)]=(0, [#,, a]) €g, since [x,, a]ea. Therefore consider-
ing a decomposition of g into g, X --- X g, xg®, where g, (1<i<m)
is simple and g* is the center of the reductive Lie algebra g, we see
that for a maximal torus t of g, tNaq, is necessarily a maximal torus of
a,. By the assumption (3.1.2), t is also maximal as a subtorus of g,xg,.
Hence we have

a,DtN ({0} x g,) ={0} x (a maximal torus of g,).

Thus we see that a=p.(a,) is an ideal of g, and contains a maximal
torus of g,, so a=g,. Now for any z,€g, we are able to choose x,¢g,
such that (z, x,) €g by the assumption (8.1.1), hence we see that

(xu g2> = (xu Ly +gz> = (xu xz) + (09 gz) g.
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Therefore g=g, X g.
Now we prove the if-part of Theorem (2.7). First we assume that
A is simple.

Case 1) A is of type I:. In this case End’ A is isomorphic to a
totally real field over Q. Put e=[End’ A: Q] and g=dim A. Let g de-
note the Lie algebra of Hg(A). and let V denote the C-vector space
H'(A, C). Then by Proposition (1.3),

End,V=End" AQC=CH - - PC (e times).
]

Therefore it follows from Schur’s lemma that
V=veg - v,

where V, (1=<4=<¢) are mutually non-isomorphic irreducible g-modules.
Let g, denote the Lie subalgebra of End V; (1=<7=<e) which arises from
restricting the action of g on V to g-submodule V,. Then by the def-
inition gCg, X -+ Xg..

(8.2) LEMMA. The representation p;:g9,—EndV,; is symplectic for
any 1.

Proor. We recall that the Picard number p(A) of A is equal to
dimJH* A, C)]P=dim[ A2V ]¢ (ef. (1.8)). The space [A*V]* is decomposed
as follows:

(nVE=(@IAVI)@(§V.e V).

Note that the Riemann form on A4 induces a g-invariant non-degenerate
skew-symmetric form I on V (see §1). Hence we may assume (re-
numbering if necessary) that there exists an integer s with 0=s=e,
such that

VI*E VD Sty Vs*E Vw
Vsal-(i-l":_ Vs+2’ ] I/'e)ft—lE Ve)

where V7 denotes the dual representation space of V,. Note that the
isomorphisms VF=V, (1<7<s) are induced by the skew-symmetric form
Ily,«v,, hence dimJA*VP=1. On the other hand, the space of g-
invariant forms on V; is isomorphic to Hom (V,, V¥)=Hom/(V,, V,), which
is of dimension one by Schur’s lemma. Hence we have dim A2V, Jt=1
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(1=i=s). When j=s+1, [A*V;]*=(0), for otherwise there exists an
integer j=s-1 such that V; is self-dual, which contradicts to the def-
inition of s. Further [V,QV.]'=(0) for ¢4’ unless {3, i'}={s+1, s+2},
~++,{e—1,e}. For otherwise Hom,(V,, V,)=(0) for an appropriate j
(J=1 if 1=4i<s, and j=1i+1 or 1—1 if s+1=<i<e), which contradicts
to the assumption. Hence we have

dimJ A2V =5+ (e—s)/2=(e+5)/2.

On the other hand, it is known that p(4) is equal to [End® A: Q] when
A is simple of type I (ef. Mumford [9, p. 202]). Hence (e+s)/2=e, so
that s=e. Therefore we obtain

[ATVE=@BIAVE,
where dim A?V;]*=1 for all ?. Thus Lemma (8.2) is proved.
By this lemma, we have
rank g,<(1/2)dim V,; for all 7.
On the other hand, by the assumption, we have
rank g=(1/2)dim V.

Since gcg, X ++- xg,, this implies that the above inequalities must be
equalities for all 4 and that

rank g=rank g,+ --+ -~rankg,.
Then by Lemma (3.1), we have
g=8 X « -+ XQ,.
Next we show the following:
(8.3) LEMMA. g,=8p(V,, C) for all 1.

Proor. We recall that g’s are semisimple by (1.5). Hence there
exist simple Lie algebras g, ---, gi*’ such that

G=g X - X g

Then the representation g,—EndV, must be equivalent to the tensor
product representation



500 Fumio HazAMA

g% -+ X g —End(VI'® - - - @ Vi)

where V{? (1=j=a,) are irreducible g{”-modules. Then each represen-
tation p{': g/’ —End Vi’ (1=<j=<a,) is defined by microweight (cf. Tankeev
[21], Serre [16]). Here we recall representations defined by microweight
(Bourbaki [1, Ch. VIII, p. 129]):

orthogonal: +1
type weight degree symplectic: —1
otherwise : 0
A, ®, (” le 1) 0
w, (n —zk 1) 0
Ouon | (mii)se) (—1ymon
®, (";1) 0
Bn , on (__ 1)n(n+1)/2
C, , 2n -1
D, w, 2n +1
E, , 27 0
Wy 27 0
E7 0)7 56 - 1

We fix an ¢ (1=<i=<e) and put r,=rankg!’, d,=dim V}? for 1=<j=<a,.
Noting that the representation p{?:g{#—End V' must be orthogonal
or symplectic (ef. Tankeev [21, 4.8.3]), we see by the table above that
2r;=d; for each j. Therefore

2.rank g,-:ZZ 2rj§5‘_1‘ d;.
i=1 i=t
On the other hand, by the assumption,

2-rank g,= ﬁ d;.
=1
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Hence

24

d,.

1

IA

a5

J

il

This occurs only if (a) a,=1, or (b) a;=2 and (d, d,)=(2,2). In the
case (b), we see by the table that

D=8, V{#=C* with the standard representation of 8l,.

But this does not occur, since in this case the representation g, =g x

g”—End V; is orthogonal. Hence the case (a) must occur, i.e., g; is

simple and the representation g,—End V, is equivalent to the standard

representation of 8p(V,, C). This completes the proof of Lemma (3.3).
Now we note the following lemma which is proved easily:

(3.4) LEMMA. Let g, (resp. 8,) be a Lie algebra over C acting on
a complex vector space V, (resp. V,). Then

[ViQVJsre=[V,]nQ[ V]~

We have obtained above g=g,x :-- xg, and V=V, P--- @V, where
8,=8p(V,, C), hence by (1.3), (1.6) and this lemma, we see that if A4 is
a simple abelian variety of type I and rank Hg(A).=rdim A, then 4
is stably non-degenerate.

Case 2) A is of type II: In this case End® A is isomorphic to an
indefinite quaternion algebra over a totally real field F over Q. Put
[F':Q]=e and dim A=g. It is known that 2e¢ divides g (Mumford [9,
p. 202]). By (1.3) and Schur’s lemma, we have an isomorphism of g-
modules (g = the Lie algebra of Hg(4).):

HI(A’ C) = ( Vl,l@ V1,2>@ T @( Ve,l@ Ve,z):

where V,, and V,, (1=<7=<e) are isomorphic irreducible g-modules and
Vii#V;, for i#j. Put g,=the projection of g to End(V,,PV,,) and
let g;. be the projection of g to End V,, for 1<i<e, a=1 or 2. Then
8::=8,. and g,=the diagonal of g,,xg,, (1=7=e), hence

G X see XG =Gy X XGe1e

We show the representations g,,—End V,, are symplectic for all 7. Put
V=H'(A, Q). Recall that the representation of g in V is symplectic.
Suppose that for some integer s with 0<s=<e, we have
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ViV, (1=i=59),
Vaiii= Ve oo, VL EV, .
Then by a similar argument as is used in the Case 1), we have
Be=p(A)=dim[A*V ]} <8s+4(e—s)/2=2¢+s.
Hence s=e and dim[A*V, =1 for all 7, a. Thus

rank ggze] rank gmgi‘, (1/2)dim V, ,=g/2.
i=1 g=1

Hence by the assumption that rank g=rdim A=g/2 and by (3.1), we
have

g=g, X -++ Xg,
and
rank g,,=(1/2)dim V, ..
By a similar argument in the Case 1), we see that
8, =80( Vs ©),
hence, A is stably non-degenerate when A is a simple abelian variety
of type II with rank Hg(4),=rdim A.

Case 8) A is of type III: Put D=End°A and F=Cent D. Then,
by definition, F' is a totally real field over @ and D is a definite qua-
ternion division algebra over F. Put e=[F:Q]. Then it is known
that 2e divides g=dim A and 2e+g (ef. Mumford [9, p. 202]). Since
DR C=M(C)x -+ x M,(C) (e times), (1.3) and Schur’s lemma implies
that -

HYA, O)=(V,DV.)D - O(V..DV.,),

where V,, and V,, are isomorphic irreducible g-modules for each ¢ and
Vi V;, for i=4. Let g, 4, ;.. be as above in the Case 2). Note
that p(4)=e. We show that the representation g,,—EndV,, are or-
thogonal for all 7. Since V*=V, we may assume that there exists
an integer s with 0<s<e such that

ViTIE Vi,l (]-é'l:éS)r

* o~ e ¥ o~
8+1,1— ¥ g+2,1y ’ Ve—l,l— Ve,v
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Then we have
e=p(A)=dim]A*V]t=s+4(e—s)/2=2¢—s.

Hence s=e, ie., V5=V,, and [A*V, ]f=(0) for all 7. Thus the rep-
resentations g,,—End V,, are orthogonal for all 7. So we have

[AHYA, OF=@ V. @ V.

On the other hand,
[NV, T (0)

since any irreducible one-dimensional representation of semi-simple Lie
algebra is trivial. Since the determinant is independent of the inner
product, we see that for any abelian variety of type III, Z*(4)R22*(4)
and that

rank Hg(A).=<(1/2)dim A
=(1/2)rdim A
<rdim A.

Case 4) A is of type IV: In this case End® A is isomorphic to a
division algebra D with center K, a CM-field. Put [D:K]=d* and
[K:Q]=e. It is known that d’¢ divides 2¢ and that e is an even in-
teger (ef. Mumford [9, p. 202]). Put g=.%.(Hg(A4);), then we see by
(1.8) that

(%) End, H'(4, C)=M,(C)X -+ x My(C) (e times).
Hence by Schur’s lemma we have an isomorphism of g-modules
HAO=2z(V,@ - ®V.,0b-- BV, D--- DV.0),

where V, ; are irreducible g-modules such that for fixed 4, V,; are iso-
morphie for all j, and V, ;& V., ; for i=4. Let g, ; denote the projection
of g to EndV,; and let p,;:g,;,—End V, ; be the natural representation.

Then we may assume that

ViizViy o, V=V,
T/'s:l-({-l,jE Vs+2,jy trt, e*—l,j; Ve,j (1_£_.7 éd)y

holds for some integer s with 0<s=<e. Further we assume that p,;
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is orthogonal for 1<1<s,, symplectic for s,+1=¢<s,+s,=s. Then we
have

dimJA2V = sld(d- 1)/2+s,d{d +1)/2+ (e —s)d*/2
=(s,—s)d/2ed?/2.

On the other hand, it is known that dimA*VE=ed?/2 (cf. Mumford
[9, p. 202]). Hence we have s ,=s,=s/2. Here we need a little more
argument than in Case 1)~3). The above isomorphism (x) is obtained
from the isomorphism Endg,, H'(4, @)=D by tensoring C over Q. Since
D is a division algebra, the representation o of Hg(A) on H'(A, Q) is
Q-irreducible. Hence it is a direct sum of the form p=m > 0, where
m is a positive integer, p, an Q-(hence C-) irreducible sub-representation
of p, and 7 are conjugations over Q. Moreover, by definition, this
decomposition is compatible with the preceding one to V,,s. Hence
if one of V,; has g-invariant orthogonal (resp. symplectic) form, then
all the others have g-invariant orthogonal (resp. symplectic) form. (Note
that Hg(A)Cc Sp(H'Y(A, Q), I) where the Riemann form I is defined over Q.)
Therefore we have s,=s,=0, so s=0. Hence, V=V, .-+, VX ,=V,;
for all 7. Then, since gC@, ;X @ X *++ XG,1;, We have

rank g<rankg,,+ -+ +rankg,_,,
<dim V1,1+ -+ dim Ve—l,l
=g/d=rdim A.
Hence if rankg=rdim A, then we have rankg,,=dim V,, for all ¢, and
rank g=rankg, ,+ --- +rankg,_, .
Therefore we see by (3.1) that
=011 XG5y X »** XGey,1e

Next we determine the representation p,,:g;,—EndV,, (i=1,-..,e—1).
Let g,, =g xg"ix -+ xgi, where g denotes the center of the redue-
tive Lie algebra g,, and g{f} denotes simple component (1=j=¢). Then
according to this decomposition, V,, must be decomposed as

V.= VaQVHE® - @V,

where each V¥ (0<j<t) is an irreducible g{}-module of dimension d;.
Then we have



Algebraic cycles on certain abelian varieties 505

t 3
rank g, .= 3, rank g{} <d,+ 3 (d;—1),
7=0 Ji=1

since rank g¥)<d;—1 (1<7<t) by the table of simple Lie algebras and
its representations (Bourbaki [1, Ch. VIII, p. 214]). On the other hand,
by the above equality rankg,,=dimV,, (:1=1,38, -+, e—1), we have

t
rank g,, =] d;.
J=1
Hence

3 ¢
=0 =0

a7

Since d,=1 and d;=2 1<j<t), we see that ¢=1, d,=1 and d, is an
integer=2. Moreover we have rank g{l=1 and rank g{i=d,—1. Hence
we see that

1)~
g=3l,

and the representation o{i: g i—End V{4 is equivalent to the standard
representation of 8l; in C%. Then everything is reduced to the fol-
lowing:

(8.6) LEMMA. Let g,=8l,, V.=C™ and let p:3=g8,KXC—-EndV, be
the standard representation of 8L, in C™ tensored by the scalar action
of C on C™. Let V¥ denote the dual representation space of V.. Put
V=V.pVEr. Then [N (VB--- DBV (=21, 1=d=<mn) are generated

by [NV -+ V). nm

7 times

Proor. First we show that
[NV E=[A2VFPE=(0).

When m>2, AC™ is one of the fundamental representation space of
8l,, hence [AV.JPC[AC™]'==(0). Similarly we have [A*V¥]=(0).
When m=2, A®C® is one-dimensional space on which 8f, acts trivially,
but each te Zi(G,)c acts on it by multiplication of 2t. Therefore in
any case [A?V ]P=[A*V¥]F=(0). Hence we see that [A(V®)] is an
n’-dimensional space generated by various [V, R VF¥]¥’s. Next we com-
pute [A*(Ve®)]s. We claim that

[(ATVi® -+ @A“TVIRAVER -+ A% VEF=(0)
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unless

a 8
Z dz Z ea
i=1 =1

J

This follows from the fact that ¢e .%2(G,)c acts by x—tx on V, and
by x——txz on V*. Here we recall the following proposition of classical
invariant theory:

(3.6) ProrosITION (Weyl [24, 2.6.A, 2,14.A]). Let V=C™ be given
the natural action of 8l,, and let V* be its dual. Then [VERQV*S]n
18 genemted by tensor products of the following three types of elements:

1) [517 ’ s xm]— Z Sgn(a)xo(l)@) ®xo(m)9

where x'ecV (1<z<m),
2) [5 s *y Em]—— Zl Sgn(0)50(1)® ®§a(m)y
where 5 € V* (1<z<m),
3) (a, E)ng' T,
where xe 'V, e V* and {e', -+, ™} denotes the standard basis
of V=C=,
Moreover the following relation holds for them:
(xl, 51) e (x1, Em)
[xly ttty xm][gl: ] Um]:det . .
(wm’ 51) cee (xm’ Em)
By this proposition and by Lemma (1.7), we see that [AX(V®)] ig
generated by [AXV®) ] for all d, n.

Thus the if-part of Theorem (2.7) is proved for simple abelian
varieties. For general abelian varieties, we proceed as follows. As
we remarked earlier, we are able to assume that A=TJ%, A, where
A; (1=i=k) are simple abelian varieties with A,#A; for 1#j. But
we have seen in the course of the proof above that rank Hg(A,).<
rdim A, for all 5. Hence we have

rank Heg(A4),< Ef‘, rank He(A,),

<3 rdim A,
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Therefore if rank Hg(A)c=rdim 4, then all the inegualities above must
be equalities. Hence

rank Hg(A4,)¢c=rdim 4, for all 4

and
rank Hg(A)c—:é rank He(A)e.
So, by (8.1) and (1.9), we obtain
Hg(4)=]] He(4)

(recall that the Hodge group is connected). Hence by (8.3), it suffices
to prove the if-part when A is simple. But this is already done.

Only-if part: First we note that the proof of the last assertion
of (1.8) uses only the reductivity of Hg(4) (cf. [2, 3.1]). Hence the
following version of it also holds:

(8.7) ProroSITION. Hg(A)c is the largest subgroup of GL(H'(A, C))
which leaves invariant Z*(A"KC for all n=1.

On the other hand, as we see in the proof of the necessity, the struec-
ture of Z*(A")QC is uniquely determined by the isogeny decomposition
of A. Therefore if #*(4A")=2*(4A") for all n=1, then the structure
of #*(AM®C is uniquely determined by the isogeny decomposition of
A. Now suppose that rank Hg(A4);<rdim A, but &Z*(A4A")=2%4") for
all n=1. By the proof of necessity we see that there exists a reductive
Lie algebra ¢ cGL(HYA, C)) such that rank g =rdim 4, [A¥(VE®)]¥=
FANRC and [A(V®)] is generated by [AXV®)]'. Then by the
assumption, we have [A(VO®)|s=[A*(V®")]¥. This implies by (3.7)
that g=g’. This contradicts to the assumption that rank g<rdim A=
rank g’. Thus Theorem (2.7) is proved completely.

§4. Examples.

Applying our theorem (2.7), we can uniformly reprove the Hodge
Conjecture for abelian varieties of the following type and also for
their powers.

(4.1) The Hodge Conjecture for a power E" (n=1) of an elliptic
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curve E (Tate [23], Murasaki [10]):

ProoF. The Hodge group of E is isomorphie to SL,(Q) (resp. one-
dimensional torus) when E is not of CM-type (resp. is of CM-type) (ef.
Hazama [2]), hence we have rank Hg(E);=1=rdim E in both cases.
Then, it follows immediately from (2.7) that &#*(E")=<2*FE") for all
n=1.

(4.2) The Hodge Conjecture for a power A" (n=1) of a simple
prime-dimensional abelian variety A of CM-type (Tankeev [22], Ribet
[14]):

Proor. It is shown in the articles cited above that the equality
dim Hg(A)=dim A holds for such A. Since rank Hg(A4)=dim A (recall
that Hg(A) is a torus when A is of CM-type (1.4)) and rdim A=dim 4
(see the definition of reduced dimension (2.6)), the assertion follows
from (2.7).

(4.3) The Hodge Conjecture for J,(N)* (N=1,n=1) where J,(N)
denotes the Jacobian variety of the modular curve X,(N) (Hazama [2]):

Proor. The Hodge group of J,(N) is computed in [loc. cit.], and
the equality rank Hg(J,(N)c)=rdim J,(N) follows immediately from that
computation. Hence we can apply (2.7) to obtain the Hodge Conjecture
for J(N)* (n=1).

§5. An example of stably degenerate abelian variety.

We call an abelian variety stably degenerate if it is not stably
non-degenerate, In this section we prove the following:

(6.1) PROPOSITION. There exists a simple four-dimensional abelian
variety A which enjoys the following properties:

a) A is of type I,

b) A is stably degenerate,

¢) F*(A)=2*(A) (in particular the Hodge Conjecture holds for A),

d) F*(AHRT*(4Y.

REMARK. Note that, if A is stably degenerate, then our theorem
(2.7) claims the existence of an integer n=1 such that (x) <Z*(4~)2
D*(A™). We denote by i(A) the smallest integer n which satisfies the
condition (x), and ecall it the index of degeneracy of A. Proposition
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(6.1) says that the index of degeneracy i(4) is not always equal to
one. On the other hand, it is not known whether there exists a stably
degenerate abelian variety A of CM-type with 4(4)>=2. In other words,
the index of degeneracy of every known stably degenerate abelian
varieties of CM-type is equal to one. On this subject we refer to our
recent article [3].

ProOOF OF (5.1). Let k be a totally real number field of degree
three, and let B be a quaternion algebra over k such that B&, R=
M,(R)x Hx H, where M,(R) denotes the algebra of all the 2x2 matrices
over R, and H denotes the Hamilton’s quaternion algebra. Let G=
SL(1, B), and put G=Res,o(F). G is an algebraic group defined over
Q and Go=G,=B={z € B*; v(x)=1}, where v denotes the reduced norm,
and Gr=SL(R) X SU, x SU, C SL,(C) x SLy(C) x SL,(C)= G¢. Then it
follows from Kuga [6] that there exists a family of abelian varieties
m: V—U attached to a symplectic representation p of G of degree 8
defined over @ such that:

1) V and U are projective varieties and U=TI"\Gx/{a maximal compact
subgroup}, for a Zariski-dense arithmetic subgroup I’ of G,

2) for a generic point Pe U over a field of definition for V, U, =,
the fiber A, is a four-dimensional abelian variety and

.1.1) [HHA) 0P =g (4,)  (1<k<A4),
(5.1.2) 7(U, P)=T".

Note that the equality (5.1.1) follows from the “Condition Inner” |6,
1.4.10 and the final remark]. Further note that, if the “Condition
Inner” is satisfied for o, then it is also satisfied for any direct sum
P Po (n times, n=1). Hence we have

(5.1.3) [H™(Ap)[:0P=<z(Ap) for any n=1 and kefl, ---, 4n}.

Noting that I'=x,(U, P) is Zariski-dense in @, we see by (5.1.3) that
for any n=1, kefl, - .-, 4n}, [H*(4A3)]°=<%*(A2). By (1.8) this implies
that Hg(4,)D6G. Since we see by (5.2.8) below that dim <#'(4,)=1,
Ap is simple and of type I (cf. Mumford [9, p. 202]). Hence A, has
the property a). The properties ¢) and d) are reduced to the following
by (5.1.3). Note that d) implies by (2.7) that A, is stably degenerate,
i.e., that A, has the property b). We also note that rank Hg(A4,).=3
since 3=rank G.<rank Hg(4,).<rdim A,=4.
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(6.2) LEMMA. Let g=8L(C)x8L(C)x8L(C) and let p=aRLK7:g—
End V, V=C*QC*QC* be the tensor product of the standard represen-
tations. Then

(5.2.1) [A®V]s is generated by [A*VE Wd=12,38,4),

(5.2.2) [AH VD V)] is not generated by [AN (VP V)].

ProoF or (5.2). The first equality (5.2.1) is already proved in
Tankeev [20], Kuga [6, 2.2.2]. To prove (5.2.2), we recall the compu-
tation done in [6, Lemma 2.2.1 (3)]: let ¢, denote the symmetric tensor
representation S,ca of a and let 1 denote the trivial representation.
Further we write aB87 for a®QBK"Y, ete. Then

(5.2.3) AN aB7)= N (@BY)Z aB.DB:Y D701,
(5.2.4) A aB7)= A aBY) = a,B7Das1DaBYPasY,
(5.2.5) A aBY)=abB 4@’7’4@6(26272®a2,32@18272@72a2®1.

In order to avoid confusion, we take two copies V,,V, of V=C* and
consider [AX V. DV,)]® (resp. [A(V.BV.)]®) instead of [A*( VPV )]¢ (resp.
[NV V)]H). Then [A(V.DV,)]* is decomposed as follows:

INV.DVIE=[A VIRV VIBIA V],

hence its dimension is equal to three. (Note that [V, QV,*=Hom, V¥, V,)=
Hom,(V,, V,).) On the other hand,

NV VPN VIBUA VIR VBN VIRA* Vo
BIV.QN VIIDIN* V]

The first summand [A*V.]* is one-dimensional by (5.2.5) (note that its
dimension is equal to the constant term of the right side of (5.2.5)).
For the second, we compute as follows, using the Clebsh-Gordan formula;
AR, =y n P sP * + + By (here, a,=a, a,=1=the trivial rep-
resentation):

(N VDRV, =(a:87DaB7DasYBas")Q(asY)

= (D) R(BBHR(7:D1)
DD R(B:DBIR(7:D1)
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S PDR(BDHR(VH7,)
B (DR (BDLR(7:D1).

Hence dim[(A*V)QV,J*=1. For the third summand,

(NVIR(N V= (BB B YD, :P1)
(8D 8:7:6D7,,D1).

Hence dim[(A*V)Q(A*V)]P=4. But, since [AXV,.@V)E=[AV.]D
[VQV.DBIA*V,]* and each summand of the right side is one-dimen-
sional, the dimension of the subspace of [(A*V)R(A*V,)]* generated by
[A VP V,)]* under the exterior product is at most two. Thus the as-
sertion (5.2.2) is proved. This completes the proof of Proposition (5.1).

PART II

§6. Hilbert modular surface.

In this section we recall the definition of Hilbelt modular surface.
Fundamental references are Hirzebruch-Van de Ven [4] and Oda [11].

Let F be a real quadratic field and let O, denote the integer ring
of F. For any element a of F, we denote by a' the conjugate of «
over Q. The imbedding F'<>RER, obtained by a mapping a—(a, o),
induces an imbedding SL,(F)=>SL,(R) % SL,(R) of the special linear group
SL,(F) with entries in F into the self-product of SI,(R). Let H be
the complex upper half plane on which SL,(R) acts by the following
formula:

9@)=(az 1+ b))(cz+d), for zeH, g:(‘: 2) & SL,(R).

The product SL,(R)xSL,(R) acts factorwise on the product Hx H.
Then we obtain an action of SL,(F) on Hx H by composing the action
with the imbedding SL,(F)= SL,R)x SL,(R). The subgroup SL,(O;)
of SL,(F), which is a discrete subgroup of SL,(R)x SL.(R), acts prop-
erly discontinuously on Hx H. We denote by I' the group SL,(0,)/{zx1}.
Then the quotient analytic space S=I"\(H x H) is called a Hilbert modular
surface. We denote by S,(SL,(O;)) the space of cusp forms of weight
two with respect to SL,(Oy). An element f of S,(SL,(0,)) is called a
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primitive form if f is a common eigenform of all Hecke operators [11,
Ch. 1, §0].

§7. Preliminaries for §8.
The following lemmas will be used in §8:

(7.1) LEMMA. Let X,Y be non-singular projective varieties. For
any ac H?*(X, Q) and BecHYY,Q), if aR®QBe F*"(XXY) and ac
(X)), then BePY(Y).

Proor. Consider the Hodge decomposition of g8 in H*(Y, )=
2, H*"%(Y). Then the assumption implies that S is purely of type
(0, @.

In particular we have

(7.2) COROLLARY. Let X,Y be mon-singular projective surfaces.
For any ac HXX, Q) and Bec HXY,Q), if aQBc B (XxY) and ac
FNX), then Be&eHX).

Proor. This follows from (7.1) and Lefschetz’ theorem which says
that ' (X)=%"X) for every non-singular projective variety X.

§8. Main Theorem B: Algebraic cycles on a power of Hilbert
modular surface.

For the rest of this paper, we assume that the class number of
F is one and that there exists a unit ¢ in the integer ring O, with
negative norm Ng,o(e)=ce’=—1. To state the main theorem, we must
recall some of Oda’s results in [9]. He defined a rational polarized
Hodge structure H3(S, Q) as a sub-Hodge structure of W,H*(S, @) (W.
denotes the weight filtration on the mixed Hodge structure H*(S, Q).
Let & denote the ring of Hecke operators and let 5%, be the subring
of the endomorphism ring End(H(S, @) of the Hodge structure
H(S, Q), generated by the identity and the images of the elements
of 5~ over Q. Let 5 be a maximal subset of the set of all primitive
forms of S,(SL,(0;)) such that any two elements of 5 are not companions
mutually ([11, Ch. 1, 2.6]). Then

%E®Kf and H82P(S’ Q)E@ny
feg fe&
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where K, (feX) is a totally real number field and H; (fe &) is a
polarized rational Hodge structure on which K s acts as endomorphisms
of rational Hodge structure ([loc. cit., Ch. I, §2 and §3]). One of his
main results is:

(8.1) THEOREM ([loc. cit., Th. 7.2]). Notation being as above, we
have an isomorphism of Hodge structures

= H'(A, Q)g? H'(A%, @),

where A% (1=1, 2) are abelian varieties with K;cEnd" A% Moreover
the above isomorphism is compatible with K r-action.

Now our main theorem is the following:

(8.2) MAIN THEOREM B. Let S be the minimal resolution of the
compactification of a Hilbert modular surface S. Assume that A; and
A% appearing in (8.1) M'e K-isogenous to one and the same abelian
variety A; for each feZ, and that End([J;.s A5)= Hses K. Then
Z*Sx =% *8x8), i.e. the Hodge Conjecture holds for SxS. More-
over

dime Z*(Sx8)/ 28 x §)= 31K, Q= 2,(S),
where pg(g) denotes the geometric genus of S.

REMARK. Under the assumption of (8.2), the abelian variety A=
I1ses A is stably non-degenerate. For, since A, (f € 5) are of type I, and
mutually non-isogenous, we have dim A=3,.. rdim Ar=>:[K;: Q=
rank(Hg(A)c) (the last equality follows from (8.5) below).

The following two propositions show that the assumption of (8.2)
is actually satisfied in some cases.

(8.3) PROPOSITION. Suppose that the real quadratic field F satisfies
the following conditions: the class number of F is one, the discriminant
D is a prime congruent to 1 modulo 4, and all fe & are self-conjugate.
Then the assumption of (8.2) is satzsﬁed Therefore foa‘ the corre-
sponding Hilbert modular suwface S, we have <&* (Sx8) =z (Sx8),
and dim, S x 8/ =4S x S) = pg(S)

(8.4) PROPOSITION. If D is a prime congruent to 1 modulo 4
and D<181, or D=197, 269, 293, 317, then for the corresponding
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Hilbert Zno%ular ~sur~face S, we have F*Ex8) =z*8x8) and
dimg (S x S)/ Z*(S X 8) =2,(S).
PRrROOF OF (8.2). Since S is regular (ef. [4, Prop. II. 4]), we have

HS, Q)=(0). Therefore the Kiinneth decomposition of H4Sx%S, Q
becomes as follows:

HSx S, @=H'S, QQH*S, Q)
SEH'(S, QQHS, Q)
DHXS, QRQH*(S, Q).

The first two summands on the right side are generated by algebraic
cycles corresponding to (a point)x S, and Sx (a point). Hence it suffices
to consider Hodge cycles lying in H2(§, Q)®H2(§, Q). For this it suf-
fices to show that every element purely of type (2,2) in the Hodge
structure

(H*S, Q)/%’l(g))%@(ﬂ *(S, Q)/7(S))

comes from some algebraic cycle on Sx§. Here we recall the follow-
ing:
(8.5) ProposiTION (cf. [11, Remark, 1.13]). Notations being as

above, we have am isomorphism of homogeneous rational polarized
Hodge structures

15, Q@(ba-1)=H:S, 9@(de-D)

for some mon-negative integers a, b where Q(—1) s the Hodge structure
of Tate of weight two.

In particular, we have
H(S, @)z (H(S, @)= H¥S, Q)| (HS, Q).

Hence, combining (7.2) and Lefschetz’s theorem, we see that it suffices
to prove the (2, 2)-part of H2(S, Q)/<Z (HE(S, Q))ReH:H(S, Q)7 (H:(S, @)
is generated by the images of algebraic cycles.

Let us consider the (2, 2)-part of the Hodge structure H Qo H;
(cf. (8.1)). Note that H'(A,, Q) has a natural action of the Hodge
group Hg(A4,) of the abelian variety Ay, which is defined by the Hodge
structure of H'A;, Q). On H'A4, Q) the action of Hg(4,) commutes
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with the action of K, since K;=End’A;=Endg,,, pH'(Ay, Q) (see (1.8)
for the latter equality). Hence, if we put V,=H'(A;, @), the Hodge
structure of (V;Qx, ViRV, Qx + V) is described by the tensor product
of the action of Hg(4,). We compute dimo[(V ;R VIRV 1 Qx [V )]e1,
This is equal to

(v )g(g )] 39
—4q I:<< Vf® Vf> ( VfK®f V}))(? C:!Hg(Aﬂ@QC

dimc[(( v® v,)8( 7/® v)eet e

Here we denote by (Hg(4,)s) the Lie algebra of the algebraic group
Hg(A)®oC. Put Hom(Ky, C)={o,, -+, 04,} (d;=[K,: Q)), then

{l

(Vo V;)® (v@v))ec
=((vev)eo)e((er)ec)
Vf® Vs K? C> ]®[€?<< V8 Vf)’fg()"v ) ]

2
(v, 29%(r.2.98(m.2.98(r,2.0)

f 7 Kf o Kf,aj

Ill

HZ

On the other hand, we have the following:

(8.6) PROPOSITION. Hg(A,)=SL,K,) and the natural representa-

tion of Hg(A;) in V; is equivalent to the natural representation of
SL.(K;) in K.DK;.

PROOF OF (8.6). Since we have Hg(A,)c=T1, SL,(C)=SL(K,)®,C

(cf. [2]), it suffices to show that Hg(A4,) is contained in SL,(K;). We
already know that Hg(A,) acts K,-linearly on V,. Reecall that Hg(4,)
preserves the Riemann form I on V,, which is Q-bilinear and skew-
symmetric (ef. §1). But it is known that the Q-bilinear form I is
induced from a K -bilinear form I on V,, i.e., I=Tr, seol (cf. [11, Ch.
II, 6.2]). From this and the non- degeneracy of Trg s follows that
Hg(A,) is contained in Sp(V;)=SL,(K,). This proves (8.6).

Now we put Vf®Kf,aiC: V, for 1=<i<d,. Then dim.V,=2 and the-
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representation of SL,(K,)®eC in V&R, C is equivalent to the direct sum
of the natural representations, i.e., the representation of SL(C)x--- X
SL,(C) (d; times) in VP --- DV,,. Hence we obtain an isomorphism

[(( Vfg? Vf>%§< VfK®f Vf))(? C]%'ﬂﬂgu P0
= (;‘é[ VRV.KQV.Q VA%(C))
@(%[ V.QV]=OR(V,Q Vj]“ﬁ(Q),

Note that we have (H,Q,C)"* (=the (1, 1)-part of HKeC)=
@IV, QV.]*=© by the previous observation.

(8.7) LeEMMA. Let e, (resp. €;) denote the standard basts <(1)> <7'esp.

0 of V,=C* with natural action of the Lie algebra 8L(C). Then
1

[V QV ]2 ={e.Qe;— e:e)c,
[VQV.RQV.QV. =

={e,Qe:Re; Qe — e8¢ Qe;— 2:e.Re,R8,+ &,Qe.Re.Re.,
e.Re, e, —e,Q8,Re.Re, — 8.Re.Re,Re; + €:Ke.Qe.Le.)c.

PrOOF OF (8.7). This follows from a straightforward computation.
Combining the above results,_ we obtain the following:
(8.8) COROLLARY. dimg Z*(H;Qo Hy)=d}+d;.

Now we have

{2,2) (2,2) 2,2)
(s 0 05,0 =(mp ) “Je(o(mpm)”)
But since A; and A, are not isogenous for f=g by the assumption of
(8.2), we see that Heg(A, x A,)=Hg(A,) xHg(4,) and that the represen-
tation of Hg(A;xA,) in HYA,;x A4, is equivalent to the direct sum
representation of Hg(A;)xHg(4, in H'(4, QDH (A, Q) (cf. §1), so
if f+#g, then

(vevie(vev,)) = Ve v, [ vev.]

S g g
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Since cycles in [V,Rx VP49 (f e B) are algebraic, we reduce the
problem to show that @;.:(H Qe H)®" =P .:[H,Qo H,[F¢4 consists
of algebraic cycles.

First note that every algebraic correspondence arising from Hecke
operator is orthogonal to [H,|"s“r®[H,|"¢“s with respect to the in-
tersection form if f=tg, for a Hecke operator maps H ; to H; which
is orthogonal to H,.

Now we consider a map ¢ of Hx H to Hx H defined by i(z, 2,) =
(%, 2,) for (z,2,)e HxH. Since ¢ is contained in the normalizer of
SL,(Oz) in the group of diffeomorphisms of Hx H, we have an involu-
tive automorphism ¢: S—S. Hence it defines an algebraie correspondence
on 5. We denote by ¢* the endomorphism of the Hodge structure H,
induced by ¢. We know that ¢* commutes with the action of Hecke
operators under the assumption of (8.2) (ef. [11, 7.7, 9.4, 9.5]), hence
it maps H, to H,. So a Hecke operator composed with ¢* gives an
algebraic correspondence which is orthogonal to [H,|P“AQ[H,|%s%4s if
f#g by the same reason as above.

Hence we are reduced to show that when 7T runs through the set
of Hecke operators the algebraic correspondences arising from 7T and
Toc* generate the space @, [H,Qo H/ "4, Here we recall the for
any embedding ¢ K;—C, ¢* acts on H;Qx;,0,C by

~1
-1
-1
1

for some basis (cf. [loc. cit., Prop. 8.10]). On the other hand, Hecke
operators acts on H, Xy f,oiC by scalar action. Hence we see that
Dses( K,PK ot*) generates a 2p,-dimensional subspace of DreslH Qo
H %49 but the latter is of dimension 2p, by (8.7), so we are done.

The second assertion in (8.2) follows from the above computation
and the equality >);..[K,:Q]=p,. Thus our theorem (8.2) is proved.

PrROOF OF (8.3). In case D is a prime congruent to 1 modulo 4
with D=<23, the corresponding surface S is rational by [4], hence the
assertion follows from the equality <z%(S)=H*S, @ and the Kiinneth
formula. In particular, dim, <2*Sx8)/=2%S ><§):O=pg(§). In case D
is a prime =29 congruent to 1 modulo 4, it is known that any self-
conjugate primitive form f is obtained by the Doi-Naganuma lifting
of some primitive form A(f) e S,(I"y(D), ¢,), where ¢, is defined by the
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Legendre symbol <—12> (ef. [11, §18]), and that the abelian varieties A}

and A% are K,-isogenous to an abelian variety B, attached to h(f)
(cf. [loc. cit., Th. 17.2]). Moreover, it follows from [loc. cit., Prop.
13.5] that the abelian variety [[;.s A% is isogenous to [[s.s B;, where
£’ is a maximal subset of the set of all primitive forms of S,(I'y(D), ¢5)
such that any two elements of 5’ are not companions mutually. Thus
we see by our theorem (8.2) that it suffices to show the following
proposition whose proof is due to Ribet:

(8.9) PROPOSITION. If the discriminant D is a prime congruent
to 1 modulo 4, then

(8.9.1) End°< I Bh>§ II End*B,= 1 K-
he&’ fe&

heZ’

ProOOF OF (8.9). In the terminology of Ribet [18], (8.9.1) is equiva-
lent to the statement:

(8.9.2) any primitive form of level D and character &, has no twist
nor inner twist.

Namely,

(8.9.3) if h is a primitive form of level D and character ¢, and AR
is, up to finitely many Euler factors, equal to f again of this
type for a charaeter ¥, then 7y is either the trivial character
or &,, hence f is either % or the complex conjugate of h.

This is proved as follows. Since “Nebentypus” character of ARy is
epX?, we know that y is quadratic (or trivial). If we look at the l-adic
representations attached to f and k, we obtain one set of representations
from the other by twisting by ¥. These representations can be ramified
only at D and at I, hence ¥ can be ramified only at D and at I.
Choosing two different primes I, we see that y is in fact ramified only

at D. Therefore y is either the trivial character or ¢,. This completes
the proof of (8.9).

ProoF OF (8.4). It is shown in [11, §18] that the assumption of
Proposition (8.3) is satisfied for D appearing in the statement of (8.4).
Thus (8.4) is proved.

REMARK. 1) Hirzebruch and Van de Ven [4] proved that the Hilbert

~

modular surface S is
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i) an elliptic K3-surface if D=29, 37, 41,

ii) an honestly elliptic surface if D=53, 61, 78,

iii) a surface of general type if D is a prime =89 congruent to 1
modulo 4.

Hence our result gives some examples of algebraic surface X, which is
K3, elliptic or of general type, such that the Hodge Conjecture holds
for its power X x X.

2) Shioda pointed out the in ease i) above the minimal model of

S is dominated by the Kummer surface Km(E' x E) associated to the
power EXE of an elliptic curve B and that the validity of the Hodge
Conjecture for the power SxS is implied by that for the power E*.
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